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Foreword

Heuristics and search algorithms are the two key components of heuristic search, one of the main approaches to many variations
of domain-independent planning, including classical planning, temporal planning, planning under uncertainty and adversarial
planning. This workshop seeks to understand the underlying principles of current heuristics and search methods, their limita-
tions, ways for overcoming those limitations, as well as the synergy between heuristics and search.

The workshop on Heuristics and Search for Domain-Independent Planning (HSDIP) is the fifth workshop in a series that
started with the Heuristics for Domain-Independent Planning (HDIP) workshops at ICAPS 2007, 2009 and 2011. At ICAPS
2012, the workshop was held for the fourth time and was changed to its current name and scope to explicitly encourage work on
search for domain-independent planning. It was very successful under both names. Many ideas presented at these workshops
have led to contributions at major conferences and pushed the frontier of research on heuristic planning in several directions,
both theoretically and practically. The workshops, as well as work on heuristic search that has been published since then, have
also shown that there are many exciting open research opportunities in this area. Given the considerable success of the past
workshops, and since it has de facto become an annual event, we intend to continue holding it annually.

The main focus of the HSDIP workshop series is on contributions that help us find a better understanding of the ideas
underlying current heuristics and search techniques, their limitations, and the ways for overcoming them. While the workshop
series has originated mainly in classical planning, it is very much open to new ideas on heuristic schemes for more general
settings, such as temporal planning, planning under uncertainty and adversarial planning. Contributions do not have to show that
a new heuristic or search algorithm “beats the competition”. Above all we seek crisp and meaningful ideas and understanding.
Also, rather than merely being interested in the “largest” problems that current heuristic search planners can solve, we are
equally interested in the simplest problems that they cannot actually solve well.

We hope that the workshop will constitute one more step towards a better understanding of the ideas underlying current
heuristics, of their limitations, and of ways for overcoming those.

We thank the authors for their submissions and the program committee for their hard work.

June 2013 Malte Helmert, Michael Katz, Gabriele Röger, and Jordan Thayer.
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In Situ Selection of Heuristic Subsets for randomization in IDA* and A*

Santiago Franco and Mike Barley and Pat Riddle
Computer Science Department

Auckland University
Auckland, New Zealand

Abstract

The performance of optimal heuristic search algo-
rithms, e.g. IDA* or A*, is critically dependent on the
quality of the available heuristics. Most heuristics use
abstractions to simplify the problem, and then solve this
simplified problem to produce a cheap and admissible
estimate of the actual distance to the goal. However,
as far as we know, there is no universal technique to
automatically and efficiently choose the best abstrac-
tion, and hence heuristic, for every specific problem in-
stance. By efficiently we mean that the time it takes to
choose the best abstraction does not offset its resulting
savings, compared to simply combining, via maximiza-
tion or randomization, the available abstractions for the
domain.
In this paper we propose using a novel analytical model
which efficiently chooses good subsets for the cur-
rent problem instance. Specifically, we want to create
a model of the problem-solver that, when given a set
of domain-specific heuristics and an F-bound, can rank
subsets of those heuristics based on the model’s predic-
tions of the problem solvers’ run-times. Specifically, in
this paper we consider combining heuristics using ran-
domization, i.e. when the problem-solver randomly se-
lects a heuristic from the chosen heuristic subset at ev-
ery node. We compare the results versus using random-
ization over all the available heuristics.

Introduction

Optimal heuristic search algorithms, e.g. A*, use admissi-
ble heuristic estimates to reduce the number of states which
must be evaluated before a guaranteed optimal path to a goal
state is found. Most heuristics use some form of abstraction
function to simplify the problem, and then solve this sim-
plified problem to produce a cheap and admissible estimate
of the distance to the goal. A significant amount of research
goes into finding the best possible abstractions for specific
problem domains. However, there is no universal technique
to guarantee that the chosen abstraction gives the best bal-
ance between accuracy vs associated computational costs for
all domains or even for all problems in complex domains.

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Generally, the larger the abstraction, the more accurate it is.
But also the larger the abstraction, the more expensive it is
in terms of either memory, computational costs or both.

Franco et al. (2009) proposed an analytical model called
RIDA*, which given a set of domain-competitive heuristics,
automated heuristic selection on a problem basis. Domain
competitive heuristics are selected to do well on average for
the domain, but they are not guaranteed to be the best for
each problem. RIDA* aimed to efficiently automate find-
ing good problem-specific heuristics, while keeping its own
meta-reasoning costs low. That paper used the standard ad-
missible heuristic combination method, i.e. taking the max-
imal heuristic estimate for each node.

Zahavi et al. (2007) introduced a new heuristic combina-
tion method, picking out a heuristic at random instead of
taking the maximal value. This was presented as a way to
sidestep the Diminishing Returns property, i.e. each addi-
tional heuristic increases the overall computational costs, but
the more heuristics used, the less the search space is pruned
by using additional heuristics. In this paper we show how
randomization only works well for those sets of heuristics
which are designed to complement each other.

The main contribution of this paper is to present an analyt-
ical model which, given a set of domain-competitive heuris-
tics, efficiently and online selects good heuristic subsets for
randomization for each problem instance. By efficiently we
mean that, including sampling and modeling costs, the over-
all solving time is, on average, better than simply randomiz-
ing the whole set. By online we mean that the selection of a
heuristic subset is made while solving the problem.

The solution this paper proposes follows the same steps
as in Franco et al. (2009), this is to divide the search for a
solution into three steps: Sampling Phase, Prediction Phase
and Solving Phase. In the Sampling Phase the problem is
sampled using the initial IDA* iterations and two data struc-
tures called Heuristic Union Search Tree (HUST) and Cul-
prit Counters (CCs). The HUST is a single search tree which
subsumes each of the possible search trees1 generated when

1Given a set of H available heuristics, there are up to 2H heuris-
tic combinations, and hence 2Hsearch trees which are subsumed
into a single search tree.
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using a different heuristic combination. This is achieved by
changing the regular IDA* expansion rule, ”prune any node
if at least one heuristic prunes it”, to exactly the opposite,
”expand any node as long as at least one heuristic would ex-
pand it”. This data is compressed further by the CCs, which
use binary bits to index the number of times each combi-
nation of heuristics expanded a node. For instance, given
a set of three heuristics, CC(100) = 3 means that only
three nodes in the HUST were generated by parent nodes on
which the first heuristic was bellow the F-bound but pruned
by the other two (their F-value was higher than the current
F-bound). In the second phase, the Prediction Phase, we
present a new analytical model to use the CCs themselves
to estimate which is the best subset of heuristics to use for
randomization. This is the main change proposed in this pa-
per to the RIDA* architecture. Finally, in the Solving Phase,
RIDA* uses either A* or IDA* to solve the rest of the prob-
lem with the selected heuristic subset, using randomization
as in Zahavi et al. (2007).

We will review the benefits and disadvantages of the pro-
posed model both for A* (Hanoi Tower) and IDA* (Fif-
teen and Twenty-Four sliding tile puzzles) in the Experi-
ments section. For the Fifteen Puzzle Domain we show that
RIDA*’s use of the new prediction model is competitive
even when the domain set-up is not ideal2. For the Twenty-
four Puzzle, we show that RIDA* can find subsets which are
significantly better when the available heuristics that are se-
lected solely because each of them does well on average for
the domain. In the Twenty-four puzzle we achieve a reduc-
tion of 1

4 in the number of generated nodes and a reduction
of 1

5 in the time for the 100 heuristic set (Table 3). We also
show the main caveat of the proposed model in the Towers
of Hanoi. This is that RIDA* has no monitoring mechanism
once it has chosen a heuristic subset. This is done in order
to keep meta-reasoning costs low but it can lead to making
poor choices.

Finally, note that the presented prediction model’s objec-
tive is to maximize the trade-off between doing enough sam-
pling and modeling to find a good subset while keeping the
overall costs low enough to actually benefit from that selec-
tion. Also note that the main objective of this paper is not
to find the fastest technique, be it randomization or maxi-
mization, but to build models which can efficiently point to
the most efficient combination of heuristics for the current
problem.

Literature Review

This paper is introducing a new analytical model, based on
the data structures (HUST and CCs) presented in Franco et

2Our approach performs best when the heuristics are selected
solely on their individual performance on problems in the domain.
Any further selection, based on how well the heuristics comple-
ment each other, is RIDA*’s main purpose. Hence, RIDA* is more
amenable to heuristic sets which have been generated without tak-
ing into account how well each heuristic in the set complements
the rest.

al. (2009), to predict the performance of a subset of heuris-
tics when using randomization. In the last decade there has
been significant research into improving heuristic perfor-
mance prediction. Most of the work is based on the KRE
model (Korf, Reid, and Edelkamp 2001), which is based
on gathering statistics for the domain. The original KRE
model is very accurate when assessing overall heuristic per-
formance on a domain basis but it is significantly inaccurate
for individual problem instances (Zahavi et al. 2008). Za-
havi et al(2008) came up with changes to the KRE formula
to make it more accurate for individual problems, but this
came at the cost of even more computationally intensive data
gathering.

KRE-based methods require extensive data gathering for
each heuristic being compared. In this paper we are inter-
ested in comparing thousands of heuristic combinations, e.g.
a twenty-five heuristic set has up to 225 = 3.37 ∗ 107 com-
binations. It is impractical to gather KRE statistics on each
possible heuristic combination. Note that individual heuris-
tic predictions using the KRE model cannot be combined
as if they were independent of the actual state being eval-
uated. This is clearly not the case for sets of high quality
admissible heuristics. A new separate KRE model needs to
be built for each possible heuristic combination. Hence a
cheaper prediction model, albeit possibly more inaccurate, is
needed to efficiently choose between a large number of pos-
sible heuristic combinations. Fortunately, we only need to
be accurate enough to do a good ranking of the best heuristic
combinations. Note that KRE’s strengths and weaknesses, in
the context of maximization as a combination method, was
discussed in more detail in Franco et al. (2009). The same
applies in the context of randomization.

Optimal search

There are many papers on how to generate the best
abstractions-based heuristics, e.g. iPDB (Haslum et al.
2007), Merge-and-Shrink (Helmert et al. 2007), there are
surprisingly few examples attempting to efficiently and au-
tomatically combine different types of admissible heuristics
online in the context of optimal search3.

All the heuristic generation procedures mentioned in the
previous paragraph do a restricted online heuristic selec-
tion, in terms of which abstractions are likely to reduce most
the search space. The main difference with our approach is
that RIDA* is using a parametric model to estimate which
heuristic combination will solve the problem faster. Generat-
ing the lowest amount of nodes does not guarantee the fastest
solving time, otherwise maximizing all available heuristics
would always be the fastest option. Even though it is not
done in this paper, RIDA* can manage heuristics with very

3Note that Portfolio planners allocate time slices to different
planners. The individual planners are akin to heuristics. Our ap-
proach is different because we are combining heuristics, via ran-
domization, to improve the overall efficiency of the search algo-
rithm. Portfolio-based planners have no mechanism to combine
heuristics collaboratively, e.g. maximization or randomization.
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different evaluation times, e.g. online calculated heuristics
like LM-CUT versus pre-calculated abstractions like PDBs
or even arithmetic heuristics like Manhattan Distance4. The
second difference is that RIDA* is designed to be competi-
tive with simply maximizing or randomizing a set of heuris-
tics which are known to do well for the current domain. To
achieve this, RIDA* has developed two mechanisms (the
HUST and the Culprit Counters) which optimize in situ sam-
pling and selection costs.

The only other system we found which makes effi-
cient online heuristic selections in the context of optimal
search, given a set of heuristics, is (Domshlak, Karpas, and
Markovitch 2010). It is based on using Bayesian classifiers
to select heuristics on a state by state basis. It has in common
with RIDA* that it does online sampling, and that it aims to
keep the costs (the costs of making the choices plus the cost
of solving the problem with those choices) lower than solv-
ing the problem with the default option (maximization for
them).

The first important difference between Domshlak et al.
(2010) and RIDA* is that they associated online meta-
reasoning costs for every generated node. RIDA* uses the
early iterations of a problem to gather data up to an empiri-
cally determined sampling cap. Once RIDA* has made a se-
lection for the current problem, there are no meta-reasoning
costs for the remaining iterations. Of course this also means
that RIDA* cannot adapt if its initial sampling is not repre-
sentative of the remaining iterations.

Secondly, their system is designed to be used with heuris-
tics which have a significant online calculation overhead.
This helps ameliorate the fact that the added meta-reasoning
increases the average overhead for all generated nodes. It
would be harder for such a system to be efficient when using
pre-calculated heuristics. RIDA*’s sampling mechanism is
designed to be efficient when using heuristics with a small
online overhead, e.g. pre-calculated abstractions like Pattern
Databases (PDBs). PDBs are discussed in the experiments
section.

Finally, their heuristic set is made of only two heuris-
tics. Their paper states that the number of classifiers it needs
to update online, and presumably the overhead costs, grow
quadratically with respect to the number of heuristics in
the set. This means that for large heuristic sets, e.g. we
use up to a 100 heuristics for the Twenty-four Puzzle and
105 heuristics for the Towers of Hanoi, their online meta-
reasoning costs would increase by four orders of magnitude.
That would make their listed 2% meta-reasoning costs, with
respect to the average overhead per node, too expensive for
the larger heuristic sets used for the experiments in this pa-
per. RIDA*’s online meta-reasoning costs grow linearly, in-
stead of quadratically, with respect to the number of heuris-
tics in the set (Franco and Barley 2009).

4We have a yet unpublished manuscript describing how to use
RIDA* to combine heuristics, using maximization, whose evalua-
tion costs differ by orders of magnitude. This is done in the context
of domain independent planners.

The advantages of this paper’s proposed selection mech-
anism for randomization is that it is designed to balance
the need for good heuristic rankings while keeping meta-
reasoning costs low. The actual solution depends on the
problem features, e.g. if choosing between two heuristics
on a domain basis we would recommend to use the for-
mulas in Zahavi et al. (2008). If choosing between small
sets of computationally intensive heuristics like in Domsh-
lak et al. (2010) on a state-basis we believe their method is
state-of-the-art. We claim that our heuristic selection method
improves cost-effective automated online heuristic selection
when dealing with large sets of heuristics which are cheap
to evaluate. This is the case with the very effective family
of PDB-based heuristics but it would also apply to any pre-
calculated abstraction based heuristics.

Nonoptimal search

There are more methods which do heuristic selection in
the context of non-optimal search. Even though we are not
running non-optimal searches in this paper, we list a cou-
ple of the most recent approaches for completeness sake.
Here we will briefly discuss two recent approaches: dovetail-
ing(Valenzano et al. 2010) and bootstrapping (Jabbari Ar-
faee, Zilles, and Holte 2010).

Dovetailing was used by Valenzano et al. to significantly
improve the performance of WIDA*. Dovetailing differs
from classic portfolios because instead of giving a fixed
amount of time for each planner, each planner is run in lock-
step in terms of number of steps. As the authors noted, this
approach will be —A— times more expensive than using
the best setting, A being the number of settings being tried.
But, as the best problem-specific setting is unknown, dove-
tailing works quite well compared to using any fixed setting
for the domains and heuristics used in the paper. The reason
it works well is that dovetailing does not get stuck in local
minima.

Dovetailing can be compared to the HUST. The HUST is
a compressed search tree which contains all the reachable
nodes by any of the available heuristics. This would also ap-
ply to the weighted heuristics considered in their paper. Each
weight is simply a new heuristic. It would be interesting to
check whether using the HUST, in the context of dovetail-
ing, could speed up the search. The reason it might is that the
HUST would not duplicate node generation, as dovetailing
does. But no claims can be made unless actual experiments
are run.

Bootstrapping was used by Jabbari et al. (2010) to gener-
ate a non-optimal heuristic for each domain. It is intended
to generate a good heuristic, almost as good as state of the
art, when the only domain information available is a suc-
cessor function(opaque domain). Time performance is indi-
rectly taken into account, i.e. a new heuristic is only learnt
if it solved enough new bootstrapped instances under a fixed
time limit. It can take a large amount of time to generate a
good heuristic (two days for Twenty-four puzzle), but then
it can be reused to solve different problems with the same
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goal. The main difference with RIDA* is that RIDA* tai-
lors its heuristic selection to each specific problem, given
that an existing set of competitive admissible heuristics is
given. Hence, RIDA* has to optimize its sampling proce-
dure (HUST and CCs) to take into account the trade-off be-
tween sampling effort vs improved speed up compared to
simply combining all available heuristics. Also, RIDA* uses
a parametrized model to estimate which heuristic combina-
tion is likely to solve the current problem faster. Bootstrap-
ping is not intended to speed-up search if strong heuristics
are already known for the domain.

Proposed Prediction Model

Example Tree

We will be referring to an example search tree (Fig. 1a) to
explain the model. The model’s objective is to estimate the
number of generated nodes, for any subset, if randomization
had been used for the current IDA*’s F-bound. RIDA* then
uses the estimated generated nodes for each subset, together
with the sampled Heuristic Branching Factor (HBF)(Korf,
Reid, and Edelkamp 2001), to predict the number of gen-
erated nodes and ultimately search time for the next F-
bound/s. The search tree in Fig. 1a is a HUST. For each sam-
pled iteration RIDA* generates a single search tree which
subsumes all possible search trees for all heuristic subsets.
The HUST is a snapshot of the search at the end of some
specific F-bound expansion. This is just a small handmade
example to illustrate how the proposed randomization pre-
diction model works. Each node is identified by its path, e.g.
root’s left child is called “L” and L’s right child is called
“LR”. Note that the node also contains which heuristics ex-
panded it (1) and which prune it (0), e.g. 100 means that only
h1 expands this node.

Regular Probabilistic Model

The most direct and precise estimation of the number of gen-
erated nodes for an IDA* iteration using randomization is
to store the expansion probability for each reachable node,
given that the parent node was generated. This is done in the
probabilistic tree for our example (Fig. 1b). We assume all
heuristics in a subset have the same chance of being picked,
so the probability of a node being expanded, given that its
parent was generated, is simply the number of heuristics
which expand it over the total number of heuristics in the
subset.

Equation (1) is the most accurate estimation we can make
of the expected number of generated nodes when using
randomization. Explanation follows: The number of gener-
ated nodes when combining heuristics using maximization
is constant on every run. However, every time a random-
ized heuristic selection is run, different nodes might be ex-
panded. The HUST contains all the reachable nodes by any
individual heuristic for a given F-boundary and hence any
random combination of the heuristics. Equation (1) models
the randomization process, e.g. the probability of a node be-

ing expanded is the product of all the ancestor’s probabilities
being expanded. As we cannot predict which specific nodes
will actually be expanded on a randomized run, we instead
model the average number of nodes generated. Short of the
actual randomized run, this is the most informed prediction
which can be made. Note that as we use very large search
trees for our experiments, the stochastic effect on the actual
number of generated nodes in different runs is quite small.

N (H ) = 1 +
�

∀n∈HUST

Pgen(n) ∗ Pexp(n) ∗ BF (n) (1)

Pgen(n) =
�

∀i∈HUSTwhich are n′s Ancestors

Pexp(i) (2)

Pexp(i) =
NumberExpandingHeuristics(i) ∈ H

NumberOfHeuristics ∈ H
(3)

N(H) is the number of generated nodes, given a heuris-
tic subset (H). n is an iterator for all nodes ∈ HUST
(The HUST contains all reachable nodes, for a specific F-
boundary, for any of the heuristics in H). BF (n) is node’s
n’s branching factor (number of children). Pgen(n) is the
probability of generating the node n, which is the prod-
uct of all its ancestor’s expansion probabilities all the way
to the root. i is an iterator of all nodes which are an an-
cestor of the node n. Pexp(i) is the probability to ex-
pand ancestor node i, given that its parent was expanded.
NumberExpandingHeuristics(i) ∈ H is the number of
heuristics in subset H which were below the F-boundary for
node i. NumberOfHeuristics ∈ H is the total number of
heuristics present in H .

The problem with equation (1) is that, although it is very
accurate, it also requires storing every node in the HUST, it
is too memory intensive to be practical for large search trees.
Regular RIDA* (Franco and Barley 2009) uses CCs to keep
track of how many nodes were generated for each subset
when doing maximization, see Table 1. For any subset the
exact number of generated nodes, when using maximization,
is the sum of those CC’s whose expanding heuristics (char-
acteristic set value=1) are active for the heuristic subset.

RIDA* cannot use the CCs to estimate the effect of ran-
domization with the same accuracy as when doing max-
imization, as previously explained. It cannot use equation
(1) either, because CCs cannot be used to calculate the ex-
act conditional expansion probabilities of individual nodes,
e.g. the probability of expanding node “LR” depends on the
probabilities of expanding its two ancestors (Root and L).
CCs compress the HUST by eliminating all node location in-
formation. Note that the CCs provide us with information on
how well heuristics combine with each other on average, as
we know how many nodes are expanded by which combina-
tion of heuristics. So we know for example, how frequently
any subset of heuristics “agree” on pruning or expanding a
node. This information is not available from probability dis-
tributions of individual heuristics. The following prediction
can use this information to predict which heuristic subsets
will do well for the current problem.
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(a) Arbitrary HUST for a Three Heuristic set (h1, h2, h3) (b) Probabilistic Tree for Same Three heuristic Set (h1, h2, h3)

Figure 1: Example Trees for a Three Heuristic Set (h1, h2, h3)

Populated Culprit Counters
Characteristic Set Associated Children Nodes

111 CC(111)=2
011 CC(011)=4
100 CC(100)=6
010 CC(010)=2

Generated Nodes When Using Maximization
Heuristic Subset Generated Nodes
h1&h2&h3 1 +

�
CC(111)= 3

h1&h2 1 +
�

CC(11X)= 3
h1 1 +

�
CC(1XX)= 9

. . . . . .

Table 1: Culprit Counters For Example Fig. 1a

Consistent CC’s Prediction Model

Hereafter we show how to use RIDA*’s CCs to estimate,
given a set of heuristics, the number of generated nodes
for an IDA*’s iteration when using randomization. The sug-
gested solution only requires an additional parameter (4) in
order to calculate the HUST’s average depth.

AvgHUSTDepth =

�

∀i∈PrunedNodes∈HUST

depth(i)

|PrunedNodes ∈ HUST |
(4)

We keep using the example HUST (Fig. 1a,), whose aver-
age depth is 3 (Root’s depth is 0). The proposed model’s
equations to translate each CC to the average number of
nodes generated for a given heuristic subset when doing ran-
domization are equations (5-8).

This model is an adaptation of (1) to estimate the number
of generated nodes for any heuristic subset when the only
information available is the CCs and the average HUST’s
depth. Following is a description of the terms: H compactly
represents which heuristics are active for the current sub-
set. Each heuristic (hx ∈ H) is marked as “1” iff active,
“0” otherwise. X is the CC’s binary characteristic set, each
bit is marked as “1” iff hx expands the associated nodes,
“0” otherwise. CC (X ) is the number of nodes in the HUST
for which the same CC applies. PGen|CC (X) is the prorated
generation probability of CC (X)’s nodes for each depth.
PExp|CC (X) is the probability that nodes associated with
CC (X) are expanded. Y represents those CCs consistent

withCC (X ), i.e. the set of CCs in Y are consistent with X if
and only if their characteristic sets only have 1s in a location
where CC(X)’s characteristic set also has a 1. PAvg|CC(X)

is the average CC(X)’s ancestor’s expansion probability if
we assume the heuristics are consistent. X ∩H is the char-
acteristic set resulting from all those CCs whom have a ’1’
in at least one bit location which is the same for H .

N (H ) = 1 +
�

∀X∩H

�

CC(X) ∗ PGen|CC (X ) ∗ PExp|CC (X )

�

(5)

PGen|CC (X ) =

D<AvgHUSTDepth
�

D=0

PD
Avg|CC (X )

AvgHUSTDepth
(6)

PAvg|CC (X ) =

�

∀Y

�

CC (Y ) ∗ PExp|CC (Y )

�

�

∀Y

CC (Y )
(7)

PExp|CC (X ) =
NumberExpandingHeuristics ∈ X

NumberOfHeuristics ∈ H
(8)

Equation (5) shows how for each subset we need to find
those CCs which could contribute nodes to the Search Tree.
The main difference between equations (5) and (1) is that,
instead of looping through each node in the HUST, we only
need to loop through the relevant CCs. The number of popu-
lated CCs for large trees is orders of magnitude smaller than
the number of generated nodes in the HUST.

Equation (6) calculates the probabilities of each node as-
sociated to the relevant CC being generated. Equation (6)
distributes the nodes associated to the relevant CC equally
between all depths from 1 to the average HUST’s depth (4).
The CC’s do not tell us where each node is located, so we
assume all associated nodes have an equal chance of being
at any given depth.

Equation (7) is the average probability for an ancestor
node to be generated, given that the nodes are associated
to a specific CC. There was no need to calculate average
ancestor expansion probabilities when using equation (1),
as it required storing every path in the HUST. Equation
(7) takes advantage that the heuristics in the set are con-
sistent to narrow down which CCs could themselves be an-
cestors of nodes associated with the current CC, e.g. if the
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current CC is CC(111), that is all three heuristics expand-
ing, then the only valid ancestors would be nodes associated
with CC(111) themselves. Otherwise, heuristic consistency
would not hold.

Finally, equation (8), translates the CC characteristic set
into the probability of nodes associated to the CC expand-
ing, given the current heuristic subset. Depending on which
heuristics are active for the current subset, some of the CC’s
characteristic set bits may not apply. Hence, we have to re-
calculate for each heuristic subset the expansion probability
for each CC.

Following we discuss, as an example, the model’s accu-
racy when calculating the number of generated nodes when
all three heuristics in Fig. 1 are active. The overall esti-
mated number of generated nodes according to the proposed
CC prediction model (5) is 1+2+2.11+1.16+0.46=6.73. The
more accurate Prediction Model (1) estimates the number of
generated nodes as 6.78. The accuracy ratio of the proposed
model for this example is 6.73

6.78 = 0.99. As the objective of
RIDA* is to choose good heuristic subsets at a reasonable
cost, the proposed prediction model is better as it does not
require storing node location information.

Simplified CC Prediction Model

We had to simplify the proposed prediction model, by
changing the ancestor expansion probability equation (7),
due to its high computational cost. Equation 7 takes ad-
vantage of heuristic consistency by ensuring that we only
include as possible parent CCs those CCs whose “pruning
heuristics” are not “expanding heuristics” for the current
CC. Otherwise, heuristic consistency would not hold. The
problem is that for each heuristic subset considered we al-
ready need to loop through each CC to check if it applies to
the current subset. Calculating the average ancestor expan-
sion probability, maintaining consistency as in (7), would re-
quire doing an additional loop, for each heuristic subset and
CC pair, through all other CCs to find the CCs that are con-
sistent with the current CC. It increases the computational
complexity by an order of N2, N being the number of pop-
ulated CCs for the current iteration. For large heuristic sets
the number of CCs can be in the order of tens of thousands
or more, so using equation (7) is not practical for efficient
online calculations.

There are two alternatives to (7), the first one would be
to simply ignore consistency. This would mean that all CCs
have a chance, measured by their relative size in associated
nodes, to be associated to any ancestor nodes. This is equiv-
alent to assuming no correlation between the heuristics ex-
panding or pruning specific paths which is simply not true.
We tried this model but the accuracy dropped significantly
compared to the following alternative:

Instead of ignoring consistency we decided to simplify
the consistency requirement (and add another error factor)
by assuming that the ancestors of each node associated to
a CC are themselves associated to the same CC. For most
paths in large search trees, the chances are that the parent’s

node associated CC is the same or changes gradually. So the
simplified version of equation (7) is equation (9).

PAvg|CC (X ) = PExp|CC (X ) (9)

Changing PAvg for our example results in no changes for
C(111), PAvg = 2

3 instead of PAvg = 14
18 for C(011),

PAvg = 1
3 instead of PAvg = 1

2 for C(100), PAvg = 1
3

instead of PAvg = 16
24 for C(010). This results in the pre-

dicted amount of nodes to be 1+2+1.87+0.96+0.39=6.22
nodes when using the simplified CC prediction model in-
stead of 6.73 when using the full consistency CC’s predic-
tion model. The correct estimation (1) is 6.78 nodes, so the
accuracy ratio drops from 0.99 to 6.22

6.78 = 0.91.

Simplifying the CC’s prediction model as in equation (9)
results in adding a systematic error which lowers the esti-
mated number of generated nodes for most subsets. But it is
much cheaper to implement. The priority for the prediction
model is to find good heuristic subset rankings as cheaply as
possible.

Experiments

The main objective of this paper is to efficiently automate
heuristic selection when using randomization. In order to do
this we need to answer the following two questions: Is it al-
ways faster to use randomization for the complete heuristic
set as suggested in (Zahavi et al. 2007), or can it be faster to
randomize a problem-specific subset? If it is, can we modify
RIDA* so it can efficiently choose good subsets for those
problems in which randomization of the whole set is not
the best option? For our experiments we used PDB-based
heuristics as they are well suited to our needs. Explanation
follows.

A significant number of current approaches use as heuris-
tics a type of look-up databases known as Pattern Databases
(PDBs)(Culberson and Schaeffer 1994). PDBs simplify the
problem by selecting only a part of the original problem
description (pattern) and projecting it onto an abstraction.
Domain-specific PDBs can be calculated only once and
stored as a databases which are then re-usable for as many
problems as needed, as long as they share the same goal
state.

However, given a fixed memory limit there is no domain-
independent technique to efficiently select the best pat-
terns for each problem. Domain-independent pattern selec-
tion is a variant of the bin-packing problem and it is NP-
complete(Edelkamp and Schroedl 2011). Even for domain-
specific approaches, the best patterns are problem specific
(Korf and Felner 2002)(Holte et al. 2006)(Edelkamp and
Schroedl 2011).

Fifteen Puzzle

Table 2 summarizes the results for the Fifteen Puzzle when
using the same set of five PDB-based heuristics as in (Franco
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and Barley 2009) for a suite of a thousand random prob-
lems. Table 2 is divided in two parts. This is done to separate
the actual performance of the selected heuristic subsets from
RIDA*’s sampling and modeling costs. A ratio less than one
means that RIDA* is faster than using the whole set.

Note that the heuristics in the set were created manually
to complement each other, i.e. each has patterns that are sig-
nificantly better in different areas of the search space. Hence
it is difficult for RIDA* to find subsets which will do sig-
nificantly better. The reason we used this heuristic set is be-
cause, as we aim to create a method which can be used to au-
tomate heuristic selection, we need to make sure our method
is robust. If the heuristic set is already well chosen for the
current problem instances then we would like our method
to not significantly hamper performance, compared to sim-
ply using the given heuristic set. We show in the 24 puzzle
the savings that can be achieved when the heuristic set is
amenable, i.e. the heuristic themselves were not manually
designed to complement each other.

Last Iteration (No Sampling & Modeling Costs)
Average StDev Max Min Overall

SubsetT ime

SetTime

�
SubsetT ime�
SetTime

0.94 0.18 2.95 0.39 0.96
Total RIDA* Running Time

1.54 1.42 17 0.57 0.997

Table 2: FIFTEEN PUZZLE RESULTS

Table 2’s first half (Last Iteration) shows that RIDA*’s se-
lected heuristics are only slightly faster than using the whole
set. The more important result for us is in the second half:
after including RIDA*’s meta-reasoning costs (sampling &
modeling ), the overall performance did not drop signifi-
cantly. By overall we mean the time it takes to solve all
the problems in the suite. The “Average” column refers to
the average speed-up ratio per problem. The reason aver-
age performance drops significantly is that RIDA*’s meta-
reasoning costs cap is empirically determined on a domain
basis. This means that the smallest problems in the suite, ap-
proximately 10%, were solved while RIDA* was sampling
all possible heuristic combinations. Hence, the costs of solv-
ing the smallest problems can be significantly higher than
using the worst possible heuristic combination. But, as this
only affects the smallest problems, the overall results are not
significantly affected. A dynamic sampling cap for RIDA*
is future work(Franco and Barley 2009).

Twenty-Four Puzzle

For this domain we decided to automatically generate sets
of domain-competitive heuristics. The main difference with
manual selection is that we did not take into account how
well each generated heuristic would complement the other
heuristics. This makes the heuristic set more amenable to
our approach.

(Holte et al. 2006) showed how a combination of PDB-
based heuristics can do better than the state-of-the-art sin-

gle PDB-based heuristic. They manually designed the PDB-
based heuristics (8 combinations of 5-5-5-5-4 disjoint pat-
terns) so that they would complement each other. All pat-
terns in each PDB followed the neighboring rule, i.e. to
make competitive PDBs choose neighboring objects in the
goal description. We decided to use the same neighbor-
ing rule, but to generate a larger set of heuristics. We did
not try to make the generated heuristics complement each
other, RIDA* should find the best heuristic subset in situ
for each problem. The created PDB-based heuristics are
pseudo-random and domain-competitive. We used three dif-
ferent sets to monitor the effects of increasing the number of
heuristics in the set. Each set is respectively made up of the
first twenty-five, fifty and hundred heuristics we generated.

Note that the maximum combination degree (M.C.D.), i.e.
the maximum number of concurrently active heuristics for
a candidate subset, was capped for this domain’s heuristic
sets. The meta-reasoning costs for the randomization model
are much bigger for these larger sets (2N combinations, N
being the size of he initial set of heuristics.). The M.C.D
was set to five heuristics for the 25 heuristic set, four for
the 50 set and three for the 100 set. Also we limited the
number of candidate subsets for each combination degree to
one thousand heuristic subsets. Each of the candidate sub-
sets was generated randomly with the only condition being
to reject duplicate subsets. These compromises were made
to keep modeling costs under control. The M.C.D for each
heuristic set was determined on a domain basis by doing a
few a priori test runs.

Finally we only did nine random problems for this set.
The reason is that they take a long time (a month approxi-
mately) to be solved when using slowest set-up (combining
the whole heuristic set instead of using RIDA*). In order to
solve the problems in a timely manner we stopped the search
as soon as the first solution was found. In order to elim-
inate the stochastic effects of goal placement biasing our
small problem suite, we eliminated the last iteration from
the data. We counted all the nodes (or time) up to the penul-
timate iteration. This mode of comparison does not benefit
our model as the more iterations in the solving phase, the
smaller RIDA*’s relative sampling and modeling costs.

Table 3 is divided into two parts. In the first part we report
RIDA*’s performance, in terms of the number of generated
nodes, compared to using randomization for the whole set.
In the second part the comparison is made in terms of over-
all running time, including RIDA*’s modeling and sampling
costs.

In this domain we achieved our best results, both node-
wise and time-wise. First we discuss the results node-wise:
The first column in table 3 is the average node-reduction
ratio. The smaller it is, the better RIDA* did. RIDA* gen-
erated significantly less nodes than using the whole set, e.g.
RIDA*’s generated, on average, less than a third of the nodes
compared to randomizing the whole set for the 100 heuris-
tic set. The overall ratio, this is the sum of generated nodes
for all problems, was also at its best (0.27) for the hundred
heuristic set. The results are also good for the other two sets.
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Set
Nodes

AvgRatio StdDev Max Min Overall Ratio
SubSetNodes

SetNodes

�
SubsetNodes�
SetNodes

25 0.39 0.096 0.51 0.21 0.30
50 0.33 0.10 0.48 0.14 0.32
100 0.30 0.12 0.47 0.098 0.27

Set Time, including sampling and modeling costs.
SubSetT ime

SetTime

�
SubsetT ime�
SetTime

25 0.36 0.11 0.52 0.18 0.26
50 0.28 0.11 0.42 0.11 0.24
100 0.37 0.26 0.87 0.060 0.20

Table 3: 24 PUZZLE RESULTS

Finally it is also interesting to note that for the larger 100
heuristic set, we had both our best and worst results with
any problem instance. The worse ratio (0.87) was due to the
problem being one of the smallest but with very high model-
ing costs. The best ratio (0.060) was due to a node-reduction
ratio of 0.098 which was “improved” by the bigger overhead
of the whole set with respect to the selected subset.

Towers of Hanoi

The Towers of Hanoi problem is a classic search problem.
The classic version consists of three pegs and a set of disks.
All the disks have different sizes and can only be stacked
on top of larger disks. The Towers of Hanoi problem is to
move all the disks from one peg to another peg. Only the
disk on the top of a peg can be moved, but it can be moved
to any other peg as long as it is either free or contains a
larger disk on top. We used four pegs because there is no
known deterministic algorithm which guarantees an optimal
solution (Felner, Korf, and Hanan 2004).

The heuristic set was created using the same pattern
database as in (Felner, Korf, and Hanan 2004). Their heuris-
tic generation approach is to calculate the largest pattern
which can be fitted in memory. Then the domain symmetries
can be used to generate large sets of domain-competitive
heuristics (Felner, Korf, and Hanan 2004). This creates an
interesting question which RIDA* is designed to address:
which heuristics do we select? For this paper the question is,
can the proposed model pick a heuristic subset that will do
better than using the whole set with randomization?

We used for this domain the same basic RIDA* selection
architecture as in the sliding-puzzle domains, i.e. first using
IDA* and HUST/CCs to sample the initial iterations until
all heuristics generated more nodes than the sampling cap,
then using the proposed randomization prediction model to
choose a subset. As in the Twenty-four puzzle we capped
the M.C.D to five heuristics and also limited the number
of candidates to a maximum of a thousand randomly gen-
erated but unique heuristic subsets per combination degree.
The first change was to use A* instead of IDA* to solve the
problem. There are too many alternative paths leading to the
same state for IDA* to be competitive. The second change
was to use a global duplicate check mechanism on the sam-

pling phase, so that we predict more accurately the number
of generated nodes, up to an F-bound, when using A*.

Whole Set RIDA*’s Selected Subset
1.61× 107 1.46× 107

Table 4: Generated Nodes for A*

Figure 2: GeneratedNodesSubset
GeneratedNodesSet

for IDA* with state dupli-
cate check

Fig. 2 and Table 4 shows the results, node-wise, when
solving a 15 Disks-4 Pegs Tower of Hanoi problem using a
13 Disk PDB. The 13 Disk PDB was used to calculate a set
of 15∗14

2 = 105 heuristics (Felner, Korf, and Hanan 2004).

Table 4 also shows that the selected subset generates al-
most the same number of nodes compared to simply ran-
domizing the whole set. This is not that surprising when we
consider that, due to the domain symmetries, each heuristic
in the set complements each other perfectly when the goal is
moving all disks to a different peg (Felner, Korf, and Hanan
2004). Each heuristic is a PDB, made of two additive dis-
joint groups of thirteen disks and two disks, which is less
informed when accounting for the two disks in the smaller
two disk group than for the remaining thirteen disks in the
larger group.

This domain shows an interesting caveat of the proposed
model. RIDA* makes the assumption that we are doing
enough sampling to have estimated the correct asymptotic
Heuristic Branching Factor (HBF) for each heuristic sub-
set. This works well for the heuristics in the sliding-puzzle,
for which the different heuristic subset’s asymptotic HBF
changes very little once a few iterations have been sampled.
This is not the case for the Towers of Hanoi. Lets take two
Towers of Hanoi heuristics, h1&h2 created from the same
PDB. h1 is more accurate regarding the two bottom disks
and h2 is more accurate regarding the two top disks. h1 will
give higher h-values on average, compared to h2, when close
to the initial state. But this heuristic ranking reverses when
close to the goal state, then the two bottom disks tend to be
in their goal positions for more states. The proposed ran-
domization model chooses a heuristic subset based on the
sampled initial iterations, and hence chooses subsets which
are more informed in the neighborhood of the initial state.
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Fig. 2 shows how the chosen subset performs on consecutive
IDA* iterations. We used IDA* with state duplicate check,
instead of A*, for RIDA*’s solving phase in Fig. 2 to show
how RIDA*’s chosen subset’s performance decreases as the
search space gets closer to the goal state.

Conclusions

This paper’s main contribution is to automate heuristic se-
lection in the context of randomization. Efficiently finding
the right abstraction-based heuristics for each problem is
considered too onerous, so a less efficient human-led de-
sign is done on a domain basis. To support our claim we
first show that Diminishing Returns is still a problem when
combining heuristics via random selection, i.e. given a set
of domain competitive heuristics, choosing the right subset
of heuristics can do significantly better than simply pick-
ing a heuristic at random from the whole set. Secondly, we
present a new analytical performance prediction model to
efficiently select problem specific heuristic subsets which
do better than simply randomizing the whole heuristic set.
By efficiently we mean that, given that there is a subset
which can do significantly better than simply randomizing
the whole set, the costs associated with finding that subset do
not eliminate the resulting performance improvement. We
used the proposed prediction model to modify an existing
algorithm, called RIDA*, to test how well it did.

We tried the proposed prediction model for three domains.
The actual speed-up is dependent on how complementary
the heuristics in the input set are. Hence it is important
for our proposed model to be robust, this is to not signifi-
cantly hamper performance when the available heuristic set
is close to optimal for the problems being solved. This was
the case for the Fifteen puzzle. We showed our methodol-
ogy resulted in no significant loss of performance when the
heuristic set is not amenable. For the Twenty-Four Puzzle
we automated heuristic generation. These sets were made of
domain-competitive heuristics not specifically designed to
complement each other. Thanks to this, RIDA* was able to
find problem-specific heuristic subsets which were signifi-
cantly faster than simply randomizing the whole set.

Perhaps the major caveat of the proposed model is the as-
sumption that if enough initial sampling is done, then there
is no need for any further sampling. This assumption is not
true for the heuristics used in the Towers of Hanoi domain.
This leads the proposed prediction model to estimate rela-
tively large savings based solely on the data gathered in a
few initial iterations. Our experiments showed this assump-
tion was a bad assumption for the Towers of Hanoi domain
but a good one for the slide puzzles. A monitoring mecha-
nism to verify/update the model predictions is future work.
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Abstract
Merge-and-Shrink abstraction (M&S) is an approach for con-
structing admissible heuristic functions. A key issue in M&S
abstractions is which states are mapped to the same abstract
state: That decision directly controls the trade-off between the
accuracy of the resulting heuristic function on the one hand,
and the size of the abstract state space on the other hand. A
recent approach towards tackling this issue introduced the no-
tion ofK-catching bisimulation. This class of abstractions is
a bisimulation – preserving transition behavior exactly – but
only for a subset K of the planning operators, ignoring all
others. It has been shown that this form of relaxed bisimu-
lation is invariant over the M&S process, and that choosing
K appropriately may reduce abstraction size exponentially
while still delivering a perfect heuristic. Determining those
exact operator subsets K is, however, highly intractable, and
practical approximations so far did not yield convincing re-
sults. Thus the question remains: How to selectK?
We propose to answer that question by a counter-example
guided abstraction refinement (CEGAR) approach. Given a
K-catching bisimulation, we analyze its optimal solutions
and identify new operators to be added to K, ultimately ex-
cluding all spurious solutions. We design, and experiment
with, practical criteria to terminate the refinement process be-
fore that happens.

