
Programming by Optimisation:

Towards a new Paradigm

for Developing

High-Performance Software

Holger H. Hoos

BETA Lab
Department of Computer Science
University of British Columbia

Canada

ICAPS 2013

Rome, Italy, 2013/06/11

The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)

Holger Hoos: Programming by Optimisation 2

Holger Hoos: Programming by Optimisation 3

The age of computation

“The maths[!] that computers use to
decide stu↵ [is] infiltrating every aspect
of our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .

Holger Hoos: Programming by Optimisation 3

Performance matters ...

I computation speed (time is money!)

I energy consumption (battery life, ...)

I quality of results (cost, profit, weight, ...)

... increasingly:

I globalised markets

I just-in-time production & services

I tighter resource constraints

Holger Hoos: Programming by Optimisation 4

Example: Resource allocation

I resources > demands many solutions, easy to find

economically wasteful
 reduction of resources / increase of demand

I resources < demands no solution, easy to demonstrate

lost market opportunity, strain within organisation
 increase of resources / reduction of demand

I resources ⇡ demands
 di�cult to find solution / show infeasibility

Holger Hoos: Programming by Optimisation 5

This tutorial:

new approach to software development, leveraging . . .

I human creativity

I optimisation & machine learning

I large amounts of computation / data

Holger Hoos: Programming by Optimisation 6

Key idea:

I program (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)

) Programming by Optimisation (PbO)

Holger Hoos: Programming by Optimisation 7

Outline

1. Introduction

2. Vision & promise of PbO

3. Design space specification

4. Design optimisation

5. Cost & concerns

6. The road ahead – towards main-stream use of PbO

Holger Hoos: Programming by Optimisation 8

Communications of the ACM, 55(2), pp. 70–80, February 2012

www.prog-by-opt.net

Example: SAT-based software verification

Hutter, Babić, HH, Hu (2007)

I Goal: Solve SAT-encoded software verification problems
Goal: as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babić)

= highly parameterised heuristic algorithm
= (26 parameters, ⇡ 8.3⇥ 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)

Holger Hoos: Programming by Optimisation 10

Spear: Performance on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ⇡ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Programming by Optimisation 11

Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
inputs

Holger Hoos: Programming by Optimisation 12

Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.

Holger Hoos: Programming by Optimisation 13

Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, HH, Hu (2007)

4.5–500 ⇥ 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, HH, Saetti (2011)

3–118 ⇥ 1

Mixed integer programming (CPLEX), 76
Hutter, HH, Leyton-Brown (2010)

2–52 ⇥ 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, HH (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, HH, Leyton-Brown (2012–13)

Holger Hoos: Programming by Optimisation 14

Mixed Integer Programming (MIP)
Hutter, HH, Leyton-Brown, Stützle (2009); Hutter, HH, Leyton-Brown (2010)

I MIP is widely used for modelling optimisation problems

I MIP solvers play an important role for solving broad range of
real-world problems

CPLEX:

I prominent and widely used commercial MIP solver

I exact solver, based on sophisticated branch & cut algorithm
and numerous heuristics

I 159 parameters, 81 directly control search process

Holger Hoos: Programming by Optimisation 15

“A great deal of algorithmic development e↵ort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38⇥ 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10⇥ 2 CPU days

Holger Hoos: Programming by Optimisation 16

CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4± 0.29) 2.2

BCOL/CLS 712 23.4 (327± 860) 30.4

BCOL/MIK 64.8 1.19 (301± 948) 54.4

CATS/Regions200 72 10.5 (11.4± 0.9) 6.8

RNA-QP 969 525 (827± 306) 1.8

(Timed-out runs are counted as 10 ⇥ cuto↵ time.)

Holger Hoos: Programming by Optimisation 17

CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4± 0.29) 2.2

BCOL/CLS 712 23.4 (327± 860) 30.4

BCOL/MIK 64.8 1.19 (301± 948) 54.4

CATS/Regions200 72 10.5 (11.4± 0.9) 6.8

RNA-QP 969 525 (827± 306) 1.8

(Timed-out runs are counted as 10 ⇥ cuto↵ time.)