Introduction
One of the currently most successful approaches to solve
problems in optimal planning is to use the A∗ search algo-
rithm with an admissible heuristic function. Heuristic func-
tions estimate the cost of the cheapest operator sequence
that, when applied on the initial state, leads to the goal. In
addition, admissible heuristic functions give the guarantee
that this estimation is always a lower bound on the cheap-
est cost of real solutions, and the better this estimation is,
i.e., the smaller the difference to this cost, the faster will the
search algorithm find a solution for the problem. Therefore,
the main question becomes how good admissible heuris-
tic functions can be computed automatically, for any given
problem.
One approach to construct an admissible heuristic func-

tion is based on abstractions. Abstractions ignore the dif-
ference between certain states and consequently reduce the

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

total size of the state space, while preserving all operator se-
quences that are possible in the concrete state space. With
fewer states, the analysis of this abstract state space can be-
come feasible so that the heuristic value for some state can
be computed by computing the cost of the optimal solution
of its representative in the abstract version of the state space.
Currently, two methods for building an abstraction are

used in planning: Pattern databases (Haslum et al. 2007)
and Merge-and-Shrink abstractions (Helmert, Haslum, and
Hoffmann 2007), and the latter one, Merge-and-Shrink ab-
straction, strictly generalizes pattern databases. M&S builds
an abstraction by iteratively combining, called merging, and
further reducing the size of, called shrinking, basic parts
of the state space. To preserve the entire behavior of the
original state space in the abstract state space, Nissim et
al. (2011) used the well-known notion of bisimulation (Mil-
ner 1990). They observe that the bisimulation requirement
is unnecessarily strict for the purpose of computing heuris-
tic functions. This has been addressed by two different
relaxations of bisimulation: greedy bisimulation (Nissim,
Hoffmann, and Helmert 2011), and K-catching bisimula-
tion (Katz, Hoffmann, and Helmert 2012). Both are based on
the same idea, ignoring the difference between more states
by considering only a subset of transitions during the test for
the bisimulation property. Greedy bisimulation ignores tran-
sitions based on a local condition, i.e., on a per-transition
basis (abstract goal distances at the transition’s end points).
By contrast,K-catching bisimulation fixes a global criterion
throughout the M&S process, simply catching a transition if
its label – the planning operator inducing it – is contained in
a label subsetK fixed a priori. The key advantage of that cri-
terion is its invariance over the M&S construction (?), pro-
viding direct control over the final abstraction in terms of the
choice ofK.
Katz et al. identify two different types of operators that,

if caught by K, lead to a perfect heuristic, while the result-
ing K-catching bisimulation can be exponentially smaller
than any general bisimulation. However, computing these
sets K exactly is highly intractable: They consist of all op-
erators that form part of an optimal solution for any state
in (part of) the state space. Katz et al. devise some simple
approximation methods, with mediocre empirical results.
Herein, we instead explore the possibility to design K via
counterexample-guided abstraction refinement (CEGAR).
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CEGARwas originally introduced in the context of model
checking (Clarke et al. 2003) for the purpose of proving
(un)reachability of states in transition systems. It computes
an abstraction of a transition system by an incremental pro-
cedure that analyzes intermediate abstractions to extract in-
formation – counterexamples – that can be used to improve
the abstraction. One starts with a simple initial abstraction of
the transition system that is improved by incrementally dis-
tinguishing more states, in the so called refinement loop, as
long as certain properties are not fulfilled. CEGAR consists
of the three general components:

(1) Initial abstraction. Specification of the abstraction that
is used to start the refinement. (In our case: K-catching
bisimulation for the empty setK.)

(2) Analysis of the abstract transition system. Determining
unintended behavior of the abstract transition system of
the current abstraction. (In our case: Optimal abstract
solutions that are spurious, failing to solve the original
planning task.)

(3) Refine the abstraction. Computing a new abstraction, by
using the information obtained by (2), that excludes the
unintended behavior. (In our case: Including new opera-
tors intoK.)

(2) together with (3) are called the refinement step and they
are executed as long as the abstract transition system does
not fulfill some specific criteria. In the following we show
how (1), (2) and (3) are instantiated for the purpose of build-
ing aK-catching bisimulation.

Background
A planning task is a 5-tuple Π = (V ,O, c, s0, s∗). V is
a finite set of variables v, each v ∈ V associated with a
finite domainDv . A partial state over V is a function s on a
subset Vs of V , so that s(v) ∈ Dv for all v ∈ Vs; s is a state
if Vs = V . The initial state s0 is a state. The goal s∗ is a
partial state. O is a finite set of operators, each being a pair
(pre, eff) of partial states, called its precondition and effect.
Each o ∈ O is also associated with its cost c(o) ∈ R+

0 .
The state space of a planning task is given by a transition

system. Such a system is a 6-tuple Θ = (S,L, c, T, s0, S∗)
where S is a finite set of states, L is a finite set of transition
labels, each associated with a label cost c(l) ∈ R+

0 , T ⊆
S×L×S is a set of transitions, s0 ∈ S is the start state, and
S∗ ⊆ S is the set of goal states. We define the remaining
cost h∗ : S → R+

0 as the minimal cost of any path (the sum
of costs of the labels on the path), in Θ, from a given state s
to any s∗ ∈ S∗, or h∗(s) =∞ if there is no such path.
In the state space of a planning task, S is the set of all

states. The start state s0 is the initial state of the task, and
s ∈ S∗ if s∗ ⊆ s. The transition labels L are the operators
O, and (s, (pre, eff), s�) ∈ T if s complies with pre, and
s�(v) = eff(v) for all v ∈ Veff while s�(v) = s(v) for all
v ∈ V \ Veff. The solution of a planning task, called plan,
is a path from s0 to any s∗ ∈ S∗. The plan is optimal if its
summed-up cost is equal to h∗(s0).
A heuristic is a function h : S → R+

0 ∪{∞}. The heuris-
tic is admissible if, for every s ∈ S, h(s) ≤ h∗(s); it is

consistent if, for every (s, l, s�) ∈ T , h(s) ≤ h(s�)+ c(l); it
is perfect if h coincides with h∗. The A∗ algorithm expands
states by increasing value of g(s) + h(s) where g(s) is the
accumulated cost on the path to s. If h is admissible, thenA∗

returns an optimal solution. If h is consistent then A∗ does
not need to re-open any nodes.
One way of automatically constructing admissible heuris-

tics is based on abstractions. This is a function α map-
ping S to a set of abstract states Sα. The abstract state
spaceΘα is defined as (Sα, L, c, Tα, sα

0 , S
α
∗ ), where T

α :=
{(α(s), l, α(s�)) | (s, l, s�) ∈ T}, sα

0 := α(s0), and Sα
∗ :=

{α(s∗) | s∗ ∈ S∗}. The abstraction heuristic hα maps
each s ∈ S to the remaining cost of α(s) inΘα; hα is admis-
sible and consistent. The pre-image of sα ∈ Sα under the
abstraction α is the set Preα(s

α) = {s ∈ S | α(s) = sα}.
We will sometimes consider the induced equivalence rela-
tion ∼α, defined by setting s ∼α t iff α(s) = α(t).
How to construct a good α in general? Helmert et

al. (2007) propose M&S abstraction as a method allowing
fine-grained abstraction design, selecting individual pairs of
(abstract) states to aggregate. The approach builds the ab-
straction in an incremental fashion, iterating between merg-
ing and shrinking steps. In detail, an abstraction α is an
M&S abstraction over V ⊆ V if it can be constructed using
these rules:
(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over V and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over V .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

V1 and V2, then α1 ⊗ α2 is an M&S abstraction over
V1 ∪ V2.

Rule (i) allows to start from atomic projections. These are
simple abstractions π{v} (also written πv) mapping each
state s ∈ S to the value of one selected variable v. Rule (ii),
the shrinking step, allows to iteratively aggregate an arbi-
trary number of state pairs, in abstraction β. Formally, this
simply means to apply an additional abstraction γ to the im-
age of β. In rule (iii), themerging step, the merged abstrac-
tion α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) := (α1(s), α2(s)).
To implement M&S in practice, we need amerging strat-

egy deciding which abstractions to merge in (iii), and a
shrinking strategy deciding which (and how many) states
to aggregate in (ii). Throughout this paper, we use the same
merging strategy as presented by Nissim et al. (2011). To ob-
tain an abstraction that preserves the behavior of the original
transition system, i.e., to obtain a perfect heuristic, Nissim et
al. devise a shrinking strategy that computes a bisimulation
of the state space.

Definition 1 Let Θ = (S,L, c, T, s0, S∗) be a transition
system. An equivalence relation∼ on S is a bisimulation for
Θ if for every s ∼ t holds: (1) either s, t ∈ S∗ or s, t �∈ S∗;
(2) for every transition label l ∈ L, {[s�] | (s, l, s�) ∈ T} =
{[t�] | (t, l, t�) ∈ T}.
As usual, [s] for a state s denotes the equivalence class of

s. An abstraction α is a bisimulation iff the induced equiva-
lence relation∼α is. Nissim et al. have shown that the bisim-
ulation property is preserved throughout the merging steps:
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If α1 and α2 are bisimulations for ΘπV1 and ΘπV2 , where
V1 ∩ V2 = ∅, then α1 ⊗ α2 is a bisimulation for ΘπV1∪V2 .
Therefore, if α is constructed such that, in every application
of (ii), γ is a bisimulation for Θβ , then the overall M&S
abstraction α will be a bisimulation for ΘπV (Nissim, Hoff-
mann, and Helmert 2011).
Unfortunately, bisimulations are exponentially big even in

trivial examples. Katz et al. (2012) address this by the notion
of K-catching bisimulation. This relaxes the definition of
bisimulation by applying constraint (2) of Definition 1 to
only a subset of the transitions in T , selected by a subset of
transition labelsK:

Definition 2 Let Θ = (S,L, c, T, s0, S∗) be a transition
system and K ⊆ L. An equivalence relation ∼ on S is a
K-catching bisimulation for Θ if it is a bisimulation for
the transition system (S,K, c, TK , s0, S∗), where TK =
{(s, l, t) | (s, l, t) ∈ T, l ∈ K}.
Katz et al. (2012) identify two theoretical classes of such

label subsets that, when considered in a K-catching bisim-
ulation, lead to abstract transition systems that still provide
strong properties. First, if the label subset contains (at least)
each label that is used in some optimal path from any state
to a goal state, then the resulting abstraction heuristic will
still be perfect, while possibly obtaining an abstract transi-
tion system that is exponentially smaller than the abstract
transition system of any general bisimulation. Such labels
are called globally relevant, i.e., a label l ∈ L is called glob-
ally relevant if there is a transition (s, l, s�) ∈ T such that
h∗(s) = h∗(s�) + c(l).
Second, K does not even have to contain all globally rel-

evant labels. If K contains each label that is used in some
optimal solution for any state with cost less or equal than
the remaining cost of the initial state, then A∗, using the ab-
straction heuristic, will still only expand a number of states
linear in the length of the plan returned (under the assump-
tion that the planning task does not contain 0-cost operators).
Such labels are called h∗(s0)-relevant, i.e., a label l ∈ L is
called R-relevant if there is a transition (s, l, s�) ∈ T such
that h∗(s) ≤ R and h∗(s) = h∗(s�) + c(l).
Unfortunately, computing either of these label subsets K

involves solving the problem in first place. We now intro-
duce a method to selectK based on counterexample guided
abstraction refinement.

Abstraction Refinement
The general algorithm is depicted in Figure 1. The whole re-
finement procedure is based on a current label subset. This
label subset is initially empty. For the purpose of refining
the K-catching bisimulation, we add new labels to this la-
bel subset and recompute the K-catching bisimulation with
the updated label set. To catch the right labels, we compare
the optimal solutions of the abstract transition system with
solutions of the original transition system. If these abstract
solutions are spurious, i.e., they do not correspond to solu-
tions of the original transition system, then we extract labels
to be added to the label subset, which will eliminate these
solutions from the abstract transition system.

K ← ∅
α← K-catching bisimulation for Θ
Θα ← Abstract transition system of α
while the given criterion is not satisfied do

K � ← analyze(Π, Θα)
K ← K ∪K �

α← K-catching bisimulation for Θ
Θα ← Abstract transition system of α

endwhile
return α

Figure 1: General abstraction refinement procedure for com-
puting K-catching bisimulations, based on a given termina-
tion criterion.

This step is repeated until the abstract transition system
fulfills certain constraints. As an example, one could require
that every optimal solution of the abstract transition system
is a solution of the original transition system.
In the following sections we show how the abstract tran-

sition system is analyzed, that is how spurious solutions are
identified, and which labels have to be considered to exclude
these paths from the abstract transition system.

Refinement Step
We distinguish between forward propagation, where op-
timal solutions of the abstract transition system are com-
pared to paths in the original transitions system, and back-
ward propagation, where backward optimal solutions, i.e.
the cheapest paths from some abstract goal state to the ab-
stract initial state, obtained by inverting all transitions of the
abstract transition system, are considered.
Depending on the termination criterion, the abstract solu-

tions should only partially correspond to paths of the orig-
inal transition system. Therefore, the distinction between
these two cases allows to determine whether the abstraction
should be more precise around the initial state, or more pre-
cise around the goal states, i.e., whether the labels added to
the label subset should be closer to the initial state, or closer
to the goal states.

Forward Propagation
Forward propagation analyzes the abstract transition system
by finding, for each optimal solution, an equivalent path in
the original transition system that starts in the initial state
and which is labeled with the same label sequence. There-
fore, we say that a label sequence is forward-applicable in
a state s if there is a path in the transition system that starts
in s and contains the given labels. Formally it is defined as
follows:

Definition 3 Let Θ = (S,L, c, T, s0, S∗) be a transition
system, �a = �a1, . . . , an� ∈ Ln be a label sequence.
Then �a is forward-applicable in t0 ∈ S if there are states
t1, . . . , tn ∈ S so that (ti−1, ai, ti) ∈ T , for all 1 ≤ i ≤ n.
Moreover, tn is called the end-state. If it further holds that
for all t�i ∈ S \ {ti}, (ti−1, ai, t

�
i) �∈ T , for every 1 ≤ i ≤ n,

then �a is called deterministic forward-applicable in t0.

A solution of the abstract transition system
sα
0 , a1, s

α
1 , . . . , an, s

α
n is called spurious, if its label
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sequence �a1, . . . , an� is not forward-applicable in s0,
or if it is forward-applicable in s0, leading to the path
s0, a1, s1, . . . , an, sn, but sn is not a goal state, sn �∈ S∗.
We distinguish between three different classes of spurious

solutions in order to find the label that must be added to the
current label subset to remove the considered path from the
abstract transition system.
If the label sequence of a spurious solution is determin-

istic forward-applicable in the abstract initial state, but it is
not forward-applicable in the initial state of the original tran-
sition system, then it is enough to add only one label to the
label subset in order to remove the considered path from the
abstract transition system:

Theorem 1 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ, with
abstract transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ).

Then it holds for any state t0 ∈ S and for any action se-
quence �a1, . . . , an� ∈ Ln so that �a1, . . . , an−1� is de-
terministic forward-applicable in α(t0): If �a1, a2, . . . , an�
is forward-applicable in α(t0), and �a1, a2, . . . , an−1�
is forward-applicable in t0, but �a1, a2, . . . , an� is not
forward-applicable in t0, then an �∈ K.

Proof: Assume for contradiction that an ∈ K. Because
�a1, a2, . . . , an−1� is forward-applicable in t0 in Θ, there
must be states t1, . . . , tn−1 ∈ S, s.t. (ti−1, ai, ti) ∈ T ,
for all 1 ≤ i < n. Then it follows by the definition of
the abstract transition system, for the states tα0 = α(t0),
tαi := α(ti), that (tαi−1, ai, t

α
i ) ∈ Tα, for all 1 ≤ i <

n. By assumption �a1, . . . , an−1� is deterministic forward-
applicable in tα0 , implying that t

α
0 , a1, . . . , an−1, t

α
n−1 is the

only path in Θα with this label sequence and starting in
tα0 . Now, we know that �a1, . . . , an� is forward-applicable
in tα0 . As tα0 , a1, . . . , an−1, t

α
n−1 is the only path match-

ing the prefix �a1, . . . , an−1�, we must have a transition
(tαn−1, an, t

α
n) ∈ Tα, for some abstract state tαn ∈ Sα. We

can conclude by definition of Θα that there must be states
t�n−1, t

�
n ∈ S with α(t�n−1) = tαn−1, α(t

�
n) = tαn and

(t�n−1, an, t
�
n) ∈ T . Since α is a K-catching bisimulation

for Θ and an ∈ K, it follows from (2) of Definition 1 that
for every t ∈ S with α(t) = tαn−1, there is a state t

� ∈ S with
α(t�) = tαn such that (t, an, t

�) ∈ T . So in particular there is
a state tn ∈ S with α(tn) = tαn such that (tn−1, an, tn) ∈ T .
Therefore �a1, a2, . . . , an� is actually forward-applicable in
t0 inΘ, which contradicts the assumption. It follows that an

cannot be contained inK. So an �∈ K.

Let sα
0 , a1, . . . , am, sα

m be a spurious solution whose la-
bel sequence �a1, . . . , am� is not forward-applicable in the
initial state of the original transition system. To refine the
current label subset based on this path, we find the index
1 ≤ n ≤ m such that the sub-sequence �a1, . . . , an−1�
is forward-applicable in s0, but �a1, . . . , an� is not. Under
the assumption that �a1, . . . , an−1� is deterministic forward-
applicable in sα

0 , Theorem 1 implies that adding an to the
current label subset will either remove the entire path from
the abstract transition system, or it will at least destroy the
deterministic forward-applicability of �a1, . . . , an−1� in sα

0 .

If the label sequence of the spurious path is actually
forward-applicable in the initial state of the original tran-
sition system, then it can only be spurious if its execution in
the original transition system does not end in a goal state.

Theorem 2 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ, with
abstract transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ).

It holds for any state t0 ∈ S and for any action se-
quence �a1, . . . , an� ∈ Ln, such that �a1, . . . , an−1� is de-
terministic forward-applicable in α(t0): If �a1, . . . , an� is
forward-applicable in α(t0) with end-state tαn ∈ Sα

∗ , and
�a1, a2, . . . , an� is forward-applicable in t0, but for all pos-
sible end-states tn �∈ S∗, then an �∈ K.

Proof: Let t1, . . . , tn ∈ S be states so that (ti−1, ai, ti) ∈
T , for all 1 ≤ i ≤ n. Such states must ex-
ist since �a1, a2, . . . , an� is applicable in t0. By defi-
nition of Θα follows that (α(ti−1), ai, α(ti)) ∈ Tα,
for all 1 ≤ i ≤ n. By assumption �a1, . . . , an−1�
is deterministic forward-applicable in α(t0), implying
that α(t0), a1, . . . , an−1, α(tn−1) is the only path in Θα

with this label sequence and starting in α(t0). But this
means that tαn can only be an end-state of a forward-
application of �a1, . . . , an� in α(t0) if there is a transition
(α(tn−1), an, t

α
n) ∈ Tα. By definition of Θα follows that

there are states t�n−1, t
�
n ∈ S with α(t�n−1) = α(tn−1) and

α(t�n) = tαn such that (t�n−1, an, t
�
n) ∈ T . Rule (1) of Defi-

nition 1, together with tαn ∈ Sα
∗ imply that t�n ∈ S∗, which

by assumption means that t�n−1 �= tn−1. Moreover, this rule
implies that α(tn) �= tαn = α(t�n). Therefore, we have found
two states tn−1, t�n−1 with α(tn−1) = α(t�n−1) such that
there is a transition (t�n−1, an, t

�
n) ∈ T , but for all transition

(tn−1, an, tn) ∈ T holds that α(tn) �= α(t�n). Now, rule (2)
of Definition 1 implies that an �∈ K.

Let sα
0 , a1, s

α
1 . . . . , am, sα

m be a spurious solution such
that �a1, . . . , am� is forward applicable in s0, meaning that
the execution of this label sequence in s0 does not end in a
goal state. Under the assumption that �a1, . . . , am−1� is de-
terministic forward-applicable in sα

0 , we can conclude with
Theorem 2 that adding am to the current label subset will
either remove the entire path from the abstract transition
system, or it will at least destroy the deterministic forward-
applicability of �a1, . . . , an−1� in sα

0 .
Finally, if the label sequence of a spurious path is

not deterministic forward-applicable in the initial state of
the abstract transition system, then we remove the non-
deterministic choice along the execution of the considered
label sequence in the abstract transition system.

Definition 4 Let Θ = (S,L, c, T, s0, S∗) be a transition
system and let l ∈ L.Θ is non-deterministic in l if there are
transitions (s, l, t) ∈ T and (s, l, t�) ∈ T , for some states
s, t, t� ∈ S, such that t �= t�.

If the label sequence of the considered spurious solution
is not deterministic forward-applicable in the abstract ini-
tial state, then the abstract transition system must be non-
deterministic in at least one label, contained in this sequence.
If such a label has been identified, then it is enough to add
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it to the current label subset, in order to remove the non-
determinism from the abstract transition system:

Theorem 3 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and let α be a K-catching bisimulation for Θ with ab-
stract transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ). If Θ

α

is non-deterministic in l ∈ L, but Θ is not, then l �∈ K.

Proof: Because of Θα is non-deterministic in l, there must
be states sα, tα0 , t

α
1 ∈ Sα with tα0 �= tα1 and (sα, l, tα0 ) ∈ Tα,

(sα, l, tα1 ) ∈ Tα. By definition of Θα follows that there are
states s, s�, t0, t1 ∈ S with α(s) = α(s�) = sα, α(t0) = tα0 ,
α(t1) = tα1 and (s, l, t0) ∈ T , (s�, l, t1) ∈ T . By assumption
Θ is deterministic in l, so s = s� cannot hold, since t0 �= t1.
Therefore there are transitions (s, l, t) ∈ T and (s�, l, t�) ∈
T for s �= s�, but α(s) = α(s�) and α(t) �= α(t�). This
means that l �∈ K, otherwise α would not be a K-catching
bisimulation.

Let sα
0 , a1, s

α
1 . . . . , am, sα

m be a spurious solution such
that the label sequence �a1, . . . , am� is not deterministic
forward-applicable in sα

0 . We find the first index 1 ≤ n ≤ m,
so that Θα is non-deterministic in an, and add this label an

to the current label subset. Since the state space of a planning
task is by definition deterministic, it follows by Theorem 3
that adding an to the label subset is sufficient to exclude the
non-determinism of an from the abstract transition system.

Backward Propagation
Backward propagation analyzes the abstract transition sys-
tem in a similar way as forward propagation. It considers
also the optimal solutions of the abstract transition system,
but instead of starting with the initial state and testing for
the forward-applicability of the labels, backward propaga-
tion starts with the goal states of the original transition sys-
tem and tries to regress these states with the label sequences
of the solutions, until the initial state has been reached. For-
mally, regression is defined as follows:

Definition 5 Let Θ = (S,L, c, T, s0, S∗) be a transition
system, S� ⊆ S be a set of states, and l ∈ L be a la-
bel. Then regressing S� with l is defined by regr(S�, l) =
{s ∈ S | (s, l, s�) ∈ T, s� ∈ S�}. For a la-
bel sequence �a = �a1, . . . , an� ∈ Ln, regr(S�,�a) =
regr(regr(. . . .(regr(S�, an), . . . ), a1). Moreover, �a is
called reverse-applicable in S� if regr(S�,�a) �= ∅.
For S� = {s} we often write regr(s, l) instead of

regr(S�, l). Then a solution sα
0 , a1, s

α
1 , . . . , an, s

α
n of the

abstract transition system is called spurious if s0 �∈
regr(S∗, �a1, . . . , an�).
First, observe that if all labels of a label sequence are con-

tained in the label subset, then regressing an abstract state tα
is actually equivalent to regressing the states t of the original
transition system, with α(t) = tα:

Lemma 1 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem, and α be aK-catching bisimulation forΘ with abstract
transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ). Moreover,

let tα ∈ Sα be an abstract state, and l ∈ K be label. If
sα ∈ regrα(t

α, l), then for every state s ∈ Preα(s
α), there

is a state t ∈ Preα(t
α) with s ∈ regr(t, l).

Proof: Let sα ∈ regrα(t
α, l). By definition of regrα, there

is a transition (sα, l, tα) ∈ Tα. Then, by definition of Θα

follows that there are states s, t ∈ S with α(s) = sα and
α(t) = tα, so that (s, l, t) ∈ T . Since α is a K-catching
bisimulation for Θ and l ∈ K, it holds for all s� ∈ S, such
that α(s�) = α(s), that there is a state t� ∈ S with α(t�) =
α(t) so that (s�, l, t�) ∈ T , and therefore s� ∈ regr(t�, l). So
for every state s ∈ Preα(s

α), there is a state t ∈ Preα(t
α)

with s ∈ regr(t, l).

Lemma 1 implies that if no goal state of the original tran-
sition system can be regressed with the label sequence of
a spurious path, then there must be some label on this se-
quence that is not contained in the current label subset.

Theorem 4 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and α be a K-catching bisimulation for Θ with ab-
stract transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ). Then

for any �a1, . . . , an� ∈ Ln and state tα ∈ Sα holds: If
�a1, . . . , an� is reverse-applicable in tα, and �a2, . . . , an� is
reverse-applicable in some t ∈ Preα(t

α), but �a1, . . . , an�
is not reverse-applicable in any t ∈ Preα(t

α), then there
must be a label ai with ai �∈ K, for some 1 < i ≤ n.

Proof: Assume for contradiction that all ai are already con-
tained in K, i.e. ai ∈ K, for all 1 < i ≤ n. Let rα ∈
regrα(t

α, �a1, . . . , an�). Such an abstract state must exist
because this label sequence is reverse-applicable in tα. By
definition of regrα, there must be a transition (rα, a1, s

α) ∈
Tα, for some state sα ∈ regrα(t

α, �a2, . . . , an�). By defini-
tion ofΘα, there must be states r, s ∈ S, α(r) = rα, α(s) =
sα, so that (r, a1, s) ∈ T . Now, when recursively applying
Lemma 1, then it follows by sα ∈ regr(tα, �a2, . . . , an�)
that there is a state t ∈ Preα(t

α) such that s ∈
regr(t, �a2, . . . , an�). Therefore, r ∈ regr(t, �a1, . . . , an�)
which contradicts the assumption that �a1, . . . , an� is not
reverse-applicable in t. Hence, there must be at least one
1 < i ≤ n, such that si �∈ K.

Let sα
0 , a1, s

α
1 , . . . , an, s

α
n be a spurious solution such that

the label sequence �a1, . . . , an� is not reverse-applicable in
all goal states s∗ ∈ S∗. We find the index 1 ≤ i < n, so that
�ai+1, . . . , an� is reverse-applicable in some s∗ ∈ S∗, but
�ai, . . . , an� is not reverse-applicable in any s∗ ∈ S∗. The-
orem 5 implies that adding the labels ai+1, . . . , an to the
current label subset is sufficient to exclude the considered
spurious solution from the abstract transition system.
Moreover, for spurious paths whose label sequences are ac-
tually reverse-applicable in some goal state of the original
transition system, but the regression does not end in the ini-
tial state, it follows immediately by Lemma 1 that there must
be at least one label in this sequence that is not already con-
tained in the current label subset.

Theorem 5 Let Θ = (S,L, c, T, s0, S∗) be a transition sys-
tem and α be aK-catching bisimulation forΘ with abstract
transition system Θα = (Sα, L, c, Tα, sα

0 , S
α
∗ ). Then for

any state tα ∈ Sα and �a1, . . . , an� ∈ Ln holds: If sα
0 ∈

regrα(t
α, �a1, . . . , an�), and s0 �∈ regr(t, �a1, . . . , an�),

for any t ∈ Preα(t
α), then there must be an action ai with

ai �∈ K, for some 1 ≤ i ≤ n.
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procedure analyze(Π, Θα)
P ← compute the first S optimal solutions of Θα

labels← ∅
for p ∈ P do
if p is spurious then
labels← labels ∪ exclude(p)

endif
done
return labels

Figure 2: Analyze procedure, as called by the abstraction
refinement procedure (Figure 1) within each refinement step.

Proof: Assume for contradiction that ai ∈ K, for all
1 ≤ i ≤ n. Since sα

0 ∈ regrα(t
α, �a1, . . . , an�) and

α(s0) = sα
0 , by definition of Θ

α, it follows by recursively
applying Lemma 1 that s0 ∈ regr(t, �a1, . . . , an�), for some
t ∈ Preα(t

α). But this contradicts the assumption. There-
fore, it must hold ai �∈ K, for at least one 1 ≤ i ≤ n.

Let sα
0 , a1, s

α
1 , . . . , an, s

α
n be a spurious solution such that

the label sequence �a = �a1, . . . , an� is reverse-applicable in
some goal state s∗ ∈ S∗. This means that s0 �∈ regr(s∗,�a)
for all s∗ ∈ S∗, and it follows from Theorem 5 that adding
the labels a1, . . . , an to the current label subset is sufficient
to remove the considered spurious solution from the abstract
transition system.
A trivial consequence of our results is that, if we keep run-

ning abstraction refinement and adding labels as described,
then eventually all abstract solutions will actually be plans
for the original planning task. Of course, we can stop as soon
as that is the case for at least one abstract solution. As one
would expect, such a stopping criterion is impractical: The
abstractions required for it to occur are, in most cases, infea-
sibly large. In our implementation, described next, we use
earlier cut-offs.

Implementation
Our techniques are implemented in Fast Down-
ward (Helmert 2006), as an extension of the M&S
approach. The overall refinement procedure was already
depicted in Figure 1. It has 4 input parameters: (1) forward
vs. backward propagation; (2) the termination criterion;
(3) the number S of abstract solutions considered in any
refinemrnt step; and (4) a size limit L on the abstract
transition system. Parameters (1) and (3) are used in the
analyze function, described next. Parameters (2) and (4) are
used in the termination criterion.

Analysis Procedure
The analyze function is depicted in Figure 2. It computes
the labels that will be added to K, in order to refine the
K-catching bisimulation. Our current code is optimized for
readability rather than efficiency, storing the entire set of op-
timal abstract solutions in memory, prior to analyzing them
(instead, one could generate and analyze each solution one-
by-one). As there can be a huge number of such solutions,
this can cause serious memory issues. For the moment, we

control this via the parameter S: As soon as S abstract solu-
tions have been generated, we stop and proceed to the anal-
ysis step.
During the analysis each abstract solution is analyzed in

either forward or backward manner, as specified by param-
eter (1). Whenever the considered solution is spurious, then
excludewill apply the theorems shown above and returns the
corresponding labels.

Termination Criteria
A practical termination criterion cannot require that an op-
timal solution of the abstract transition system matches ex-
actly to a solution of the original transition system. How-
ever, to still obtain a useful abstraction heuristic, one has to
require that the abstract optimal solutions correspond at least
somewhat to paths of the original transition system. We ex-
perimented with 3 different kinds of termination criteria:
• All. This criterion is satisfied if none of the extracted op-
timal abstract solutions is spurious. This extreme crite-
rion just serves to illustrate what happens when putting
all computational effort into the abstraction.

• Lower Bounding (LB). This criterion requires a lower
bound on the solution cost hmin, i.e., hmin ≤ h∗(s0).
When the cost of the optimal abstract solution is greater
or equal than this value, then the refinement loop will be
terminated. In other words, as soon as for the current K-
catching bisimulation α holds that hα(s0) ≥ hmin, the
refinement loop will be stopped.

• Cost Increase Threshold (CIT). This criterion requires
a threshold β ∈ [1,∞). It essentially tests whether the
increase of the estimated goal distance between the K-
catching bisimulation αi, and the K �-catching bisimula-
tion αi+1 of two consecutive refinement steps i and i+ 1
is higher than the minimum allowed increase. In other
words, the refinement of the abstraction will be stopped
as soon as the quotient hαi+1(s0)/h

αi(s0) is less than the
given β.

Empirical Evaluation
We ran a total of 32 different variants of our abstraction re-
finement approach, 7 other M&S configurations, two com-
peting heuristics, and a blind search instance on a total of
280 instances of the 14 benchmarks from the track of opti-
mal planners at IPC’11. The experiments are performed on
an Intel Core i7-3770K processor, limiting the run time to 5
minutes and the memory usage to 2 GB.
We ran the abstraction refinement procedure with both

forward propagation and backward propagation. The ter-
mination criterion is set to either All, or LB with hmin =
h1(s0) (Haslum and Geffner 2000), or CIT with β ∈
{1.40, 2.0}. For (3), we extract a maximum of either S =
∞, or S = 10K optimal solutions from the abstract transi-
tion system. For (4), we set a bound on the number of states
of the abstract transition system: L = 100K, or L =∞.
We ran also BJOLP (Domshlak et al. 2011) and LM-

cut (Helmert and Domshlak 2009), two methods that were
used in the portfolio winning the 1st prize in the track of
optimal planners at IPC 11.
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Refinement Backward propagation
Termination CIT β = 1.4 CIT β = 2.0 LB h1 All
L ∞ 100K ∞ 100K ∞ 100K ∞ 100K

barman
AM=4, SM=8, AM=4, SM=8, AM=4, SM=8, AM=4, SM=8, AM=12, AT=7, AM=12, AT=7

AM=12, AT=8 AM=12, AT=8
AT=8 AT=8 AT=5, ST=3 AT=5, ST=3 ST=1 ST=1

elevators
C=10, AM=5, C=10, AM=5, C=10, AM=5, C=10, AM=5,

C=7, AM=13
C=8, AM=9,

C=3, AM=17
C=8, AM=9,

SM=5 SM=5 SM=5 SM=5 SM=3 SM=3
floortile C=2, AM=18 C=2, AM=18 C=2, AM=18 C=2, AM=18 C=2, SM=18 C=2, SM=18 C=2, AM=18 C=2, AM=18

nomystery C=18, SM=2 C=18, SM=2 C=18, SM=2 C=18, SM=2 C=12, SM=8 C=12, SM=8 C=8, AM=12
C=14, AM=4,

SM=2

openstacks
C=0, AM=15, C=3, AM=15, C=0, AM=15, C=3, AM=14, C=3, AM=14, C=3, AM=15, C=0, AM=15, C=3, AM=14,

AT=5 AT=2 AT=5 AT=3 AT=3 AT=2 AT=5 AT=3

parcprinter
C=10, AM=9, C=10, AM=9, C=10, AM=9, C=10, AM=9,

C=11, SM=9 C=11, SM=9
C=6, AM=10, C=9, AM=9,

SM=1 SM=1 SM=1 SM=1 AT=4 SM=1, AT=1

parking
C=1, AM=7, C=1, AM=7, C=1, AM=7, C=1, AM=7,

C=6, SM=14 C=6, SM=14 C=0, AM=20 C=0, AM=20
SM=9, ST=3 SM=8, ST=4 SM=8, ST=4 SM=8, ST=4

pegsol
C=1, AM=14, C=4, AM=14, C=3, AM=15, C=4, AM=14, C=9, AM=9, C=9, AM=9, C=1, AM=15, C=4, AM=14,

AT=5 SM=2 AT=2 SM=2 SM=2 SM=2 AT=4 SM=2

scanalyzer C=4, AM=15 C=4, AM=15 C=4, AM=15 C=4, AM=15
C=9, AM=3, C=9, AM=3,

C=3, AM=16 C=3, AM=16
SM=7 SM=7

sokoban C=9, AM=11 C=9, AM=11 C=9, AM=11 C=9, AM=11 C=6, AM=14 C=6, AM=14 C=0, AM=20 C=0, AM=20

tidybot C=1, AM=19 C=1, AM=19
C=11, AM=6, C=10, AM=6,

C=3, AM=17 C=3, AM=17 C=1, AM=19 C=1, AM=19
ST=3 ST=4

transport C=6, SM=14 C=6, SM=14 C=6, SM=14 C=6, SM=14
C=5, AM=14, C=6, AM=9, C=4, AM=14, C=6, AM=9,

SM=1 SM=5 AT=2 SM=5

visitall
C=8, AM=3, C=8, AM=3, C=8, AM=3, C=8, AM=3,

C=16, SM=4 C=16, SM=4
C=8, AM=2, C=8, AM=3,

AT=9 AT=9 AT=9 AT=9 AT=10 AT=9

woodworking
C=2, AM=17, C=3, AM=16, C=3, AM=16, C=3, AM=16,

C=5, SM=15 C=5, SM=15 C=2, AM=18 C=3, AM=17
SM=1 SM=1 SM=1 SM=1

� C=72, AM=137, C=79, AM=136, C=85, AM=124, C=88, AM=122, C=94, AM=96, C=96, AM=88, C=38, AM=208, C=61, AM=184,
SM=40, AT=27, SM=41, AT=19, SM=39, AT=21, SM=41, AT=17, SM=78, AT=10, SM=85, AT=9, AT=33 SM=13, AT=21

ST=3 ST=4 ST=10 ST=11 ST=1 ST=1

Table 1: Experiment data for the abstraction refinement variants. S is always set to 10K. C represents the number of completed
tasks. The other values represent the number of violations of the requirements, split into violations of the memory requirement
(during refinement process: AM, during the search: SM), and into violations of the run time requirement (during the refinement
process: AT, during the search: ST). The highest amount of solved task per domain is highlighted in bold.

We ran 4 M&S configurations based on K-catching
bisimulations. The label subset is either computed by the ap-
proximation technique Backward h1, or by the approxima-
tion technique IntAbs (Katz, Hoffmann, and Helmert 2012),
and the size limit is set to either N = 100K, or N = ∞.
Additionally, we ran 2 variants of greedy-bisimulation (Nis-
sim, Hoffmann, and Helmert 2011), one with size limit
N = 100K, and the other one with N = ∞. Finally, we
ran another M&S instance using full bisimulation, without
using a size limit (N =∞).
The size limit N influences the size of the abstract transi-

tion system in a different way than L does. If the amount of
states of the abstract transition system reaches this boundN ,
then the shrinking strategy of the M&S abstraction is forced
to aggregate more states by dropping the bisimulation re-
quirement. In contrast, whether the size limit L is exceeded
is only tested between the refinement steps. If it is, then the
refinement process is aborted, so one catches less labels in-
stead of dropping the bisimulation requirement.

Backward h1 computes the label subset by collecting all
labels that occur within the radius, given by the product of
h1(s0) and some parameter β ∈ [0, 1], around the goal states
of the actual state space, i. e. all labels that are used in an op-

timal path to some goal state, with cost less or equal than this
radius. If β = 0, then the smallest β is considered that leads
a non-empty label subset. IntAbs computes the label sub-
set by computing the standard bisimulation until some size
limitM is reached. Afterwards, the exact label subset in the
resulting abstract transition system, i. e. either all globally
relevant, or all hα(s0)-relevant labels, is computed. Greedy
bisimulation relaxes the bisimulation criterion by ignoring
all transitions (s, l, t) with h∗(s) < h∗(t) + c(l), i.e., transi-
tions that are not used in any optimal solution.
The number of solved tasks, as well as the number of vio-

lations of the run time and memory requirement for selected
abstraction refinement variants are shown in Table 1. We
show data only for backward refinement and for S = 10K,
as the respective other settings are dominated consistently
(S = ∞, resulted, in most of the cases, in a violation of the
memory requirement within the first few refinement steps).
In Table 2, we show the average ratio of considered labels
for solved tasks, as well as the average amount of refinement
steps for solved tasks.
No variant of abstraction refinement could solved any task

of barman. The backward propagation variant, using All and
L = ∞, shows that excluding all (extracted) spurious so-
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Refinement Backward propagation
Termination CIT β = 1.4 CIT β = 2.0 LB h1 All
L ∞ 100K ∞ 100K ∞ 100K ∞ 100K

elevators 9.4, 2.1 9.4, 2.1 9.4, 2.1 9.4, 2.1 15.4, 2.9 12.1, 2.5 49.0, 12.3 17.0, 3.2
floortile 25.0, 1.0 25.0, 1.0 25.0, 1.0 25.0, 1.0 0.0, 0.0 0.0, 0.0 50.7, 2.0 50.7, 2.0
nomystery 14.4, 1.2 14.4, 1.2 1.8, 1.0 1.8, 1.0 0.0, 0.0 0.0, 0.0 51.1, 3.4 30.7, 2.6
openstacks – 57.3, 1.3 – 57.3, 1.3 45.8, 1.0 45.8, 1.0 – 57.3, 1.3
parcprinter 11.3, 1.0 11.3, 1.0 11.3, 1.0 11.3, 1.0 0.0, 0.0 0.0, 0.0 37.3, 14.8 26.7, 8.0
parking 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.0, 0.0 0.0, 0.0 – –
pegsol 55.1, 4.0 10.8, 2.0 48.6, 3.0 10.8, 2.0 2.8, 1.1 2.8, 1.1 55.1, 4.0 10.8, 2.0
scanalyzer 29.6, 1.2 29.6, 1.2 20.1, 1.0 20.1, 1.0 0.0, 0.0 0.0, 0.0 58.5, 2.0 39.6, 1.7
sokoban 5.7, 1.1 5.7, 1.1 5.7, 1.1 5.7, 1.1 0.0, 0.2 0.0, 0.2 – –
tidybot 0.1, 1.0 0.1, 1.0 0.1, 1.0 0.1, 1.0 0.0, 0.7 0.0, 0.7 0.1, 1.0 0.1, 1.0
transport 9.3, 2.3 9.3, 2.3 7.4, 2.0 7.4, 2.0 16.7, 7.4 14.9, 5.2 26.5, 15.0 16.5, 5.8
visitall 60.8, 1.1 60.8, 1.1 53.5, 1.0 53.5, 1.0 0.0, 0.0 0.0, 0.0 81.9, 2.4 76.0, 1.6
woodworking 24.2, 1.0 20.1, 1.0 20.1, 1.0 20.1, 1.0 0.0, 0.0 0.0, 0.0 38.1, 3.0 25.8, 1.3
∅ 20.4, 1.5 19.5, 1.3 16.9, 1.4 17.1, 1.3 6.2, 1.0 5.8, 0.8 44.8, 6.0 31.9, 2.8

Table 2: Results for backward propagation. S is always set to 10K. The first value is the average ratio of caught labels (%), for
solved tasks. The last value is the average amount of refinement steps, for solved tasks.

lutions from the abstract transition system is not feasible
in practice. It can only solve 38 instances within the given
memory and run time limits. The main reason for not finish-
ing a task was the violation of the memory requirement dur-
ing the construction of the abstractions. This implies that the
resulting abstract transition systems are too big to store in
memory. Bounding the size of the abstract transition system,
i.e., L = 100K, improves the performance of All, while re-
ducing the number of violations of the memory, and run time
constraints (during the refinement process). Overall, it can
solve 23 tasks more than the version without size limit. As
can be observed in Table 2, bounding the size of the abstract
transition system for All reduces the average amount of re-
finement steps, and consequently reduces the overall amount
of caught labels. This does generally hold, independent of
the used termination criterion. However, the difference be-
tween L = 100K and L = ∞ for the other termination
criteria is not as big as for All. This implies that the termi-
nation criteria CIT (β ∈ {1.4, 2.0}), and LB h1 are often
fulfilled even before the size limit is reached.
Comparing β = 1.4 and β = 2.0 for the termination cri-

terion CIT, the latter is considerably better. For L =∞, CIT
with β = 2.0 is equally good in 11 domains, and it is bet-
ter in 3 domains. Overall, it can solve 13 tasks more than
CIT with β = 1.4, while reducing the number of violations
of the memory requirement during the refinement process.
When using β = 2.0, one terminates also slightly faster, i.e.,
one catches less labels, than when using β = 1.4.
Consider the termination criterion LB h1. Surprisingly,

many entries of Table 2 are 0. This implies that the first ab-
stract transition system, i.e., the abstract transition system of
a K-catching bisimulation with empty K, does already ful-
fill the termination criterion LB h1 in many cases; evidently,
in these cases h1(s0) is very small. But if the termination
criterion holds initially, then there is actually no refinement
step executed, which results in an empty label subset. How-
ever, in our experiments, using backward propagation, LB h1

and L = 100K was the best abstraction refinement variant.
Comparing the per domain results of LB h1 and CIT with

β = 2.0, without a size limit, the former one can solve more
tasks in 7 domains, is equally good in 2 domains, and worse
in 5 domains. The comparison of the reasons for not com-
pleting a task shows that the CIT variant mainly fails due to
a violation of the memory, or run time constraint during the
refinement process, whereas LB h1 often fails due to a viola-
tion of the memory constraint during the search. That is only
logical: A ∅-catching bisimulation is very cheap to compute
– it only distinguishes non-goal states from goal states – but
does not provide a lot of search guidance.1
Table 3 compares the coverage data of the best abstraction

refinement variant with the results of the non abstraction-
refinement configurations.
In general, for all other M&S variants, using the size limit

N = 100K can solve more tasks than the equivalent vari-
ants without a size limit. Greedy bisimulation with bounded
size is almost identical to Backward h1 with bounded size.
Moreover, comparing IntAbs and Backward h1, both with
N = 100K, the former one can solve slightly more tasks.
Comparing the best abstraction refinement variant, i.e.,

using backward propagation with the termination criterion
LB h1, L = 100K, and S = 10K, with IntAbs, using
N = 100K, and M = 10K, then the abstraction refine-
ment approach is better in 1 domain, equally good in 4 do-
mains, and worse in 9 domains. It gives almost identical re-
sults in 3 domains. Overall, the best configuration of this
experiment is LM-cut. Comparing it to the best M&S con-
figuration, IntAbs with N = 100K andM = 10K, LM-cut
can solve more tasks in 9 domains, it is equally good in 4
domains, and worse in 1 domain.

Conclusions
In theory, abstraction refinement appears to be a suitable way
to extract meaningful label subsets for K-catching bisimu-
lations. Practical results, thus far, are disappointing. Despite
this, we believe the approach is not without hope. As our
empirical data vividly demonstrates, our current strategies

1Note that the failures during abstraction, for LB, are almost
exclusively due to domains whereK is not empty.
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Approach
Abstraction Refinement

IntAbs Backward h1 Greedy bisim. Full bisim.
LM-cut BJOLP Blind

Backward, LB h1

L/N ∞ 100K ∞ 100K ∞ 100K ∞ 100K ∞
S/M /β/M 10K 10K 10K 10K 0 0.25 ∞ 100K ∞
barman 0 0 4 4 4 4 0 4 0 4 4 4
elevators 7 8 9 11 9 11 4 11 4 15 14 9
floortile 2 2 2 2 2 2 2 2 2 6 2 2
nomystery 12 12 15 14 13 20 12 20 12 14 20 8
openstacks 3 3 14 14 0 14 3 14 3 12 11 14
parcprinter 11 11 12 12 11 12 8 12 8 13 10 6
parking 6 6 5 6 0 0 0 0 0 1 1 0
pegsol 9 9 17 17 13 17 15 17 14 17 17 17
scanalyzer 9 9 9 9 3 8 3 8 3 10 3 9
sokoban 6 6 19 19 17 20 4 19 5 20 20 17
tidybot 3 3 5 5 8 0 0 0 0 13 14 6
transport 5 6 6 6 6 6 4 6 4 6 6 6
visitall 16 16 9 9 8 9 8 9 8 10 10 9
woodworking 5 5 6 6 5 6 3 7 4 10 9 2�

94 96 132 134 99 129 66 129 67 151 141 109

Table 3: Comparison of solved tasks over the selected domains. Best results are highlighted in bold.

spend way too much time and memory in the abstraction
process. There are many possibilities to control the practical
CEGAR process differently, reducing that overhead.
A major point regards greedier termination criteria. We

have already seen that setting β in CIT to 2 rather than 1.4
reduces abstraction effort considerably. A first step thus sim-
ply is to systematically experiment with largr values of β.
For LB, following one of the methods proposed by Katz et
al., one could also introduce a β parameter and terminate as
soon as the heuristic value has reached h1(s0) ∗ β.
Another issue is the amount of abstract solutions consid-

ered, which was huge in many cases. It appears that many
spurious solutions share the same error label, and therefore
it would be enough to consider only a subset of represen-
tative solutions in the refinement process. How to find such
good subsets efficiently is an interesting open question.
Finally, label reduction has not been covered in this work,

but in some cases can reduce the size of the abstract tran-
sition system drastically. It remains to investigate how label
reduction can be integrated into our approach.
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Abstract
The obvious way to use several admissible heuristics in
A∗ is to take their maximum. In this paper we aim to re-
duce the time spent on computing heuristics. We discuss
Lazy A∗, a variant of A∗ where heuristics are evaluated
lazily: only when they are essential to a decision to be
made in the A∗ search process. We present a new ra-
tional meta-reasoning based scheme, rational lazy A∗,
which decides whether to compute the more expensive
heuristics at all, based on a myopic value of information
estimate. Both methods are examined theoretically. Em-
pirical evaluation on several domains supports the theo-
retical results, and shows that lazy A∗ and rational lazy
A∗ are state-of-the-art heuristic combination methods.

1 Introduction
The A∗ algorithm [Hart et al., 1968] is a best-first heuristic
search algorithm guided by the cost function f(n) = g(n) +
h(n). If the heuristic h(n) is admissible (never overestimates
the real cost to the goal) then the set of nodes expanded by
A∗ is both necessary and sufficient to find the optimal path to
the goal [Dechter and Pearl, 1985].
This paper examines the case where we have several avail-

able admissible heuristics. Clearly, we can evaluate all these
heuristics, and use their maximum as an admissible heuristic,
a scheme we callA∗

MAX . The problem with naive maximiza-
tion is that all the heuristics are computed for all the generated
nodes. In order to reduce the time spent on heuristic compu-
tations, Lazy A∗ (or LA∗, for short) evaluates the heuristics
one at a time, lazily. When a node n is generated, LA∗ only
computes one heuristic, h1(n), and adds n to OPEN. Only
when n re-emerges as the top of OPEN is another heuristic,
h2(n), evaluated; if this results in an increased heuristic esti-
mate, n is re-inserted into OPEN. This idea was briefly men-
tioned by Zhang and Bacchus (2012) in the context of the
MAXSAT heuristic for planning domains. LA∗ is as infor-
mative as A∗

MAX , but can significantly reduce search time,
as we will not need to compute h2 for many nodes. In this
paper we provide a deeper examination of LA∗, and charac-
terize the savings that it can lead to. In addition, we describe
several technical optmizations for LA∗.
LA∗ reduces the search time, while maintaining the in-

formativeness of A∗
MAX . However, as noted by Domshlak

et al. (2012), if the goal is to reduce search time, it may
be better to compute a fast heuristic on several nodes, rather

than to compute a slow but informative heuristic on only one
node. Based on this idea, they formulated selective max (Sel-
MAX), an online learning scheme which chooses one heuris-
tic to compute at each state. Sel-MAX chooses to compute
the more expensive heuristic h2 for node n when its classi-
fier predicts that h2(n) − h1(n) is greater than some thresh-
old, which is a function of heuristic computation times and
the average branching factor. Felner et al. (2011) showed
that randomizing a heuristic and applying bidirectional path-
max (BPMX) might sometimes be faster than evaluating all
heuristics and taking the maximum. This technique is only
useful in undirected graphs, and is therefore not applicable to
some of the domains in this paper. Both Sel-MAX and Ran-
dom compute the resulting heuristic once, before each node
is added to OPEN while LA∗ computes the heuristic lazily,
in different steps of the search. In addition, both random-
ization and Sel-MAX save heuristic computations and thus
reduce search time in many cases. However, they might be
less informed than pure maximization and as a result expand
a larger number of nodes.
We then combine the ideas of lazy heuristic evaluation and

of trading off more node expansions for less heuristic compu-
tation time, into a new variant of LA∗ called rational lazy
A∗ (RLA∗). RLA∗ is based on rational meta-reasoning,
and uses a myopic value-of-information criterion to decide
whether to compute h2(n) or to bypass the computation of h2

and expand n immediately when n re-emerges from OPEN.
RLA∗ aims to reduce search time, even at the expense of
more node expansions than A∗

MAX .
Empirical results on variants of the 15-puzzle and on

numerous planning domains demonstrate that LA∗ and
RLA∗ lead to state-of-the-art performance in many cases.

2 Lazy A∗

Throughout this paper we assume for clarity that we have two
available admissible heuristics, h1 and h2. Extension to mul-
tiple heuristics is straightforward, at least for LA∗. Unless
stated otherwise, we assume that h1 is faster to compute than
h2 but that h2 is weakly more informed, i.e., h1(n) ≤ h2(n)
for the majority of the nodes n, although counter cases where
h1(n) > h2(n) are possible. We say that h2 dominates h1,
if such counter cases do not exist and h2(n) ≥ h1(n) for
all nodes n. We use f1(n) to denote g(n) + h1(n). Like-
wise, f2(n) denotes g(n) + h2(n), and fmax(n) denotes
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Algorithm 1: Lazy A∗

Input: LAZY-A∗

1 Apply all heuristics to Start
2 Insert Start into OPEN
3 while OPEN not empty do
4 n← best node from OPEN
5 if Goal(n) then
6 return trace(n)
7 if h2 was not applied to n then
8 Apply h2 to n
9 insert n into OPEN
10 continue //next node in OPEN

11 foreach child c of n do
12 Apply h1 to c.
13 insert c into OPEN

14 Insert n into CLOSED

15 return FAILURE

g(n) + max(h1(n), h2(n)). We denote the cost of the opti-
mal solution by C∗. Additionally, we denote the computation
time of h1 and of h2 by t1 and t2, respectively and denote
the overhead of an insert/pop operation in OPEN by to. Un-
less stated otherwise we assume that t2 is much greater than
t1+ to. LA∗ thus mainly aims to reduce computations of h2.
The pseudo-code for LA∗ is depicted as Algorithm 1, and

is very similar toA∗. In fact, without lines 7 – 10, LA∗ would
be identical to A∗ using the h1 heuristic. When a node
n is generated we only compute h1(n) and n is added to
OPEN (Lines 11 – 13), without computing h2(n) yet. When
n is first removed from OPEN (Lines 7 – 10), we compute
h2(n) and reinsert it into OPEN, this time with fmax(n).
It is easy to see that LA∗ is as informative as A∗

MAX , in
the sense that both A∗

MAX and LA∗expand a node n only if
fmax(n) is the best f -value in OPEN. Therefore, LA∗ and
A∗

MAX generate and expand and the same set of nodes, up to
differences caused by tie-breaking.
In its general form A∗ generates many nodes that it does

not expand. These nodes, called surplus nodes [Felner et al.,
2012], are in OPEN when we expand the goal node with f =
C∗. All nodes in OPEN with f > C∗ are surely surplus but
some nodes with f = C∗ may also be surplus. The number
of surplus nodes in OPEN can grow exponentially in the size
of the domain, resulting in significant costs.
LA∗ avoids h2 computations for many of these surplus

nodes. Consider a node n that is generated with f1(n) > C∗.
This node is inserted into OPEN but will never reach the top
of OPEN, as the goal node will be found with f = C∗. In
fact, if OPEN breaks ties in favor of small h-values, the goal
node with f = C∗ will be expanded as soon as it is generated
and such savings of h2 will be obtained for some nodes with
f1 = C∗ too. We refer to such nodes where we saved the
computation of h2 as good nodes. Other nodes, those with
f1(n) < C∗ (and some with f1(n) = C∗) are called regular
nodes as we apply both heuristics to them.
A∗

MAX computes both h1 and h2 for all generated nodes,
spending time t1+ t2 on all generated nodes. By contrast, for
good nodes LA∗ only spends t1, and saves t2. In the basic

6
10

≤7 ≤8
8

≤9
8

h1

h2

a b c d

9

Figure 1: Example of HBP

implementation of LA∗ (as in algorithm 1) regular nodes are
inserted into OPEN twice, first for h1 (Line 13) and then for
h2 (Line 9) while good nodes only enter OPEN once (Line
13). Thus, LA∗ has some extra overhead of OPEN operations
for regular nodes. We distinguish between 3 classes of nodes:
(1) expanded regular (ER) — nodes that were expanded after
both heuristics were computed.
(2) surplus regular (SR)— nodes for which h2 was computed
but are still in OPEN when the goal was found.
(3) surplus good (SG) — nodes for which only h1 was com-
puted by LA∗ when the goal was found.

Alg ER SR SG
A∗

MAX t1 + t2 + 2to t1 + t2 + to t1 + t2 + to
LA∗ t1 + t2 + 4to t1 + t2 + 3to t1 + to

Table 1: Time overhead for A∗
MAX and for LA∗

The time overhead of A∗
MAX and LA∗ is summarized in

Table 1. LA∗ incurs more OPEN operations overhead, but
saves h2 computations for the SG nodes. When t2 (boldface
in table 1) is significantly greater than both t1 and to there is
a clear advantage for LA∗, as seen in the SG column.

3 Enhancements to Lazy A∗

Several enhancements can improve basic LA∗ (Algorithm 1),
which are effective especially if t1 and to are not negligible.

3.1 OPEN bypassing
Suppose node n was just generated, and let fbest denote the
best f -value currently in OPEN. LA∗ evaluates h1(n) and
then inserts n into OPEN. However, if f1(n) ≤ fbest, then
n will immediately reach the top of OPEN and h2 will be
computed. In such cases we can choose to compute h2(n)
right away (after Line 12 in Algorithm 1), thus saving the
overhead of inserting n into OPEN and popping it again at
the next step (= 2 × to). For such nodes, LA∗ is identical
to A∗

MAX , as both heuristics are computed before the node
is added to OPEN. This enhancement is called OPEN by-
passing (OB). It is a reminiscent of the immediate expand
technique applied to generated nodes [Stern et al., 2010;
Sun et al., 2009]. The same technique can be applied when
n again reaches the top of OPEN when evaluating h2(n) ; if
f2(n) ≤ fbest, expand n right away. With OB, LA∗ will in-
cur the extra overhead of two OPEN cycles only for nodes n
where f1(n) > fbest and then later f2(n) > fbest.

3.2 Heuristic bypassing
Heuristic bypassing (HBP) is a technique that allows
A∗

MAX to omit evaluating one of the two heuristics. HBP
is probably used by many implementers, although to the best
of our knowledge, it never appeared in the literature. HBP
works for a node n under the following two preconditions:
(1) the operator between n and its parent p is bidirectional,
and (2) both heuristics are consistent [Felner et al., 2011].
Let C be the cost of the operator. Since the heuristic is

consistent we know that |h(p)− h(n)| ≤ C. Therefore, h(p)
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provides the following upper- and lower-bounds on h(n) of
h(p) − C ≤ h(n) ≤ h(p) + C. We thus denote h(n) =

h(p)− C and h(n) = h(p) + C.
To exploit HBP in A∗

MAX , we simply skip the computa-
tion of h1(n) if h1(n) ≤ h2(n), and vice versa. For exam-
ple, consider node a in Figure 1, where all operators cost 1,
h1(a) = 6, and h2(a) = 10. Based on our bounds h1(b) ≤ 7
and h2(c) ≥ 9. Thus, there is no need to check h1(b) as h2(b)
will surely be the maximum. We can propagate these bounds
further to node c. h2(c) = 8 while h1(c) ≤ 8 and again there
is no need to evaluate h1(c). Only in the last node d we get
that h2(d) = 8 but since h1(c) ≤ 9 then h1(c) can potentially
return the maximum and should thus be evaluated.
HBP can be combined in LA∗ in a number of ways. We

describe the variant we used. LA∗ aims to avoid needless
computations of h2. Thus, when h1(n) < h2(n), we delay
the computation of h2(n) and add n to OPEN with f(n) =
g(n) + h2(n) and continue as in LA∗. In this case, we saved
t1, delayed t2 and used h2(n) which is more informative than
h1(n). If, however, h1(n) ≥ h2(n), then we compute h1(n)
and continue regularly. We note that HBP incurs the time and
memory overheads of computing and storing four bounds and
should only be applied if there is enough memory and if t1
and especially t2 are very large.

4 Rational Lazy A∗

LA∗ offers us a very strong guarantee, of expanding the same
set of nodes as A∗

MAX . However, often we would prefer to
expand more states, if it means reducing search time. We
now present Rational Lazy A* (RLA∗), an algorithm which
attempts to optimally manage this tradeoff.
Using principles of rational meta-reasoning [Russell and

Wefald, 1991], theoretically every algorithm action (heuris-
tic function evaluation, node expansion, open list operation)
should be treated as an action in a sequential decision-making
meta-level problem: actions should be chosen so as to achieve
the minimal expected search time. However, the appropriate
general meta-reasoning problem is extremely hard to define
precisely and to solve optimally.
Therefore, we focus on just one decision type, made in the

context of LA∗, when n re-emerges from OPEN (Line 7). We
have two options: (1) Evaluate the second heuristic h2(n)
and add the node back to OPEN (Lines 7-10) like LA∗, or
(2) bypass the computation of h2(n) and expand n right way
(Lines 11 -13), thereby saving time by not computing h2, at
the risk of additional expansions and evaluations of h1. In or-
der to choose rationally, we define a criterion based on value
of information (VOI) of evaluating h2(n) in this context.
The only addition of RLA∗ to LA∗ is the option to bypass

h2 computations (Lines 7-10). Suppose that we choose to
compute h2 — this results in one of the following outcomes:
1: n is still expanded, either now or eventually.
2: n is re-inserted into OPEN, and the goal is found without
ever expanding n.
Computing h2 is helpful only in outcome 2, where poten-

tial time savings are due to pruning a search subtree at the ex-
pense of the time t2(n). However, whether outcome 2 takes

place after a given state is not known to the algorithm until
the goal is found, and the algorithm must decide whether to
evaluate h2 according to what it believes to be the probabil-
ity of each of the outcomes. We derive a rational policy for
when to evaluate h2, under the myopic assumption that the al-
gorithm continues to behave like LA∗ afterwards (i.e., it will
never again consider bypassing the computation of h2).
The time wasted by being sub-optimal in deciding whether

to evaluate h2 is called the regret of the decision. If h2(n) is
not helpful and we decide to compute it, the effort for evaluat-
ing h2(n) turns out to be wasted. On the other hand, if h2(n)
is helpful but we decide to bypass it, we needlessly expand n.
Due to the myopic assumption, RLA∗ would evaluate both
h1 and h2 for all successors of n.

Compute h2 Bypass h2

h2 helpful 0 te + (b(n)− 1)td
h2 not helpful td 0

Table 2: Regret in Rational Lazy A*

Table 2 summarizes the regret of each possible decision,
for each possible future outcome; each column in the table
represents a decision, while each row represents a future out-
come. In the table, td is the to time compute h2 and re-insert
n into OPEN thus delaying the expansion of n, te is the time
to remove n from OPEN, expand n, evaluate h1 on each of
the b(n) (“local branching factor”) children {n�} of n, and in-
sert {n�} into the open list. Computing h2 needlessly wastes
time td. Bypassing h2 computation when h2 would have been
helpful wastes te + b(n)td time, but because computing h2

would have cost td, the regret is te + (b(n)− 1)td.
Let us denote the probability that h2 is helpful by ph. The

expected regret of computing h2 is thus (1 − ph)td. On the
other hand, the expected regret of bypassing h2 is ph(te +
(b(n) − 1)td). As we wish to minimize the expected regret,
we should thus evaluate h2 just when:

(1− ph)td < ph(te + (b(n)− 1)td) (1)
or equivalently:

(1− b(n)ph)td < phte (2)
If phb(n) ≥ 1, then the expected regret is minimized by

always evaluating h2, regardless of the values of td and te. In
these cases, RLA∗ cannot be expected to do better than LA∗.
For example, in the 15-puzzle and its variants, the effective
branching factor is ≈ 2. Therefore, if h2 is expected to be
helpful for more than half of the nodes n on which LA∗ eval-
uates h2(n), then one should simply use LA∗.
For phb(n) < 1, the decision of whether to evaluate h2

depends on the values of td and te:

evaluate h2 if td <
ph

1− phb(n)
te (3)

Denote by tc the time to generate the children of n. Then:

td = t2 + to

te = to + tc + b(n)t1 + b(n)to (4)

By substituting (4) into (3), obtain: evaluate h2 if:

t2 + to <
ph [tc + b(n)t1 + (b(n) + 1)to]

1− phb(n)
(5)
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A∗ LA∗ RLA∗(Using Eq. 6)
lookahead generated time generated Good1 h2 time generated Good1 Good2 h2 time

2 1,206,535 0.707 1,206,535 391,313 815,213 0.820 1,309,574 475,389 394,863 439,314 0.842
4 1,066,851 0.634 1,066,851 333,047 733,794 0.667 1,169,020 411,234 377,019 380,760 0.650
6 889,847 0.588 889,847 257,506 632,332 0.533 944,750 299,470 239,320 405,951 0.464
8 740,464 0.648 740,464 196,952 543,502 0.527 793,126 233,370 218,273 341,476 0.377
10 611,975 0.843 611,975 145,638 466,327 0.671 889,220 308,426 445,846 134,943 0.371
12 454,130 0.927 454,130 95,068 359,053 0.769 807,846 277,778 428,686 101,378 0.429

Table 3: Weighted 15 puzzle: comparison of A∗
max, Lazy A

∗, and Rational Lazy A∗

The factor ph

1−phb(n) depends on the potentially unknown
probability ph, making it difficult to reach the optimum de-
cision. However, if our goal is just to do better than LA∗,
then it is safe to replace ph by an upper bound on ph. Note
that the values ph, t1, t2, tc may actually be variables that de-
pend in complicated ways on the state of the search. Despite
that, the very crude model we use, assuming that they are
setting-specific constants, is sufficient to achieve improved
performance, as shown in Section 5.
We now turn to implementation-specific estimation of the

runtimes. OPEN in A∗ is frequently implemented as a prior-
ity queue, and thus we have, approximately, to = τ logNo

for some τ , where the size of OPEN is No. Evaluating h1 is
cheap in many domains, as is the case with Manhattan Dis-
tance (MD) in discrete domains, to is the most significant part
of te. In such cases, rule (5) can be approximated as 6:

evaluate h2 if t2 <
τph

1− phb(n)
(b(n) + 1) logNo (6)

Rule (6) recommends to evaluate h2 mostly at late stages of
the search, when the open list is large, and in nodes with a
higher branching factor.
In other domains, such as planning, both t1 and t2 are sig-

nificantly greater than both to and tc, and terms not involving
t1 or t2 can be dropped from (5), resulting in Rule (7):

evaluate h2 if
t2
t1

<
phb(n)

1− phb(n)
(7)

The right hand side of (7) grows with b(n), and here it is
beneficial to evaluate h2 only for nodes with a sufficiently
large branching factor.

5 Empirical evaluation
We now present our empirical evaluation of LA∗ and RLA∗,
on variants of the 15-puzzle and on planning domains.

5.1 Weighted 15 puzzle
We first provide evaluations on the weighted 15-puzzle vari-
ant [Thayer and Ruml, 2011], where the cost of moving each
tile is equal to the number on the tile. We used a subset of 36
problem instances (out of the 100 instances of Korf (1985))
which could be solved with 2Gb of RAM and 15 minutes
timeout using the Weighted Manhattan heuristic (WMD) for
h1. As the expensive and informative heuristic h2 we use a
heuristic based on lookaheads [Stern et al., 2010]. Given a
bound d we applied a bounded depth-first search from a node
n and backtracked when we reached leaf nodes l for which
g(l) +WMD(l) > g(n) +WMD(n) + d. f -values from
leaves were propagated to n.
Table 3 presents the results averaged on all instances

solved. The runtimes are reported relative to the time

of A∗ with WMD (with no lookahead), which generated
1,886,397 nodes (not reported in the table). The first 3
columns of Table 3 show the results for A∗ with the looka-
head heuristic for different lookahead depths. The best time
is achieved for lookahead 6 (0.588 compared to A∗ with
WMD). The fact that the time does not continue to decrease
with deeper lookaheads is clearly due to the fact that although
the resulting heuristic improves as a function of lookahead
depth (expanding and generating fewer nodes), the increasing
overheads of computing the heuristic eventually outweights
savings due to fewer expansions.
The next 4 columns show the results for LA∗ with WMD

as h1, lookahead as h2, for different lookahead depths.
The Good1 column presents the number of nodes where
LA∗ saved the computation of h2 while the h2 column
presents the number of nodes where h2 was computed.
Roughly 28% of nodes wereGood1 and since t2 was the most
dominant time cost, most of this saving is reflected in the tim-
ing results. The best results are achieved for lookahead 8,
with a runtime of 0.527 compared to A∗ with WMD.
The final columns show the results ofRLA∗ , with the val-

ues of τ, ph, t2 calibrated for each lookahead depth using a
small subset of problem instances. TheGood2 column counts
the number of times that RLA∗ decided to bypass the h2

computation. Observe that RLA∗ outperforms LA∗, which
in turn outperforms A∗, for most lookahead depths. The low-
est time with RLA∗ (0.371 of A∗ with WMD) was obtained
for lookahead 10. That is achieved as the more expensive h2

heuristic is computed less often, reducing its effective com-
putational overhead, with some adverse effect in the number
of expanded nodes. Although LA∗ expanded fewer nodes,
RLA∗ performed much fewer h2 computations as can be seen
in the table, resulting in decreased overall runtimes.

5.2 Planning domains
We implemented LA∗ and RLA∗ on top of the Fast Down-
ward planning system [Helmert, 2006], and experimented
with two state of the art heuristics: the admissible landmarks
heuristic hLA (used as h1) [Karpas and Domshlak, 2009], and
the landmark cut heuristic hLMCUT [Helmert and Domsh-
lak, 2009] (used as h2). On average, hLMCUT computation
is 8.36 times more expensive than hLA computation. We did
not implement HBP in the planning domains as the heuris-
tics we use are not consistent and in general the operators are
not invertible. We also did not implement OB, as the cost of
OPEN operations in planning is trivial compared to the cost
of heuristic evaluations.
We experimented with all planning domains without con-

ditional effects and derived predicates (which the heuristics
we used do not support) from previous IPCs. We compare
the performance of LA∗ and RLA∗ to that of A∗ using each
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Problems Solved Planning Time (seconds) GOOD
Domain hLA lmcut max selmax LA∗ RLA∗ hLA lmcut max selmax LA∗ RLA∗ LA∗ RLA∗

airport 25 24 26 25 29 29 0.29 0.57 0.5 0.33 0.38 0.38 0.48 0.67
barman-opt11 4 0 0 0 0 3 N/A N/A N/A N/A N/A N/A N/A N/A
blocks 26 27 27 27 28 28 1.0 0.65 0.73 0.81 0.67 0.67 0.19 0.21
depot 7 6 5 5 6 6 2.27 2.69 3.17 3.14 2.73 2.75 0.06 0.06
driverlog 10 12 12 12 12 12 2.65 0.29 0.33 0.36 0.3 0.31 0.09 0.09
elevators-opt08 12 18 17 17 17 17 14.14 4.21 4.84 4.85 3.56 3.64 0.27 0.27
elevators-opt11 10 14 14 14 14 14 26.97 8.03 9.28 9.28 6.64 6.78 0.28 0.28
floortile-opt11 2 6 6 6 6 6 8.52 0.44 0.6 0.58 0.5 0.52 0.02 0.02
freecell 54 10 36 51 41 41 0.16 7.34 0.22 0.24 0.18 0.18 0.86 0.86
grid 2 2 1 2 2 2 0.1 0.16 0.18 0.34 0.15 0.15 0.17 0.17
gripper 7 6 6 6 6 6 0.84 1.53 2.24 2.2 1.78 1.25 0.01 0.4
logistics00 20 17 16 20 19 19 0.23 0.57 0.68 0.27 0.47 0.47 0.51 0.51
logistics98 3 6 6 6 6 6 0.72 0.1 0.1 0.11 0.1 0.1 0.07 0.07
miconic 141 140 140 141 141 141 0.13 0.55 0.58 0.57 0.16 0.16 0.87 0.88
mprime 16 20 20 20 21 20 1.27 0.5 0.51 0.5 0.44 0.45 0.25 0.25
mystery 13 15 15 15 15 15 0.71 0.35 0.38 0.43 0.36 0.37 0.3 0.3
nomystery-opt11 18 14 16 18 18 18 0.18 1.29 0.58 0.25 0.33 0.33 0.72 0.72
openstacks-opt08 15 16 14 15 16 16 2.88 1.68 3.89 3.03 2.62 2.64 0.44 0.45
openstacks-opt11 10 11 9 10 11 11 13.59 6.96 19.8 14.44 12.03 12.06 0.43 0.43
parcprinter-08 14 18 18 18 18 18 0.92 0.36 0.37 0.38 0.37 0.37 0.17 0.26
parcprinter-opt11 10 13 13 13 13 13 2.24 0.56 0.6 0.61 0.58 0.59 0.14 0.17
parking-opt11 1 1 1 3 2 2 9.74 22.13 17.85 7.11 6.33 6.43 0.64 0.64
pathways 4 5 5 5 5 5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.12
pegsol-08 27 27 27 27 27 27 1.01 0.84 1.2 1.1 1.06 0.95 0.04 0.42
pegsol-opt11 17 17 17 17 17 17 4.91 3.63 5.85 5.15 4.87 4.22 0.04 0.38
pipesworld-notankage 16 15 15 16 15 15 0.5 1.48 1.12 0.85 0.9 0.91 0.42 0.42
pipesworld-tankage 11 8 9 9 9 9 0.36 2.24 1.02 0.47 0.69 0.71 0.62 0.62
psr-small 49 48 48 49 48 48 0.15 0.2 0.21 0.19 0.19 0.18 0.17 0.49
rovers 6 7 7 7 7 7 0.74 0.41 0.45 0.45 0.41 0.42 0.47 0.47
scanalyzer-08 6 13 13 13 13 13 0.37 0.25 0.27 0.27 0.26 0.26 0.06 0.06
scanalyzer-opt11 3 10 10 10 10 10 0.59 0.64 0.75 0.73 0.67 0.68 0.05 0.05
sokoban-opt08 23 25 25 24 26 27 3.94 1.76 2.19 2.96 1.9 1.32 0.04 0.4
sokoban-opt11 19 19 19 18 19 19 7.26 2.83 3.66 5.19 3.1 2.02 0.03 0.46
storage 14 15 14 14 15 15 0.36 0.44 0.49 0.45 0.44 0.42 0.21 0.28
tidybot-opt11 14 12 12 12 12 12 3.03 16.32 17.55 9.35 15.67 15.02 0.11 0.18
tpp 6 6 6 6 6 6 0.39 0.22 0.23 0.23 0.22 0.22 0.32 0.4
transport-opt08 11 11 11 11 11 11 1.45 1.24 1.41 1.54 1.25 1.26 0.04 0.04
transport-opt11 6 6 6 6 6 6 12.46 8.5 10.38 11.13 8.56 8.61 0.0 0.0
trucks 7 9 9 9 9 9 4.49 1.34 1.52 1.44 1.41 1.42 0.07 0.07
visitall-opt11 12 10 13 12 13 13 0.2 0.34 0.19 0.18 0.18 0.18 0.38 0.38
woodworking-opt08 12 16 16 16 16 16 1.08 0.71 0.75 0.75 0.66 0.67 0.56 0.56
woodworking-opt11 7 11 11 11 11 11 5.7 2.86 3.15 3.01 2.55 2.58 0.52 0.52
zenotravel 8 11 11 11 11 11 0.38 0.14 0.14 0.14 0.14 0.14 0.17 0.19
OVERALL 698 697 722 747 747 750 1.18 0.98 0.98 0.89 0.79 0.77 0.27 0.34

Table 4: Planning Domains — Number of Problems Solved, Total Planning Time, and Fraction of Good Nodes

of the heuristics individually, as well as to their max-based
combination, and their combination using selective-max (Sel-
MAX) [Domshlak et al., 2012]. The search was limited to
6GB memory, and 5 minutes of CPU time on a single core of
an Intel E8400 CPU with 64-bit Linux OS.

When applying RLA∗ in planning domains we evaluate
rule (7) at every state. This rule involves two unknown quan-
tities: t2

t1
, the ratio between heuristic computations times, and

ph, the probability that h2 is helpful. Estimating t2
t1

is quite
easy — we simply use the average computation times of both
heuristics, which we measure as search progresses.

Estimating ph is not as simple. While it is possible to
empirically determine the best value for ph, as done for the
weighted 15 puzzle, this does not fit the paradigm of domain-
independent planning. Furthermore, planning domains are
very different from each other, and even problem instances in
the same domain are of varying size, and thus getting a single
value for ph which works well for many problems is difficult.
Instead, we vary our estimate of ph adaptively during search.
To understand this estimate, first note that if n is a node at
which h2 was helpful, then we computed h2 for n, but did not
expand n. Thus, we can use the number of states for which we
computed h2 that were not yet expanded (denoted by A), di-
vided by the number of states for which we computed h2 (de-
noted by B), as an approximation of ph. However, A

B is not
likely to be a stable estimate at the beginning of the search, as
A and B are both small numbers. To overcome this problem,
we “imagine” we have observed k examples, which give us

an estimate of ph = pinit, and use a weighted average be-
tween these k examples, and the observed examples — that
is, we estimate ph by (A

B · B + pinit · k)/(B + k). In our
empirical evaluation, we used k = 1000 and pinit = 0.5.
Table 4 depicts the experimental results. The leftmost part

of the table shows the number of solved problems in each
domain. As the table demonstrates, RLA∗ solves the most
problems, and LA∗ solves the same number of problems as
Sel-MAX. Thus, both LA∗ and RLA∗ are state-of-the-art in
cost-optimal planning. Looking more closely at the results,
note that Sel-MAX solves 10 more problems than LA∗ and
RLA∗ in the freecell domain. Freecell is one of only three
domains in which hLA is more informed than hLMCUT (the
other two are nomystery-opt11 and visitall-opt11), violat-
ing the basic assumptions behind LA∗ that h2 is more in-
formed than h1. If we ignore these domains, both LA∗ and
RLA∗ solve more problems than Sel-MAX.
The middle part of the Table 4 shows the geometric mean

of planning time in each domain, over the commonly solved
problems (i.e., those that were solved by all 6 methods).
RLA∗ is the fastest overall, with LA∗ second. It is important
to note that both LA∗ and RLA∗ are very robust, and even in
cases where they are not the best they are never too far from
the best. For example, consider the miconic domain. Here,
hLA is very informative and thus the variant that only com-
puted hLA is the best choice (but a bad choice overall). Ob-
serve that both LA∗ andRLA∗ saved 86% of hLMCUT com-
putations, and were very close to the best algorithm in this
extreme case. In contrast, the other algorithms that consider
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Expanded Generated
hLA 183,320,267 1,184,443,684
lmcut 23,797,219 114,315,382
A∗

MAX 22,774,804 108,132,460
selmax 54,557,689 193,980,693
LA∗ 22,790,804 108,201,244
RLA∗ 25,742,262 110,935,698

Table 5: Total Number of Expanded and Generated States

both heuristics (max and Sel-MAX) performed very poorly
here (more than three times slower).
The rightmost part of Table 4 shows the average fraction of

nodes for which LA∗ and RLA∗ did not evaluate the more
expensive heuristic, hLMCUT , over the problems solved by
both these methods. This is shown in the good columns. Our
first observation is that this fraction varies between different
domains, indicating why LA∗ works well in some domains,
but not in others. Additionally, we can see that in domains
where there is a difference in this number between LA∗ and
RLA∗, RLA∗ usually performs better in terms of time. This
indicates that whenRLA∗ decides to skip the computation of
the expensive heuristic, it is usually the right decision.
Finally, Table 5 shows the total number of expanded and

generated states over all commonly solved problems. LA∗ is
indeed as informative as A∗

MAX (the small difference is
caused by tie-breaking), while RLA∗ is a little less in-
formed and expands slightly more nodes. However, RLA∗ is
much more informative than its “intelligent” competitor - Sel-
MAX, as these are the only two algorithms in our set which
selectively omit some heuristic computations. RLA∗ gener-
ated almost half of the nodes compared to Sel-MAX, suggest-
ing that its decisions are better.

5.3 Limitations of LA∗: 15 puzzle example
Some domains and heuristic settings will not achieve time
speedup with LA∗. An example is the regular, unweighed 15-
puzzle. Results for A∗

MAX and LA∗ with and without HBP
on the 15-puzzle are reported in Table 6. HBP1 (HBP2)
count the number of nodes where HBP pruned the need to
compute h1 (resp. h2). OB is the number of nodes where OB
was helpful. Bad is the number of nodes that went through
two OPEN cycles. Finally, Good is the number of nodes
where computation of h2 was saved due to LA∗.
In the first experiment, Manhattan distance (MD) was di-

vided into two heuristics: Δx and Δy used as h1 and h2.
Results are averaged over 100 random instances with average
solution depth of 26.66. As seen from the first two lines, HBP
when applied on top ofA∗

MAXsaved about 36% of the heuris-
tic evaluations. Next are results for LA∗ and LA∗+HBP.
Many nodes are pruned by HBP, or OB. The number of good
nodes dropped from 28% (Line 3) to as little as 11% when
HBP was applied. Timing results (in ms) show that all vari-
ants performed equally. The reason is that the time overhead
of the Δx and Δy heuristics is very small so the saving on
these 28% or 11% of nodes was not significant to outweigh
the HBP overhead of handling the upper and lower bounds.
The next experiment is with MD as h1 and a variant of

the additive 7-8 PDBs [Korf and Felner, 2002], as h2. Here
we can observe an interesting phenomenon. For LA∗, most
nodes were caught by either HBP (when applicable) or by

Alg. Generated HBP1 HBP2 OB Bad Good time
h1 = ΔX , h2 = ΔY , Depth = 26.66

A* 1,085,156 0 0 0 0 0 415
A*+HBP 1,085,156 216,689 346,335 0 0 0 417
LA* 1,085,157 0 0 734,713 37,750 312,694 417
LA*+HBP 1,085,157 140,746 342,178 589,893 37,725 115,361 416

h1 =Manhattan distance, h2 = 7-8 PDB, Depth 52.52
A* 43,741 0 0 0 0 0 34.7
A*+HBP 43,804 30,136 1,285 0 0 0 33.6
LA* 43,743 0 0 42,679 47 1,017 34.2
LA*+HBP 43,813 7,669 1,278 42,271 21 243 33.3

Table 6: Results on the 15 puzzle

OB. Only 4% of the nodes were good nodes. The reason
is that the 7-8 PDB heuristic always dominates MD and is
always the maximum among the two. Thus, 7-8 PDB was
needed at early stages (e.g. by OB) and MD itself almost
never caused nodes to be added to OPEN and remain there
until the goal was found.
These results indicate that on such domains, LA∗ has lim-

ited merit. Due to uniform operator cost and the heuristics
being consistent and simple to compute, very little space is
left for improvement with good nodes. We thus conclude that
LA∗ is likely to be effective when there is significant differ-
ence between t1 and t2, and/or operators that are not bidirec-
tional and/or with non-uniform costs, allowing for more good
nodes and significant time saving.

6 Conclusion
We discussed two schemes for decreasing heuristic evaluation
times. LA∗ is very simple to implement and is as informative
as A∗

MAX . LA∗ can significantly speed up the search, espe-
cially if t2 dominates the other time costs, as seen in weighted
15 puzzle and planning domains. Rational LA∗ allows addi-
tional cuts in h2 evaluations, at the expense of being less in-
formed than A∗

MAX . However, due to a rational tradeoff, this
allows for an additional speedup, and Rational LA∗ achieves
the best overall performance in our domains.
RLA∗ is simpler to implement than its direct competi-

tor, Sel-MAX, but its decision can be more informed. When
RLA∗ has to decide whether to compute h2 for some node n,
it already knows that f1(n) ≤ C∗. By contrast, although Sel-
MAX uses a much more complicated decision rule, it makes
its decision when n is first generated, and does not know
whether h1 will be informative enough to prune n. Rational
LA∗ outperforms Sel-MAX in our planning experiments.
RLA∗ and its analysis can be seen as an instance of the ra-

tional meta-reasoning framework [Russell andWefald, 1991].
While this framework is very general, it is extremely hard to
apply in practice. Recent work exists on meta-reasoning in
DFS algorithms for CSP) [Tolpin and Shimony, 2011] and in
Monte-Carlo tree search [Hay et al., 2012]. This paper ap-
plies these methods successfully to a variant of A∗. There are
numerous other ways to use rational meta-reasoning to im-
prove A∗, starting from generalizing RLA∗ to handle more
than two heuristics, to using the meta-level to control deci-
sions in other variants of A∗. All these potential extensions
provide fruitful ground for future work.
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Abstract

In planning under partial observability with sensing actions
(PPOS) problems, the solution progresses from one sensing
action to another, until sufficient information is gathered and
the goal can be reached. In between sensing actions, one can
use classical planning to derive the path to the next sensing
action. We suggest an online algorithm that repeatedly se-
lects the next sensing action to execute, and plans to achieve
it in a classical setting. Our algorithm avoids the difficulty
in representing and updating a belief space. Our heuristic
uses landmarks, and we explain how landmarks can be com-
puted over a relaxation of the PPOS problem. We compare
our Heuristic Contingent Planner (HCP) to state-of-the-art,
translation-based online contingent planners, and show how it
solves many problems much faster than previous approaches.

Introduction
Agents acting under partial observability must acquire in-
formation about the true state of the world using sensing ac-
tions to achieve their goals. Such problems can be modeled
using contingent planning, where action effects may be con-
ditioned on some unknown world features. Contingent plan-
ning is difficult because the plan must branch given different
sensor values, resulting in potentially large plan trees.
Currently, there are two popular techniques for generating

contingent plans. Both approaches can be used in an offline
scenario – where the entire plan tree is generated offline, or
in an online scenario — where only the branch correspond-
ing to the online observations is generated incrementally.
The first technique builds on a compilation method for

conformant planning (Palacios and Geffner, 2009), trans-
lating the contingent planning problem, into a classical
planning problem that “reasons” about the agent’s state of
knowledge. Solutions to this classical problem correspond
to complete or partial contingent plans (Albore, Palacios,
and Geffner, 2009; Shani and Brafman, 2011; Bonet and
Geffner, 2011a). A major difficulty with this approach is
the size of the generated classical planning problems and
the time required for their solution.
The second technique directly searches in belief

space (Bonet and Geffner, 2000; Hoffmann and Brafman,
2005; To, Son, and Pontelli, 2011). As the effect of sensing

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

actions is non-deterministic, the search can be modeled as an
AND/OR tree, and various search heuristics can be applied.
The major difficulty with this approach is to compactly rep-
resent and efficiently update the belief state, and currently no
known method works well in all domains (To, Pontelli, and
Son, 2011). Generating good heuristics estimates in belief
space is also a challenge.
This paper describes a new, online method that overcomes

the weaknesses of both methods. We solve a sequence of
simple classical planning problems defined on the original
state space. Thus, we avoid reasoning about the agent’s
knowledge, and maintaining and updating its belief state.
Our method currently focuses on contingent planning do-
mains in which sensing actions do not alter the state of the
world — a condition which is true in all current contingent
planning benchmarks. In such domains, every branch of a
contingent plan contains a sequence of sensing actions. Be-
tween every two sensing actions, there is a sequence of non-
sensing actions. This is well known, and most online con-
tingent planners leverage it, whether explicitly or implicitly.
The key insight in our method, though, is that the se-

quence of non-sensing actions in between every two sensing
actions can be viewed as a classical planning problem de-
fined over the original (in fact, even slightly reduced) state
space of the problem, rather than the belief space. Thus, if at
each stage we are given the next sensing action to perform
by an oracle, we can quickly plan to achieve its precondi-
tions using a suitable classical planner.
Given the agent’s current state, there may be multiple

reachable sensing actions. Thus, we require a method for
selecting among them — an oracle. Indeed, technically, our
main contribution is the development of a method for ap-
proximating the value of information of every achievable
sensing action using an estimate of the number of landmarks
that can be achieved following the execution of each sensing
action. This requires, in turn, adjusting landmark generation
techniques to the setting of partial observability and sensing.
Our Heuristic Contingent Planner (HCP) first computes a

set of landmarks over a specially designed relaxation of the
planning problem. Next, at each step, we compute the set of
reachable sensing actions and estimate their value of infor-
mation. We use then a classical planner to generate a plan
from the current state to the seemingly best sensing action.
We repeat this process until we reach the goal.
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We empirically evaluate HCP on a set of contingent
planning benchmarks. Our experiments show that HCP
is much faster than the state-of-the-art contingent planners
SDR (Brafman and Shani, 2012b) and CLG (Albore, Pala-
cios, and Geffner, 2009), on domains with structured belief
spaces, where certain conditions that we explain hold, and
good landmarks can be discovered.