Holger Hoos: Programming by Optimisation 17

CPLEX on BCOL/CLS

10−2 10−1 100 101 102 103 104
10−2
10−1
100
101
102
103
104

default run-time [CPU s]

op
tim

is
ed

 ru
n-

tim
e

[C
P

U
 s

]

Holger Hoos: Programming by Optimisation 18

CPLEX on BCOL/Conic.sch

10−2 10−1 100 101 102 103 104
10−2
10−1
100
101
102
103
104

default run-time [CPU s]

op
tim

is
ed

 ru
n-

tim
e

[C
P

U
 s

]

Holger Hoos: Programming by Optimisation 19

Planning
Vallati, Fawcett, HH, Gerevini, Saetti (2011)

I classical, well-studied AI challenge

I many variations, domains (explicitly specified)

LPG:

I state-of-the-art, versatile system for plan generation,
plan repair and incremental planning for PDDL2.2 domains

I based on stochastic local search over partial plans

I 62 parameters, over 6.5⇥ 1017 configurations
4 of these previously “magic constants”,
50 hidden (= undocumented)

I automated configuration using FocusedILS 2.3

 ParLPG

Holger Hoos: Programming by Optimisation 20

LPG on various planning domains

Domain Default performance Optimised performance

[CPU sec] (% solved) [CPU sec] (% solved)

Blocksworld 105.3 (98.8%) 4.29 (100%)

Depots 78.1 (90.3%) 5.7 (98.5%)

Gold-miner 94.4 (90.5%) 1.6 (100%)

Matching-BW 93.8 (15.8%) 5.6 (97.8%)

N-Puzzle 321 (85%) 31.2 (86.8%)

Rovers 72.2 (100%) 21.2 (100%)

Satellite 64 (100%) 1.3 (100%)

Sokoban 24.6 (75.8%) 1.19 (96.5%)

Zenotravel 103.7 (100%) 11.1 (100%)

Run-time cuto↵ for evaluation: 600 CPU sec

Holger Hoos: Programming by Optimisation 21

LPG on Matching-BW, Rovers
(hard instances)

����

��

���

����

�����

���� �� ��� ���� �����

/3
*
�R
SW
LP
LV
HG
�>&

3
8
�V
HF
@

/3*�GHIDXOW�>&38�VHF@

(domain-specific configurations; run-time cuto↵ for evaluation: 900 CPU sec)

Holger Hoos: Programming by Optimisation 22

Configuring Fast Downward: FD-Autotune
Fawcett, Helmert, HH, Karpas, Röger, Seipp (2011)

I used new, highly parameterised IPC-2011 version
of Fast Downward

I design space includes combinations of heuristics,
chaining of search procedures

I 45 parameters, 2.99⇥ 1013 configurations

I configured using FocusedILS, 10 runs of 5 CPU days each
per domain

I objective: minimum running time for finding satisficing plan

Holger Hoos: Programming by Optimisation 23

FD-Autotune on IPC-2011 domains
(training instances)









   


















(domain-specific configurations)

Holger Hoos: Programming by Optimisation 24

FD-Autotune on IPC-2011 domains
(test instances)









   


















(domain-specific configurations)

Holger Hoos: Programming by Optimisation 25

IPC 2011 Learning Track – Success!

I Separate submissions for ParLPG, FD-Autotune

I Integrated systems realised using HAL experimentation system
(Nell, Fawcett, HH, Leyton-Brown 2011)

I FD-Autotune: 2nd place

I ParLPG: contributed substantially to performance of winner,
PbP2 (Gerevini, Saetti, Vallati 2009)

Holger Hoos: Programming by Optimisation 26

Automated Selection and Hyper-Parameter
Optimization of Classification Algorithms
Thornton, Hutter, HH, Leyton-Brown (2012–13)

Fundamental problem:

Which of many available algorithms (models) applicable to
given machine learning problem to use, and with which
hyper-parameter settings?

Example: WEKA contains 39 classification algorithms,
Example: 3⇥ 8 feature selection methods

Holger Hoos: Programming by Optimisation 27

Our solution, Auto-WEKA

I select between the 39⇥ 3⇥ 8 algorithms using high-level
categorical choices

I consider hyper-parameters for each algorithm

I solve resulting algorithm configuration problem using
general-purpose configurator SMAC

I first time joint algorithm/model selection +
hyperparameter-optimisation problem is solved

Automated configuration process:

I configurator: SMAC

I performance objective: cross-validated mean error rate

I time budget: 4⇥ 30CPUhours

Holger Hoos: Programming by Optimisation 28

Selected results (mean error rate)

Auto-WEKA

Dataset #Instances #Features #Classes Best Def. TPE SMAC

Semeion 1115+478 256 10 8.18 8.26 5.08

KR-vs-KP 2237+959 37 2 0.31 0.54 0.31

Waveform 3500+1500 40 3 14.40 14.23 14.42

Gisette 4900+2100 5000 2 2.81 3.94 2.24

MNIST Basic 12k+50k 784 10 5.19 12.28 3.64

CIFAR-10 50k+10k 3072 10 64.27 66.01 61.15

Auto-WEKA better than full grid search in 15/21 cases

Further details: KDD-13 paper (to appear)

Holger Hoos: Programming by Optimisation 29

PbO enables . . .

I performance optimisation for di↵erent use contexts
(some details later)

I adaptation to changing use contexts
(see, e.g., life-long learning – Thrun 1996)

I self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

I automated generation of instance-based solver selectors
(e.g., SATzilla – Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra – Xu et al. 2010; ISAC – Kadioglu et al. 2010)

I automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Schneider et al. 2012)

Holger Hoos: Programming by Optimisation 30

Design space specification

Option 1: use language-specific mechanisms

I command-line parameters

I conditional execution

I conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for . . .

I exposing parameters

I specifying alternative blocks of code

Holger Hoos: Programming by Optimisation 31

Advantages of generic language extension:

I reduced overhead for programmer

I clean separation of design choices from other code

I dedicated PbO support in software development environments

Key idea:

I augmented sources: PbO-Java = Java + PbO constructs, . . .

I tool to compile down into target language: weaver

Holger Hoos: Programming by Optimisation 32

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
input

Holger Hoos: Programming by Optimisation 33

Exposing parameters

...

numerator -= (int) (numerator / (adjfactor+1) * 1.4);

... ...

##PARAM(float multiplier=1.4)

numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

...

I parameter declarations can appear at arbitrary places
(before or after first use of parameter)

I access to parameters is read-only (values can only be
set/changed via command-line or config file)

Holger Hoos: Programming by Optimisation 34

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation 35

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard

<block S>

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced

<block E>

##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation 35

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

...

##BEGIN CHOICE preProcessing

<block 2>

##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation 35

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1a>

##BEGIN CHOICE extraPreProcessing

<block 2>

##END CHOICE extraPreProcessing

<block 1b>

##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation 35

!"#$%&'(#)(

*+,-./0
"&!1%#2"3

45156#(17%
./0

$"&!1%#2"3

7'"(5'(75(#8
./0

$"&!1%#2"3

8#49&:#8
#)#%!(5+9#

8#"7;'
"45%#

8#"%174(7&'

$$$*+,-./0
$$$<#5=#1

*+,$
8#"7;'
&4(767"#1

+#'%>651?
7'4!(

Holger Hoos: Programming by Optimisation 36

The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, . . .)