Partially Observable Contingent Planning
Partially observable contingent planning problems are char-
acterized by uncertainty about the initial state of the world,
partial observability, and the existence of sensing actions.
Actions may be non-deterministic, but much of the litera-
ture focuses on deterministic actions, and in this paper we
will assume deterministic actions, too.

Problem Definition
A contingent planning problem is a quadruple: π =
�P,A, ϕI , G�. P is a set of propositions, A is a set of ac-
tions, ϕI is a formula over P that describes the set of pos-
sible initial states, and G ⊂ P is the goal propositions. We
often abuse notation, treating a set of literals as a conjunc-
tion of the literals in the set, as well as an assignment of the
propositions in it. For example, {p,¬q} will also be treated
as p ∧ ¬q and as an assignment of true to p and false to q.
A state of the world, s, assigns a truth value to all elements

of P . A belief-state is a set of possible states, and the initial
belief state, bI = {s : s |= ϕI} defines the set of states
that are possible initially. An action a ∈ A is a three-tuple,
{pre(a),effects(a),obs(a)}. pre(a) is a set of literals denoting
the action’s preconditions. effects(a) is a set of pairs (c, e)
denoting conditional effects, where c is a set (conjunction)
of literals and e is a single literal. Finally, obs(a) is a set of
propositions, denoting those propositions whose value is ob-
served when a is executed. We assume that a is well defined,
that is, if (c, e) ∈ effects(a) then c∧pre(a) is consistent, and
that if both (c, e), (c�, e�) ∈ effects(a) and s |= c ∧ c� for
some state s then e ∧ e� is consistent. In current benchmark
problems, either the set effects or the set obs are empty. That
is, actions either alter the state of the world but provide no
information, or they are pure sensing actions that do not alter
the state of the world, but this is not a mandatory limitation.
We use a(s) to denote the state that is obtained when a

is executed in state s. If s does not satisfy all literals in
pre(a), then a(s) is undefined. Otherwise, a(s) assigns to
each proposition p the same value as s, unless there exists
a pair (c, e) ∈ effects(a) such that s |= c and e assigns p a
different value than s. Observations affect the agent’s belief
state. We assume throughout that all observations are deter-
ministic and accurate, and reflect the state of the world prior
to the execution of the action. It is possible to have observa-
tion reflect the post-action state, at the price of slightly more
complicated notation. Thus, if p ∈obs(a) then following the
execution of a, the agent will observe p if p holds now, and
otherwise it will observe ¬p. Thus, if s is the true state of the
world, and b is the current belief state of the agent, then ba,o,
is the belief state following the execution of a and observ-
ing o. The new belief state corresponds to the progression
through a of all states in b where o is observed.

A complete plan for a contingent planning problem can be
described as an tree τ = (N,E). The nodes, N , are labeled
with actions, and the edges, E, are labeled with observa-
tions. A node labeled by an action with no observations has
a single child, and the edge leading to it is labeled by the
null observation true. Otherwise, each node has one child
for each possible observation value. The edge leading to
this child is labeled by the corresponding observation. τ is a
solution plan (or plan) for π if τ(s) |= G for every s ∈ bI .
We illustrate these ideas using a 4 × 4 Wumpus do-

main (Albore, Palacios, and Geffner, 2009), which will
serve as our running example. Figure 1 illustrates this do-
main, where an agent is located on a 4 × 4 grid. The agent
can move in all four directions, and if moving into a wall,
it remains in place. The agent initially is in the low-left
corner and must reach the top-right corner. There are two
monsters called Wumpuses hidden along the grid diagonal,
the agent knows that Wumpus 1 can be at location 3,2 or
2,3, and Wumpus 2 can be at location 4,3 or 3,4. Thus
the possible states are: {wat(3, 2) ∧ wat(4, 3), wat(3, 2) ∧
wat(3, 4), wat(2, 3)∧wat(4, 3), orwat(2, 3)∧wat(3, 4)}.
The stench of a Wumpus carries to all adjacent locations,
and the agent can observe the stench in order to deduce the
whereabouts of the Wumpuses.

Figure 1: The 4× 4 Wumpus domain

Landmarks in Classical Planning
In general, a landmark Φ for a classical planning task Π =
�P,A, I,G� is a logical formula over the facts P , which
must be satisfied at some state along every solution of Π
(Hoffmann, Porteous, and Sebastia, 2004). As in most litera-
ture dealing with landmarks, we will restrict our attention to
landmarks that are simple disjunctions or conjunctions over
facts. Each planning task has some trivial landmark, consist-
ing of all goal facts, and all facts in the initial state. In the
Wumpus problem described above, e.g., these trivial land-
marks are the goal, at-4-4, and the initial state fact at-1-1.
Another related notion is that of orderings between land-

marks. Several types of orderings have been defined (Hoff-
mann, Porteous, and Sebastia, 2004). We use the most gen-
eral type of ordering (that is, the one with the weakest con-
dition), called reasonable-ordering, denoted Φ → Ψ. Intu-
itively, this implies that a “reasonable” plan will achieve Φ
before Ψ; the exact definitions of the different orderings are
not important in this context.
Although it is PSPACE-hard even to check whether a

given fact is a landmark or not, there are several efficient
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algorithms which return a set of landmarks and orderings
(Hoffmann, Porteous, and Sebastia, 2004; Zhu and Givan,
2003; Richter and Westphal, 2010; Keyder, Richter, and
Helmert, 2010). These algorithms all exploit the principle
that, if some fact p ∈ P is a landmark that is not true in the
initial state, and all actions which achieve p have some fact
q ∈ P as a precondition, then q is also a landmark. Fur-
thermore, q must be achieved before p, and so we also have
the ordering q → p. If there is no common precondition,
we can still find a set of facts which occur in the precondi-
tions of all actions, and use them as a disjunctive landmark.
For example, the landmark at-4-4 has two achievers, going
up from at-4-3, and going right from at-3-4. These actions
do not have a common precondition, but we can still infer
that at-4-3 ∨ at-3-4 is a landmark, which is ordered before
at-4-4.
Originally, landmarks were used as subgoals (Hoffmann,

Porteous, and Sebastia, 2004), guiding a base planner inside
a control loop. At each iteration of the loop, the set of land-
marks which could be achieved — that is, the landmarks
which do not have an unachieved landmark that is ordered
before them— are passed to the base planner as a disjunctive
goal. The base planner then returns a plan which achieves
one or more of these landmarks, the landmarks which have
been achieved are marked, and the control loop continues
planning from the state which was reached. Although this
technique has been shown to speed up planning significantly,
it can not guarantee the optimality of the solution found, nor
even the completeness of the overall planning process. This
is because the base planner might reach a state which is a
dead-end for the planning task Π, and the control loop does
not backtrack.
More recently, the number of landmarks which are yet

to be achieved was used as a path-dependent heuristic in
the LAMA planner (Richter and Westphal, 2010), winner in
the sequential satisfying track in IPC-2008 and IPC-2011.
This is an inadmissible heuristic estimate, because an ac-
tion might achieve more than one landmark. If optimal
planning is of interest, it is possible to derive an admissible
landmarks-based heuristic by performing an action cost par-
titioning over the landmarks (Karpas and Domshlak, 2009).

Landmark Detection under Partial
Observability

Adapting landmark detection to PPOS, we must be able to
handle uncertainty and sensing. In principle, we could run
classical landmark detection in belief space or in the pseudo
belief space of the translation approach, both of which are
potentially exponentially larger. To be useful, however,
landmark detection must be efficient and informative.
One of the main goals and contributions of this work is

to use classical techniques on the original state space when
possible, while planning in a partially observable domain.
To reduce the detection cost, as in classical planning, we
run landmark detection on a relaxed problem. We use the
popular delete-relaxation approach in which negative effects
of actions are ignored.
In addition to ignoring delete-effects, we augment the do-

main with additional artificial actions that help us deal with
uncertainty and observation. As the value of some propo-
sitions is unknowns, there is typically no path from the ini-
tial state to a goal state that does not involve observations
and deductions from these observations concerning the set
of possible states. The actions that we add help us bridge
this gap to a certain extent, without requiring us to represent
the agent’s belief state.
Our relaxation is motivated by features of current bench-

marks, as we explain below. In that sense, it is not general
and may fail to produce meaningful landmarks when certain
conditions do not apply. That being said, we demonstrate
how our relatively simple relaxation is highly useful in a
large set of benchmarks. Like other landmark detection al-
gorithm, our approach is sound, in that every landmark that
is detected is indeed a landmark of the real domain, but in-
complete, in that many landmarks may go undetected. We
skip the soundness proof due to the lack of space.

Conditional Effects Removal
We break down each action into actions with unary ef-
fects, by replacing each action a ∈ A with conditional
effects {(ci, ei) : i = 1..k}, with k actions, such
that pre(a(ci,ei)) = pre(a) ∧ ci and effects(a(ci,ei) =
effects(a) ∧ ei.
In general such a compilation is unsound, because several

conditions may apply together at a given state, while we al-
low only one condition per action. As we are computing a
heuristic, though, and since we will apply these actions in
a delete-relaxation, forward-search manner, we will allow
the application of multiple actions concurrently (Blum and
Furst, 1997). Thus, all conditions that apply will be executed
simultaneously at the same phase of the forward search.

Reasoning over the Initial Uncertainty
In many cases the uncertainty over some sets of proposi-
tions is encoded into the initial belief state, and remains un-
changed throughout the execution of the solution (Bonet and
Geffner, 2011b). In the Wumpus domain, e.g., the monsters
remain at a given location and never move, and the stench
around them is unchanged. For such sets of propositions, we
can create reasoning actions that, upon detecting the value of
some propositions of that set, reason about the rest.
The detection of these sets of propositions is simple, as

propositions whose value is constant do not appear in the ef-
fects of any action. We find clauses of the initial belief for-
mula that contain only constant propositions, and use these
to create reasoning actions. We assume here that the initial
state formula is expressed as a conjunction of either simple
disjunctions of literals, or xor (so called “one-of”) clauses.
For each such clause c containing only unchanged propo-

sitions we create a set of “reasoning” actions Ac, as follows:

• If c =
�

i=1..k li, then Ac = {ali}k
i=1, with pre(ali) =�

j=1..k,j �=i ¬lj , and effects(ali) = li.

• If c = ⊕i=1..kli, then Ac = {ali}k
i=1, with pre(ali) = li,

and effects(ali) =
�

j=1..k,j �=i ¬lj .
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Joining Immediate Reasoning and Observations
In a PPOS we can split the propositions into 3 disjoint sets
— propositions whose value is always known (e.g. the lo-
cation of the agent in the Wumpus problem), propositions
whose value may be unknown, but for which there is an
observation action (e.g., the stench in cells near the Wum-
pus lair), and propositions whose value can not be observed
(e.g., the location of the lair of the Wumpus). Note that we
must have some way to reason about the values of the vari-
ables which can not be observed, as otherwise we can just
ignore them.

Figure 2: A Mars Rover rock sampling example, with a 4× 4
grid and 4 rocks. The rover is at location 2, 3, and the dotted
line shows the range of its mineral sensor. Hence, only rocks
1 and 2 are within range at this location.

In many cases it is natural to define the value of the ob-
servable propositions through conditional effects over un-
observable propositions. Consider for example the Mars
Rover rock sample (Smith and Simmons, 2004; Brafman
and Shani, 2012b), where the rover must sample rocks con-
taining a desirable mineral in a grid (Figure 2). The rocks lo-
cations are known, but the agent must sense for the mineral
using a long range sensor. The sensor reports the existence
of the mineral in some rock within its range.
A natural formalization of this domain may have an ac-

tion activate-sensor-at-2-3 with preconditions at-2-3 and
conditional effects good-rock1 → good-rocks-in-range and
good-rock2 → good-rocks-in-range, and an additional ac-
tion observe-rocks-in-range which observes the good-rocks-
in-range proposition which signifies the sensor’s output.
While these are separate actions, used together they allow
us to reason about which rocks contain the good mineral. In
this case, at-x-y is always known, good-rocks-in-range is un-
known but directly observable, and good-rocki is unknown
and not directly observable. We now explain how these two
actions — activate-sensor and observe-good-rocks-in-range
can be joined to allow us to observe and reason about certain
propositions together.
Let a be an action that contains a set of conditional effects

of the form (ci, e) where ci is unknown and unobservable
and e is observable, and there is no other action that affects
the value of e that is not mutually exclusive, i.e., that can be
executed at the same state as a. In our example the activate-
sensor-at-x-y actions are the only actions that affect good-

rocks-in-range, and each such action requires the agent to
be at a different location. For all such actions we consider
the reverse of the conditions — (e,

�
i ci).

We now create a new action a ◦ aobs where aobs is an
observation action over e. The preconditions of the new ac-
tion will be the conjunction of the preconditions of a and
aobs. The observation of a◦aobs is e, and effects effects(a◦
aobs) = effectsu(a) ∧

�
i ci, where effectsu(a) are the un-

conditional effects of a. When there is more than a single ci,
we remove the non-determinism, by creating a set of actions
ai ◦aobs whose preconditions pre(a◦aobs)∧

�
j �=i ¬cj , and

whose effect is effects(ai ◦ aobs) = effectsu(a) ∧ ci. In the
example above we have two such joined actions with pre-
conditions at-2-3 ∧ ¬good-rockj , observation good-rocks-
in-range and effect good-rocki where i = 1 and j = 2 or
vice versa.
Note that this method is not general, in that there might be

a sequence of unobservable propositions p1, ..., pk and a set
of actions ai with conditional effects (pi, pi+1), and an ob-
servation action only for pk. Our translation only allows rea-
soning over the value of pk−1, and not about any of its pre-
decessors. That being said, the only benchmark that exhibits
this behavior is localize, while many other (e.g. medpks,
rock-sample) contain the behavior we exploit above.

Finding Fact Landmarks
We now run a landmark detection algorithm on our relaxed
domain that contains the actions created above, as well as
all the “regular” actions that have no conditional effects, and
operates only on the known propositions. In our experi-
ments we used back-chaining using the possible first achiev-
ers (Richter, 2010). However, one can use any landmark de-
tection algorithm on the relaxed problem described above.
The only change in the landmark detection algorithms is
with respect to the sensing actions, where we assume that
they optimistically provide any required value of the ob-
served proposition.

The Heuristic Contingent Planner Algorithm
We can now present our online contingent planning solver.
The planner progresses by repeatedly identifying a reachable
observation action that heuristically provides valuable infor-
mation towards the achievement of the goal. The planner
then plans in a classical setting to execute the observation
action, assuming all unknown propositions to have a nega-
tive value. The plan is executed, followed by the observation
action. Now, the process repeats with the additional infor-
mation that was provided by the observation action. This
process is repeated until the goal can be achieved without
executing any additional observation actions. Algorithm 1
shows this high level algorithm.
Algorithm 2 shows the process for selecting the next sens-

ing action. It estimates the myopic value of information of
the observation action, i.e., howmuch value will be achieved
from executing the action, ignoring future observations.
We first compute the set of achievable literals in the re-

laxed problem. Then, we see which observation actions can
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Algorithm 1 Heuristic Contingent Planner
Input: π— a PPOS problem
1: πrelaxed ← The relaxation of π as explained above
2: L← The set of landmarks for πrelaxed

3: s← All known literals at the initial state
4: while There is no classical plan that achieves G from s with

no observation actions do
5: aobs ← ChooseNextSensingAction(πrelaxed, L, s)
6: Pclassic ← Plan(s, pre(aobs))
7: s� ← Execute(Pclassic, s)
8: Execute(aobs) and observe literal l
9: s← s� ∪ {l}
10: end while
11: Pclassic ← Plan(s,G)
12: Execute(Pclassic, s)

be executed that sense the value of some unknown proposi-
tion. These are the candidate actions to be returned by the
algorithm. To choose the heuristically best observation ac-
tion, we analyze the value of observing p, by assuming that
we have observed p, and computing which literals now be-
come reachable. Then, we assume that we have observed ¬p
and compute again which literals become available.
Our policy for returning the heuristically best action first

looks at the number of satisfied landmarks following the ob-
servation. Given multiple observation actions that satisfy the
same number of landmarks, we break ties by looking at the
sum of the number of literals and new observation actions
that become achievable following the execution of the ob-
servation action. Finally, we break ties again in favor of the
action which requires the minimal number of actions (in the
relaxed domain) to execute.

Algorithm 2 Choosing the Next Sensing Action
Input: πrelaxed —a relaxed PPOS problem, L a set of landmarks,

s the set of currently known literals
1: s� ← the set of achievable literals given πrelaxed and s
2: Ω ← {a : a ∈ A, pre(a) ∈ s�, obs(a) �= φ, obs(a) /∈ s�}
3: for each action a ∈ Ω do
4: p← obs(a), s�+ ← s� ∪ {p}, s�− ← s� ∪ {¬p}
5: s��+ ← the set of achievable literals given πrelaxed and s�+
6: s��− ← the set of achievable literals given πrelaxed and s�−
7: scorelandmarks(a) ← the number of landmarks satisfied in

s��+ and s��−, but not in s�

8: scoreliterals(a) ← the number of literals achievable in s��+
and s��−, but not in s�

9: scoreobs(a) ← the number of sensing actions achievable in
s��+ and s��−, but not in s�

10: scorecost(a) ← the number of actions required from s be-
fore a can be executed in πrelaxed

11: score(a) ← �scorelandmarks(a), scoreliterals(a) +
scoreobs(a), scorecost(a)�

12: end for
13: return argmaxa∈Ωscore(a)

Empirical Evaluation
We now compare HCP to state-of-the-art online contingent
planners, CLG (Albore, Palacios, and Geffner, 2009), SDR

(Brafman and Shani, 2012b), MPSR (Brafman and Shani,
2012a), and K-Planner (Bonet and Geffner, 2011b) on var-
ious benchmarks. The experiments were conducted on a
Windows Server 2008 machine with 24 2.66GHz cores (al-
though each experiment uses only a single core) and 32GB
of RAM. The underlying classical planner is FF (Hoffmann
and Nebel, 2001).
Table 1 shows that HCP is much faster than all other plan-

ners, except for the K-Planner. The plan quality (number of
actions) of HCP is also typically quite good. The only do-
main that could not be solved by HCP is localize, because it
does not conform to our assumptions concerning reasoning
about the hidden propositions.
K-Planner is very fast, but it can only run on domains

where the hidden propositions remain constant throughout
the execution. Thus, it is unsuitable for solving many of the
benchmarks. Except for K-Planner, HCP is by far the fastest
contingent planner, and in many cases improves runtime by
more than an order of magnitude.

Related Work
Bonet and Geffner (2000) first proposed using heuristic
search in belief space. Since then, several heuristics for be-
lief states were proposed. Bryce, Kambhampati, and Smith
(2006) argue that belief state heuristics typically aggregate
distance estimates from the individual states which the be-
lief state describes to the goal. Taking the maximum dis-
tance corresponds to assuming positive interaction (that is,
the plan for reaching the goal from s1 also helps to reach the
goal from s2 ), while summarizing the distances corresponds
to assuming independence between these plans (that is, the
plans for s1 and s2 neither help or interfere with each other).
Contingent-FF (CFF) (Hoffmann and Brafman, 2005)

uses delete-relaxation, assuming generous execution seman-
tics, which ignores actions whose preconditions are not sat-
isfied during execution. They construct a relaxed confor-
mant plan by building a variant of the relaxed planning
graph, accounting for which facts are known at each layer.
CFF represents and reasons about knowledge through a logic
formula over the history. CFF also identifies observation
goals— observations needed by a later action.
The DNF planner (To, Pontelli, and Son, 2009) uses a

heuristic based on the number of satisfied goals, the cardi-
nality of the belief state, and a measure called the square
distance of the belief state to the goal, which is the sum of
the number of unsatisfied goals in each individual state in the
belief state. Goals are trivially also landmarks, and thus the
number of unsatisfied goals can be seen as a special case of
the number of unsatisfied landmarks, with a trivial landmark
discovery method.
HCP is related to these planners as it also searches in be-

lief space, although it doesn’t explicitly represent and rea-
sons about it. On the other hand, our use of landmark detec-
tion is far beyond any heuristics currently applied by other
belief search planners.
Surprisingly, online planners that plan repeatedly once

new knowledge has been acquired are less popular in this
line of research. This reduces the scalability of these meth-
ods, because the complete plan tree can be exponential in the
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Table 1: Comparing the performance of state of the art contingent planners. Blank cells represent problems that the planners
were unable to solve. CSU denotes models that CLG can solve but cannot simulate execution for.

HCP MPSR SDR CLG K-Planner
Name Actions Time Actions Time Actions Time Actions Time Actions Time

cloghuge 55.48 5.9 61.17 117.13 51.76 8.25
(0.304) (0.0452) (0.44) (4.19) (0.33) (0.08)

ebtcs-70 42.32 1.12 44.5 22.4 35.52 3.18 36.52 73.96
(0.6712) (0.0188) (0.7) (0.3) (0.75) (0.07) (0.86) (0.14)

elog7 20 0.32 23.5 1.4 21.76 0.85 20.12 1.4
(0.076) (0.0016) (0.1) (0.1) (0.07) (0.01) (0.05) (0.08)

CB-9-5 324 158.9 392.16 505.48 CSU 358.08 94.18
(2.24) (1.76) (2.81) (8.82) (15.8) (3.31)

CB-9-7 425 373 487.04 833.52 CSU 458.36 116.63
(2.2636) (2.28) (2.95) (15.82) (14.64) (3.24)

doors13 96.68 30 197.92 105.5 120.8 158.54 105.48 330.73 109.72 37.96
(0.52) (0.1296) (1.2) (2.1) (0.93) (2.01) (0.89) (0.21) (4.76) (1.72)

doors15 137.9 52.6 262.2 190 143.24 268.16 150.88 55.24
(1.1052) (0.6228) (1.9) (3.3) (1.36) (3.78) (4.7) (2)

doors17 170 91 368.25 335.3 188 416.88 188.8 79.24
(1.456) (0.708) (3.4) (5.3) (1.64) (6.16) (5.79) (2.62)

localize17 59.8 230.4 45 928.56 CSU
(0.9) (7.7) (0.86) (33.2)

unix3 40.48 1.77 69.7 5.2 56.32 5.47 51.32 18.56 45.48 16.87
(1.156) (0.0448) (1.7) (0.1) (1.72) (0.18) (0.97) (0.05) (4.59) (1.56)

unix4 94.56 20.21 158.6 30.4 151.72 35.22 90.8 189.41 87.04 38.81
(1.88) (0.2868) (4.3) (1.1) (4.12) (0.94) (2.12) (0.6) (8.54) (3.53)

Wumpus15 65.08 9.57 65 126.6 120.14 324.32 101.12 330.54 107.64 7.17
(1.1052) (0.11248) (1.6) (3.1) (2.4) (7.14) (0.67) (0.25) (4.6) (0.6)

Wumpus20 90 34 71.6 261.1 173.21 773.01 155.32 1432 151.52 16.03
(1.3984) (0.3396) (1.2) (7) (3.4) (20.78) (0.95) (0.47) (6.29) (1)

RockSample 105.76 6.3 127.24 113.4
8-12 (0.3984) (0.0496) (0.68) (0.79)

RockSample 135 9 142.08 146.75
8-14 (0.52) (0.038) (0.8) (1.19)

worst case in the number of propositions. Thus, even fully
specifying the plan tree may be impossible.
A second popular approach to contingent planning is the

compilation-based approach (Albore, Palacios, and Geffner,
2009; Shani and Brafman, 2011; Brafman and Shani, 2012a;
Bonet and Geffner, 2011a). These methods translate a PPOS
into a classical planning problem, directly reasoning about
the possible hidden state. Such methods add new “knowl-
edge” propositions and modify actions so that the state space
is transformed into a belief space, essentially allowing a
classical planner to plan in belief space. This reduction
allows leveraging advances in classical planning, such as
recent, powerful heuristic generation methods. In this set-
ting online approaches were developed, that plan only for
branches of the plan tree that can be reached given the true
hidden state at runtime.
Some of these methods make simplifying assumptions

concerning the problem structure, as we do. For example
CLG (Albore, Palacios, and Geffner, 2009) assumes lim-
ited uncertainty, modeled formally through the notion of
conformant-width. Specifically, CLG cannot solve problems
of width larger than 1, like Rock Sample. K-Planner Bonet
and Geffner (2011a) has an even more strict assumption —

it can solve only problems where the unknown proposition
remain constant through the plan execution. This makes rea-
soning about the hidden state much easier, and our reasoning
actions are inspired by this observation.

Conclusion and Future Work
We introduced a new approach to contingent planning, rely-
ing on heuristics computed over a relaxation of the domain
description, without maintaining a belief state explicitly, or
translating the problem into classical planning, which are the
two popular approaches to contingent planning under partial
observability.
Our planner, HCP, leverages certain properties of many

benchmarks in order to avoid the explicit maintenance of
belief states. Domains which do not conform to these prop-
erties, cannot be solved by HCP.
In the future we intend to generalize our assumptions

concerning these properties, and formally identify domains
where HCP works well, and provide a proof for its sound-
ness and completeness for these domains. We will also look
into less strict assumptions that may help us to solve do-
mains which are currently impossible for HCP.
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Abstract
Abstraction is a common method to compute lower bounds
in classical planning, imposing an equivalence relation on the
state space and deriving the lower bound from the quotient
system. It is a trivial and well-known fact that refined ab-
stractions can only improve the lower bound. Thus, when we
embarked on applying the same technique in the probabilis-
tic setting, our firm belief was to find the same behavior there.
We were wrong. Indeed, there are cases where every direct re-
finement step (splitting one equivalence class into two) yields
strictly worse bounds. We give a comprehensive account of
the issues involved, for two wide-spread methods to define
and use abstract MDPs.

Introduction
In classical planning, an abstraction is a mapping α from the
set of all states into a smaller set of abstract states ([s]α de-
noting the set of states t where α(t) = α(s)). This is used
to derive a lower bound hα(s) on the remaining cost of any
state s. Namely, α induces an abstract planning problem
over the abstract state space: (i) an abstract state [s]α is a
goal iff it contains at least one original goal state, and (ii)
a transition from [s]α to [s�]α exists iff there exist t ∈ [s]α
and t� ∈ [s�]α so that the original state space has a tran-
sition from t to t�. The abstract planning problem is a re-
laxed version of the original one –or, conversely, the orig-
inal problem is more constrained– so that, given a state s,
the cost of an abstract plan starting from [s]α is at most
equal to the cost of a plan starting from s, and can thus be
used as a lower bound hα(s). Prominent examples of this
method are pattern databases (Edelkamp 2001; Haslum et al.
2007) and merge-and-shrink abstractions (Helmert, Haslum,
and Hoffmann 2007; Nissim, Hoffmann, and Helmert 2011;
Katz, Hoffmann, and Helmert 2012).
A refinement of α is an abstraction α� resulting from α

by splitting some of the block states, i.e., for all s we have
[s]α� ⊆ [s]α. It is commonplace that refinements can only
improve the heuristic, i.e., hα(s) ≤ hα�

(s) for all s: If we
split block states apart, then the solution paths can only get
longer and thus more costly (assuming non-negative costs
as usual). Indeed, this observation is so simple that, to our
knowledge, no-one yet bothered to state it in a paper and its
first appearance is in Malte Helmert’s 2010 lecture slides.1

1http://www.informatik.uni-freiburg.de/

Our initial agenda in this research was to solve MDPs
using heuristic search methods like LRTDP (Bonet and
Geffner 2003), our focus being to compute heuristic func-
tions by starting with a coarse abstraction and iteratively
refining it. Against the background described above, as a
warm-up exercise we embarked on proving that the essential
property of refinements – they can only improve the heuris-
tic – is true in that setting as well. Which was all fine, except
we ended up proving the opposite.
First things first, to conduct this kind of research for

MDPs one needs to first define what the “quotient system”
and the corresponding heuristic functions are. This is non-
trivial because, in difference to the classical case where all
we are interested in is which states can transition to which
other states in principle, now we need to define transition
probabilities for the abstract MDP. To illustrate, if action a
maps s into a state from [s�]α with probability 0.9, but maps
t ∈ [s]α into a state from [s�]α with probability 0.1, which
probability should we assign for a to map [s]α into [s�]α?
A simple answer is to assign the average probability over

all states in [s]α. In the example, this would yield the tran-
sition probability 0.5. A main issue with this approach is
that the resulting heuristic function – the value function of
the abstract MDP – is neither a lower bound nor an upper
bound on the value function of the original MDP. Givan et
al. (2000) fix this by basically considering intervals of tran-
sition probabilities (in the example, the interval [0.1, 0.9]).
They derive a lower bound on the original value function
(expected reward) by selecting the probabilities pessimisti-
cally, and derive an upper bound of the original value func-
tion by selecting the probabilities optimistically.
We first proved that, for the average-probability approach,

there exist an MDP, a state s, an abstraction α, and refined α�

so that the error of hα�
(s) relative to the original value func-

tion is larger than that of hα(s). This may be duly under-
stood as an accident pertaining to the sketchy nature of this
approach; indeed, as we show, the original MDP does not
have to be non-deterministic to provoke this kind of behav-
ior. However, we next proceeded to prove the same property
for Givan et al.’s approach. Worse, even: We constructed
an MDP, a state s, and α so that all direct refinements α�

(resulting from α by splitting a single block state) result in

˜ki/teaching/ss10/aip/aip10.pdf
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strictly worse bounds. More naturally than for the average-
probability approach, non-determinism is required for this,
i.e., if the original MDP is deterministic then every refine-
ment results in better bounds.
In the remainder of the paper, we first give the necessary

background definitions. We then explain our results in the
order described above.

Markov Decision Processes and Abstractions
Markov Decision Processes (MDPs) are a general frame-
work for modeling decision-making problems in stochastic
environments. We define an MDP as follows
Definition 1. A Markov Decision Process is given by a (fi-
nite) state space S, a (finite) action space A, a reward func-
tion R : S × A → R and transition probabilities p(s, a, s�)
which determine the probabilities of transition when per-
forming action a in state s.
A deterministic policy π : S → A assigns an action to

each state, and we are looking for the optimal policy π∗,
i.e., one that maximizes for all s ∈ S the return

V π(s) = Eπ

� ∞�

t=0

γtRt|s0 = s

�
,

where γ is the discount rate taken in [0, 1).
The related value V ∗ is the unique solution of the equation

V ∗ = TV ∗ where T is the Bellman operator defined as :

∀s, V ∗(s) = TV ∗(s)

= max
a

R(s, a) + γ
�

s�∈S

p(s, a, s�)V ∗(s�).

Determining π∗ may be infeasible in MDPs with large state
spaces. In this paper we simplify the problem by employing
state abstractions. Abstractions provide a smaller represen-
tation Mα of the original MDP M . The image of M un-
der an abstraction α is defined on a state space Sα smaller
than S. Indeed Sα is a partition of S consisting of block
states [s]α. We assign to each block-state, given an action
a ∈ A, the reward R([s]α, a) and the transition probabilities
p([s]α, a, [s1]α) for all [s1]α ∈ Sα . The useful abstrac-
tions are the ones that induce a small error of approximation
when consideringMα instead ofM . We would like to iden-
tify such abstractions by comparing a given abstraction to its
(direct) refinement, in terms of approximation error.

Abstractions’ Refinement
Definition 2. Let α and α� be two abstractions of an MDP
M . We say that α� is finer than α, denoted α� � α, iff for
any states s, s� ∈ S, α�(s) = α�(s�) implies α(s) = α(s�).
We can also say that α is coarser than α�, denoted α � α�.

We have α� a direct refinement of α if there exist states
s1, s2 ∈ S such that [s1]α = [s2]α, [s1]α� �= [s2]α� , [s1]α =
[s1]α� ∪ [s2]α� , and α�(s) = α(s) for all s ∈ S \ [s1]α.
We show in what follows that the error induced by α’ may

in some cases be higher than the one induced by α. But be-
fore that we have first to specify the parameters (rewards and
transition probabilities) related to the abstract representation
Mα ofM .

Average MDPs
We consider in this section the abstraction α that connects
an MDP M to its average representation. In other words,
α maps an MDP M defined on S to an average MDP Mα,
defined on Sα, and admits as parameters, the averages of
rewards and transitions over all states contained in the block
state [s]α ((Ortner 2011)), i.e., we have for all a ∈ A:

R([s]α, a) =
1

|[s]α|
�

s1∈[s]α

R(s1, a) and

p([s]α, a, [s
�]α) =

1

|[s]α|
�

s1∈[s]α

�

s2∈[s�]α

p(s1, a, s2).

We denote here by |[s]α| the cardinal of all states in [s]α.
We choose as approximation error Eα, the average error,

estimated by taking the average difference between the true
value V taken in a state s and the value Vα of its correspond-
ing block state [s]α,

Eα =
1

|S|
�

s∈S

|Vα([s]α)− V (s)|.

This approximation error may increase when we refine the
abstraction α. We illustrate in Figure 1 an example in which
the number of states where the (local) error increases-after
a refinement-is greater than the one where the (local) error
decreases, causing the increase of the average error.
Proposition 1. There exists a deterministic MDPM , an ab-
straction α and a refinement α� of α such that Eα < Eα� .

Proof. Consider theMDPM in Figure 1 with a single action
{a} and a discount rate γ = 1 (the result would not change
for γ < 1 but close enough to 1). The states in {2, ..., k}
(k > 2) are similar: they admit the same rewards (R = 0)
and have the same dynamics : they reach the neighboring
state with probability one. The states in {k + 1, ..., n} are
also similar: they all reach the goal G with probability one
and they admit a non-negative reward R2. The state 1 ad-
mits a reward R(1) = R1 � R2 and reaches the goal with
probability one.
Taking V (G) = 0, we then have V (1) = R1, and V (i) =

R2 forall i in {2, ..., n}.
Based on those similarities one can construct a perfectly

suitable abstraction α0 (Eα0
= 0) which aggregates sim-

ilar states in the same block, i.e., in our case α0 : S →
1, {2, ..., k}, {k + 1, ..., n}, G.
Consider now the abstraction α1 : S → {1, ..., k}, {k +

1, ..., n}, G, where the states 1 and {2, ..., k} are in the same
block (Figure 1). The similarity will be then broken resulting
in a strictly positive error Eα. The related values are

Vα1
({k + 1, ..., n}) = (n− k)R2

n− k
= R2 and

Vα1
({1, ..., k}) =R1

k
+

k − 2
k

Vα1
({1, ..., k})+

1

k
Vα1({k + 1, ..., n})

=
R1 +R2

2
�= R2.
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And the induced error is

Eα1
=
1

n

k�

i=1

|V (i)− Vα1
({1, ..., k})| ∼ k

R2

2n
for R1 � R2.

Let α2 : S → {1, ..., n}, G be the abstraction which
aggregates states 1, 2, ..., n together (Figure 1), the value
Vα2({1, ..., n}) is equal to

Vα2({1, ..., n}) =
R1 + (n− k)R2

n
+

k − 1
n

Vα2({1, ..., n})
∼ R2 for k � n

and hence

Eα2
∼ 1

n
|V (1)− Vα2

({1, ..., n})| ∼ 1

n
R2.

We can see that the error Eα1
is strictly larger than Eα2

for
a number of states k strictly greater than 2.

1 2 . . . k k + 1 . . . n− 1 n G

(R1, 1)

(0, 1) (0, 1) (0, 1)

(R2, 1)

(R2, 1)

(R2, 1)

(R2, 1)

12...k k + 1...n G
(0,

1

k
)

�
R1

k
,

k − 2

k

� �
0,

1

k

�

(R2, 1)

12...n G

�
0, 1 − k − 1

n

�

�
R1 + (n − k)R2

n
,

k − 1

n

�

Figure 1: From the top to the bottom: The MDP M , the
abstraction α1 and the abstraction α2 (α0 is not shown). The
parentheses denote the reward (on the left) and the transition
probabilities (on the right).

Bounded-parameter MDPs
Rather than approaching V ∗ with fixed values Vα, it is possi-
ble to establish bounds on the MDP’s parameters so as to get
bounds on V ∗. So we considered the abstraction α that as-
sociates, for each (action) a in A, each block state [s]α with

the intervals’ parameters ((Givan, Leach, and Dean 2000)):

R�([s]α, a) =[ min
s∈[s]α

R(s, a), max
s∈[s]α

R(s, a)]

p�([s]α, a, [s
�]α) =[ min

s1∈[s]α

�

s2∈[s�]α

p(s1, a, s2),

max
s1∈[s]α

�

s2∈[s�]α

p(s1, a, s2)].

We get hence what we call a a bounded parameter
Markov Decision process (BMDP) more commonly defined
as:
Definition 3. A Bounded parameter Markov Decision Pro-
cess is given by a (finite) state space Σ, a (finite) action
space A, an interval of rewards R�(σ, a), ∀σ ∈ Σ, a ∈
A, and an interval of transition probabilities p�(σ, a, σ�),
∀σ, σ� ∈ Σ, a ∈ A.
Each state of the BMDP has a range of values depending

on R and p. We can assign to each state a closed interval of
value functions [V −(σ), V +(σ)] where V − corresponds to
the pessimistic bound and V + to the optimistic one.
Our abstract representation Mα is then a BMDP where

the state space Σ coincides with state space Sα. We would
like to estimate the value bounds V +

α ans V −
α related toMα.

Givan et al. have proposed an algorithm, the interval value
iteration IVI, to do so. To make explicit the two Bellman’s
operators hidden behind this algorithm (T+ and T−), we
first need to introduce the notion of compatibility with re-
spect to an abstraction.
Definition 4. AnMDPN is compatible withM with respect
to the abstraction α if for all s, and for all a, RN (s, a) ∈
R

�
M ([s]α, a) and for all s, s�, a,

�
s1∈[s�]α

pN (s, a, s1) ∈
p
�
M ([s]α, a, [s

�]α).
The set of all MDPs compatible with M with respect to α is
denoted [M ]α.
Figure 2 gives an example of an MDPN compatible with

an MDP M with respect to the abstraction α : 1, 2, 3 →
{1, 2}, 3.
We claim that the Bellman operators T+ and T− used to

estimate V +
α and V −

α can be written in this way, for all s:

T+[V ](s) = max
a∈A

max
N∈[M ]α

RN (s, a) + γ
�

s�∈S

pN (s, a, s
�)V (s�),

T−[V ](s) = max
a∈A

min
N∈[M ]α

RN (s, a) + γ
�

s�∈S

pN (s, a, s
�)V (s�).

By taking iteratively the max (resp the min) on the set of
compatible MDPs and by choosing the optimal policy, we
can see that those two operators converge to fixed values.
Indeed T+ and T− are γ-contracting so, by the Banach
fixed point Theorem, they admit unique fixed points V +

α
and V −

α (which are constant per block), i.e., T+V +
α = V +

α
and T−V −

α = V −
α . There exists an optimistic MDP Mopt

(respectively a pessimistic MDP Mpes) and a correspond-
ing optimal (optimistic) policy πopt (respectively an optimal
(pessimistic) policy πpes) for which the value V +

α (resp V −
α )

is reached. The MDPs Mopt and Mpes belong to [M ]α.
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Figure 2: From left to right, the MDP M , the BMDP Mα,
α : 1, 2, 3 → {1, 2}, 3 and the MDP N compatible with M
with respect to α.The parenthesis denote the reward (on the
left) and the transitions (on the right).

Before proceeding to the next step –the choice of the ab-
straction that would ensure better bounds–, we first show
that these values are indeed bounds on V ∗. This is precisely
what is stated in this following theorem.

Theorem 1. (Givan, Leach, and Dean 1997) For any MDP
M and abstraction α of the states of M , bounds on the
BMDP Mα apply also to M , i.e., ∀s ∈ S, V ∗(s) ∈
[V −

α ([s]α), V
+
α ([s]α)].

Proof. 2 The proof is done using Value Iteration. With initial
value V 0 = V +

α we have, for all s,

V 1(s) = max
a

RM (s, a) + γ
�

s�∈S

pM (s, a, s
�)V +

α ([s
�]α).

Since V +
α is a fixed point of T+ andM ∈ [M ]α, we can see

that

V 1(s) ≤ max
a∈A

max
N∈[M ]α

RN (s, a) + γ
�

s�∈S

pN (s, a, s
�)V +

α ([s
�]α)

≤ V +
α ([s]α) = V 0(s).

The Bellman operator T is monotone, so that we have
TnV 1 ≤ TnV 0 = V 0. By taking the limit, we get
V ∗(s) ≤ V +

α ([s]α). A similar proof may be applied to the
pessimistic bound.

2This proof does not appear in (Givan, Leach, and Dean 1997)
but it has been established thanks to a correspondence with R. Gi-
van.

Value Bounds using finer abstractions
As previously done for the average model, we will compare
the two errors Gα and Gα� induced by the BMDP Mα and
its direct refinement Mα� , where, for an abstraction α, Gα

measures the gap between the two bounds in each state, for
all s:

Gα(s) =
�
V +

α ([s]α)− V −
α ([s]α)

�
.

The proposition below states a sufficient condition under
which the finer abstractionα� yields better value bounds than
α and therefore decreases the error Gα. Indeed, if the set of
MDPs compatible with M with respect to the finer abstrac-
tion are also compatible with M with respect to the coarser
abstraction, then we get the inclusion of the value function
intervals.
Proposition 2. Given an MDP M and two abstractions α
and α� s.t. α� � α and [M ]α� ⊆ [M ]α then, for all s ∈ S,

[V −
α� ([s]α�), V +

α� ([s]α�)] ⊆ [V −
α ([s]α), V

+
α ([s]α)].

Proof. Value Bounds computation can be considered as a
case of an alternating two players stochastic game where one
choose the optimal policy while the other choose the optimal
MDP. For the upper bound, we can then invert the two max
in the Bellman operators’ expressions ((Givan, Leach, and
Dean 2000)). This would not change the final result, so we
have

V +
α ([s]α) = max

N∈[M ]α
V ∗

N (s).

For the lower bound, more detailed arguments have been
established in (Bertsekas and Tsitsiklis 1996) to set the in-
version of the max and the min terms, so we get:

V −
α ([s]α) = min

N∈[M ]α
V ∗

N (s).

Given that [M ]α� is included in [M ]α, then by taking the
max, (respectively the min) the result follows.

We will study next two cases : the deterministic case,
where the sufficient condition is always satisfied, and the
stochastic case, where it is not necessarily satisfied, for
which we will give an example.

Deterministic case: probabilities in {0, 1}
Corollary 1. If we consider a deterministic MDP and two
abstractions α and α�, where α� is a direct refinement of α,
then for all s ∈ S,

[V −
α� ([s]α�), V +

α� ([s]α�)] ⊆ [V −
α ([s]α), V

+
α ([s]α)].

Proof. Let us consider an MDP N compatible with M un-
der α�. We will show that the sufficient condition of Propo-
sition 2 is satisfied: N is also compatible with M under
α. Note that having N compatible with M with respect
to an abstraction α, according to Definition 4, is equivalent
to having the inclusion of the parameter intervals i.e., for
all s, and for all a, R�

N ([s]α, a) ⊆ R
�
M ([s]α, a) and for all

s, s�, a, p�N ([s]α, a, [s
�]α) ⊆ p

�
M ([s]α, a, [s

�]α). Let [s1]α be
the state block in Sα that we split into two blocks [s2]α� and
[s3]α� (i.e., we have [s2]α� ∪ [s3]α� = [s1]α). It is easy to
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check the inclusion of reward intervals under α as for each
action a:

min
s∈[s1]α

RN (s, a) = min( min
s∈[s2]α�

RN (s, a), min
s∈[s3]α�

RN (s, a)).

Also, using the α� compatibility hypothesis we have

min
s∈[si]α�

RN (s, a) ≥ min
s∈[si]α�

RM (s, a) for i in {2, 3}

then
min

s∈[s1]α
RN (s, a) ≥ min

s∈[s1]α
RM (s, a).

By reasoning in a similar way for the upper bound, we get
the inclusion of the reward intervals. The same arguments
may be employed to state the inclusion of outgoing transi-
tion probabilities p([s1]α, a, [s4]α) for all s4 in S and a inA.
So we will mainly focus on ingoing transition probabilities
p([s5]α, a, [s1]α) for all s5 in S and we will show that

min pN ([s5]α, a, [s1]α) ≥ min pM ([s5]α, a, [s1]α). (1)

Since we work in a deterministic environment, probabili-
ties can only take the values 0 or 1. For the case where
min pN ([s5]α, a, [s1]α) = 1, inequality (1) is always veri-
fied. Now, min pN ([s5]α, a, [s1]α) = 0 implies that there
exist a state s� in [s5]α and a block state [s6]α distinct from
[s1]α such that pN (s

�, a, [s6]α) = 1. So we can find a state
s�� in [s5]α such that pM (s

��, a, [s6]α) = 1 as N is compat-
ible with M under α�. We then have Equation (1) and by
Proposition 2 the final result follows.

Stochastic case We would like to have an equivalent of
Proposition 2 for the stochastic case but it turns out that in
general the sufficient condition is no more fulfilled. In fact
when we move to stochastic transitions, the sufficient condi-
tion in Proposition 2 becomes harder to satisfy. The success-
ful MDPM has to verify specific conditions that depend on
the choice of the abstractions α and α�. In other words, given
an MDP M and an abstraction α there does not always ex-
ists a refined abstraction α� such that the sufficient condition
is satisfied. Figure 3 shows a model of MDP in which we
can not find the appropriate direct refinement α�.Three states
which admit the same rewards R(1) = R(2) = R(3) = 1
and behave identically in the block {1, 2, 3} (the same prob-
abilities in regards to the block {1, 2, 3}, p(1, {1, 2, 3}) =
p(2, {1, 2, 3}) = p(3, {1, 2, 3}) = 0.7). States 4 and 5 are
goal states (V (4) = V (5) = 0). We can find an MDP
N compatible with M with respect to the abstraction α�

(S → {1, 2}, 3, 4, 5) but not compatible with M with re-
spect to the abstraction α (S → {1, 2}, 3, 4, 5). It suffices to
take an MDP N whose parameter intervals are included in
M ’s parameter intervals under α� but admits real intervals
rather than fixed real values under α.
The condition stated in Proposition 2 is a sufficient con-

dition, we can not a priori conclude about the existence of a
refinement that would make the error of approximation de-
crease. Nevertheless, we have identified models of MDPs
where every direct refinement strictly increases the error.

Proposition 3. There exists an MDPM and an abstraction
α such that, for any direct refinement α� of α, we have: (1)
for all s in S, Gα�(s) ≥ Gα(s), and (2) there exists s in S
where Gα�(s) > Gα(s).

Proof. The MDP shown in Figure 3 is an example of such a
model. The value Vα({1, 2, 3}) related to the block {1, 2, 3}
is a perfect heuristic for the states 1, 2 and 3. In fact
we can see (for γ = 1), using Theorem 1, that the opti-
mistic and pessimistic bounds coincide: V −

α ({1, 2, 3}) =
V +

α ({1, 2, 3}) = V (1) = V (2) = V (3) = 3.33. If we re-
fine the block {1, 2, 3} by splitting the block {1, 2, 3} into
{1, 2} and {3}, then the error of approximation will strictly
increase and we will obtain an interval of values rather than a
precise value given by the coarser abstraction (we got those
values by using Givan et al.’s algorithm). The approximation
error Gα equals to 0 for all the states while the approxima-
tion error Gα� is:

Gα�(1) = Gα�(2) � 1 > 0 = Gα(1) = Gα(2) and
Gα�(3) � 1 > Gα(3) = 0.

Only one of all the possible refinements is detailed here
but the same happens for the two other direct refinements:

• For the abstraction

α� : 1, 2, 3, 4, 5→ {1, 3}, {2}, {4}, {5}
we have V ±

α� ({1, 3}) = [2.5, 4.78] and V ±
α� ({2}) =

[2.75, 4.34].
• For the abstraction

α� : 1, 2, 3, 4, 5→ {1}, {2, 3}, {4}, {5}
we have V ±

α� ({2, 3}) = [2.25, 5.29] and V ±
α� ({1}) =

[2.9, 4.11].

We can even have a model inspired from the one above
where the error strictly increases in each state. Indeed by
taking γ = 0.9 and by changing the transition probabilities
in the initial model M to p(4, 4) = p(5, 5) = 0.9 and
p(4, 1) = p(5, 1) = 0.1 (we keep the same rewards
R(4) = R(5) = 0), we can see that the gap Gα� is strictly
higher than Gα = 0 for each direct refinement α�.

Related Work
Our work shows the limitations of some abstractions (state
abstractions) in which refining an abstraction may increase
the approximation error. This has already been observed
in (Waugh et al. 2009) in the case of an i-player poker
game (i greater than 2). They looked at the exploitabil-
ity3 of each player’s strategy with respect to each abstraction
and they showed that it may increase while considering finer
card abstractions. The same phenomenon has been observed

3The exploitability is a metric connected to the Nash equilib-
rium strategy. It is equal to 0 in the case of a two-player extensive
game.

41



when they considered betting abstractions – by restricting
the number of betting options in each sequence of the game.
Lately another example about ”action abstractions” patholo-
gies has been provided in (Sandholm and Singh 2012).
It is important to notice here that, contrary to what has

been done in those works, this paper deals with single action
and player models. This suggests that, in some abstractions,
notably BMDP abstraction, stochasticity alone can explain
this pathological behavior, and that we do not need to con-
sider the more general case of two-player game: the issues
appear even in the case of a one-player game (MDP). In-
deed, our counter-examples do not even contain any actual
action choice, thus identifying this kind of pathology in a
very canonical framework.
Interestingly, Kattenbelt et al. (2010) introduce a vari-

ant of abstraction for MDPs that, according to their results,
does not exhibit said pathology: Every abstraction refine-
ment step results in an improved bound. An interesting open
question is how exactly their framework relates to BMDP
abstraction.

Conclusions
Somewhat surprisingly, refining an abstraction does not
guarantee, in the MDP setting, a refined, i.e., better, approx-
imation of the value function. From a practical perspective,
this observation might be reasonably classified as “odd but
not crucial” – the loss of this guarantee is not per se an argu-
ment against trying to apply abstraction techniques for the
computation of heuristic functions, as known from classical
planning. The observation might be relevant to the practical
effectiveness of such methods, where paying a higher price
for the abstraction may result in less accuracy. But it remains
to be seen whether that is of practical importance.
From a theoretical perspective, we believe that our obser-

vations could be of importance for a better understanding
of the methods involved. In that regard, our investigation is
but a small start into the subject matter. In particular, our vi-
sion was and is to identify sufficient criteria, in the bounded-
parameter MDP setting, for the error to not increase. If such
a criterion is efficiently testable, or can at least be reasonably
well approximated, then it could serve as a well-informed
guidance during the abstraction refinement process. For the
moment, we don’t know how such a criterion could be de-
signed. An interesting observation in this context is that
our counter-example refines an abstraction that already is a
bisimulation.4 Does that tell us something about the general
case? Another question is whether increasing the “extent”
of the per-step refinement helps (instead of splitting a sin-
gle block-state, split 2, 3, . . . block-states). Does there exist
a non-trivial method (not refining all the way to the original
MDP) that guarantees, for any MDP and abstraction thereof,
the existence of a refinement step reducing the error? And

4If we aggregate the states 4 and 5 together, in the abstract rep-
resentation α, we get a bisimulation: all the states behave sim-
ilarly in regards to each block of the partition {1, 2, 3}, {4, 5}.
We have R(1) = R(2) = R(3) = 1, p(1, {1, 2, 3}) =
p(2, {1, 2, 3}) = p(3, {1, 2, 3}) = 0.7 and p(1, {4, 5}) =
p(2, {4, 5}) = p(3, {4, 5}) = 0.3, states 4 and 5 are goal states.
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Figure 3: From top to bottom: the MDP M , the abstrac-
tion α�, the abstraction α.Edges are annotated with transi-
tion probabilities. The reward is: R(1) = R(2) = R(3) =
1(= R({1, 2}) = R({1, 2, 3})), and R(4) = R(5) = 0.
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can that method be made practical? We believe these are
interesting questions for future research, and hope other re-
searchers might join us in exploring them.
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Abstract
In this paper, we revisit the idea of splitting a plan-
ning problem into subproblems hopefully easier to solve
with the help of landmark analysis. While this tech-
nique initially proposed in the first approaches related
to landmarks has been outperformed by landmark-based
heuristics, we believe that it is still a promising research
direction. To this end, we propose a new method for
problem splitting based on landmarks which has two
advantages over the original technique: it is complete
(if a solution exists, the algorithm finds it), and it uses
the precedence relation over the landmarks in a more
flexible way. We lay in this paper the foundations of
a meta best-first search algorithm, which explores the
landmark orderings to create subproblems and can use
any embedded planner to solve subproblems. Further-
more, we propose and evaluate a parallel version of
this algorithm. It opens up avenues for future research:
among them are new heuristics for guiding the meta
search towards the most promising orderings, different
policies for generating subproblems, influence of the
embedded subplanner and other parallelization strate-
gies of the meta search.

1 Introduction
Automated Planning in Artificial Intelligence (Ghallab, Nau,
and Traverso 2004) is a general problem solving frame-
work which aims at finding solutions to combinatorial prob-
lems formulated with concepts such as actions, states of
the world, and goals. Landmark-based analysis is actually
among the most popular tools to build efficient planning
systems, either optimal or suboptimal. Landmarks are facts
that must be true at some point during the execution of any
solution plan, and some of them can be found, as well as
an ordering, in polynomial time (Hoffmann, Porteous, and
Sebastia 2004; Keyder, Richter, and Helmert 2010). Land-
marks have been used in two main ways. The most success-
ful one is the design of heuristic functions to guide search
algorithms, such as the landmark-counting heuristic used
in the LAMA suboptimal planner (Richter, Helmert, and
Westphal 2008) or the LM-Cut heuristic for optimal cost-
based planning (Helmert and Domshlak 2009). An ante-
rior method proposed in (Hoffmann, Porteous, and Sebastia

Copyright c� 2013, Association for the Advancement of Artificial
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2004) is to divide a planning problem into successive sub-
problems whose goals are disjunctions of landmarks to be
achieved in turn by any embedded planner. This method is
not as efficient as using landmark-based heuristics: among
the most prominent problems are its incompleteness and its
lack of flexibility with respect to an initial ordering of the
landmarks. STeLLa (Sebastia, Onaindia, and Marzal 2006)
is another problem-splitting method which creates a set of
subproblems using conjunctions of landmarks.
We aim in this paper to revisit these last methods, with

the objective of devising a complete algorithm for subprob-
lem splitting based on landmarks. Roughly speaking, our
method consists in performing a best-first search algorithm
in the space of landmark orderings, in which node expansion
implies the search of a subproblem by an embedded planner,
these orderings being explored in parallel. This search al-
gorithm is performed at a meta level, the low level being
the search made by the embedded planner that can itself
use a best-first search algorithm. After giving some back-
ground about classical planning and landmark computation,
we define the basic components later used to describe the
landmark-based meta best-first search algorithm (LMBFS),
along with several heuristics to guide the meta search. We
then propose a parallel version of this algorithm and experi-
mentally evaluate both sequential and parallel versions. We
finally conclude and present some perspectives for future
works.

2 Background on Classical Planning
2.1 STRIPS Model of Planning
The basic STRIPS (Fikes and Nilsson 1972) model of plan-
ning can be defined as follows. A state of the world is repre-
sented by a set of ground atoms. A ground action a built
from a set of atoms A is a tuple �pre(a),add(a),del(a)�
where pre(a) ⊆ A, add(a) ⊆ A and del(a) ⊆ A represent
the preconditions, add and delete effects of a, respectively.
A planning problem is defined as a tuple Π =

�A,O, I,G�, where A is a finite set of atoms, O is a fi-
nite set of ground actions built from A, I ⊆ A represents
the initial state, and G ⊆ A represents the goal of the
problem. The application of an action a to a state s is
possible if and only if pre(a) ⊆ s and the resulting state
is s� = (s \ del(a)) ∪ add(a). A solution plan is a se-
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quence of actions �a1, . . . , an� such that for s0 = I and
for all i ∈ {1, . . . , n}, the intermediate states si = (si−1

\ del(ai)) ∪ add(ai) are such that pre(ai) ⊆ si−1 and
G ⊆ sn. S(Π) denotes the set of all solution plans of Π.
We also denote ◦ the concatenation of two plans, i.e.

�a1, . . . , ai� ◦ �aj , . . . , ak� = �a1, . . . , ai, aj , . . . , ak�.

2.2 Landmarks
Classical landmark definitions state that landmarks are facts
that must be true at some point during the execution of
any solution plan (Hoffmann, Porteous, and Sebastia 2004;
Keyder, Richter, and Helmert 2010). We use the following
definition of landmarks:

Definition 1 (Causal landmark). (Zhu and Givan 2003)
Given a planning problem Π = �A,O, I,G�, an atom l is
a causal landmark for Π if either l ∈ G or ∀ρ ∈ S(Π), ∃a ∈
ρ : l ∈ pre(a).

An intuitive precedence relation among landmarks and a
graph based on this relation can be defined as follows:

Definition 2 (Precedence relation <L). <L can be defined
on a set of landmarks L: (∀(l, l�) ∈ L2) l <L l� if the first
occurence of l is reached before the first occurence of l� by
the execution of every solution plan.

Definition 3 (Landmark graph Γ). Given a set of landmarks
L and a precedence relation <L, we define Γ = (V, E),
the corresponding landmark directed graph where the set
of vertices V = L and the set of edges E is the transitive
reduction of the graph (V, {(l, l�) ∈ L2 | l <L l�}).
Definition 4 (Relatives of a landmark l). Accordingly to the
graph Γ, we denote PaΓ(l) the set of parents of l, ChΓ(l)
the set of children of l, and PΓ(l) the set of ancestors of l.

We now introduce the following definitions that we will
rely on. First, we denote root landmarks of a landmark graph
all landmarks associated to vertices with no parents:

Definition 5 (Root landmark set). Let Γ = (V, E) be a land-
mark graph: roots(Γ) = {l ∈ V | PaΓ(l) = ∅}.
We now define the subgraph Γ\A built by removing from

the landmark graph Γ the vertices associated to landmarks in
A and their corresponding edges:

Definition 6 (Landmark subgraph). Let Γ = (V, E) be a
landmark graph and A be a set of landmarks: Γ \ A =
(V \ A, {(v, v�) ∈ E | v /∈ A ∧ v� /∈ A}).

Landmark Graph Generation Practicals methods pro-
posed to produce landmark graphs (Hoffmann, Porteous,
and Sebastia 2004; Zhu and Givan 2003) are based on a Re-
laxed Planning Graph (RPG) of Π. More complex types
of landmarks might be considered (Keyder, Richter, and
Helmert 2010). In this work, we choosed the method of (Zhu
and Givan 2003) for its simplicity.

Related Works on Using Landmarks Previous ap-
proaches used landmarks in mainly two different ways. One
approach is computing heuristics. For example, the LAMA
heuristic (Richter, Helmert, and Westphal 2008) estimates a

heuristic value of the states by counting unreached and re-
quired again landmarks. Another approach is to split a plan-
ning problem into subproblems. Disjunctive Search Con-
trol (DSC) (Hoffmann, Porteous, and Sebastia 2004) is a
search control algorithm based on the landmark graph. It
runs a subplanner on the problem Π whose goal is the dis-
junction of the roots of the landmark graph and G. If a valid
plan is found, then the reached landmark is removed from
the landmark graph and the algorithm iterates (the reached
state is used as the new initial state) until the landmark graph
is empty. Finally, the subplanner is called a last time with G
as goal.

3 The Landmark-based Meta Best-First
Search (LMBFS) Algorithm

Our approach is based on problem splitting with a flexi-
ble exploitation of the landmark graph: LMBFS performs
a best-first search in a space of subproblems generated on-
the-fly, based on possible landmark orderings.
More precisely, LMBFS builds a search tree where nodes

represent planning problems that are subproblems of the
original one. Solving subproblems along a branch of this
tree leads to iteratively reach each landmark in a possible
ordering, the initial state of each subproblem being the final
state obtained by applying the plan found for the previous
subproblem. We formally define in this section the metan-
odes and associated planning problems, as well as different
ways of generating the next subproblems to solve from a
metanode (the children of that metanode in the search tree).
Both aspects heavily rely on the landmark graph and on the
partial order it defines. We then give the complete algorithm,
heuristics used and implementation details.
In the following, we consider a planning problem Π =

�A,O, I,G�, its corresponding set of landmarks L, and Γ
the landmark graph associated to Π.

3.1 Metanode and Associated Planning Problem
We first define metanodes and associated problems:

Definition 7 (Metanode). A metanode is a tuple m =
�s, h,A, l, ρ� where:
• s is a state of the planning problem Π;
• h is a heuristic evaluation of the node;
• A is a set of landmarks (A ⊆ L);
• l is a landmark (l ∈ L);
• ρ is a plan yielding the state s from the initial state I.

Definition 8 (Metanode-associated planning problem).
The planning problem associated to a metanode m =
�s, h,A, l, ρ� is Πm = �A, opsΓ(l,A), s, {l}� with
opsΓ(l,A) a subset of O defined below.

We consider the planning problem where s is the initial
state, A is the set of ground atoms of Π, {l} is the goal. In
order to focus search on reaching l, we forbid the actions
producing some other landmarks by defining opsΓ(l,A) as
a subset of actions associated to a landmark subgraph:
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Definition 9 (Landmark subgraph action restriction). Let
m = �s, h,A, l, ρ� be a metanode. opsΓ(l,A) = {a ∈
O | (l ∈ add(a)) ∨ (add(a) ∩ roots(Γ \ A) = ∅)}.
In other words, opsΓ(l,A) is the set of actions producing

l and actions which does not produce any root landmarks of
the subgraph Γ \ A (except if they also produce l). In our
algorithm, A will be the set of already achieved landmarks.

3.2 Expansion of Metanodes
There are several ways to generate children of a metanode,
or equivalently defining other subproblems to solve. Let us
recall that a metanode m = �s, h,A, l, ρ� defines a prob-
lem starting from s and focusing on achievement of land-
mark l by forbidding actions producing other landmarks of
roots(Γ \ A) (except if they also produce l). In the follow-
ing, h� is the heuristic evaluation of the generated metanode,
discussed in section 3.4.

Next Landmarks Metanode Generation This first
metanode generator tries to follow the landmark graph Γ as
closely as possible, exploring sequences from the roots to
the leaves. The idea is the following: when the goal land-
mark of the metanode can be reached, generate children in
order to reach other root landmarks in Γ. We thus define the
nextLM operator as:

Definition 10 (Next landmarks metanode generation). Let
m = �s, h,A, l, ρ� be a metanode. If Πm has a solution
ρ�, then nextLM(m) = {�s�, h�,A ∪ {l}, l�, (ρ ◦ ρ�)� | l� ∈
roots(Γ \ (A ∪ {l}))} where s� is the state obtained by ap-
plying ρ� to s. If Πm has no solution, nextLM(m) = ∅.
In other words, at a metanodem, we try to reach the land-

mark l. If there is a plan, the landmark l is added to the
set of already achieved landmarks A, and the partial plan
is updated accordingly. Then, new metanodes are gener-
ated by looking at root landmarks in the restricted graph
Γ \ (A ∪ {l}).
Remark. Using nextLM, we can explore every total order
created from the precedence relation<L, which was our ob-
jective. Indeed, consider a metanode focusing on an initial
root landmark of Γ. If we generate its children using the
nextLM operator, then selecting one of them and iterating
the process in a depth-first way, we will eventually empty
the landmark graph Γ, achieving the exploration of a total
order of all landmarks.
Unfortunately, even if the landmark graph Γ is sound and

complete, using only nextLM makes the algorithm incom-
plete, as shown in the following counterexample. Let us
consider the example in Figure 1 where circles are atoms,
squares are actions, arrows mean precondition of an action
or production of an atom and dashed arrows mean dele-
tion of an atom. The initial state is {a, f, d} and the goal
set is {c}. As we can see, g and c are landmarks, and g
has to be reached before c. The first metanode will have
the landmark g as goal. The subplanner gives the plan
�α�. The only generated metanode added to the open list
ism = �{f, g}, h, {g}, c, �α��. The associated problem Πm

Goalc

a δ b

β

d ε e γ

f α g

Figure 1: Planning Graph of “nextLM problem”.

is unsolvable, as α deletes the preconditions of δ and �which
are mandatory actions that should be applied before α.
This led us to define new metanode generators, which,

used in conjunction with nextLM, make the algorithm com-
plete. These operators are based on landmark deletion from
Γ, allowing for instance in the counterexample to try to reach
the goal c without blindly focusing on g first.

Cut-parents Metanode Generation These operators re-
move the ancestors of a non-root landmark.

Definition 11 (Cut-parents metanode generations). Letm =
�s, h,A, l, ρ� be a metanode. If Πm has a solution ρ�, then
cutParent(m) = {�s�, h�,A ∪ PΓ(l

�), l�, (ρ ◦ ρ�)� | l� ∈
ChΓ(l)} where s� is the state obtained by applying ρ� to s.
If Πm has no solution, then cutParent(m) = ∅.
Definition 12 (Restart cut-parents metanode genera-
tion). restartCutParent(�s, h,A, l, ρ�) = {�I, h�,A ∪
PΓ(l

�), l�, ∅� | l� ∈ ChΓ(l)} where I is the initial state of
the original planning problem.

The idea is that a total order constructed on the partial or-
der defined by the landmark graph may be too restrictive,
as in the counterexample. Using these two operators, some
landmarks may be skipped by trying to reach deeper land-
marks.

Delete Landmark Metanode Generation Finally, we in-
troduce the very generic landmark deletion operator: metan-
odes are generated as if the deleted landmark did not exist:

Definition 13 (Delete landmark metanode generation).
deleteLM(�s, h,A, l, ρ�) = {�s, h�,A ∪ {l}, l�, ρ� | l� ∈
roots(Γ \ (A ∪ {l}))}.
This operator discards a landmark, and causes the search

to try to achieve remaining root landmarks. Applying this
operator enough times on the first metanode (that has I as
initial state) empties the landmark graph, eventually giving a
metanode associated to the original planning problem. Also,
the cut-parents operators can be seen as shortcuts for several
delete landmark operators applications, guided by PΓ.

3.3 Algorithm
LMBFS (Algorithm 1) is a best-first search algorithm on
metanodes of definition 7, with deferred heuristic evaluation
(Richter and Helmert 2009): new nodes are inserted into the
open list with the heuristic value of their parent.
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Algorithm 1: LMBFS.
input : STRIPS problem Π = �A,O, I,G�, landmark

graph Γ, metanode successor function succ
output : solution plan (or ⊥ if there is no solution)

1 open← ∅; closed← ∅;
2 ∀l ∈ roots(Γ) : add �I, h, ∅, l, ∅� to open;
3 while open �= ∅ do
4 m← argmin�s,h,A,l,ρ�∈open h;
5 open← open \ {m};
6 ifm /∈ closed then
7 closed← closed ∪ {m};
8 ρ� ← subplanner(Πm);
9 if ρ� �=⊥ then
10 s� ← result of executing ρ� in s;
11 if G ⊆ s� then
12 return ρ ◦ ρ�;
13 open← open ∪ succ(m);

14 return ⊥

The algorithm is run on the problem Πg = �A∪{g}, O ∪
{ag}, I, {g}� where g is a dummy atom representing goal
achievement, and ag is a dummy action whose precondition
is G and add effect is {g}. g is a landmark whose achieve-
ment implies that a solution to Π has been found.
First, the metanodes associated to each root landmark of

Γ are added to the open list. Then, at each iteration, the best
metanodem (according to a heuristic detailed in section 3.4)
is extracted from the open list, and a subplanner is run on the
associated problem Πm. If the subplanner returns a plan,m
is expanded by adding its successors to the open list. The
algorithm iterates until the open list is empty or g is reached.
The function succ applied to the metanodem (Algorithm

1 line 13) computes the set obtained by an operator or the
union set of several operators described in section 3.2. In
our planner, we have implemented two successor functions:

• succDel(m) = nextLM(m) ∪ deleteLM(m)
• succCut(m) = nextLM(m) ∪ cutParent(m) ∪
restartCutParent(m)

The operator nextLM is at the heart of our algorithm in
order to focus on sequences of landmarks. However to en-
sure completeness, we have to use a combination of the other
operators: as a net effect of applying these operators at each
node expansion, the metanode m = �I, h�,L \ {g}, g, ∅�
corresponding to the global problem Πg will appear.

Theorem 1. The LMBFS algorithm using succCut or
succDel as successor function is sound and complete if the
subplanner is sound and complete.

Proof. (sketch) Soundness comes from: (1) the state in the
first metanode is the initial state I of the problem, (2) all suc-
cessor operators build plans that can be concatenated to form
a solution of the global problem or search a new plan from
I , and (3) if the final landmark g appears in a metanode, then
achieving it solves the global problem goal. (2) is obtained

by induction: if a metanode m = �s, h,A, l, ρ� is such that
s is reachable by applying ρ from I , then by definition of
nextLM and cutParent, s� is the state obtained by applying
ρ� to s and so s� is reachable by applying ρ◦ρ� from I (using
subplanner soundness). deleteLM modifies neither s nor ρ,
so the recursive property is ensured. restartCutParent pro-
duces a metanode m = �I, h,A, l, ∅�: a new search from I
is started, giving a sound plan if the subplanner is sound.
Completeness comes from the fact that the operators

restartCutParents (for the succCut successor function)
and deleteLM (for the succDel successor function) are
systematically used at each expansion of a metanode.
So, the search graph contains a branch starting from
the initial metanode consisting only of applications of
restartCutParents or deleteLM, and both will have the ef-
fect to (1) keep I as associated state, (2) put all landmarks
but g in the set of landmarks A, and (3) produce a final
metanode whose associated landmark is g. From definition
9, opsΓ(g,L \ {g}) = O ∪ {ag}: all actions of the original
problem are used for solving this final metanode, which is
the global problem, and so completeness of LMBFS derives
from completeness of the subplanner.

Lazy Metanode Generation The delete landmark metan-
ode generation (section 3.2) can generate a considerable
amount of metanodes for some instances, thus inducing a
slow-down during the insertion of these metanodes in the
open list. To overcome this issue, we generate metanodes
with deleteLM only when the open list is empty. When a
metanode is inserted in the closed list, it is also pushed into
a secondary open list. When the main open list is empty,
we simply pop a metanode m from the secondary open list,
and generate its children using deleteLM(m). The heuris-
tics for ordering metanodes in the secondary open list are the
same as the ones used for the main open list.

3.4 Heuristics for Metanode Selection
In order to improve the algorithm effectiveness, the most
promising metanode from the open list has to be selected.
For doing so, a metanode generated by nextLM is always
preferred over others, in order to focus search on reaching
landmarks in sequence. Thus, the expansion of other (de-
graded) metanodes is delayed until we have no other choice,
in the spirit that search can be focused using preferred oper-
ators (Richter and Helmert 2009).
Three heuristic functions have been implemented. The

first ones evaluateG from the starting state of the metanode,
with the well-known heuristics hadd (Bonet and Geffner
2001) and hff (Hoffmann and Nebel 2001). The last
one, inspired by the landmark-counting heuristic of LAMA
(Richter, Helmert, and Westphal 2008), uses the landmark
graph Γ and counts the remaining landmarks to be reached.
The metanode with the least number of remaining landmarks
is chosen, enforcing a depth-first search in the graph. We
will refer to this heuristic as hLleft .

Definition 14 (hLleft ). For a metanode m = �s, h,A, l, ρ�
and an associated landmark graph Γ = (V, E), the heuristic
hLleft is defined by hLleft (m) = |V \ A|.
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4 Parallel LMBFS
A well known parallelization scheme is the principle used in
HDA* (Kishimoto, Fukunaga, and Botea 2009): the idea is
to distribute search nodes among the processing units (PUs)
based on a hash key computed from planning states. Doing
so, the list of nodes to be expanded (the open list) owned by
each PU are disjoint: computations made on a given state
(applicable actions, heuristic function, etc.) are performed
only once, only by the PU the node “belongs” to.
Another important aspect is that communication between

PUs can be performed asynchronously: a PU expands nodes
from its open list, sends sons to the PUs they belong to,
and periodically checks its incoming messages to incorpo-
rate new nodes into its open list. The principle has been ini-
tially conceived for optimal planning with successful results
(Kishimoto, Fukunaga, and Botea 2009). It has also been
applied successfully to suboptimal planning (Vidal, Vern-
hes, and Infantes 2011).

4.1 Algorithm
In our case, metanodes are distributed among the PUs. To do
so, we define a key for metanode m = �s, h,A, l, ρ� using
(1) the starting state s, (2) the set of already achieved land-
marks A and (3) the landmarks goal l. This key is hashed
into a natural number modulo the number of PUs, thus giv-
ing the single PU the metanode belongs to. So the main
modification is to distribute metanodes when they are gen-
erated instead of adding them to the local open list. Each
PU runs a slightly modified version of the sequential search
described in section 3, with its own open and closed lists.
We now give some details on the induced modifications:

• line 2: initial metanodes are only created by the master
PU, and distributed among the PUs;

• line 3: the main loop condition is modified in order to wait
if the open list is empty (rather than exiting); the loop is
stopped only if a PU has found a solution (a message is
broadcasted to all the PUs when a solution is found);

• line 4: before choosing the next metanode to expand, the
algorithm checks if there are incoming metanodes, and if
it is the case, it incorporates them in its open list;

• line 13: after calls to the metanode generators, the hash
keys of generated metanodes are computed and metan-
odes are send asynchronously to the corresponding PUs.

4.2 Implementation details
In order to save memory, the current partial plan ρ (definition
7) is not stored inside the metanode in our implementation;
instead, a metanode stores the partial plan ρ� (definitions 10
and 11) and a pointer to its parent metanode. So, in order
to retrieve the solution plan, when a PU reaches the goal,
it becomes a master PU and asks for its parent metanode
partial plan to the PU owning it, concatenates it to its plan,
and iterates until an initial metanode has been reached.
Another issue that came up during the adaption of HDA*

parallelization scheme to LMBFS is that sometimes, the se-
quential algorithm gets stuck for a long time in a call to the
subplanner searching for a solution to a (hard or unfeasible)

subproblem. If such a case appears in one of the PUs, the
parallel algorithm cannot finish until this PU ends its current
search. To overcome this issue, we modified the underlying
planner to check if a stop message has been received (this
check is performed right before YAHSP opens a new node).
One improvement pointed out in the work with

transposition-table driven scheduling for parallel IDA*
(Romein et al. 1999), is to overcome the issue of the commu-
nication overhead by packing multiple nodes with the same
destination into a single message. This packing strategy has
also been experimented in HDA* (Kishimoto, Fukunaga,
and Botea 2009), and is also implemented in our algorithm.
The lazy metanode generation cannot be implemented as-

is in parallel because the metanodes generated by a PU will
not necessarily be expanded by this PU; which means that
emptiness of a PU primary open list does imply that metan-
odes generated by other operators than deleteLM have all
been expanded. So we cannot rely on such condition to de-
fer generation of metanodes by deleteLM operator.

5 Experiments
5.1 Experimental Setup
We conducted a set of experiments on a selection of bench-
marks from the 3rd to the 7th International Planning Compe-
tition (IPC) within a 10 minutes CPU time limit. The exper-
iments were all run on an Intel X5670 processor running at
2.93Ghz with 24GB of RAM. In the next figures, each plot
represents an IPC problem. Only results with the succDel
operator are reported here, as it yielded better results than
succCut. However, actually, nodes generated by nextLM
are always preferred over nodes generated by these two op-
erators, and we think that relevant heuristics for interleaving
both kind of nodes might give a different picture.

Subplanner Embedded in LMBFS For subproblem res-
olution, we use YAHSP (Vidal 2004; 2011) for two reasons.
Firstly, we do not want to use a subplanner that also uses

landmarks internally (especially if non-negligible prepro-
cessing time is required), as our objective is to evaluate a
new use of landmarks without benefiting from them in any
other way.
Secondly, because the successive subproblems solved

during metanode expansion should be, and generally are,
easy to solve with very few lookaheads computed in YAHSP.
Moreover, directly embedded in the form of a C library,
YAHSP does not require any preprocessing when faced with
a new subproblem. It can thus generally answer very fast. It
has also already been embedded with some success in an-
other planner based on evolutionary algorithms (Bibaï et al.
2010) for solving different kinds of subproblem sequences.

Selected Domains To come up with a test suite, we ran
preliminary tests in all STRIPS domains from the IPC. We
selected some domains which YAHSP does not solve too
easily (using few lookaheads), and also included some do-
mains it solved easily to exhibit the possible slow-down re-
quired by the pre-computation of the landmark graph and
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the splitting into smaller instances of already easy solvable
problems. Thus, we selected 14 domains1 (390 problems),
which we believe could represent a classic set of domains
for the IPC.

5.2 Sequential evaluation
Landmark Graph Generation For most problems, the
computation time of the landmark graph is low. It takes
less than 0.1s for 86% of the instances, and less than 1s
for 97% of the instances (on sequential setup described be-
low). Even if the computational time of the landmark graph
on the initial state is acceptable, we consider it too long to
be processed at each metanode during search. Recomput-
ing landmarks could be more informative for search but, as
LMBFS is designed for speed, we did not investigate such
an option. Another reason is that adding new landmarks in
the graph would break the current algorithm’s completeness,
which is based on emptying the initial landmark graph.
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Figure 2: Runtimes of LMBFS with several heuristics (in
seconds).

Efficiency of the Different Heuristics Figure 2(a) shows
a comparison of the runtime of LMBFS with hLleft (x-axis)

1ipc3-driverlog, ipc3-freecell, ipc3-satellite, ipc4-pipesworld_-
tankage, ipc4-psr_small, ipc[56]-openstacks, ipc5-pathways,
ipc[67]-transport, ipc[67]-scanalyzer, ipc7-barman, ipc7-floortile

and hff (y-axis). As we can see, most of the plots are above
y = x, meaning most instances have been solved faster us-
ing hLleft . Figure 2(b) shows a comparison between hLleft

(x-axis) and hadd (y-axis). The results are again in favor
of hLleft which outperforms hadd in most of the problems.
Table 1 summarizes the runs performed with LMBFS us-
ing several heuristics. It shows that LMBFS with the hLleft

heuristic outperforms the two other (with hadd or hff ).

Heuristic solved < 1s solved < 10s solved
hadd 45.64% 63.85% 75.13%
hff 34.62% 45.38% 57.95%
hLleft 74.36% 85.90% 92.31%

Table 1: Coverage of LMBFS using different heuristics (10
minutes timeout).

Lazy Metanode Generation Table 2 compares the speed-
up obtained by using the lazy metanode generation de-
scribed in section 3.3. We can see that there is a strictly
positive speed-up for 51.03% of the problems, and a speed-
up superior to 2 for 23.74% of them. Even if there is a no-
ticeable slow-down for 4.36% of the problems (heuristically
equivalent nodes may be ordered differently in the main and
secondary open lists due to implementation details), it still
is a nice improvement for the overall test suite.

Instances where the
speed-up/slow-down is

Average > 1 > 1.05 > 2
Speed-up 8.11 51.03% 36.41% 22.74%
Slow-down 2.24 14.10% 4.36% 1.81%

Table 2: Speed-up of lazy metanode generation.

LMBFS versus sub-planner (YAHSP) Table 3 summa-
rizes the coverage of runs performed with LMBFS using the
hLleft heuristic in comparison with YAHSP and some state-
of-the-art planners, also shown as a curve in function of
the timeout in Figure 4. The comparison between LMBFS
and YAHSP is also depicted in Figure 3(a). It shows that
many problems are solved within 1s and most of the prob-
lems quickly solved by YAHSP (under 0.1s) are solved by
LMBFS nearly as fast. On harder instances we can also see
that LMBFS shows its benefits in terms of running time. Fi-
nally the total number of solved instances is slightly in favor
of LMBFS.
A major drawback that has been pointed out for the DSC

algorithm and the SteLLa planner is the length of computed
plans which can be significantly higher. Compared to the
plans computed by YAHSP, the average plan length com-
puted by LMBFS is 8% shorter. In 43% instances LMBFS
computes strictly shorter plan than YAHSP and in 19% in-
stances the plans are strictly longer.
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(b) LMBFS vs. LAMA (w/ preprocessing).
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(c) LMBFS vs LAMA (w/o preprocessing).

Figure 3: Runtimes of LMBFS with hLleft versus YASHP and LAMA-11 (in seconds).
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Figure 4: Coverage of LMBFS with hLleft versus state-of-
the-art planners as a function of the timeout (in seconds).

LMBFS versus State-of-the-Art Planners Table 3 and
Figure 4 compare LMBFS to the LAMA-11 planner (based
on landmark analysis but in a different way), as well as to
the SAT-based planners M and Mp (?).
Figures 3(b) and 3(c) are scatter plots comparing the run-

times of LMBFS versus LAMA-11. Figure 3(b) shows run-
times including preprocessing within the 10 minutes time-
out, and Figure 3(c) without taking into account the prepro-
cessing time, as LAMA-11 can spend a lot of time during
this stage.
These evaluations show that on our selection of domains,

LMBFS is competitive with the state-of-the-art. It clearly
outperforms M, Mp and YAHSP (for problems that require
at least 1 second). It also outperforms LAMA-11, although
the overall performance for a 10 minutes timeout depends
on whether or not the preprocessing time is included.

LMBFS versus YAHSP (quality) A major drawback that
has been pointed out for the DSC and STeLLA algorithms
is the length of computed plans which can be significantly
higher. Compared to the plans computed by YAHSP, the
average plan length computed by LMBFS is 8% shorter. In
43% instances LMBFS computes strictly shorter plan than
YAHSP and in 19% instances the plans are strictly longer.

Planner solved < 1s solved < 10s solved
with preprocessing time
LMBFS 71.79% 84.87% 92.31%
YAHSP 71.28% 79.74% 88.97%

LAMA-11 60.51% 81.79% 92.05%
M 40.00% 47.44% 58.72%
Mp 52.82% 64.36% 78.46%

without preprocessing time
LMBFS 74.36% 85.90% 92.31%
LAMA-11 69.74% 82.82% 92.56%

Table 3: Coverage of LMBFS with hLleft versus state-of-the-
art planners (10 minutes timeout), with and without prepro-
cessing time for LMBFS and LAMA-11.

5.3 Parallel version evaluation
To implement the parallel version, we used the Message
Passing Interface (MPI) to spawn the different processes and
pass messages between them. We conducted a set of exper-
iments on a cluster of 4 servers. Each one embeds two 6-
core CPUs (Intel X5670) running at 2.93Ghz with 24GB of
RAM. They are connected via a gigabit network.
The parallel version of LMBFS in a HDA* fashion is de-

noted MPI a× b where a is the number of servers used and
b is the number of processes per server.
For comparison purposes, a parallel non-cooperative ver-

sion has also been developed: it consists in several sequen-
tial versions of LMBFS with no communication between the
processes. The only difference in these sequential versions
is that the order of the nodes which have the same heuristic
value is randomized (in the open list) for both LMBFS and
the underlying planner YAHSP. This random version is sim-
ply denoted Random and is run with 48 processes in parallel
(with different seeds for the random number generator). For
this last version, we consider only the statistics of the pro-
cess which found first the solution (if any).

Number of expanded nodes We can first take a look at the
growth of the number of expanded metanode per instances:
Figure 5. The number of expanded nodes seems to scale
well when the number of PUs increase. The random version
mostly expands the same number of nodes than the classic
sequential version (we consider only one process).
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Figure 5: Expanded node speedup of parallel vs. sequential
version (instances sorted by increasing speedup)
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(a) Wall-clock time speedup of parallel vs sequential version
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Figure 6: Solving time speedups (sorted by speedup)

Solving performance Figure 6(a) shows however, that
even if the number of expanded nodes has increased a lot,
the MPI algorithm does not scale up at all; it performs even
worse for some instances. MPI takes some pre-processing
time to boot up (around one second); but even if we just se-
lect instances that are solved in more than one second (Fig-
ure 6(b)), we can see that in most cases parallel versions take
the same time as the sequential version (or even more, as we
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(a) LMBFS runtimes: sequential version vs. Random (48)
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(b) Runtimes of YAHSP and LMBFS Random (48)

Figure 7: Results for Random version (in seconds)

increase the number of processes). Finally, there are linear
or super-linear speedups for only a small subset of instances.
The coverage is not improved either, but it increases with

the number of processes: it goes from 87.69% for the MPI
1×4 version to 92.05% for the MPI 4×12 version (the only
exception is the MPI 1 × 2 version with 90.26%). Clearly,
the breadth induced by this parallelization is not efficient.

Open List Randomization On previous figures, the ran-
dom version is always better than the MPI version. As
shown in Figures 7(a) and 7(b), the random version is also
better than both sequential LMBFS and YAHSP, especially
for hard instances. It also increases the coverage to 97.69%.
Clearly, a promising lead to improve LMBFS is to find a way
to bend the large plateau induced by the hLleft heuristic.

Discussion This parallel algorithm expands many uninter-
esting metanodes generated by deleteLM. Associated prob-
lems are usually hard to solve (because this generation of
subproblem is less guided by the landmark graph), and can
get a subplanner stuck whereas the PU should ideally ex-
plore more interesting metanodes received in the meantime.
In other words, these expansions seem to lead the algorithm
into uninteresting or dead-end branches of the search graph,
which asks the question of the quality of the heuristic.
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This also can be seen if recalling that LMBFS is based on
exploration of landmarks orders. LMBFS tries, in a depth
first search way, all possible total orderings before emptying
the landmark graph (this is particularly enforced by the hLleft

heuristic and the lazy generation of section 3.3). But in the
parallel version, this is not the case, as too early exploration
of metanodes expanded by deleteLM occurs.

6 Conclusion and Future Works
This paper presents several contributions towards a new
landmark-based planning algorithm. First, we propose a
sound framework for a (meta)search based on the order of
landmarks, given a landmark graph. We formalize the link
between so-called metanodes and subproblems of the origi-
nal planning problem, including restrictions on the allowed
actions themselves. We give several operators that allow to
explore different orders for using landmarks as subgoals, in-
cluding skipping some. We also propose a first approach
for evaluating heuristic values of such metanodes, or equiv-
alently giving priorities to subproblems. We put everything
together in a (deferred) best-first search algorithm, lead-
ing to a complete algorithm. We also propose a first par-
allelization scheme based on asynchronous distribution of
open nodes among processing units. Last but not least, we
implemented it and give some promising results.
From now on, several leads will be followed.
A key point for performance is the heuristic evaluation

of metanodes, linked to the operators used for generation.
For instance, nodes generated with nextLM are always
expanded before other metanodes, which is not necessar-
ily the best solution. Furthermore, the comparison of one
LMBFS instance against several non-cooperative random-
ized instances showed that there is room for heuristic im-
provement. A first lead to obtain a better heuristic would be
to also take into account the landmark subgoal but prelimi-
nary experiments showed us that this will not be straightfor-
ward.
Another point is the operators used. While deleteLM is

very general, cutParent can be seen as a special case (a
shortcut for a given sequence of deleteLM, or said differ-
ently, a lookahead in the landmark graph itself), and other
special cases may be very useful.
Another next step will focus on smarter parallelization

schemes. As experiments showed, while we are able to
scale up the number of explored nodes, this does not lead
to finding a solution in less time. It seems that the process-
ing units are “saturated” very quickly with hard problems
coming from deleteLM (especially because lazy generation
is not implemented in parallel algorithm), and so, with this
simple parallelization scheme, the whole spirit of LMBFS,
which is to try to follow as closely as possible the landmark
graph while being complete, is no more enforced. There are
some possibilities to do a lazy-like generation for the paral-
lel version, but it would be intrinsically different from the
lazy generation of sequential version. Another interesting
lead is to select a few total orders at the beginning of the
search, and try to find plans following these orders. If no
solution can be found, we might be able to extract some data

from these searches to create other interesting total orders,
and so on.
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Abstract

Landmarks are logical formulæ over sets of propositions or
actions that must be satisfied at some point in a planning task.
The landmark graph, a proposed representation of the set of
landmarks and their interactions, is built using the landmarks
of the task and ordering relations between them. A formaliza-
tion of the landmark graph in terms of a planning task has not
been proposed yet, which makes it difficult to determine the
significance of the landmark graph with respect to the original
planning problem. In this work we propose a generalization
of the landmark graph as an abstraction of the original prob-
lem and analyze its characteristics.

Introduction
Landmarks are currently one of the most important lines of
research in automated planning, exemplified for instance by
the success of landmark-based planners like LAMA (Richter
and Westphal 2010). They were initially defined as disjunc-
tive sets of propositions that had to be made true at some
time in every solution plan to a problem (Hoffmann, Porte-
ous, and Sebastia 2004), and later on its definition was ex-
tended to include both action landmarks (Richter and West-
phal 2010) and conjunctive sets of propositions (Keyder,
Richter, and Helmert 2010). Landmarks were also formal-
ized in a framework that relates them to abstractions and
critical paths (Helmert and Domshlak 2009), giving them a
stronger theoretical background.
Although finding the complete set of landmarks is

PSPACE-complete (Hoffmann, Porteous, and Sebastia
2004) and thus not tractable in most cases, current meth-
ods can efficiently compute a subset of the landmarks us-
ing a delete-relaxation representation of the problem. Par-
tial orders between proposition landmarks can be obtained
with these techniques too, which can be used to build the
landmark graph. The landmark graph is an important part of
many of the techniques that exploit landmarks, as the inter-
actions and orders between landmarks are often as important
as the landmarks themselves.
Despite the landmark graph providing important informa-

tion, it still has some limitations in its current form. First,
an informative total order may not be straightforwardly de-
duced from the set of partial orders, which is critical in appli-
cations like factored planning; second, landmarks may have
to be achieved several times in every solution plan, a fact

that is not taken into account due to the lack of negative in-
teractions between landmarks other than the causal order-
ings (Hoffmann, Porteous, and Sebastia 2004); third, the ex-
ploitation of the cycles in the graph is still unclear and so
current techniques usually just remove them.
To address these shortcomings, in this work a general-

ization of the landmark graph as a planning problem is
proposed. The main motivation is creating an automatic
landmark-based abstraction whose solution can capture the
causal structure of the problem in a more accurate way than
the landmark graph. The idea presented in this work is using
the landmarks to build the set of propositions of the prob-
lem and transforming the achievers of those landmarks into
the actions of the abstraction, adding information from land-
mark orderings and mutexes. This abstraction is a planning
task itself, so it can be solved just like any other planning
problem. Besides, it has several properties of its own that
can be exploited when solving the original task.

Background
Automated planning is the task of finding a solution plan,
composed by an ordered sequence of actions, so a set
of goals can be achieved by applying the actions in the
plan from the initial state. In this work only propositional
planning is considered. A planning problem is a tuple
P=(S,A,I,G) where S is a set of propositions, A is the set of
grounded actions instantiated from the operators of the do-
main, I ⊆ S is the initial state and G ⊆ S the set of goal
propositions. Actions are applicable when their precondi-
tions are satisfied. The effects of an action make proposi-
tions true or false, which is commonly known as adding and
deleting the propositions respectively. Thus, an action is de-
fined as a triple {pre(a), add(a), del(a)} in which a ∈ A and
pre(a), add(a), del(a) ⊆ S. Actions can have an associated
cost; in this work only non-negative cost actions are used.
A landmark is a logical formula over either S (proposition

landmark) or A (action landmark). Every solution plan must
satisfy every action landmark. For each proposition land-
mark, at least one state in every sequence of states generated
by a solution plan must satisfy it. L is the set of discovered
landmarks of the problem.
The achiever of a proposition landmark l ∈ S is an action

a ∈ A such that l ∈ add(a). Informally, an achiever is an
action that makes a given landmark true, or adds it. A late
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achiever a ∈ A is a regular achiever of a landmark l ∈ S
with the special condition that, in every plan executed from
I , it is not possible for a to appear before l has been achieved
at least once by some other action a� ∈ A.
Orderings between landmarks are relations between two

proposition landmarks that represent the partial order in
which they must be achieved. The landmark graph is a di-
rected graph composed by the proposition landmarks of a
problem and the orderings between them (Hoffmann, Porte-
ous, and Sebastia 2004). There are the following orderings:

• Natural ordering: A proposition a is naturally ordered be-
fore b (a <nat b) if a must be true at some time before b
is achieved

• Necessary ordering: A proposition a is necessarily or-
dered before b (a <n b) if a must be true one step before
b is achieved

• Greedy-necessary ordering: A proposition a is greedy-
necessarily ordered before b (a <gn b) if a must be true
one step before b when b is first achieved

There are also reasonable orderings between landmarks,
but these orderings are unsound, that is, they do not have to
be respected in every solution plan. Therefore, reasonable
orderings will not be considered in this work.

Landmark Counting Heuristics
The admissible landmark counting heuristic hLA formulated
by Karpas and Domshlak (2009) is an admissible estimation
of the distance to the goal computed by adding the cost of
achieving the propositional (disjunctive) landmarks that are
still needed. These landmarks may be landmarks that have
not been achieved yet or that are required again. There are
two versions of hLA. The simplest version splits uniformly
the cost of every achiever amongst the landmarks that they
achieve (huni

LA ), so the cost of each landmark is the minimum
of these “split costs”. The more complex version solves a
Linear Programing problem per state that yields the maxi-
mum cost of achieving the required landmarks by selecting
which achiever contributes to the cost of which landmark
and by how much while keeping the estimate admissible
(hopt

LA).
hLA depends on which landmarks are true in a given state

s ∈ S and on which landmarks have already been achieved.
The latter depends on the path or paths that led from I to s,
so this information must also be encoded. This makes hLA

a path-dependent heuristic, which means that hLA is incon-
sistent and may yield different values for the same state s.

Generalization of the Landmark Graph as a
Planning Problem

In this section the process of generating a new problem from
the original problem using the information of the landmark
graph is described.

Definition of the New Problem Pabs

In this section we will take into account only single proposi-
tion landmarks; other cases will be analyzed in a subsequent

subsection. The generalization of the landmark graph as a
planning problem is a tuple Pabs = (Sabs, Aabs, Iabs, Gabs)
where Sabs is a set of propositions derived from the dis-
covered proposition landmarks, Aabs is a set of grounded
actions derived from the achievers of the propositions con-
tained in Sabs, Iabs ⊆ Sabs is the value of Sabs in the current
state and Gabs ⊆ Sabs the set of goal propositions.
The set of propositions Sabs is formed by two proposi-

tions per landmark l ∈ L, one proposition labsindicating
whether the landmark is true or not and another proposi-
tion achieved(labs) indicating whether the landmark labs

has been previously achieved.1 All the propositions of the
original problem S \L that are not landmarks are discarded.
The set of actionsAabs are the actions inA that are landmark
achievers, that is, at least one landmark proposition appears
in its add effects. Formally, if a ∈ A and add(a) ∪ L �= ∅,
then a is used to derive new actions in Aabs. A priori, a sin-
gle new action per achiever in A is created. However, due
to the possibility of having disjunctive preconditions in the
new actions, some actions in Aabs may have to be split into
several ones. All the actions in A that do not add at least
one landmark proposition are ignored. The goal propositions
Gabs are the goal propositions G of the original problem,
since a goal proposition is a landmark by definition. Addi-
tionally, the propositions that encode whether the original
goal propositions have been achieved can also be added to
Gabs, since a proposition being true necessarily implies that
it has been achieved. Every goal state s must ensure that
∀g ∈ Gabs : s(g) = {true}.
This tuple is analogous to that of a regular planning task,

which means that the new problem Pabs has all the prop-
erties of a regular planning problem. Besides, the resulting
Pabs is an abstraction of the original problem P . The func-
tion α that maps a state s ⊆ S to α(s) ⊆ Sabs consists of
determining which landmarks are true and which landmarks
have been previously achieved in s. Note that this depends
not only on s but also on the path that led from I to s, so
the information about which landmarks have already been
achieved must be stored in a similar fashion as when com-
puting hLA. The transitions are defined by the relationship
betweenAabs andA, described in the following subsections.

Preconditions of the New Actions

Actions belonging to Aabs are applicable when the land-
marks appearing in their preconditions have the required
value. Three different cases define the preconditions of the
actions:

• Preconditions derived from the orderings between the
landmarks.

1A more concise representation using multi-valued state vari-
ables could be obtained in two ways: first, the variables could take
the values of true, false or false but previously achieved instead of
using two different variables to avoid redundancy, although this can
lead to actions with disjunctive preconditions; second, landmarks
belonging to the same variable in the original problem or that are
otherwise mutually exclusive could be grouped in a single variable
to indicate whether they are true or not.
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• Preconditions of the achievers in the original problem that
are landmarks.

• Preconditions obtained from actions labeled as late
achievers.

Causal relationships between the landmarks are encoded
by the orderings of the landmark graph. To represent this fact
in the new task Pabs, new preconditions are added to the ac-
tions in Aabs. These preconditions enforce the partial orders
between landmarks without hindering the computation of a
valid total order. Each type of ordering implies a different
set of new preconditions. In particular, the correspondence
is as follows:

• Natural ordering: Every achiever of a given landmark l
has a precondition for every natural ordering which rep-
resents that the landmarks naturally ordered before l must
have been previously achieved. Formally, if l ∈ add(a),
∀l� <nat l : achieved(l

�) ∈ pre(a).

• Necessary ordering: Every achiever of a given landmark
l has a precondition for every necessary ordering which
represents that the landmarks necessarily ordered before
l must be true. Formally, if l ∈ add(a), ∀l� <n l : l� ∈
pre(a).

• Greedy-necessary ordering: Every achiever of a given
landmark l has a precondition for every necessary order-
ing which represents that the landmarks greedy necessar-
ily ordered before l must be true or that l has been pre-
viously achieved. Formally, if l ∈ add(a), ∀l� <nat l :
(achieved(l) ∨ l�) ∈ pre(a).

Greedy-necessary orderings add a disjunctive precondi-
tion. Most planners do not support disjunctive precondi-
tions, so actions with preconditions derived from greedy-
necessary orderings must be split into several actions. In the-
ory this can lead to having 2n new actions per action that
achieves landmarks with greedy-necessary orders, where n
is the number of greedy-necessary orderings. However, due
to the dominance that often appears between actions (de-
scribed in a subsequent subsection), the actual number of
new actions is at most 2n�

actions, where n� is the number
of landmarks with greedy-necessary orderings achieved by
the action. Although still exponential, in practice it seldom
happens that an action achieves more than 2 such landmarks,
which explains why there are no exponential blow-ups of the
size of Pabs in the current benchmarks.
Preconditions can also be derived from the landmarks that

appeared in the preconditions of the actions inA. Landmarks
in the original problem P are kept as part of the new prob-
lem Pabs. Because of this, occurrences of landmarks in the
actions of A must be taken into account when generating
the actions in Aabs. Regarding the preconditions of every
action in Aabs, this means that the preconditions of the orig-
inal actions in A must also appear in the actions in Aabs if
they are landmarks: if a ∈ A was used to create a� ∈ Aabs,
then pre(a) \L ⊆ pre(a�). This overlaps with the precondi-
tions obtained from greedy-necessary orderings and strictly
dominates those obtained from necessary orderings, hence
making the computation of the latter not necessary. This is

so is because both types of orders are computed from com-
mon preconditions of the achievers of the landmark, already
taken into account this way.
On the other hand, not all achievers are considered equal.

There are two kinds of achievers: first achievers, which can
achieve some landmark when it has never been achieved be-
fore, and late achievers, which can achieve a landmark only
if it had been already achieved at some time before. Hence,
a late achiever a� ∈ Aabs derived from action a ∈ A has
an additional precondition achieved(l) ∈ pre(a�) per land-
mark l ∈ add(a) \ L if a is a late achiever of l.

Effects of the New Actions
Effects of the original achievers and relations of mutual ex-
clusivity between propositions (Haslum and Geffner 2000),
typically called mutexes, determine the effects of the new ac-
tions. The positive effects of the actions, also known as add
effects, make the propositions true. Similar to the proposi-
tions that are landmark in the preconditions of the actions
in A, the add effects of the actions in A can be straightfor-
wardly encoded in the new actions belonging to Aabs. Thus,
every landmark proposition added by an action in A appears
also as an add effect in the actions created from it in Aabs,
whereas non-landmark propositions added by the action are
ignored. Similarly, for every regular add effect of a land-
mark l, an add of achieved(l) must be included. In sum-
mary, if a ∈ A was used to derive a� ∈ Aabs and landmark
l ∈ add(a) \ L then l ∧ achieved(l) ∈ pre(a�).
Before describing how the delete effects of the new ac-

tions are computed, the definition of mutex is given:
Definition 1 A relation of mutual exclusivity between
propositions (mutex) is a set of propositions M =
{p1, . . . , pm} such that there is no reachable state s ⊆ S
such that all the propositions p ∈M are true in s.
Negative effects, also known as delete effects, are linked

to the notion of e-delete (Vidal and Geffner 2005).
Definition 2 An action e-deletes a proposition if the propo-
sition p must be false in every state after the action is exe-
cuted.
This means that if an action e-deletes a given proposition

p, either it explicitly deletes p or it is only applicable in states
in which p is false. There are three cases in which an action
e-deletes a given proposition p: it deletes p; it has a set of
preconditions mutex with p and does not add p; and it adds
a set of propositions mutex with p.
Computing sets of mutexes of size m > 2 is usually im-

practical (Haslum and Geffner 2000), so in this work only
sets of size m = 2 will be considered. Hence, to fulfill the
second and third condition a single proposition mutex with p
is enough. This way, every landmark that is e-deleted by an
action a ∈ A is added to the new action in Aabs as a delete
effect. There is an exception to this rule, though: if an action
a ∈ A e-deletes p because it has a precondition mutex with p
and does not add it (second condition) and that precondition
is a landmark, it means that the new action in Aabs is only
applicable iff p is false. In this case p will be always false
after the execution of the new action in Aabs, which means
there is no need to explicitly delete it.
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Dominance Between the New Actions
Due to the abstraction of non-landmark propositions and
the splitting of disjunctive preconditions, it is possible to
have actions in Aabs that are equivalent to or dominated by
other actions. In particular, an action with the same effects
and with a cost greater or equal than another action needs
not to be included in the definition of the problem as long
as its preconditions are a superset of the preconditions of
the dominating action. In terms of the formal definition of
the planning task Pabs, a ∈ Aabs dominates a� ∈ Aabs if
a �= a� ∧ add(a) = add(a�) ∧ del(a) = del(a�) ∧ pre(a) ⊆
pre(a�)∧ cost(a) ≤ cost(a�). This can be done after gener-
ating all the actions to avoid redundancy and obtain a smaller
instance of Pabs.
Dominance between actions also explains why splitting

actions when using greedy-necessary orderings leads to
having fewer additional actions than expected. For exam-
ple, let’s assume that an action a ∈ A adds a landmark
l ∈ S which is greedy-necessarily ordered after n land-
mark propositions pi ∈ S. This means that the new action
a� ∈ Aabs will have n disjunctive preconditions of the form
{achieved(l) ∨ pi}. If a� is split in two for every disjunc-
tive precondition, a total of 2n new actions will be created.
However, every time an action is split, either achieved(l)
or pi will be added to the preconditions; if achieved(l) is
added and it is already present, no new action is needed,
and if pi is added and achieved(l) is already a precondi-
tion, it will be forcibly dominated by another action with
achieved(l) as precondition. In the end, only 2 actions are
generated per added landmark with greedy-necessary orders,
one with achieved(l) as additional precondition and another
one with p1 ∧ ... ∧ pn as additional preconditions.

Conjunctive Landmarks, Disjunctive Landmarks
and Action Landmarks
Landmarks are not restricted to the single proposition case.
When generalizing the landmark graph this has to be taken
into account. Particular cases are treated in the following
way:

• Action landmarks: They can be safely ignored, as their
preconditions and effects are landmarks themselves. A
possible optimization is allowing only the action land-
mark as achiever if the landmarks derived from the effects
of the action are not ordered after any landmark other than
the preconditions of the action landmark.

• Conjunctive landmarks: All the propositions that form the
set can be treated as independent landmarks. The achiev-
ers of landmarks ordered after a conjunctive landmark
will have all the propositions in the set as preconditions.

• Disjunctive landmarks: All the propositions that form the
set can be treated as independent landmarks. Only one of
the propositions that form the set must have the required
value for an action a ∈ Aabs that has the disjunctive
landmark as precondition to be applicable. This is done
by splitting every such action into several actions, one
per proposition in the set, and including that proposition
as precondition. This can lead to an exponential number

of actions, so a more efficient way of dealing with dis-
junctive landmarks could improve the compactness of the
problem.

Properties of the New Problem
The new planning problem Pabs has all the properties of a
regular planning problem in a propositional representation.
Besides, due to its relationship with the original problem P ,
Pabs has several additional characteristics:

• All the propositions being true and having been achieved
are landmarks, unless they were generated from a dis-
junctive landmark. If this is the case, they will be part
of a disjunctive landmark if a landmark discovery method
that can find disjunctive landmarks of size equal or greater
than the original disjunctive landmarks is used.

• The optimal cost to the goal in the new problem h∗
abs is an

admissible estimation of the cost to the goal in the original
problem h∗, since Pabs is an abstraction of P . The proof is
as follows: Pabs is a projection of P except for the added
propositions of the type achieved(l) for l ∈ L. If a prob-
lem p� is a projection of p, then h∗

p� ≤ h∗
p. Hence, the only

source of inadmissibility can be the propositions of the
type achieved(l). However, these propositions are added
to enforce the orderings of the landmark graph. These or-
derings are respected by any optimal solution of P , so the
presence of these propositions cannot make that h∗

p� > h∗
p.

• h∗
abs, when being used as a heuristic in a forward search

algorithm, is not necessarily a consistent estimation of h∗,
as Iabs depends on the path that led to the current state in
P . That is, h∗

abs as an admissible estimation of the cost to
the goal is a path-dependent heuristic. For the proof, we
refer the reader to (Karpas and Domshlak 2009).

• h∗
abs dominates the admissible landmark counting heuris-

tic hLA (Karpas and Domshlak 2009) and is not bounded
by h+, the optimal cost of the delete-relaxation version of
the original problem. The proof is straightforward: on one
hand, if S = L ⊂ Sabs and at least one landmark must be
reachieved after being deleted in every optimal plan, then
h∗

abs = h∗ and h∗
abs > h+ ≥ hLA; on the other hand, if

Pabs is relaxed by removing orderings and deletes, then
h∗

abs = hopt
LA. There is no further relaxation other than

projecting landmarks away that may make h∗
abs lower, so

hLA is a lower bound of h∗
abs if all the landmarks are con-

sidered when building Pabs.

• The optimal cost of the delete-relaxation version of the
new problem h+

abs still dominates hLA, even with optimal
cost partitioning (hopt

LA). This is because landmark pre-
conditions of the achievers add additional constraints that
may make the cost of the optimal plan go beyond hLA’s
value. An example is shown in the delete-free problem
appearing in Figure 1: if I = {l} and G = {l�, l��}, hLA

would assume a cost of 1 for both l� and l�� for a total cost
of 2; h+

abs however takes into account that to achieve l�

with a cost of 1 l�� must be achieved first, so h+
abs would

yield a value of 3.
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Example
In this section we show an example of how Pabs is con-
structed. The example is taken from the Logistics domain,
although in this case trucks can only carry one package at a
time, encoded by the predicate (empty ?t - truck). The ini-
tial state is shown in Figure 2. There is a single truck that
can move through a graph of different locations. The truck
is initially at location A, where there is an arbitrary number
of packages. The packages can be loaded into the truck if the
truck is empty and dropped at another location. The goal is
carrying all the packages to the goal location G. The single
proposition landmarks of this problem are:

• The truck at the initial location: (at truck A)

• The truck at the final location: (at truck G)

• The truck empty: (empty truck)

• Every package pi at the initial location: (at pi A)

• Every package pi in the truck: (in pi truck)

• Every package pi at the final location: (at pi G)

The actions of the planning problem would be the fol-
lowing (note that every time a landmark is made true, the
proposition that encodes whether it has been achieved be-
fore or not is unconditionally made true as well):

• Move the truck to the initial location A: pre={achieved(at
truck A)}, add={(at truck A)}, del={(at truck G)}

• Move the truck to the final location G: pre={achieved(at
truck A)}, add={(at truck G)}, del={(at truck A)}

• Load a package pi at the initial location A: pre={(at truck
A),(at pi A),(empty truck)}, add={(in pi truck)}, del={(at
pi A),(empty truck)}

• Load a package pi at the final location G: pre={(at
truck G),(at pi G),(empty truck)}, add={(in pi truck)},
del={(at pi G),(empty truck)}

• Drop a package pi at the initial location A: pre={(at truck
A),(in pi truck)}, add={(at pi A),(empty truck)}, del={(in
pi truck)}

• Drop a package pi at the final location G: pre={(at
truck G),(in pi truck)}, add={(at pi G),(empty truck)},
del={(in pi truck)}
In this example all the preconditions are taken from the

landmark preconditions of the original actions in A with
the exception of the move actions. Similarly, apart from the
move actions all the actions in Aabs can only be generated
from a single action in A. The move action that achieves (at
truck A) can be generated from two actions in A; however,
both actions have the same preconditions and effects, so one
arbitrarily dominates the other, which explains why there is
only one action in Aabs that achieves (at truck A). This ac-
tion has achieved(at truck A) as precondition because the
original actions in A are late achievers of (at truck A). No
other precondition appears as no precondition of the original
actions is a landmark and (at truck A) is not ordered after any
other landmark. The same dominance occurs with the action
that achieves (at truck G), although in this case the precondi-
tion is generated from the natural ordering existing between
(at truck A) and (at truck G). As a side note, every landmark
of the form achieved(s) that is true in Iabs is a static fact, so
it can be safely discarded, as with achieved(at truck A) in the
example.
The key feature that regular delete-relaxation approaches

do not capture in this case is achieving and deleting (at truck
A) and (at truck G) alternatively. In this case, if n encodes the
number of packages, the cost of the optimal solution in the
original problem is h∗ = 8(n− 1) + 5 and in the abstrac-
tion is h∗

abs = 4(n− 1) + 3. On the other hand, the value of
both h+ and hlmcut (Helmert and Domshlak 2009) in the
original problem is h+ = hlmcut = 2n+ 3 and the value of
the admissible landmark heuristic with optimal cost parti-
tioning hopt

LA is in both the original and the delete-relaxation
problem hopt

LA = 2n+ 1.

Potential Applications of Pabs

Although beyond the scope of this work, it is interesting to
analyze the possible applications of the resulting Pabs in re-
gards to task solving. The main consideration when exploit-
ing the information provided by Pabs is that Pabs is a plan-
ning problem itself and so it is PSPACE-complete (Bylander
1994). This means that in many cases solving it (optimally
or otherwise) may not be tractable. However, the size of Pabs

is in most cases smaller than the original task P , so if a plan-
ner is not able to solve Pabs it is highly unlikely that it would
be able to solve P .
One of the first applications of landmarks, factored plan-

ning (Hoffmann, Porteous, and Sebastia 2004), seems to be
a technique that would greatly benefit from this approach.
As opposed to using the first layer of unachieved or required
again landmarks as a disjunctive intermediate goal, subopti-
mally solving Pabs can be used to obtain a total order of sin-
gle landmarks, which can be used as subgoals to partition P .
Apart from being able to exploit cycles between landmarks
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and offering a finer partitioning, this approach also has the
advantage of not being subject to arbitrary decisions when
dealing with disjunctive subgoals (for instance, when par-
titioning the Sussman’s anomaly, a layered partitioning can
lead to either finding the solution with the minimum num-
ber of expansions or to exploring the whole search space
depending on how ties are broken).
Inspired by the potential of the serialization of the land-

mark graph, the recent planner PROBE(Lipovetzky and
Geffner 2011) builds probes that try to achieve the goal with
little to no search by estimating a total order of the land-
marks and trying to achieve them in a greedy way. However,
the way the probes are built is not based on any theoretical
scheme and it has the additional problem of not allowing ac-
tions that delete a landmark to be used if that that landmark
is a goal or is still needed (which is often the case when cy-
cles between landmarks appear). Solving Pabs suboptimally
yields a total order that may be more informative and that
may capture stronger interactions between landmarks.
The use of Pabs to derive heuristics to be used in P has al-

ready been mentioned. Nevertheless, a naive approximation
like solving Pabs at every state to obtain the heuristic esti-
mate would be intractable in most cases, so more synergistic
techniques are required. Since Pabs is an abstraction of P ,
hierarchical search algorithms like Hierarchical A* (Holte et
al. 1996) can be an interesting alternative. When using HA*,
Pabs is solved from Iabs to obtain a heuristic estimate and
the expanded nodes are kept hoping that subsequent queries
can be cached, which allows to obtain h(s) with no search.
If cache hits happen often enough, there will be a trade-off
between the time spent solving Pabs and the time saved from
computing h(s), which may result in an increased efficiency.
Furthermore,Pabs can be solved both optimally, superseding
the admissible hLA, or suboptimally, superseding LAMA’s
heuristic (Richter and Westphal 2010).
Lastly, the total order obtained from solving Pabs can also

be used in combination with other search paradigms. For in-
stance, local search planners like LPG (Gerevini and Serina
2002) are often ill-suited to solving highly sequential do-
mains, particularly if they involve cycles. In this case, the so-
lution to Pabs can be used as a seed so a skeleton of the plan
is provided and the local search only has to fill the “gaps”
between the landmarks.

Experimentation
As any other landmark-based technique, the proposed gen-
eralization of the landmark graph is highly dependent on the
number and relevance of the landmarks found with current
methods. For instance, in some domains only a few land-
marks other than the propositions true in I and the goals
in G are found, in which case landmark-based techniques
perform poorly. Furthermore, one of the main advantages of
Pabs over most ways of exploiting landmarks resides in the
fact that it is able to account for negative interactions such
as delete effects and mutexes. In particular, Pabs appears to
capture the structure of the problem best when cycles are
a key part of the domain. If such negative interactions are
not representative of the planning task, using Pabs may not
be more advantageous than using already existing landmark

techniques. Because of this, the performance of any tech-
nique based on Pabs will depend on the number of land-
marks and the features of the domain they represent.
Because of the aforementioned reasons, three different

cases arise in problems with meaningful landmarks:
• Almost all the propositions are landmarks: the abstraction
is very similar to the original problem and thus it is hard
to obtain a balanced trade-off between the information it
provides and the difficulty of solving Pabs. In this case di-
rectly solving P is the simplest alternative, though solving
Pabs may not be necessarily worse, since the information
obtained from Pabs probably would allow solving P with
almost no search.

• There are few necessary orderings and/or landmark pre-
conditions of the achievers: when solving the abstraction
the landmarks do not need to be reachieved, so only a
rather arbitrary total order of the landmark graph is ob-
tained. Hence, in most cases the cost of the solution is
equal or only slightly higher than hLA with optimal cost
partitioning. Besides, partitionings of P derived from the
obtained total order will not offer much more information
than the regular landmark partitioning using disjunctive
subgoals.

• There are fairly numerous necessary orderings and/or
landmark preconditions of the achievers: in these cases an
informative plan is obtained with a cost higher than hLA

while still being solvable. As described before this is of-
ten the case in which resources or similarly “consumed”
landmarks enforce cycles in the landmark graph, cases in
which other techniques often do not fare that well.
Knowing this, it may be relatively simple to predict

whether Pabs will be useful in the actual resolution of the
planning task or not. This work is mainly theoretical, and
hence Pabs was not used as a way of improving the effi-
ciency of a given planner. Nevertheless, in order to assess
its usefulness in practice, some experimentation has been
done. First, Pabs was generated in a broad range of domains
from the International Planning Competition so the relative
size of Pabs compared to P could be estimated. The planner
used to ground the instances in both cases was Fast Down-
ward (Helmert 2006), and the chosen measure of size is the
number of actions and fluents of each instance after prepro-
cessing, that is, the cardinality of A, Aabs, S and Sabs in
every instance. The reason why the number of actions was
chosen is because it gives an idea of the size of the tasks
and because generating Pabs often requires action splitting,
whose impact can be measured by counting the final number
of actions. The number of propositions |Sabs| can be known
a priori just by computing the landmarks of P , although a
significant subset of the propositions derived from the land-
marks of P may be static in Pabs, which means that |Sabs| is
often smaller than twice the number of landmarks. Table 1
shows the sum of the cardinality of A, Aabs, S and Sabs of
every instance in each domain. All the orderings were used
and dominance between actions was enabled. Only propo-
sitional landmarks were used, since disjunctive landmarks
may easily lead to an exponential increase in the number of
actions.
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Domain |A| |Aabs| |S| |Sabs| hlmcut hopt
LA huni

LA

airport (50) 144963 125067 157592 46706 0.92 1.00 1.00
barman-opt11 (20) 13264 11004 4604 1200 0.64 1.97 2.50

blocks (35) 7490 7434 4826 2549 1.44 1.44 1.44
depot (22) 68894 51392 9423 1934 0.46 1.00 1.00

driverlog (20) 53494 5926 6007 542 0.46 1.00 1.00
elevators-opt08 (30) 18520 7574 3360 607 0.51 1.07 1.07
elevators-opt11 (20) 11450 4619 2097 571 0.50 1.09 1.09
floortile-opt11 (20) 9188 6036 3578 1008 0.76 1.06 1.06

freecell (80) 1071066 663857 23419 13286 2.42 1.03 1.03
grid (5) 38808 18010 3373 185 0.88 1.01 1.01

gripper (20) 3720 1880 2380 960 0.52 1.00 1.00
logistics00 (28) 6972 2380 3429 2409 1.09 1.09 1.09
logistics98 (35) 501186 13491 82687 3203 1.09 1.09 1.09
miconic (150) 189100 125128 13950 19964 1.03 1.03 1.03
mprime (35) 567960 2977 17796 139 0.32 1.00 1.00
mystery (30) 217800 3634 13066 164 0.36 1.01 1.01

nomystery-opt11 (20) 72522 59865 4434 1008 1.15 1.09 1.09
openstacks (30) 213470 212544 10634 11593 1.69 1.00 1.00

parcprinter-opt08 (30) 9066 2933 6139 4159 0.91 1.00 1.00
parcprinter-opt11 (20) 5096 1732 3993 2591 0.91 1.00 1.00
pathways-noneg (30) 40595 7126 13119 2596 0.40 1.00 1.00
pegsol-opt08 (30) 5346 5346 2920 2003 1.00 1.41 1.41

pipesworld-notankage (50) 187388 73935 44594 1649 1.03 1.21 1.21
pipesworld-tankage (50) 1135917 742542 28027 1649 1.06 1.20 1.20

psr-small (50) 14546 11751 2158 572 1.65 1.65 1.65
rovers (40) 231653 45064 29324 2705 0.51 1.04 1.04
satellite (36) 3709130 34163 30479 6192 0.55 1.01 1.01

scanalyzer-opt08 (30) 1145836 733474 4680 1691 1.05 1.07 1.23
scanalyzer-opt11 (20) 631288 420820 3088 1010 1.05 1.07 1.18
sokoban-opt08 (30) 12674 5657 8518 1129 0.59 1.05 1.09
sokoban-opt11 (20) 7166 3332 5306 706 0.56 1.08 1.11
tidybot-opt11 (20) 384018 114737 11476 662 0.59 1.09 1.09

tpp (30) 281351 59833 18807 1564 0.57 1.02 1.02
transport-opt08 (30) 105888 4200 6800 390 0.02 1.00 1.00
transport-opt11 (20) 35216 2360 2886 250 0.02 1.00 1.00

trucks (30) 442262 33896 6964 2065 0.76 1.04 1.04
visitall-opt11 (20) 3520 2688 2516 2259 1.25 1.00 1.00

woodworking-opt08 (30) 27835 22058 5677 2729 0.87 1.02 1.03
woodworking-opt11 (20) 18175 14267 3805 1837 0.90 1.03 1.04

zenotravel (20) 140433 9138 4518 428 0.45 1.01 1.01

Table 1: Comparison between P and Pabs: task size and heuristics.
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Results show that the relative cardinality of Aabs varies
greatly from domain to domain. At one extreme, in peg-
sol |Aabs| has the same value as |A|; at the other, in some
transportation domains like transport or zenotravel |Aabs| is
comparatively rather small because of the small number of
single proposition landmarks found in those domains. This
is confirmed by the low value of Sabs in those domains in
which |Aabs| is significantly lower than |A|. There are no
domains in which |Aabs| > |A|, although in two domains
(miconic or openstacks) |Sabs| > |S| because of the addi-
tional propositions added to represent when a landmark has
been achieved.
Additionally, the geometric mean of the ratio between

h∗
abs and h

lmcut/hopt
LA/h

uni
LA is shown for every domain. Only

instances in which Pabs could be solved optimally under a
time limit of 300 seconds were included. A ratio between
h∗

abs and hopt
LA close to 1.00 means that using Pabs proba-

bly has little potential in those domains; a higher ratio, as
in barman, blocks, pegsol, pipesworld (both versions) and
psr-small means that using Pabs may be promising. Also,
note that disjunctive landmarks were not used; if disjunctive
landmarks had been used, the ratio could have been higher as
well in domains with symmetric resources, like Gripper and
Logistics. The comparison with hlmcut shows that although
hlmcut is on average closer to h∗, it varies substantially from
domain to domain.

Related Work
Using landmarks in factored planning (Hoffmann, Porteous,
and Sebastia 2004) was the first attempt to exploit the infor-
mation contained in the landmark graph. However, it did not
consider the fact that landmarks can be deleted nor the nega-
tive interactions between them. A subsequent work that em-
ployed mutexes to build layers of conjunctive landmarks ad-
dressed the latter (Hoffmann, Porteous, and Sebastia 2004).
Although more informed than the original partitioning in
disjunctive subgoals, computing the new layer was some-
times too inefficient, apart from offering no insight in terms
of the formal properties of the problem.
Another work exploited inconsistencies between land-

marks and local interactions between achievers and other
landmarks to compute the minimum number of states re-
quired to satisfy given sets of landmarks (Porteous and
Cresswell 2002), which in turn could be used to obtain a
lower bound on the number of times a landmark must be
achieved. This information captures the fact that in a sequen-
tial plan landmarks may have to be deleted even if they are
needed again later and can be used in a cost-partition scheme
to derive admissible heuristics with properties similar to the
ones mentioned in this work. However, this approach is dif-
ficult to define formally due to its procedural nature and of-
fers potentially less information than the generalization of
the landmark graph.
Another closely related work proposed a SAT compila-

tion of the landmark graph (Alcázar and Veloso 2011). The
compilation generates a SAT problem which is solved using
a regular SAT solver in order to obtain a more informative
version of the landmark graph. Orderings of the landmark

graph and londexes between landmarks (Chen, Xing, and
Zhang 2007) are used to create the constraints of the prob-
lem. The new version of the landmark graph obtained from
the solution of the SAT problem encodes the time steps in
which landmarks may be needed, which implicitly captures
the fact that some landmarks may have to be achieved sev-
eral times and which gives a possible total order of the set
of landmarks. However, this approach works with a paral-
lel scheme and does not take into account the achievers of
the landmarks, so it cannot consider costs nor offer reliable
information about the possible total orders.
Finally, encoding achieved landmarks as new variables in

P was also proposed (Domshlak, Katz, and Lefler 2012).
This work focused on obtaining more informative abstrac-
tions to derive admissible heuristics, whereas here we make
a preliminary study of the potential of the landmark abstrac-
tion in isolation. Both works have important points in com-
mon, so a deeper comparison between both approaches (like
checking how close a projection of the enriched P is to Pabs)
may be fundamental for future developments.

Conclusions and Future Work
In this work a generalization of the landmark graph as a
planning problem has been presented. So far the main con-
tribution of the discussed approach is a theoretical one, al-
though several ways of exploiting the obtained abstraction
have been proposed. This generalization bridges the gap to-
wards the integration of landmarks in a common framework
along with abstractions and heuristics in automated plan-
ning. Furthermore, the formal properties that relate it to the
original problem have been analyzed.
It remains an open question whether there are additional

ways of exploiting or improving the abstraction. On the one
hand, it is unclear whether some characteristics of the ab-
straction, like symmetries or solvability features, can be ex-
trapolated to the original problem. On the other hand, the
costs encoded in the generalization could be improved by
using cost-partitioning schemes such as the ones used in ad-
ditive admissible heuristics. For example, the costs of the
actions could be substituted by lower bounds on the cost of
achieving a given landmark. This is actually already possible
in a simple way: if, through the path to a landmark, there are
no positive interactions, the cost of the achieved landmark
can be substituted by the cost of the path from the closest
landmark to the achieved landmark. This is trivial when us-
ing actions whose preconditions and effects affect a single
invariant, like the move operator in the example presented in
this work. In this case, the cost of the move actions can be
the cost of getting to the achieved landmark from the clos-
est landmark, which interestingly enough would make that
h∗

abs = h∗. Other approaches could extend to more general
cases, so this line of research may be an interesting follow
up of this work.
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Abstract
Domain-independent optimal planning has seen
important breakthroughs in recent years with the
development of tractable and informative admissi-
ble heuristics, suitable for planners based on for-
ward state-space search. These heuristics allow
planners to optimally solve an important number of
benchmark problems, including problems that are
quite involved and difficult for the layman. In this
paper we present a new admissible heuristic that
is obtained from the state equation associated to
the Petri-net representation of the planning prob-
lem. The new heuristic, that does not fall into one
of the four standard classes, can be computed in
polynomial time and is competitive with the cur-
rent state of the art for optimal planning, as empir-
ically demonstrated over a large number of prob-
lems, mainly because it often shows an improved
quality-to-cost ratio. The new heuristic applies to
SAS+ planning tasks with arbitrary non-negative
action costs.

1 Introduction
Domain-independent planning deals with the development
of planners for solving unknown input problems that are
specified in a high-level description language. Domain-
independent means that the planner has not other information
about the problem than the one it can infer from its descrip-
tion. The general interest is on building “satisficing” planners
whose task is to compute a valid solution, while “optimal”
planners are required to output solutions of minimum cost.
Recent years have witnessed a remarkably progress in op-

timal planning in terms of the type and size of problems that
can be dealt with. Current state-of-the-art optimal planners
perform forward search in state space using A* with an ad-
missible heuristic in order to meet the optimality requirement,
and thus the basic difference between optimal planners is the
heuristics that are used to guide the search.1

1More recently, best optimal planners correspond to systems that
use a ‘portfolio’ of heuristics that are scheduled according to fea-
tures of the input problem. However, a portfolio is a collection of
base heuristics and hence its intrinsic limitations is a function of the
heuristics in the portfolio.

Helmert and Domshlak [2009] observed that most of the
well-known heuristics for optimal (and also for satisficing)
planning fall in one of four categories: delete-relaxation
heuristics that try to estimate the optimal cost h+ of the
delete-relaxed problem [Bonet and Geffner, 2001; Hoffmann
and Nebel, 2001; Coles et al., 2008], abstraction heuristics
that correspond to the optimal costs of a simplified yet infor-
mative abstraction of the problem [Edelkamp, 2001; Haslum
et al., 2007; Helmert et al., 2007; Katz and Domshlak, 2008],
heuristics based on critical paths such as the family hm

[Haslum and Geffner, 2000], and landmark heuristics that
compute sets of facts or actions that every plan must achieve
or execute from which the cost of an optimal plan can be es-
timated [Hoffmann et al., 2004; Richter and Westphal, 2010;
Karpas and Domshlak, 2009; Helmert and Domshlak, 2009;
Bonet and Helmert, 2010]. Currently, the most successful
heuristic is the LM-cut heuristic [Helmert and Domshlak,
2009] that approximate h+ quite well on some domains, but
that can also be thought as a cost-partitioning heuristic or as
a landmark heuristic. LM-cut is always bounded by h+ and
hence, ineffective at assessing the need to apply a fixed action
multiple times for reaching the goal from a given state. On
the other hand, abstraction heuristics are not delete-relaxation
heuristics and have the potential to overcome this and other
limitations [Helmert and Domshlak, 2009], yet to this date,
the full potential of such heuristics have not been realized in
a domain-independent manner and thus do not stand out as
the best general heuristics.

In this paper we define a new heuristic for optimal plan-
ning that targets problems specified in SAS+ involving multi-
valued variables, arbitrary action costs, but without condi-
tional effects. This is a class of problems that subsumes
STRIPS and is as general as the classes of problems handled
by other state-of-the-art heuristics. The heuristic is simple
to formulate and is related to the so-called state equation for
the Petri-net that is obtained from the planning problem in
a standard way. For computing it, though, a small and sim-
ple linear programming problem needs to be solved. Despite
the overhead involved in this computation, the new heuristic
is competitive with the best current heuristics, and in some
domains, it is able to solve more problems than any other
heuristic. This is due to an improved quality-to-cost ratio on
some domains, as observed in our experiments. We also men-
tion how the new heuristic can be improved in three different
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and independent ways by either automatically reformulating
the problem instance, by analyzing the resulting Petri-net of
the problem, or by incorporating information from the land-
marks of the problem into the linear program that defines the
heuristic. The contribution of the paper thus sets a general
framework for obtaining heuristics that appears to be quite
promising.
The paper is organized as follows. In the next section, we

present the planning framework and the concepts of Petri nets
that are related to the heuristic. The new heuristic and its
properties are then defined, while the experimental study and
a discussion appear at the end of the paper.

2 Preliminaries
2.1 SAS+ Planning
A SAS+ problem with action costs is a tuple P =
�V,A, sinit, sG, c� consisting of a set of multi-valued vari-
ables V , where each variable X ∈ V has a finite domain
DX , together with a finite set A of actions, an initial state
sinit, a goal description sG, and non-negative action costs
c : A → N. A state in SAS+ is a V -valuation while a partial
state is a partial valuations on variables; for a partial valuation
ν, we use V ars(ν) to denote the set of variables that ν assigns
a value, and ν|W to denote the partial valuation obtained by
restricting ν to the set of variablesW ∩ V ars(ν). The initial
state sinit is a complete V -valuation while sG is a partial val-
uation that tells what are the requirements that any valid plan
must achieve. Each action a ∈ A consists of a precondition
and a postcondition, both corresponding to partial states and
denoted by pre(a) and post(a) respectively, that specify the
conditions that must hold for the action to be executable and
the conditions that will hold after the execution of the action.
The state that results after applying the action a in state

s is denoted by res(a, s) (always assuming that a is ap-
plicable at s), and the state that results after applying a
sequence �a1, . . . , an� of actions in state s is denoted by
res(�a1, . . . , an�, s) (always assuming that ak is applicable
at res(�a1, . . . , ak−1�, s) for 1 ≤ k < n). We say that
a partial valuation ν is reachable iff there is a sequence
π = �a1, . . . , an� of actions applicable at sinit such that
res(π, sinit)|V ars(ν) = ν. In particular, a state s is reach-
able if there is a sequence π such that res(π, sinit) = s.
A plan for problem P is a sequence π of actions that

reaches sG, while its cost is the sum of the costs of the ac-
tions in π. A plan π is optimal iff it is a plan of minimum
cost.

2.2 Petri Nets
A Petri net (also called place/transition or P/T net) is a type
of directed graph that represents a transition system in fac-
tored form, together with an initial state called the initial
marking. Petri nets had been used extensively to model and
reason about concurrent and distributed systems, verification,
dataflows and workflows, formal languages, etc., and more
recently also automated planning [Hickmott et al., 2007;
Hickmott and Sardiña, 2009]. Murata [1989] gives an ex-
cellent introduction to Petri nets and the most important tech-
niques for analyzing them.

A P/T net is a directed bipartite graph between two types of
nodes called places and transitions, while a marking assigns
to each place a non-negative integer. If a marking assigns the
integer k ≥ 0 to a place p, we say that p is marked with k
tokens. Transitions represent events that map markings into
markings by moving tokens from one place to another. For-
mally, a P/T net is a tuple PN = �P, T, F,W,M0� where
P = {p1, p2, . . . , pm} and T = {t1, t2, . . . , tn} are the finite
sets for places and transitions, F ⊆ (P × T ) ∪ (T × P ) is
a set of arcs that is often called the flow relation of the net,
W : F → N∗ assigns positive weights to arcs in the flow, and
M0 : P → N is the initial marking of the net. The structure
of the net is the tuple N = �P, T, F,W � made of the first 4
elements and represent the transition system detached of the
initial marking.
The initial marking M0 of the net evolves as transitions

becomes enabled and fired according to the following rules:

1. Marking M enables transition t if for each arc (p, t) ∈
F , the number of tokens consumed by t from place p is
at most the number of tokens assigned by M at p; i.e.,
W (p, t) ≤M(p).

2. Firing an enabled transition t in marking M yields a
new marking M � that results of consuming (subtracting)
W (p, t) tokens from place p, for each (p, t) ∈ F , and
producing (adding) W (t, q) tokens to place q, for each
(t, q) ∈ F .

If the transition t is enabled by marking M and yields mark-
ingM � when fired, we writeM [t�M �. In this case,M � is the
marking that assignsM �(p) =M(p)+W (t, p)−W (p, t) to-
kens at place p.2 Inductively, we writeM1[u1u2 · · ·uk�Mk+1

when transition ui is enabled bymarkingMi and yields mark-
ingMi+1 given byMi+1(p) =Mi(p) +W (t, p)−W (p, t),
for each place p ∈ P and 1 ≤ i ≤ k. An ordinary net is one
in which W (·, ·) ranges over {0, 1}. Throughout the rest of
the paper, we only consider ordinary nets.
If there is a sequence of transitions σ = u1 · · ·uk such that

M [σ�M �, we say that M � is reachable from M through the
firing sequence σ. A basic decision problem for P/T nets is to
determine whether a given marking M is reachable from the
initial marking M0. This is the reachability problem for P/T
nets. Another related problem is the coverability problem that
asks to determine whether for a given marking M , there is a
marking M � reachable from M0 such that M(p) ≤ M �(p)
for each place p; in the latter case, we just writeM ≤M �.
If every reachable marking M from M0 (including M0 it-

self) assigns at most k tokens to every place, we say that the
net is k-bounded. The case for k = 1 is frequent and 1-
bounded is commonly referred to as 1-safe or just safe.
We now present the state equation that expresses the rela-

tion between two markingsM andM �, through a transition t
whenM [t�M � holds, with an algebraic equation over vectors.
For this, let us define the incidence matrix A = (aij) for the
flow relation; it is a matrix of dimension n×m (where n and

2Strictly speaking, this is an abuse of notation asW may be un-
defined on some pairs, yet this is fixed by defining W (t, p) = 0
(resp.W (p, t) = 0) when (t, p) /∈ F (resp. (p, t) /∈ F ).
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m are the number of transitions and places) given by entries

aij =W (ti, pj)−W (pj , ti) (1)

that quantify the net change on the number of tokens at place
pj caused by firing the transition ti. If we associate with tran-
sition t = ti, the control (column) vector u of dimension
m × 1 given by u(j) = 1 if j = i and u(j) = 0 other-
wise, then the relation M [t�M � holds for two markings M
and M � iff M(p) ≥ W (p, t) for each place p ∈ P , and
M � = M + ATu. In particular, the latter condition is nec-
essary for M [t�M � to hold, and it can be generalized over
arbitrary firing sequences σ = u1u2 · · ·uk. Indeed, if we let
ui to also denote the control vector of the transition that it
represents, then the condition becomesM [σ�M � only if

M � =M +AT �k
i=1 ui . (2)

Thus, a necessary condition for M to be reachable from the
initial marking M0 is that the linear system ATx = ΔM ,
for ΔM = M −M0, has solution x over the non-negative
integers. Such a vector x is called a firing-count vector and
tells how many times each transition needs to fire in order
to reach M from M0. For coverability, the condition is that
ATx ≥ ΔM must have solution x over the non-negative in-
tegers. Intuitively, the Equation 2 is a balance equation for
flows that go through the places of the net, saying that the
net change between two markings, one accessible from the
other, must be an exact match of the difference between what
is produced and consumed by the sequence, at each place.

2.3 Petri Nets for SAS+ Planning
A SAS+ planning problem P = �V,A, sinit, sG, c� is read-
ily mapped into a P/T net PN = �P, T, F,W,M0� where
the places are all atoms of the form ‘X = x’ for vari-
able X and value x ∈ DX , and the transitions correspond
to the actions a in A. The flow relation F includes the
pairs (p, a) for atoms p = ‘X = x’ and actions a such that
X ∈ V ars(pre(a)) and pre(a)[X] = x, and pairs (a, p) such
that X ∈ V ars(post(a)) and post(a)[X] = x. The func-
tion W assigns unit weight to each pair in F , while M0 is
the marking Msinit

associated with the initial state sinit. In
general, the markingMs associated with a state s is the mark-
ing that puts one token at each place p = ‘X = x’ whenever
s[X] = x, and puts zero tokens at the other places. The idea
is to obtain a P/T net whose reachable markings M encode
the reachable states s in the planning problem in such a way
that M = Ms. However, this straightforward mapping does
not always result in a faithful encoding of the planning prob-
lem because the resulting P/T net may not be 1-safe, mean-
ing that a reachable marking may put 2 or more tokens at a
place thus destroying the 1-1 correspondence between mark-
ings and states. In particular, there may be reachable mark-
ings M that do not stand for any reachable state either be-
cause M puts more than one token at a place, or because M
puts a non-zero number of tokens at two places p = ‘X = x’
and q = ‘X = x�’ with x �= x�. However, the following
result always hold:
Theorem 1. Let P = �V,A, sinit, sG, c� be a SAS+ planning
problem and PN = �P, T, F,W,M0� be the P/T net associ-
ated to it. An action sequence π is applicable at the initial

state sinit only if π is a firing sequence for the initial mark-
ing M0. Moreover, if π reaches the state s from sinit, then
the markingM reached by π covers the markingMs; that is,
M is such that M0[π�M andMs ≤M .

Proof. Both claims are proved by induction on the length π.
Along the induction, one shows (simultaneously) 1) if π is
applicable at sinit, π is a firing sequence for M0, and 2) if
s = res(π, sinit) andM0[π�M , thenMs ≤M .

This theorem is important as it will allow us to prove the
admissibility of the new heuristic based on the state equation.

3 The SEQ Heuristic
Let π be an action sequence that achieves the state s from
sinit with s satisfying the goal (i.e., s[X] = sG[X] for each
variable X ∈ V ars(sG)). The firing-count vector uπ for
π is the n-dimensional column vector uπ in which uπ(i) is
the number of times that the i-th action in P appears in the
sequence π. By the state equation and Theorem 1, π is a firing
sequence forM0 and

ATuπ = M −M0 ≥ Ms −M0 ≥ MsG
−M0 , (3)

whereM is the marking generated by firing π onM0, andMs

and MsG
are the markings associated with s and sG respec-

tively. On the other hand, the cost of π can be expressed as
cTuπ =

�n
i=1 c(i)uπ(i) where c is the vector of action costs

such that c(i) is the cost of the i-th action.
Therefore, if x is a non-negative integer solution of the lin-

ear system ATx ≥MsG
−M0 with minimum cTx cost, then

cTx ≤ cTuπ as uπ is a non-negative integer solution of the
same system. On the other hand, if ATx ≥ MsG

−M0 has
no solution, then there is no sequence π that achieves the goal
sG from the initial state sinit. These two properties are suf-
ficient to define an admissible heuristic hiSEQ for SAS+ plan-
ning that is defined for state s as the minimum cost cTx of
any non-negative integer solution x for ATx ≥ MsG

−Ms.
Clearly, this heuristic is not an abstraction heuristic as it is de-
fined in terms of the whole planning problem. Also, it is not
a delete-relaxation heuristic as it considers the positive and
negative effects of the actions (or postconditions for actions
in SAS+), and indeed, it may even infer that an action must
be applied multiple times in order to reach the goal from a
given state s. However, the heuristic hiSEQ is not computable
in polynomial time as it involves the solution of an integer
linear program. Yet, we overcome this limitation by approx-
imating hiSEQ with the solution of the relaxed LP problem in
which the integrality constraints are dropped. Hence,
Definition and Theorem 2. The hSEQ heuristic for SAS+

planning is the function that assigns the state s the value
�cTx∗�, where x∗ is the solution of the LP problem

Minimize cTx

subject to ATx ≥ MsG
−Ms

x ≥ 0 ,

if the LP has a feasible solution, and∞ if the LP is not fea-
sible; the case of unbounded solutions is not possible. Then,
hSEQ is an admissible heuristic for SAS+ planning.
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We now discuss improvements to the base hSEQ heuristic
that can be implemented in a domain-independent manner.

3.1 Improvements
We report the coverage and performance for the base hSEQ

heuristic in the next section. In summary, the heuristic is
competitive with the best heuristics across several domains,
but shows degraded performance on other domains. In this
section we propose three different methods to improve the
quality of the heuristic. The methods consist in either refor-
mulating the planning problem, analyzing its safeness prop-
erties, or using the information contained in the action land-
marks.

Reformulations
Problems with few goals generate goal markings MsG

that
have few non-zero entries. These markings result on weak
constraints for the LP that yield solutions x∗ that may be in-
effective to guide the search. One way to increase the value of
the heuristic is to add atoms to the goal that must hold along
the other conditions originally specified. For example, if the
goal contains the atom X = x, which is not true initially,
and every action that makes X = x true also makes Y = y
true, and no other action destroys Y = y, then the planning
problem can be modified without loosing any solution by ex-
tending the goal with the atom Y = y.
This idea is illustrated in the experiments where a slight

change in the airport instances (done manually) increases
the number of problems solved by 72.7% from 22 to 38.

Analysis of Safeness
As mentioned before, a P/T net is safe if no reachable mark-
ing assigns two or more tokens to a single place. In such
a case, the reachable markings of the net are in 1-1 corre-
spondence with the reachable states of the planning problem,
and some of the inequalities in the LP problem can be tight-
ened up to equalities. Indeed, for every place p in the P/T net
for which MsG

(p) = 1 (i.e. p refers to an atom of the form
X = x such that sG[X] = x), we can safely enforce the con-
straint AT

p x = MsG
(p) −Ms(p) in the LP, where AT

p is the
row of the matrix AT for place p and s is the state on which
the heuristic is being computed. The proof that this constraint
can be added without loss of admissibility becomes obvious
once it is observed that for safe nets, the first inequality in (3)
is indeed an equality, by the correspondence between states
and markings, and so for the second inequality for the coor-
dinate referring to atom p sinceMsG

(p) = 1 and all reachable
markings are 1-bounded.
As shown by Hickmott et al. [2007], a planning problem

P can be reformulated in a domain-independent manner into
an equivalent problem P � whose P/T net is safe. This is a
possible method to tighten up the LP that defines the SEQ
heuristic, but the method is exponential in the maximum of
|V ars(post(a)) \ V ars(pre(a))| when a ranges over all ac-
tions in the planning problem.
However, it is possible to define a restricted notion of safe-

ness and then tighten up the inequalities using this notion. We
say that a subset S of places is safe or 1-bounded for a P/T net
PN if no reachable marking M puts more than one token at

any place in S; i.e., M(p) ≤ 1 for each p ∈ S. By applying
the above argument to the places in S, we can safely change
by equalities all the inequalities for places p that are in a safe
subset S and for whichMsG

(p) = 1. Indeed,
Theorem 3. Let P and PN be a planning problem and its
corresponding P/T net. Let S be a subset of places that is
safe and let s be a state for the planning problem. Then, the
following LP gives an admissible estimate for the state s:

Minimize cTx

subject to AT
p x ≥ MsG

−Ms for p /∈ S ∩ VG

AT
p x = MsG

−Ms for p ∈ S ∩ VG

x ≥ 0

where VG = V ars(sG) is the set of variables mentioned in
the goal. That is, if the LP is feasible and x∗ is a solution,
�cTx∗� is an admissible estimate for the cost of any plan for
s; if the LP is unfeasible, there is no plan for s and the esti-
mate∞ is admissible; lastly, the LP cannot be unbounded.
Checking or finding safe sets S in a general P/T net is not

an easy task. However, our P/T nets comes from SAS+ prob-
lems and thus it is natural to consider the set SX of places
for variable X , defined by SX = {X = x : x ∈ DX}, as
good candidates for safe sets. Moreover, the test to determine
whether SX is safe or not is performed on the planning prob-
lem and not on the P/T net: SX is safe if every action that
affects X has a precondition on X; i.e., there is no action a
such that X ∈ V ars(post(a)) \ V ars(pre(a)).

Landmarks
hSEQ estimates the costs of the actions needed to cause a net
change of MsG

(p) −Ms(p) between the goal and the state
s, for each place p. When the goal contains an atom X = x
that is true at the state s, the right-hand side of the constraint
for the place p = ‘X = x’ is zero and the constraint plays a
minor role in the LP (unless the atom X = x is destroyed by
another action enforced by the constraints in the LP). A sim-
ilar situation appears when X = x is a prevail condition of
an action a since then the transition for a consumes and pro-
duces p causing a zero net effect on it. However, if we infer
that the goal X = x needs to be destroyed and re-established
by any plan for state s, or that a prevail condition of such an
action must be necessarily established by some other action,
then we can add an additional constraint of the form

x(t1) + x(t2) + · · ·+ x(tk) ≥ 1 , (4)

where the transitions {t1, t2, . . . , tk} correspond to all the ac-
tions that have X = x as an effect. In either case, such a
set of transitions correspond to an action landmark for the
planning problem. In general, an action landmark for state
s is a set L of actions such that every plan for s must ex-
ecute at least one action in L. Landmarks are the basis of
the current state-of-the-art planners, either satisficing or opti-
mal; they provide crucial information for the computation of
heuristics and the serialization of goals and subgoals [Richter
and Westphal, 2010], and there are many ways to compute
them [Hoffmann et al., 2004; Zhu and Givan, 2003].
If we are given a collection of landmarks for state s, we can

add one constraint for each landmark L in the collection. The
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Domain hLM-cut hLM-cut
ours hLA hM&S HSP∗F hSEQ hSEQsafe

Airport (50) 38 35 24 16 15 22 23
Blocks (35) 28 28 20 18 30 28 28
Depot (22) 7 7 7 7 4 6 6
Driverlog (20) 14 14 14 12 9 11 11
Freecell (80) 15 15 28 15 20 30 30
Grid (5) 2 2 2 2 0 2 2
Gripper (20) 6 6 6 7 6 7 7
Logistics-2000 (28) 20 20 20 16 16 16 16
Logistics-1998 (35) 6 6 5 4 3 3 3
Miconic-STRIPS (150) 140 140 140 54 45 50 50
MPrime (35) 25 24 21 21 8 21 21
Mystery (19) 17 17 15 14 9 15 15
Openstacks-STRIPS (30) 7 7 7 7 7 7 7
Pathways (30) 5 5 4 3 4 4 4
Pipesworld-no-tankage (50) 17 17 17 20 13 15 15
Pipesworld-tankage (50) 11 11 9 13 7 9 9
PSR-small (50) 49 49 48 50 50 50 50
Rovers (40) 7 7 6 6 6 6 6
Satellite (36) 8 9 7 6 5 6 6
TPP (30) 6 6 6 6 5 8 8
Trucks (30) 10 9 7 6 9 10 10
Zenotravel (20) 12 12 9 11 8 9 9

Airport-modified (50) na 36 na na na 38 38
Total (w/o Airport-modified) 450 446 422 314 279 335 336

Table 1: Coverage for different heuristics and hSEQ. Data taken
from references except for hLM-cut

ours and the SEQ heuristics that were
run by us. The last column refers to hSEQ improved with safeness
information. Gray cells highlights difference for the same heuristic.

Domain hLM-cut
ours hSEQ hSEQsafe

Elevators-08-STRIPS (30) 19 9 9
Openstacks-08-STRIPS (30) 19 16 16
Parcprinter-08-STRIPS (30) 22 28 28
Pegsol-08-STRIPS (30) 27 26 27
Scanalyzer-08-STRIPS (30) 15 12 12
Sokoban-08-STRIPS (30) 28 17 17
Transport-08-STRIPS (30) 11 9 9
Woodworking-08-STRIPS (30) 15 12 12

Total 156 129 130

Table 2: Coverage for hLM-cut and hSEQ over the problems of IPC-08
that involve actions of different costs. Gray cells highlights differ-
ence for the same heuristic.

resulting LP (and also ILP) is guaranteed to deliver admissi-
ble estimates for the cost of an optimal plan for s. Recently,
landmarks had been used to strengthen abstraction heuristics
in a similar way [Domshlak et al., 2012b]. In the experiments
below, we did not test the use of landmarks to improve the
heuristic.

4 Experiments
We implemented hSEQ within the Fast Downward system, that
also implements the LM-cut heuristics, and performed exper-
iments on Xeon 5140 ‘Woodcrest’ CPUs running at 2.33GHz
and with 2GB of memory, with a cutoff time of 30 minutes.
The results for other heuristics were obtained under similar
circumstances and are taken from [Helmert and Domshlak,
2009]. For solving LPs, we tried three publicly available
solvers: LPSOLVE, the GNU LP Kit library, and CLP. All
libraries produced similar results, yet there are some discrep-
ancies on the efficiency of the solvers, with no one dominat-
ing the others across all the problems in the benchmark. The
results reported here were obtained with the CLP library.

Table 1 shows coverage results per domain for state-of-the-
art heuristics for optimal planning. The data for the two hSEQ
columns and for the hLM-cut

ours column was obtained by us. The
last column refers to the heuristic hSEQ improved with the
safeness information that is automatically extracted from the
planning problem as described above. Table 2 shows similar
coverage results for the IPC-08 domains where action costs
are not uniform. The SEQ heuristic is not dominated by any
other heuristic, in terms of coverage for neither set of prob-
lems, and is competitive with the best heuristics (and more,
if the 150 instances of Miconic are carefully re-considered).
On the other hand, hSEQ is able to solve two instances of
Freecell and two of TPP that had no been reported be-
fore, and in the IPC-08 benchmarks, it performs quite well
on parcprinter. The overall impact of the improvement
provided by the safeness information is also shown in the ta-
bles; the difference is little because the improved LP very
often provides the same estimates. To test the reformulation
method for improving the heuristic, wemanually changed the
airport domain by simply extending the goal description
with the fluent (at-segment ?a ?s) for each occurrence
of the fluent (is-parked ?a ?s) in the goal, and with the
fluent (not blocked ?s ?a) for each occurrence of the
fluent (airborne ?a ?s) in the goal.
In terms of running times, the panel on the left in Fig. 1

shows a comparison between the SEQ and LM-cut heuristics
on the commonly solved instances across all the domains,
while the panel on the right shows results within selected
domains. As seen, there is no a clear dominance between
heuristics on these instances, and interestingly, there seem to
be some complementary behaviour for the heuristics, on a
domain basis, which may be exploited by using portfolio sys-
tems, or the selective-max heuristic [Domshlak et al., 2012a].
The final chart, in Fig. 2, compares the number of expanded

nodes by both heuristics on the commonly solved instances.
The total number of expansions favors LM-cut with respect
to SEQ, yet there several instances in which SEQ expands far
less nodes. If we compute the average number of expansions
per second, by dividing the total number of expanded nodes
by the total time to solve the problems, we find that LM-cut
expands on average 713.02 nodes per second, while SEQ ex-
pands 2,211.02 nodes per second. These numbers quantify
the quality-to-cost ratio of the heuristic since a better heuristic
means less expanded nodes while a more efficient one means
less total accumulated time.

5 Discussion
A few years ago a similar LP-based heuristic for opti-
mal SAS+ planning was put forward by van den Briel et
al. [2007]. Their LP formulation is obtained directly from
the planning problem and is also based on “flow” relations
between fluents and actions as the SEQ heuristic. However,
such formulation uses variables for actions and fluents (not
only actions like SEQ) while the constraints are obtained
from the domain transition and causal graphs of the prob-
lem. Both formulations are different, in terms of variables
and constraints, while the van den Briel et al.’s seems to pro-
duce tighter bounds on some problems because the prevail
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conditions play a more active role. On the other hand, the
resulting LPs are more difficult to solve to the point of being
ineffective for guiding a search-based planner. This is clearly
seen in their experiments in which only the value for initial
states are computed.
hSEQ approximates the ILP that defines hiSEQ. In general,

the LP for hSEQ does not have integral solutions, but we have
observed that it does so in many problems. A known fact be-
tween ILPs and their LP relaxations is that if the matrix A
that define the constraints is totally unimodular (TU), then
the relaxed LP has integral solutions for any cost vector and
thus solve the ILP [Korte and Vygen, 2001]. A matrix A is
TU when every minor (determinant of square submatrix) has
value in {−1, 0, 1}. Furthermore, it is known that the inci-
dence matrix of any directed graph is TU. The incidence ma-
trix of a P/T net is not the incidence matrix of the net when

viewed as a directed graph,3 yet it is similar and related to it.
One can define another heuristic in terms of the ILP defined
by the TU matrix of the P/T net which can then be solved ex-
actly in polytime by just dropping the integrality constraints.
However, the new heuristic is not as informative as hSEQ. We
do not have yet a clear interpretation for the dual of the LP for
hSEQ. Certainly it is an important issue that may shed light on
the strengths and weaknesses of hSEQ and ways to improve it.
We plan to study it in the near future.
We finish this discussion with a brief summary. The pa-

per introduces a new admissible heuristic for optimal SAS+

planning that is obtained from the state equation for the Petri-
net associated with the problem. The heuristic is defined in
terms of an LP problem that need to be solved for each node
encountered during the search. Despite the overhead of this
operation, the resulting heuristic is competitive with state-of-
the-art heuristics in both number of problems solved and time
to solve them.
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Abstract
Delete-free planning (DFPlan) underlies many popular relax-
ation (h+) based heuristics used in state-of-the-art planners,
and a number of recent planning domains are naturally delete-
free. This has led to increased interest in efficient meth-
ods for cost-optimal DFPlan. To aid in the solution of DF-
Plan problems, we introduce a new analysis technique, called
domination-free reachability (DFR). DFR is an improved ver-
sion of the well known notion of reachability in graphs that
filters out nodes that are not useful for optimal planning. We
explain how to compute DFR, and present three new pruning
techniques that use it. Combined with a recent decomposition
technique these pruning methods lead to effective pruning in
delete-free planning.

Introduction
Heuristic search is currently the preferred method for solv-
ing satisficing and optimal planning problems. Among
alternative methods for generating heuristic functions,
relaxation-based heuristic functions are extremely popu-
lar, effective, and influential (Hoffmann and Nebel 2001;
Helmert and Domshlak 2009). These methods estimate min-
imal distance-to-goal of a state in the delete-free problem
generated from a given instance by removing all delete-
effects. Computing this value, known as h+, is NP-
hard (Bylander 1994). Effective approximations exist (Hoff-
mann and Nebel 2001; Helmert and Domshlak 2009), yet
efforts continue to improve these techniques in order to
provide even better heuristic estimates (Pommerening and
Helmert 2012; Haslum, Slaney, and Thiébaux 2012; Gefen
and Brafman 2012), as well as to handle naturally delete-
free domains more effectively (Gefen and Brafman 2011;
Porco, Machado, and Bonet 2011; Gallo et al. 1993).
In this paper we investigate improved pruning techniques

for delete-free planning (DFPlan). Our pruning techniques
rely on a new construction, domination-free reachability
(DFR) that seeks to improve the standard notion of reach-
ability for optimal planning. Reachability and reachability
analysis, whether forwards or backwards, underlies some
fundamental techniques in planning. DFR attempts to pro-
vide a more refined notion of reachability, one that filters
out ”useless” nodes in the context of optimal planning. A

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node is useless in optimal planning if it is not part of some
optimal plan from the initial state to the goal. Obviously,
computing whether a node is part of an optimal plan is a
difficult problem, and DFR which is a practical, polynomial
time technique cannot compute this. What DFR provides is
an approximation of this concept, whose practical utility is
shown in our empirical evaluation.
The DFR technique operates on a faithful graphical de-

piction of a DFPlan problem, called the relaxed causal
graph (Keyder, Richter, and Helmert 2010; Gefen and Braf-
man 2012). The nodes of this graph correspond to facts and
actions. Given special source node (that corresponds to the
initial state) and a target node (goal state) DFR seeks to find
all nodes that are part of at least one minimal plan from the
initial state to the goal. A plan π forG is minimal if no other
plan forG is a strict subset of the set of actions in π. That is,
we can not remove any action from π without loosing its le-
gality or its ability to achieveG. Finding the set of all nodes
which are part of a minimal plan is NP-hard, and the DFR is
an over-approximation of it that is often much smaller than
the set obtained using standard reachability.
We focus on the notion of minimal plans because of the

results of (Gefen and Brafman 2012) (GB). GB show that,
given a set of landmarks suitably ordered, an optimal plan
can be generated by generating minimal plans between these
landmarks. This implies that one can decompose the plan-
ning problem into multiple simpler search problems in each
of which we seek to achieve a landmark, and where one
needs only consider minimal plans. The DFR helps us make
the search for each such minimal plan more efficient because
it allows us to prune nodes that are guaranteed to not belong
to any minimal plan.
In the first part of this paper, we define the notion of DFR,

show how to compute it, and demonstrate its soundness with
respect to minimal plans. In the second part of the paper, we
show how to use the DFR to prune A* search for an opti-
mal plan. We discuss three methods. The first, the simplest,
the most obvious, and the most effective simply prunes ac-
tions that are not part of the (backwards) DFR of the goal.
The second technique is a simpler variant of the notion of
disjoint-path commitment introduced by GB. Intuitively, if
a1 and a2 are two actions that achieve the goal then a min-
imal plan will include only one of them. If we can identify
that our current plan is a prefix of a minimal plan targeting
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a1, due to minimality, we can commit to a1, and prune ac-
tions that are only part of a minimal plan targeting a2. The
DFR algorithm, which provides a sound estimate of ”being
in a minimal plan” allows us to operationalize this intuition.
Finally, in the last pruning method we describe, we use the
DFR algorithm to provide an upper bound on the cost of a
minimal plan because we know that the true minimal plan
is a subset of the set computed by DFR. This bound can
be used for standard bound-based pruning. We conclude the
paper with an empirical evaluation of these pruning methods
and a short discussion.

Delete-Free Planning Tasks
A delete-free STRIPS planning task, orDF task for short, is a
4-tuple (P,A, I,G). P is a finite set of propositions. A state
s is represented by the set of propositions that are true in it.
I ⊆ P is the initial state. G ⊆ P is the set of propositions
that must be true at any goal state. A is the set of actions,
where a ∈ A has the form: a = �pre(a), add(a)� denoting
its preconditions and add effects. An action a is applicable
in a state s ⊆ P iff pre(a) ⊆ s. Applying a in s transforms
the system to the state s ∪ add(a). We use a(s) to denote
the resulting state. When a is not applicable in s then a(s)
is undefined. We do not consider actions with conditional
effects. Therefore, there is always an optimal plan with only
one instance of each action, as a second instance of an action
has no effect on the state.
A solution to a DF task is a plan π = (a1, . . . , ak) such

that G ⊆ ak(· · · (a1(I)) · · · ). That is, it is a sequence of
actions that transforms the initial state into a state satisfying
the goal conditions.
Landmarks play an important role in the work of GB: they

are used to decompose the problem. A fact landmark for a
state s is a proposition that holds at some point in every plan
from state s to the goal (Hoffmann, Porteous, and Sebastia
2004). An action landmark for a state s is an action that
must be part of any plan from s to the goal. A disjunctive
action landmark for a state s is a set of actions, at least one
of which must be part of every plan from state s to the goal
(Helmert and Domshlak 2009).
A plan π for G is minimal if no other plan for G contains

a strict subset of the actions in π. Clearly, any optimal plan
must be minimal, unless zero-cost actions exist, in which
case it must have a sub-plan which is minimal. Therefore,
when seeking an optimal plan for G, we can prune any plan
that is not minimal without sacrificing optimality.
The following Lemma underlies the decomposition tech-

nique of GB.

Lemma 1 (Gefen & Brafman, 2012). Let L be a set of fact
landmarks for a DFPlan problem Π = (P,A, I,G), such
that G ⊆ L. Then, if there is a solution to Π, there ex-
ists an ordering l1, . . . , lk of L and a minimal plan π for Π
such that π = π1, . . . , πk, where πi is a minimal plan for
(P,A, πi−1(· · · (π1(I)) · · · ), li).
Building on existing efficient algorithms for landmark de-

tection (Keyder, Richter, and Helmert 2010), GB provide
an efficient procedure for generating a landmark ordering
as needed in Lemma 1. Thus, instead of planning for G,

one can incrementally plan for each of the landmarks, keep-
ing around minimal plans only. Although this method may
prune some optimal plans, it is guaranteed to leave some op-
timal plans intact.
For the first part of the paper, we will focus on the task

of finding one of the component minimal plans πi. This
could be a plan to reach l1 from I , or a plan to reach lk from
πk−1(· · · (π1(I)) · · · ). The reader can simply think of it as
reaching G� from some initial state I �.

The Relaxed Causal And/Or graph
We can capture the structure of delete-free problems using
a directed And/Or graph known as the relaxed causal graph
(RCG) (Keyder, Richter, and Helmert 2010; Gefen and Braf-
man 2012). An And/Or graph is a directed graph with two
types of nodes: And nodes and Or nodes. The RCG G as-
sociates an And node with each action and an Or node with
each fact. There is an edge from (the node for) fact p to ac-
tion a if p ∈ pre(a), and an edge from a to p if p ∈ add(a).
In addition, there are two special Or nodes and two special
And nodes: s the start node (Or), is attached to a special
And node i via a special initial state edge, (s, i), and t (Or)
is attached to a special And node g via a special goal edge,
(g, t). There is an edge from s to every action with no pre-
conditions. There is an edge from s to i and an edge from i to
every initial state fact. There is an edge from every goal fact
to g, and an edge from g to t. See Figure 1 for an example.
To keep the generality of planning terms for the RCG we
define the following: pre(i) = s, pre(a) = s for every ac-
tion a without a precondition, add(i) = {initial state facts},
pre(g) = {goal facts}, add(g) = t.
A subgraph J = �V J , EJ� of G is a DF plan (aka, justifi-

cation subgraph) iff the following holds:

1. It contains s and t.

2. For every And node a ∈ V J , it contains all incoming
edges and the Or nodes from which they originate.

3. For every Or node p ∈ V J \ {s}, it contains at least one
incoming edge and the node it originates from.

4. J is acyclic.

These conditions ensure that there is an action achieving
each proposition (as well as t) and that each action has all
its preconditions satisfied. The acyclicity ensures the plan is
well founded.

Domination-Free Reachability
Forwards and backwards reachability analysis is one of the
central methods used in planning. In particular, structured
reachability analysis underlies popular techniques such as
planning graphs (Blum and Furst 1997).
In this section, we define the notion of domination-free

reachability (DFR) in an RCG. The DFR set for a node v,
dfr(v). Ideally, we would have liked dfr(v) to contain only
fact nodes n that are part of a minimal plan from s to v.
Unfortunately, this would be too hard to compute:

Lemma 2. Finding the set of all nodes which are part of a
minimal plan is NP-hard.
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Figure 1: An RCG. Facts in white, actions in grey, G1 and G2 are the goal and hence fact landmarks, g is a special goal action. Dom(2) = {s, 1, 2}, Dom(3) =
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{s, 1, 2, 3, 4}, dfr(11) = {s, 11, 44, 66}, dfr(22) = {s, 11, 22, 44, 66}, dfr(33), dfr(44), dfr(66) = {s, 11, 22, 33, 44, 66}

Proof. The hardness of this problem comes from the fact
that a minimal plan is a generalization of the concept of
a simple path in control flow graphs. (imagine a plan-
ning problem that can be represented using only a directed
graph). The question of whether there exist a simple path
from s to t with x as an obligatory node is equivalent to the
2-disjoint paths problem (Perl and Shiloach 1978) which is
known to be NP-complete.

Instead, dfr(v) conservatively approximates (= is a su-
perset of) the set of fact nodes that can be part of a minimal
plan from the start node s to v. That is, all nodes in dfr(v)
lie on some path from s to v, but not all fact nodes on such
paths necessarily belong to dfr(v). That is, some nodes that
would be obtained by standard reachability analysis for v are
not part of dfr(v). Hence, domination-free reachability is a
filtered form of reachability that can prune certain nodes that
are not part of a minimal plan.
To the best of our knowledge, it is the first effective variant

of reachability geared towards optimal planning. We will
define the notion of DFR, an algorithm to compute it, and
demonstrate it through an example. We will show that it is
an over-approximation, i.e., that it can contain nodes that are
not part of a minimal plan, but that it can be much smaller
than the standard set of reachable nodes.

Domination
Our procedure is based on the notion of domination used in
control flow graphs: “Vertex v dominates vertex w in flow
graph (G; s) if v �= w and every path from s (start node)
to w contains v” (Tarjan 1974). We adapt the idea of dom-
ination to And/Or graphs as follows: a fact v dominates a
fact w in the RCG G if every DF plan from s to w contains
v. Intuitively, one can understand this as saying that every
plan from the current state that achieves w achieves v, as
well. Slightly departing from the definition in control-flow
graphs, our definition also implies that v dominates itself.
Landmarks are often used in planning to refer to goal

dominators, but also, sometimes, to dominators in gen-
eral. We will use the original ”dominators” term because
it comes with less baggage, it is more appropriate linguisti-
cally for our setting, and it is related to the graph-theoretic

ideas that motivate us. We use Dom(x) (called the Dom
set of x) to denote all fact nodes that dominate fact x in
the RCG, including x itself. This set could also be re-
ferred to as landmarks for x. For a set X , we define
Dom(X) =

�
x∈X Dom(x). The process used to find land-

marks in (Keyder, Richter, and Helmert 2010) computes the
Dom sets naturally.
We use the notion of domination to refine the notion of

reachability. To do so, we must formalize the notion of a
path in the RCG. We borrow the following paths definitions
from directed-hypergraphs (Gallo et al. 1993): A path p =
(v0, a1, v1, a2, v2, . . . , ak, vk) in the RCG is a sequence of
facts and actions, where v0 is the origin node, vk is a target
node and for every 1 ≤ i ≤ k, vi−1 ∈ pre(ai) and vi ∈
add(ai). A simple path is a path in which no action appears
twice. A simple path will be elementary if no fact appears
twice.
To better illustrate the advantage of DFR we define

reach(v), which captures the standard notion of reachabil-
ity. reach(v) is the set of action nodes that are part of some
RCG path from the start node s to v. This set can be obtained
by a backwards traversal of the RCG (treated as a regular di-
rected graph) that starts at v and collects nodes along this
traversal. Alternatively, one can do a forward traversal start-
ing at s. These procedures can collect action nodes that are
not part of a minimal plan to v.
For example, in Figure 1 reach(1) = reach(2) =

reach(3) = reach(4) = {a1, a2, a3, a4, a5}. In contrast
to these sets, we can see that the only minimal plan from s
to 2 will contain action nodes a1, a2 and fact nodes s, 1, 2.
Indeed, node 3 is dominated by node 2.
If we can identify this fact, we can ignore node 3 when

exploring the space of possible minimal plans from s to 2.
This will be done (to some extent) by the DFR algorithm
below.

DFR Algoritm
Algorithm 1, described above takes the RCG graph for the

initial state (G(I)) at its input, and its output are the DFR
sets for each fact node. It iteratively propagates information
forward, and can be understood as reachability analysis with
filtration.
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Algorithm 1 Domination-Free-Reachability
1: DFR(G(I)) {G(I) is initial state RCG}
2: for each v ∈ V do dfr(v) ← {v}
3: Q← {s}, R ← {s} {s is the start node}
4: while Q �= ∅ do
5: Select and remove v ∈ Q
6: for all a ∈ consumers(v) do
7: if pre(a) ⊆ R then
8: for all ef ∈ add(a) do
9: R ← R ∪ {ef}
10: if ef /∈ Dom(pre(a)) then
11: if add(a) �⊆ dfr(ef) do Q← Q ∪ {ef}
12: dfr(ef) ← dfr(ef) ∪ add(a)
13: for all pc ∈ pre(a) do
14: for all r ∈ dfr(pc) do
15: if ef /∈ Dom(r) and r /∈ dfr(ef) then
16: dfr(ef) ← dfr(ef) ∪ {r}
17: Q← Q ∪ {ef}
18: end if
19: end for
20: end for
21: end if
22: end for
23: end if
24: end for
25: end while

Let dfrA(v) = {a| pre(a)∪add(a) ⊆ dfr(v)} be the set
of actions which their related fact nodes are in the dfr(v).
Then, for each v ∈ V, dfrA(v) ⊆ reach(v). For example,
in Figure 1 dfr(1) = {s, 1} and dfr(2) = {s, 1, 2}, show-
ing the superiority of the DFR sets over regular reachability.
Unfortunately, a formal characterization of dfr(v) is non-
trivial – we discuss it in a longer version of this paper which
is in preparation. Roughly speaking, dfr(v) holds all facts
which are part of a minimal plan to v. These are nodes that
can reach v (or can be reached while achieving v) but which
satisfy the additional constraint that they are not dominated
by v. There are two exceptions: (1) v itself is dominated by
v, and yet it is part of dfr(v). (2) Nodes that appear together
with v in the add effect of some action.
Technically, the algorithm works as follows: For everyOr

node v, we initialize dfr(v) to v, since any node reaches it-
self as long as there is a plan that achieves it. Two other
sets are Q – our propagation set, and R – the reachability
set. Both are initialized with the initial state node s. Now,
we start the iterative process (l. 4): To propagate informa-
tion forward, we remove a fact node v from Q and go over
all actions that can consume v (v is one of their precondi-
tion) (l. 6). For each such action a, if all of a’s preconditions
were already reached (l. 7), we can try to use a to propa-
gate information to its effect nodes. Therefore, we iterate
over a’s effect nodes ef (l. 8) as follows: First, we update
the reachability set R with ef – the node we just reached
(l. 9). Now, our first filtration is based on the fact that in-
formation should be propagated to ef only if ef does not
dominate a (i.e., any of its preconditions). Otherwise, any
plan that achieves ef using a (ef is already true before ap-
plying a) is not minimal (l. 10). If ef does not dominate a,

we would like to add add(a) to dfr(ef), since they can be
achieved simultaneously with ef (l. 11,12). Finally, we can
go over all DFR sets of the preconditions pc of a. For each
node r ∈ dfr(pc), as long as ef does not dominate r, we
can propagate r to dfr(ef) (l. 13–16). When we propagate
new information we updateQ so the new information can be
propagated further (l. 11 & 17).
Let us examine an example using Figure 1. The RCG in

Figure 1 holds two similar sub-graphs: one that is composed
of nodes 1, 2, 3, 4 and the other 11, 22, 33, 44, 66. The
fact landmarks are nodes 1, 2, 11, 22, G1, G2. A back-
ward procedure that collect actions starting at fact node 1
will collect actions a1, a2, a3, a4, a5. Two of these actions
are applicable in the initial state (a1, a4). On the other hand
dfr(1) = {s, 1}, and therefore only action a1 is in dfrA(1)
(since node 1 is a fact landmark and a1 is the only action
that can achieve it in a minimal plan, we can conclude it is
an action landmark). This outcome results from the fact that
node 1 is a dominator of 3, and therefore a5 cannot propa-
gate information into node 1.
Unfortunately, the DFR algorithm is not perfect as can be

seen using node 11. Action a55 cannot propagate informa-
tion to node 11, but it will propagate information to node
66. Action a77 will propagate nodes 44,66 to node 11 and
so dfr(11) = {s, 11, 44, 66}. With node 44 in dfr(11) also
actions a44, a55 will be part of dfr(11) although there is no
minimal plan to 11 with those actions.

Correctness
The following Lemma ensures the correctness of DFR sets
as a super-set of minimal plans for some fact node.
Lemma 3. Let dfr(G�) be the DFR set computed using Al-
gorithm 1 for DFPlan problem Π = (P,A, I �, G�). If for
some action a, pre(a) ∪ add(a) �⊆ dfr(G�) then there is no
minimal plan for G� that contains action a.

Proof. Paths in the RCG are the channels for information
propagation in Reachability/DFR algorithms. Every plan
(justification graph) can be seen as a union (of actions) of,
not necessarily disjoint, simple paths. The number of ac-
tions in each simple path that is contained in some plan π
must be ≤ the length of the plan. Therefore, the length of
simple paths can serve as a lower bound to the length of a
minimal plan.
Notice, that if π is a minimal plan, then for any simple

path p “extracted” from π that preserves the order of π, we
have that for any actions ai, aj ∈ p where aj appear after ai,
aj cannot dominate ai. This follows from the definition of a
minimal plan. We now prove by induction on the length of
simple paths that the DFR sets include all fact nodes which
are part of a minimal plan.
(i) Our induction assumption is that when we covered all
paths of length i, if there is a minimal plan with length ≤ i
to x that includes a, then pre(a) ∪ add(a) ⊆ dfr(x).
(ii) The base case, i = 0, is immediate since dfr(s) includes
s and only s.
(iii) Assuming the induction hypothesis holds for length iwe
show it holds at length i + 1. Let us look at some fact node
x. Let us assume there is a minimal plan πx of length i + 1

72



to x that ends with ax. A minimal plan to x must end with
an action where x ∈ add(ax), moreover it can’t achieve x
before. If we remove ax from πx we may get a plan which
is not minimal but is composed of paths with length ≤ i.
We shall now look at two scenarios, one in which some ac-
tion e is not an achiever of x (x is not an effect of e), and the
second one where it is:
(1) Let us look at some action e which is not an achiever of
x (ef in line 8). If pre(e), add(e) ∈ dfr(pc) where pc is
a precondition of ax (an achiever of x) and x is not a dom-
inator of pre(ax) (line 10) then we would try to propagate
pre(e), add(e) (r ∈ dfr(pc)) to x (line 13–16). If x dom-
inate y ∈ pre(e) (line 15) then each plan that uses e must
reach x before applying e and therefore it is not minimal. x
can dominate y ∈ add(e) without dominate the precondi-
tions of e if it appears with y in all add effects of actions that
achieve y (Lemma 4), but this contradicts the fact that e is
not an achiever of x.
(2) If e = ax is an achiever of x and x does not dominate
pre(e) (ef in line 10), then in the DFR algorithm add(e)
will be added to dfr(x) (line 12), and since each precon-
dition of e will propagate itself to x, since they are not
dominated by x (line 13–16) we get that pre(e), add(e) ∈
dfr(x).
At the end of the run of algorithm DFR we will propa-

gate information for all possible minimal plans (and possibly
more).

Lemma 4. Let v, x be some facts in a DFPlan problem.
Let Ax ⊆ A be a set of actions that achieve fact x (i.e. if
ax ∈ Ax then x ∈ add(ax)). If v dominates x, then: (i) It
also dominates some precondition of each ax ∈ Ax, or (ii)
In every minimal plan to x where v does not dominate some
precondition of ax ∈ Ax (the action that achieves x in that
plan) it appears with x in the add effect i.e. x, v ∈ ax.

Proof. If v dominates x ∈ add(ax), every plan that achieves
x must also achieve v. If v must be achieved before x, i.e.
before some action ax that achieves x is being applied then
v must dominate some precondition of ax. If there are plans
where v is not achieved before x, then it must be achieved
simultaneously with x, i.e. x, v ∈ add(ax).

Pruning Using DFR
What follows are three pruning methods that strongly uti-
lize the DFR algorithm. These methods can be applied to
any DFPlan problem, but they are even more effective when
combined with the decomposition method of GB. The rea-
son for this is that GB’s decomposition yields multiple plan-
ning problems, each with a shorter solution, and our pruning
methods are more effective the closer the goal is to the initial
state.

Basic DFR Pruning
The simplest and empirically most powerful pruning method
is based on Lemma 3. Given a planning problem with ini-
tial state I � and goal state G�, prune any action a such that
pre(a)∪ add(a) �⊆ dfr(G�). Lemma 3 guarantees that such
actions are not part of a minimal plan to G�.

Path-Commitment using DFR
One of the two pruning methods introduced by GB is called
disjoint-path commitment. There, the last action alast ap-
plied during A* search towards some goal l, is used to prune
actions that are not part of a minimal plan containing alast.
To use this method, one must be able to recognize that cer-
tain actions belong to different, disjoint minimal plans that
lead to l. GB use the following sound approximation to ap-
ply this idea in practice: (i) At preprocess time, define a set
of labels – one for each action achieving l. Using a back-
wards traversal from l, propagate these labels backwards.
Intuitively, one now identifies different path to the goal with
their last action. Let lbl(a) be the set of labels reached to ac-
tion a. Intuitively, these labels mark the different path to l to
which a belongs. (ii) Then, during search, as long as alast

did not achieve a fact landmark, one can safely prune any
action a where lbl(a) ∩ lbl(alast) = ∅ – that is, the labels
of that action are disjoint from the labels of the last action
applied.
We will show how to use the DFR sets to obtain an im-

proved version of GB’s disjoint path commitment. It re-
places GB backwards label propagation – essentially back-
wards reachability – with the use of DFR sets. As these sets
provide a better form of reachability for minimal plans, the
resulting method is more powerful. The basic idea is simple:
First, associate every action in dfr(G�) with one or more
preconditions of the actions that achieve the current goal, or
landmark. We do so by ”reverse” computing DFR sets of
these actions.
Next, imagine we have only two actions ap, aq with pre-

conditions p, q respectively, which achieve G�. If the action
alast that was last applied belongs to the DFR set of precon-
dition p, but not of q, then any minimal plan containing alast

must achieve the goal via ap. It would be redundant (non-
minimal) for such a plan to contain aq as well. Moreover,
we can ignore any other action that is not part of a minimal
plan containing ap after applying alast.
Note that the above intuitions are correct provided that the

last action applied, alast does not achieve some landmark l.
Our discussion below is under this assumption.
We start formulating the ideas above using the follow-

ing two observations: Let πi = (a1, . . . , ak) be a mini-
mal sub-path to l, where ak achieves l. (1) We know that
a1, . . . , ak ∈ dfrA(l) because all actions of a minimal plan
must be in dfrA(l). (2) We know that a1, . . . , ak−1 ∈
dfrA(x1) ∨ · · · ∨ dfrA(xt), xi ∈ pre(ak), because the first
k− 1 actions must be in the dfrA sets of one of ak’s precon-
ditions.
Notice, that if we knew the identity of ak, we could prune

all actions that are not in the DFR sets of one of ak’s pre-
conditions. We usually cannot know who is ak – it must
belong to the set of achievers of l – but using alast we can
sometimes find a smaller set than ach(l). Since we assumed
that alast does not achieve a fact landmark, it is one of the
actions a1, . . . , ak−1, as in the observations above. Let us
assume the index of alast is aj (j ≤ k − 1). We can use
alast to identify which actions in ach(l) could be in a mini-
mal plan with alast. That is, we can find which actions can
act as ak. Since we know what the possible ak’s are, we can
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prune actions that cannot be aj+1 in such a plan.
To use these ideas we do the following: (i) Let dfrb(v) =

{x|v ∈ dfr(x)}. That is, it is the set of facts x such that
v can appear in a minimal plan that reaches them. (ii) Let
dfrb(a) =

�
v∈pre(a)∪eff(a) dfrb(v). dfrb(a) is the set of

facts such that a can be part of a minimal plan that reaches
them. (iii) Let PRE(l) = {f |f ∈ pre(a) ∧ a ∈ ach(l)},
i.e., all preconditions of actions that achieve l. (iv) We can
now define cmt(alast, l) = dfrb(alast) ∩ PRE(l). This is
a set of fact commitments for l given alast. At least one of
these facts must be achieved in any minimal plan for l that
includes alast. That is, it is similar to a disjunctive landmark
focused on minimal plans for l that include alast.
Let us examine Figure 1 again, and assume our next land-

mark to achieve is G1 and that alast = a1.dfrb(a1) =
{s, 1, 2, 3, 4, G1, G2, t}, PRE(G1) = {2, 22}. Therefore
cmt(a1, G1) = {2}. We can notice three things: (1) We
eventually must be able to apply action a99 (2) We must
achieve node 2 (which is in cmt(a1, G1)) (3) We also need
to achieve node 22 (which is not in cmt(a1, G1)). Since, we
must achieve node 2, we can focus our search on this node
until it is achieved and then turn our focus to node 22. We
now formulate this observation
During A* search we divide the commitment set

cmt(alast, l) into two sets. The first set cmt1(alast, l) com-
posed of the facts in the commitment set still unachieved.
cmt2(alast, l) is composed of achieved facts (facts in the
state). The second set must be strengthened as follows:
cmt∗2(alast, l) = {x|x ∈ pre(a)∧ pre(a)∩ cmt2 �= ∅∧a ∈
ach(l)}. That is, we add to this set all preconditions of ac-
tions that uses facts from cmt2 and achieve l. The reason
this strengthening is necessary is because that cmt2 could
hold only part of the preconditions of some action in ach(l)
(as in the example above). If that precondition is already in
the current state (like node 2) we will still need to achieve the
rest of the preconditions (node 22). Now, during search, if
alast did not achieve a fact landmark, and action a /∈ ach(l),
we can safely prune a, if there is no fact y in cmt1 or cmt∗2
where a ∈ dfrA(y). For example, if now alast = a2, then
cmt1 will be empty, cmt2 = {2} and cmt∗2 = {2, 22}, forc-
ing us to turn our focus to node 22.
Let us now look at another example from Figure 1. If

we will remove from the RCG in Figure 1 action a99 and
fact node G1, we will get an RCG with only one fact land-
mark G2 (besides s). Now (using the mentioned RCG),
let us assume the last action taken was a1 which did not
achieve a fact landmark. dfrb(a1) = {s, 1, 2, 3, 4, G2, t},
PRE(G2) = {2, 22}. Therefore cmt(a1, G2) = {2}. So,
we can prune any action that is not part of dfrA(2). Notice,
that if a8 would have another precondition besides node 2,
we could miss it based on dfrb(a1) alone. In that case, We
could safely prune until node 2 is in state, then we would
have to strengthen cmt2 to ”see” the other precondition.

Sub-goal Bounds
Our third and last pruning technique uses the DFR differ-
ently. Let us assume we have some upper bound u on the
cost of the entire plan to G. We’d like to get an upper
bound on the cost of achieving G�, our current landmark.

We do so by first estimating the state s(G�) reached when
G� is achieved. Then using an admissible heuristic to ob-
tain a lower bound d on the cost of achieving the final goal
G from s(G�). Now, u − d is an upper bound on the cost
of achieving G�. We use the dfr(G�) as our estimate of the
state s(G�). This is justified because we know that all facts
achieved on route to G� using some minimal plan are in-
cluded in dfr(G�). This gives us a ”quick and dirty” method
of generating an upper bound on the cost of achieving G�

which requires only a single computation of the heuristic
function (very cheap) and a single computation of dfr(G�),
which is computed anyway during preprocessing.
An upper bound u on plan cost provides a simple (well

known) method for pruning during A∗ search. Any state s
such that f(s) = g(s) + h(s) > u can be pruned (assuming
an admissible h value). Our main observation here is that
this idea can be used at each stage implemented in the GB
framework, since their decomposition approach reduced the
problem of searching for a single plan to one of searching
for many (simpler) plans (see Lemma 1).
Unlike the first two pruning methods discussed so far,

which would work for any I �, G�, the bounds generation
method takes a slightly more global perspective, and will
generate the upper bounds for all the relevant subproblems
obtained in GB’s decomposition at preprocessing time.
First, we get an upper bound on the cost of the entire

plan. To get an upper bound on plan cost, one can use
hadd, hmax (Bonet and Geffner 2001) to guide the selection
for a satisficing plan, much like in FF (Hoffmann and Nebel
2001). A stronger technique will be to use algorithms de-
scribed in (Keyder and Geffner 2009). The cost of this plan
is an upper bound u. Next, recall that GB’s decomposition
method generates a sequence L = (l1, l2, . . . , lk) of ordered
landmarks (see Lemma 1). Using this sequence, we create
a sequence of partial assignments that an optimal plan must
reach. These partial assignments are supersets for minimal
plans, specifically, the plan to l1 must reside in dfr(l1).
Since in DFPlan propositions achieved remain true for-

ever, as long as we keep the landmark ordering, a minimal
plan to {l1, l2} must lead to a state in which the achieved
propositions are a subset of dfr(l1) ∪ dfr(l2). More gener-
ally, the superset of any state achieving lj is dfr(l1) ∪ · · · ∪
dfr(lj).
Using an admissible heuristic function h, we now get

the following respective bounds on the cost of reaching
each of the landmarks: Let B = (u − h(dfr(l1)), u −
h(dfr(l1) ∪ dfr(l2)), . . . , u − h(dfr(l1) ∪ · · · ∪ dfr(lk))),
where h(dfr(v)) is an admissible heuristic of state s =
{x|x ∈ dfr(v)} to the goal. This computation needs to be
carried out once only, before search commences.
During search, for each current state s, each applicable

action a, and next landmark to achieve li, we can ask: is
g(s) + cost(a) ≤ B(i)? If the answer is no, we can prune
a. If all actions applicable at s are pruned, s is a dead-end
for optimal planning.

Empirical Results
We implemented the ideas described in the previous sections
in the Fast Downward framework (Helmert 2006). The DFR
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algorithm was implemented to run once at preprocess time.
The Q set in the algorithm was implemented as a queue.
Pruning itself is done while in search, with respect to the
next fact landmark to achieve. We implemented two vari-
ants: DFR1 uses the first pruning method only (basic DFR
pruning). DFR2 uses all three pruning methods. We evalu-
ated their performance in the context of heuristic search (us-
ing A∗) using LM-Cut and compare to the results in the GB
paper in Table 1,2. Domains used are delete-free versions of
IPC problems. The time limit is 0.5/5/30 minutes per prob-
lem. We compare LM-Cut alone to GB + LM-Cut, DFR1
+ LM-Cut and DFR2 + LM-Cut. The overall performance
(coverage, time scores, expansion scores) shows that prun-
ing in general has an advantage over LM-Cut alone in almost
all of the domains. There are some domains where the GB
method is better than the basic pruning (DFR1), like logis-
tics98 and satellite. For the satellite domain this can be the
result of the path-commitment based pruning, since, DFR2
is better than the GB method in this domain. For logistics98,
the GB method is better than DFR2 so this is probably due
to minimization of disjunctive action landmark that is done
in the GB method for which we have no parallel technique
(although it is theoretically possible). We show DFR2 with
all three pruning methods because our experiments showed
that the contribution of sub-goal bounds is minor. Still, we
believe it to be an interesting general technique that could be
enhanced using stronger heuristics.
We also tried our pruning procedure on the seed-set prob-

lems with zero-cost actions. Zero-cost actions are challeng-
ing to existing solvers which cannot solve any instance of
this problem (Gefen and Brafman 2011). Pruning, in this
case, is not sufficient to overcome this method. However,
when we augment pruning with a simple procedure that ap-
plies all applicable zero-cost actions, then pruning+blind-
search+zero-cost-procedure solves all the seed-set prob-
lems.

Summary and Related Work
Using the graph-theoretic notion of domination, we were
able to construct a new simple domination-free reachabil-
ity method for delete-free planning and use it within the de-
composition framework of GB to obtain better performance
than the more complicated pruning techniques of (Gefen and
Brafman 2012). In addition, we leveraged the decompo-
sition to introduce a bounds-based pruning method. Our
method was shown to be more effective in solving delete-
free planning problems. The increased coverage is not large
– we solve 16 more problems than GB – yet in the context
of optimal planning, this is considered non-trivial progress.
Perhaps more importantly, our work is based on a new con-
struction that improves upon one of the more fundamental
tools in the analysis of planning problems – that of reacha-
bility – and we are not aware of any similar such construct
in the literature.
The DFR algorithm shares some similarity with the first

achiever analysis (Haslum, Slaney, and Thiébaux 2012;
Pommerening and Helmert 2012) which removes all oper-
ators that are not first achievers of any variable (Richter,
Helmert, and Westphal 2008). Such actions can not be part

Domain LM-Cut GB DFR1 + DFR2 +
method LM-Cut LM-Cut

Seconds 30 300 1800 30 300 1800 30 300 1800 10 30 300 1800
airport(50) 26 33 38 40 48 49 29 42 49 23 28 43 48
blocks(35) 35 35 35 35 35 35 35 35 35 35 35 35 35
depot (22) 4 6 7 10 10 12 9 10 10 9 9 10 10
driverlog (20) 13 14 14 13 14 15 14 15 15 13 14 15 15
elevators- 5 7 7 6 7 9 5 7 8 4 5 6 8
opt08-strips (30)
freecell (80) 1 4 6 0 1 1 1 4 6 1 1 4 6
grid (5) 1 1 2 1 1 2 1 2 2 1 1 2 2
gripper (20) 20 20 20 20 20 20 20 20 20 20 20 20 20
logistics00 (28) 23 23 23 28 28 28 28 28 28 28 28 28 28
logistics98 (35) 7 8 8 10 17 17 12 15 16 11 13 16 16
miconic (150) 150 150 150 128 150 150 150 150 150 150 150 150 150
mprime (35) 19 24 27 17 21 24 19 24 27 17 20 25 28
mystery (30) 23 25 26 20 25 26 22 26 26 17 23 26 26
openstacks- 5 6 7 5 7 8 4 5 7 30 30 30 30
opt08-strips (30)
openstacks- 5 5 5 5 5 5 5 5 5 5 5 5 5
strips (30)
parcprinter- 23 23 23 29 29 30 30 30 30 30 30 30 30
08-strips (30)
pathways- 5 5 5 5 7 8 5 5 8 5 5 6 8
-noneng (30)
pegsol-08 24 27 27 24 26 29 25 27 27 18 25 27 27
-strips (30)
pipesworld- 12 15 17 10 13 17 12 15 17 10 12 16 17
notankage (50)
pipesworld- 7 10 10 6 7 9 7 10 10 6 7 10 10
tankage (50)
psr-small (50) 50 50 50 50 50 50 50 50 50 50 50 50 50
rovers (40) 8 12 12 17 20 21 18 20 21 20 21 25 28
satellite (36) 6 6 7 6 8 10 6 7 7 6 7 9 11
scanalyzer- 13 14 15 8 10 14 10 14 15 9 10 14 15
08-strips 30)
sokoban- 19 21 25 22 24 26 20 22 26 17 20 22 26
08-strips 30)
tpp (30) 9 12 13 14 15 16 17 21 21 19 19 21 21
transport- 9 10 12 9 12 12 9 10 12 9 10 10 10
opt08-strips (30)
trucks-strips (30) 6 7 9 24 30 30 30 30 30 30 30 30 30
woodworking- 17 18 19 27 27 28 27 27 29 27 27 27 29
opt08-strips 30)
zenotravel (20) 11 13 13 13 13 13 13 13 13 13 13 13 13
Total (1116) 556 604 632 602 680 714 633 689 720 633 668 725 752

Table 1: Coverage per domain. time limit per problem: 0.5 (30s), 5 (300s),
30 (1800s) minutes (sec.). We add a DFR2 column of 10 seconds to see
where it is tied with 30 minutes of LM-cut alone.

a minimal plan. In fact, Line 10 in the DFR algorithm pre-
vents the propagation of information through actions which
are not first achievers, treating them as if they were not in
the RCG. The DFR algorithm then continues to detect ac-
tions that cannot be part of a minimal plan but still would
not be removed by the first achiever analysis. For example,
in Figure 2 the DFR set of nodes 1, G1 does not contain ac-
tions a2, a3 which will not be part of a minimal plan even
though they are first achievers.
A similar notion to path-commitment in regular planning

was recently introduced by (Karpas and Domshlak 2012).
In this paper causal links are used to infer constraints that
must be satisfied by an optimal plan having some known
prefix. The constraints are used to enhance a heuristic eval-
uation. Therefore, the notion of optimal plan plays a similar
role as the minimal plan in the path-commitment method. It
could be the case that using the notion of optimal plan is too
restrictive, and using minimal plan instead would simplify
this work.
To our knowledge, the work of GB and this paper are the

only work in the literature that focuses on pruning in delete-
free problems using A* search. There are, however, some
other recent works on delete-free planning: (Pommeren-
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Figure 2: An RCG where first achiever analysis would not remove actions (but i).

planner Time score Expansion score
LM-cut 46.58 45.75
GB method + LM-cut 53.05 57.07
DFR1 + LM-cut 54.82 55.59
DFR2 + LM-cut 58.36 58.89

Table 2: time limit per problem: 30 minutes. Scores are average of do-
main score values for each planner. Scores based on (Richter and Helmert
2009). Logarithmically scaled scores between 0 (≥ 300s and ≥ 1000000

expansions resp.) and 100 (≤ 1s and ≤ 100 expansions resp.).

ing and Helmert 2012) share some similarities regarding
upper-bounds, although they don’t use A* search. (Haslum,
Slaney, and Thiébaux 2012) try to solve delete-free prob-
lems by generating minimal disjunctive action landmarks
and then applying minimal-hitting set procedure to find an
optimal plan. There has been also quite a few recent pa-
pers dealing with action pruning: Stratified Planning (SP)
(Chen, Xu, and Yao 2009), Expansion core (EC) (Chen
and Yao 2009), Bounded intention Planning (BIP) (Wolfe
and Russell 2011), Symmetries (Coles and Coles 2010;
Fox and Long 1999; Pochter, Zohar, and Rosenschein 2011).
Of these, the only work we are aware of that is landmark
based is the SAC algorithm (Xu et al. 2011) and its use of
disjunctive action landmarks is closer in spirit to GB.

The DFR sets in this paper are generated at preprocess-
ing time giving them an advantage over the GB method
which is repeatedly applied at run-time. This can be seen
in the fact that even though GB use an extra minimization
step to generate minimal disjunctive action landmark, the
basic DFR method (DFR1) has, in general, a better average
time score, while DFR2 has also a better average expansion
scores. These observations supports our belief that the DFR
set is a strong theoretical concept, and we believe that it can
be used by other methods – any method that can benefit from
the notion of minimal plans rather than (any) plan could po-
tentially benefit from the use of DFR sets.
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Abstract

Classical planning systems tend to focus on produc-
ing one best solution according to a single objective
function or metric. In domains with metrics that can
be linearly combined, action costs are a suitable choice
for modeling the metric(s). In some domains, however,
metrics can interact in subtle ways that may be inappro-
priate for a weighted objective function. Existing bench-
mark domains explore a small subset of potential met-
ric interactions, typically examining one or two non-
temporal metrics that rarely interact within the same
action. We create a synthetic domain that allows us to
systematically vary two non-temporal metrics with re-
spect to each other and to plan length. From this do-
main, we make observations about the search behavior
of bounded suboptimal search. We find that search per-
formance (a) is the poorest when the two metrics are ei-
ther collinear or uncorrelated regardless of their strength
of correlation with plan length; (b) is best when the
metrics correlate with each other in a simple curvilin-
ear fashion that is strongly correlated with plan length;
(c) degrades for curvilinear functions as the functions
become weakly correlated with plan length, and (d) de-
grades as the metrics interact with each other or plan
length in subtle or uncorrelated ways.

Domains with multiple, competing objectives (e.g., mini-
mizing time versus money) are common but have been sim-
plified in planning research to avoid explicitly reasoning
about the trade-offs. The net-benefit track in the 2006 plan-
ning competition (Gerevini and Long 2005) and the focus on
plan quality in recent International Planning Competitions
(IPCs) using action costs have taken steps in this direction,
capturing the trade-offs via a weighted evaluation function.
Temporal and resource reasoning lies at the heart of many

significant problems in planning research. A wealth of lit-
erature exists for producing (diverse) temporal plans using
a single plan metric (e.g., SAPA (Do and Kambhampati
2003), LPG-td (Gerevini, Saetti, and Serina 2006), COLIN
(Coles et al. 2012)). In most cases, these temporal+metric
planners embed deep reasoning to solve specific resource
and time constraints that lie at the junction of planning and
scheduling. It is difficult to assess the contribution of the
non-temporal metrics when they are combined with tempo-
ral concerns in a weighted objective function.
We focus on numeric-only metric domains rather than

examining temporal+metric planning. Our approach is to
isolate the non-temporal metrics with the hope of assess-
ing search behavior for these metrics. The findings we
present complement the temporal+metric planning literature
by probing deeper into the non-temporal metrics. We dis-
cuss how metrics are used in existing IPC benchmarks and
show that these domains rarely explore interactions between
the metrics within the same action. We then highlight some
unique qualities of the domain that motivates our study: cy-
bersecurity for the personal home computer user. The secu-
rity domain does not require deep temporal or resource rea-
soning, but it does have multiple non-temporal metrics by
which plans are evaluated.
To study metric interaction in isolation, we create a syn-

thetic domain that allows us to vary the interactions of two
metrics, x and y, with each other and with plan length.
The interactions include uniform random plus three struc-
tured interactions (and their “mirrored inverses”): linear, sig-
moidal, and polynomial. We examine search cost and the
ability to find minimal solutions for A∗

� (Pearl and Kim
1982), as implemented in MetricFF (Hoffmann 2003). We
find that this implementation of A∗

� has the most difficulty
finding minimal solutions for collinear and random interac-
tions, while it is most successful for simple curvilinear in-
teractions that are strongly correlated with plan length. Uni-
formly scaling the metrics so that they less strongly correlate
with plan length decreases the ability of A∗

� to find minimal
solutions. Weighting one metric more heavily than the other
degrades search performance as well. These findings, though
limited, suggest directions for future work in characterizing
search behavior when metrics interact.

Multi-metric Domains
Our work is motivated by a non-temporal domain: iden-
tifying potential breaches for a personal computer system
(Roberts et al. 2011). We are extending this domain to use
four metrics not readily combined into a single objective
function. The likelihood of attack and cost of attack char-
acterize the risk associated with doing nothing about a po-
tential threat, while utility to the user and cost of intervening
characterize the reward of better securing the system while
minimizing user irritation. Searching for breaches in the se-
curity domain is unique in that a property called monotonic-
ity (Ammann, Wijesekera, and Kaushik 2002) eliminates cy-
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cles and bounds the length of plans, but the interacting met-
rics create a challenge for search because they may interact
in subtle ways. For example, phishing attacks have a high
privacy violation cost because a novice user may provide fi-
nancial or personal details to a malicious third party, thus
subjecting themselves to unpleasant consequences. Since
such attacks can only happen through email, a low cost in-
tervention might be to disallow email. However, this is un-
likely to be a desirable intervention from the user’s perspec-
tive given the ubiquity of email use for communication. A
higher-cost intervention could be educating the user, but fail-
ing to do this well may increase the risk and/or cause the user
to be more confident in their ability than they actually are.
The agent of this security application must reason about a set
of alternative plans which balance the complex trade-offs of
how likely an attack will lead to a compromised system, of
the costs associated with intervening against such attacks,
and of the repair costs for a (potentially) compromised sys-
tem. In short, there is no single, best solution.
Existing multi-metric benchmark domains provide some

inspiration in how to approach the multi-metric security do-
main. We highlight six non-temporal benchmark domains
from IPC-2002 (Long and Fox 2003) that are represented in
PDDL 2.1, Level 2 (Fox and Long 2003): Depots, Driver-
Log, Satellite, Settlers, Rovers, ZenoTravel. These domains
were a significant advancement toward metric planning and
include at least two unique metrics in addition to plan length.
Radzi (2011) shows that the single, weighted-sum metric in
most of these domains interacts with plan length in ways
that make the problem straightforward to solve1. Only Set-
tlers has metrics that interact with plan length in an interest-
ing way that is not correlated with plan length. Radzi further
shows that, for most domains, the metrics interact within a
set of repeatable action sequences (e.g., in satellite, turning
the camera to take an image) or the metrics interact within
a producer/consumer model where one action increases the
availability of a resource that is later consumed by another
action. While these benchmarks have a variety of metrics
that do interact in constrained ways, the metrics rarely con-
tradict plan length or interact within the same action.
In other multi-metric applications, the metrics may have

competing or subtle interactions that occur within an action.
The security application is one example. Another example is
an autonomous system that needs to balance the overall ob-
jectives of a mission while assessing metrics such as power
consumption, remaining time, risk and safety, level of re-
quired coordination, communications delay, etc. Yet another
example is a human travel agent using a mixed-initiative
planning system to book an itinerary that balances cost, total
travel time, airport preferences, choice of seating, etc.

1More specifically, Radzi (2011) distinguishes metric straight-
forwardness into a spectrum of strictly straightforward (plan length
is a proxy for the metric), straightforward (plan length may be a
proxy), semi-straightforward (plan length and the metric may di-
verge but the metric is monotonic in the plan length), and expres-
sive (the metric may contradict plan length). Radzi examines sev-
eral new domains for the semi-straightforward category and leaves
to future work the set of expressive domains, of which we believe
the security domain may be one case.

Controlling for Metric Interactions with a
Synthetic Domain

To study the impact of metric interactions on search in a con-
trolled way, we create a synthetic domain. All solutions in
the domain must have the same plan length and the metrics
must be systematically varied across the operators of the do-
main. Figure 1 presents a pictorial view of the synthetic do-
main, which is essentially a fully connected planning graph.
Nodes in this graph are states and arcs are transitions (oper-
ators). Anm×n graph hasm layers with each layer contain-
ing n states. In planning terms,m determines the plan length
of any valid solution, while n determines the granularity of
the metrics as discussed below.
States are labeled sij ∈ S , where i = {0, 1, ..,m} in-

dicates the layer, and j = {0, 1, .., (n − 1)} indicates one
of the states within a layer. The initial (i = 0) and goal
(i = m) layers have only one state; these are respectively
labeled ‘Init’ and ‘Goal’ in Figure 1.
Transitions between states are ordered pairs

(sij , si�j�), i < i�, j < j� and labeled a(ij,i�j�) ∈ A.
The middle layers of the graph are fully connected with the
next layer, so there is a path from any state in level i to all
states at the next level (i� = i + 1, j� = {0, 1, .., (n − 1)}).
There are (m − 2)n2 + 2m transitions. Each arc in the
graph represents a single operator, where the precondition
links to a state at level i and the postcondition links to a
state at level i + 1. This version of the synthetic domain is
lacking some key features of many applications: there are
no negative effects and no cycles2. We plan to add these
features into future studies of the synthetic domain.

Adding Metrics To The Synthetic Domain
Table 1 shows the weights of the transition matrix for the
3×3 problem. The weight of an arc is set to the value of the
node it leads into (shown as a small integer at the top of the
states in Figure 1). The arcs leading into the left-most states
(ai0∀i) are all set to 0. Arcs leading into the right-most states
(si(n−1)∀i) are set to 1000. Arcs in the middle interpolate the
distance between 0 and 1000. Formally, the values depend
on the jth column: aij = j ∗ 1000/(n− 1), where ∀ij, 0 <
i < m, 0 ≤ j < n. Thus, the number of states in each layer,
n, determines the granularity of the metrics across the graph.
The three metrics x, y and z are functions of the transi-

tion matrix; we only set the value of x or y if a transition
exists. The ranges of all metrics are integers [1, 1000] to en-
sure some numeric effect in every action. Values of x are ob-
tained: x(ij,i�j�) = max(1, w(ij,i�j�)). For brevity, we drop
the subscripts and say x = max(1, w). To obtain y, we ap-
ply functions that control the interaction between x and y.
These functions are listed in Figure 2 and plotted in Fig-
ure 4. The random (ran) function is a no-interaction base-
line. The other functions vary the interaction with functions
(and their “mirrored inverses”): linear, lin (nil), sigmoidal,
sig (gis), and polynomial, pol (lop). To aid in reading, note
that the letters are reversed for each inverse function. The

2The monotonicity property (Ammann, Wijesekera, and
Kaushik 2002) of the security domain motivates this restriction
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Figure 1: A graph of the 3×3 synthetic domain. Transition
weights are at the top of the node an arc leads into.

x = max(1, w) + �

ran(w) = c · uniform(1, 1000) + �

lin(w) = x = max(1, w) + �

nil(w) = max(1, 1000− w) + �

sig(w) = round(1000 ∗ (1/(1 + e−(w−500)/110))) + �

gis(w) = round(1000 ∗ (1/(1 + e(w−500)/110))) + �

pol(w) = round(1050 ∗ (1/exp(w/10)0.05)) + �

lop(w) = round(1000 ∗ (10003 − w3/10003)) + �

Figure 2: The functions used to vary metric interaction. See
Figure 4 for a plot of each function.

polynomial function is rotated to provide a more interesting
optimization metric. The fractional component of any func-
tion is truncated, and random noise � = round(N (0, 10)) is
added to all functions to generate randomized problems. If
the function or the random noise cause a negative value, it is
set to 1.
We further partition the functions into two sets. The

“easy” functions E = {ran, lin, nil, sig} show no real
trade off between x and y or have many minimal solutions
(as in nil). The “difficult” functionsD = {gis, pol, lop} ex-
hibit a trade-off with a small number of minimal solutions,
although multiple symmetric solutions may exist because we
discretize the functions. The ordering of the functions in Fig-
ure 2 and in later plots maintains the relative order of the
easy and difficult partitions.
We apply the transition matrix and the values of x and

y to create PDDL problems for a specific m×n size; this

|1,0 1,1 1,2 |2,0 2,1 2,2 | 3,0 |

----|---------------|---------------|------|

0,0 | 0 500 1000 | | |

----|---------------|---------------|------|

1,0 | | 0 500 1000 | |

1,1 | | 0 500 1000 | |

1,2 | | 0 500 1000 | |

----|---------------|---------------|------|

2,0 | | | 0 |

2,1 | | | 500 |

2,2 | | | 1000 |

----|---------------|---------------|------|

Table 1: The transition matrix for 3×3.
(define (domain synthetic-4-3-nil)

(:requirements :equality :typing :fluents)

(:types State) (:predicates (state-active ?s - State))

(:functions (x) (y) )

(:action Apply-00-10 :parameters (?state-00 - State)

:precondition (and (state-active ?state-00)

(= ?state-00 State-00) )

:effect (and (state-active State-10 )

(increase (x) 1)

(increase (y) 1000) ) )

...)

(define (problem synthetic-4-3-nil-x)

(:domain synthetic-4-3-nil)

(:objects State-00 - State

...

State-40 - State)

(:init (state-active State-00) (= (x) 0) (= (y) 0))

(:goal (state-active State-40))

(:metric minimize (x) ) )

Figure 3: Partial PDDL for the domain and problem 4×3x
nil.

yields one domain file and 21 problem variants (i.e., seven
functions, three metrics). Metrics are applied in the oper-
ator effects with (increase (f) value). The prob-
lems are labeled m×nmetricfunction, where the function is one of
{ran, lin, nil, sig, gis, pol, lop} and the metric is one of
{x, y, z}. Figure 3 shows the PDDL for 4×3x

nil.

Method
We used theA∗

� algorithm as implemented in the newest ver-
sion of MetricFF (Hoffmann 2003), a planner that directly
supports the full complement of PDDL 2.1, Level 2. Instead
of popping the best solution (s = min(q)) from the top
of the priority queue at each iteration, A∗

� (Pearl and Kim
1982) selects a solution from the top K solutions (i.e., a fo-
cus list) on the top of the queue. A solution s� is in K if
f(s�) <= 5f(s) and h(s�) = h(s). We only use MetricFF
with cost optimization enabled. This implementation does
not use helpful actions nor the initial enforced hill climbing
stage. We use m×n = 15×29 because it was as large as
MetricFF could still handle.
We show box-and-whisker plots of CPU time to a com-

pleted plan. For plan cost, A∗
� can produce suboptimal so-
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Figure 4: Examples of the interaction between metrics x and y.
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Figure 5: An example histogram explaining how to read later
plots. Thinner bars to the left are best. Wider bars to the
right indicate poorer performance. The y-axis is the percent
of total problems (out of 30) that fall into each bin.

lutions. So we state A∗
� �-minimizes a function if most of

its solutions fall within 8 times the optimal. We plan to ex-
plore more deeply the weight value within A∗

� to determine
the best setting. To plot how well A∗

� minimizes the plan,
each plan π is first scaled, cost(π)/cost∗, where cost∗ is the
minimal solution found using a simple dynamic program-
ming algorithm. A minimal plan receives a 1; other solutions
are factors of how much worse they are from the minimal
solution. We then histogram these scaled values for the 30
problems from each combination of function and metric us-
ing bin sizes of 1, 2, 4, 8, 16, and >= 32. Figure 5 shows
a comparative example of what we want to see for optimal
and worsening solution quality. Thicker bars indicate higher
variance, while the right-most bars indicate the poorest rela-
tive performance. Note that the y-axis in these plots is the
percent of total problems, which for each function/metric
combination is 30 problems.

All experiments are run on a 2.7Ghz Quad Core i7 with a
time limit of 15 minutes and memory limit of 1GB.

The Impact of Metric Interaction
Many planners are designed to minimize a single objective
function. So we expect to observe little performance differ-
ence when minimizing either x or y alone.
Hypothesis 1: For all functions, (a) A∗

� will �-minimize both
x and y (b) with insignificant differences in CPU time be-
tween the two metrics.
Table 2 (top) – this and all subsequent tables and figures

are at the end of the paper – shows the runtimes of x and y
along with the p-values for a pairwise t-test between x and
y. These are also plotted on a log scale in Figure 6 (top).
All the runtimes between the two metrics were significant
(p < 0.0073) except the linear functions3. Figure 7 (left)
shows a histogram of the scaled differences for how well
A∗

� minimizes x and y. A
∗
� has trouble finding the �-minimal

solutions.
There is a marked difference between minimizing x and

minimizing y for some problems. Both metrics have a range
that is represented equally in the actions at each layer of the
graph. However, x is sampled at specific points that are inter-
polated between [1, 1000] while y is sampled uniformly ran-
domly in that same range. This sampling bias is evidenced in
the vertical ‘bands’ for x seen in Figure 4 that are absent for
y. This leads to more potential values for y than x, which ap-
pears to be more challenging for search. We plan to confirm
this explanation in future work.
So we can conclude that, for the most part, hypothesis

1(a), is not validated as �-minimal solutions are not found.
We also conclude that hypothesis 1(b) is not supported, as
there are significant differences in CPU time between mini-
mizing x and y.

Comparing Easy and Difficult Functions
For minimizing z, we expect to see quality and performance
degrade as the xy trade off becomes more challenging. In

3The Bonferroni adjustment controls the experiment-wise error
of 7 pairwise comparisons at α = 0.05, so the critical value for p
is 0.0073 = 1− (1− 0.051/7).
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the following two hypotheses, we examine planner perfor-
mance on the easy and difficult metric interactions. The in-
tuition behind this hypothesis is that collinear functions are
easy but non-collinear functions are difficult. So, finding the
minimum will take longer and happen less frequently under
difficult interactions.
Hypotheses 2: For the easy functions (ran, lin, nil, sig), (a)
A∗

� will �-minimize z and (b) with insignificant differences
between the CPU time of minimizing x, y, and z.
Figure 7 (left) shows thatA∗

� successfully finds �-minimal
solutions in z for nil, gis, pol, lop. In terms of runtime, Fig-
ure 6 (top) shows there is often a significant cost (10 to 100
times more) to minimizing z except in the simplest collinear
functions lin and sig. The runtime for minimizing z is sig-
nificantly different except for lin.
Hypothesis 3: For the difficult functions (gis,pol,lop), (a)
A∗

� will not find the global minimums in z, and (b) the run-
time will be significantly different between D and E. Fur-
ther, (c) the runtime will be insignificant between pol and
lop, but (d) will be significantly different between gis and
{pol, lop}.
Figure 6 (top) shows that the runtimes between the E and

D problems are distinct, with the D problems usually tak-
ing more runtime. The runtimes between pol and lop, while
overlapping, are statistically different; a Tukey HSD test run
on the runtimes of both the E and D does not group any of
the functions together. Figure 7 shows that A∗

� successfully
finds the minimal solutions for gis, pol, lop.
So we conclude that CPU time increases for the diffi-

cult functions but there is not otherwise similar performance
with the easy/difficult groupings.A∗

� finds minimal solutions
for all three functions.

The Impact of Plan-length Correlation (PLC)
Due to using the planning graph as a heuristic function,
many planners may implicitly rely on plan length to guide
search. If this is true then we should expect to observe sig-
nificant differences between the solutions and the runtime
behavior of solving plan length correlated problems versus
uncorrelated problems.
Unfortunately, we cannot completely test these intuitions

with the current version of MetricFF, which only sup-
ports actions that move the metric in the opposite direc-
tion from the objective (i.e., when minimizing and given
a value and function f for the action, we can only use
(increase (f) value) and cannot use (decrease
(f) value) or (increase (f) -value). This lim-
its the kind of evidence we can collect for the behavior of
best first search w.r.t. controlling PLC. So we discuss two
additional experiments that assess how sensitive A∗

� is to
scaling x or y.
Recent research shows that cost-based search is sensi-

tive to the ratio of the operator costs (i.e., (Wilt and Ruml
2011), (Cushing, Benton, and Kambhampati 2011)). Sroka
and Long (2012) assess the metric sensitivity of planners
and show that MetricFF (and other planners) can generate
more diverse solutions by varying the constraintedness of
resources in a logistics domain. We are interested in how

the search behavior changes when metric interactions vary
in addition to the scaling.

Uniformly Scaling x and y

We create a set of under-correlated problems that simply
scale the original metric values in actions by 0.3. Figure 6
(bottom) and Table 2 show the runtime distributions for the
under-correlated problems. The results parallel those of the
correlated problems except for a more significant difference
in gis, which can be explained by an outlier present in the
original runs.
Figure 7 (right) shows histograms of the scaled difference

from minimal solutions for the under-correlated problems.
When minimizing x or y, A∗

� finds equal or better solutions
for the under-correlated problems, except for ran. In con-
trast, when minimizing z, A∗

� finds worse solutions except
for lin and sig.

Scaling either x or y in z

Another way we can control for PLC is to scale either x
or y when minimizing z. This leads to a skewed evalua-
tion function that favors one axis over another. We introduce
functions that vary the weight of x and y (we only show the
functions for x, but y is similar).

z2x = 2x+ y

z5x = 5x+ y

z10x = 10x+ y

z25x = 25x+ y

z50x = 50x+ y

Figure 8 shows the demonstrates that solutions tend to get
worse as the scale increases (to the right). This trend is less
pronounced (or absent) in the random and collinear func-
tions (lin and sig) while very evident in the remaining func-
tions. We do not show the plots for scaling y, but the trend
is the same.

Summary and Future Work
We examine a synthetic domain that allows us to vary the
interaction of two metrics, x and y, in a weighted objective
function, z, while partially controlling for plan-length corre-
lation. One of the more surprising findings is that A∗

� search
performs quite poorly when minimizing collinear functions
(y = x and y = sigmoid(x)), which suggests that re-
searchers should avoid combining x and y when they are
(nearly) collinear. A∗

� works well for curvilinear functions
such as polynomials and an “inverted” sigmoid. However,
we discovered that scaling the metrics dramatically reduced
search effectiveness. Poorer performance occurred when the
metrics were uniformly scaled to control, at least in part, for
plan-length correlation. Search performance also degraded
as one metric was weighted more heavily.
There are limitations of the work that should be addressed

in future work. We started with easier bi-criteria functions
(linear and curvilinear) and plan to extend to more complex
interactions and more metrics. We also need to control for
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the discretization of x that led to better results than y. Uni-
formly selecting x should solve this problem. We identified
at least some evidence for plan-length correlation and in-
tend to explore this further. Our choice of MetricFF, A∗

� and
metric planning limits the findings to a single approach; we
need to generalize our results to preference and cost-based
planners as well as other metric planners. It is unclear how
much the weight of A∗

� or the heuristic accuracy could im-
pact the search results, which needs to be addressed with a
deeper study of the parameters forA∗

� . It may also be fruitful
to compare the plans found with worst cost plans rather than
the optimal cost.
Ultimately we are interested in combining this work

with search for diverse alternatives plans as in the work
of (Nguyen et al. 2012; Coman and Munoz-Avila 2011;
Roberts et al. 2012; Khouadjia et al. 2013; Radzi 2011;
Sroka and Long 2012). In addition to examining non-
temporal metrics, we want to focus on generating multiple
alternative plans rather than a single plan. We intend to ex-
tend our set of domains to those found in Radzi (2011) and
Sroka (2012) . We also hope to extend the findings of this pa-
per to the security domain that motivates our initial interest
in this topic.
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Figure 6: Runtime distributions of all functions and metrics for the original problems (top) and the under-correlated problems
(bottom).

x y
Sig. p-val Avg. time σ Avg. time σ

ran *** 0 1.41 0.101 4.48 0.958
lin 0.248 1.42 0.139 1.38 0.107
nil 0.669 1.41 0.109 1.42 0.088
sig *** 0 1.48 0.152 2.52 0.476
gis * 0.034 1.43 0.104 3.99 6.28
pol *** 0 1.43 0.115 1.94 0.372
lop *** 0.001 1.47 0.148 1.36 0.083
ran *** 0 1.52 0.189 4.1 0.953
lin 0.984 1.54 0.169 1.54 0.203
nil 0.751 1.44 0.162 1.45 0.153
sig *** 0 1.37 0.174 2.03 0.297
gis *** 0 1.43 0.162 2.09 0.338
pol *** 0 1.4 0.185 1.82 0.332
lop *** 0 1.42 0.16 1.27 0.048

Table 2: Significance, p-value, and statistics (average time
and standard deviation) for x and y on the original problems
(top) and under-correlated problems (bottom).
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Figure 7: Log-Histograms of the scaled difference from the minimum for the original problems (left) and the under-correlated
problems (right). Bins for the bottom axis are set at {0, 1, 2, 4, 8, 16,≥ 32} to provide a visual representation of how well an
algorithm does. Better performance is indicated by thinner and taller bars to the left. For more details, see the discussion of
Figure 5.
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Figure 8: Log-Histograms of the scaled difference from the minimum for the z∗x problems. Bins for the bottom axis are set at
{0, 1, 2, 4, 8, 16,≥ 32} to provide a visual representation of how well an algorithm does. Better performance is indicated by
thinner and taller bars to the left. For more details, see the discussion of Figure 5.