I parametric mode:

I expose parameters

I make choices accessible via (conditional, categorical)
parameters

I (partial) instantiation mode:

I hardwire (some) parameters into code
(expose others)

I hardwire (some) choices into code
(make others accessible via parameters)

Holger Hoos: Programming by Optimisation 37

!"#$%&'(#)(

*+,-./0
"&!1%#2"3

45156#(17%
./0

$"&!1%#2"3

7'"(5'(75(#8
./0

$"&!1%#2"3

8#49&:#8
#)#%!(5+9#

8#"7;'
"45%#

8#"%174(7&'

$$$*+,-./0
$$$<#5=#1

*+,$
8#"7;'
&4(767"#1

+#'%>651?
7'4!(

Holger Hoos: Programming by Optimisation 38

Design optimisation

Simplest case: Configuration / tuning

I Standard optimisation techniques
(e.g., CMA-ES – Hansen & Ostermeier 01; MADS – Audet & Orban 06)

I Advanced sampling methods
(e.g., REVAC, REVAC++ – Nannen & Eiben 06–09)

I Racing
(e.g., F-Race – Birattari, Stützle, Paquete, Varrentrapp 02;

Iterative F-Race – Balaprakash, Birattari, Stützle 07)

I Model-free search
(e.g., ParamILS – Hutter, HH, Stützle 07;

Hutter, HH, Leyton-Brown, Stützle 09)

I Sequential model-based optimisation
(e.g., SPO – Bartz-Beielstein 06; SMAC – Hutter, HH, Leyton-Brown 11–12)

Holger Hoos: Programming by Optimisation 40

Iterated Local Search

(Initialisation)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

(Local Search)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

(Perturbation)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

(Local Search)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

(Local Search)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

?

Selection (using Acceptance Criterion)

Holger Hoos: Programming by Optimisation 41

Iterated Local Search

(Perturbation)

Holger Hoos: Programming by Optimisation 41

ParamILS

I iterated local search in configuration space

I initialisation: pick best of default + R random configurations

I subsidiary local search: iterative first improvement,
change one parameter in each step

I perturbation: change s randomly chosen parameters

I acceptance criterion: always select better configuration

I number of runs per configuration increases over time;
ensure that incumbent always has same number of runs
as challengers

Holger Hoos: Programming by Optimisation 42

Sequential Model-based Optimisation
e.g., Jones (1998), Bartz-Beielstein (2006)

I Key idea:
use predictive performance model (response surface model) to
find good configurations

I perform runs for selected configurations (initial design)
and fit model (e.g., noise-free Gaussian process model)

I iteratively select promising configuration,
perform run and update model

Holger Hoos: Programming by Optimisation 43

Sequential Model-based Optimisation

parameter response

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Optimisation

parameter response

model

predicted best

measured

new incumbent found!

(Initialisation)

Holger Hoos: Programming by Optimisation 44

Sequential Model-based Algorithm Configuration (SMAC)
Hutter, HH, Leyton-Brown (2011)

I uses random forest model to predict performance
of parameter configurations

I predictions based on algorithm parameters and instance
features, aggregated across instances

I finds promising configurations based on expected improvement
criterion, using multi-start local search and random sampling

I initialisation with single configuration
(algorithm default or randomly chosen)

Holger Hoos: Programming by Optimisation 45

E↵ective use of automated configurators
(for running time minimisation)

I � 75% of training set solvable by default configuration
within cuto↵ time t

I avoid training instances that are too easy (< 0.1 CPU sec)

I the overall time budget per configurator run � 200 · t
(better � 1000 · t)

I conduct 10–25 independent configurator runs;
evaluate resulting configurations on entire training set;
select best

More on benchmark sets for automated configuration & evaluation of solvers:

HH, Kaufmann, Schaub, Schneider (2013)

Holger Hoos: Programming by Optimisation 46

Configuration for scaling performance
Styles & HH (2012–13)

Challenge:

Configure a given algorithm for good performance on instances too
di�cult to permit many evaluations

 cannot directly use standard protocol

 configure on easier inputs in a way that generalises
 to harder ones (= transfer learning)

Holger Hoos: Programming by Optimisation 47

Key idea:

I configure on easy instances (multiple configurator runs)

I select by validation on successively harder instances

I use racing (ordered permutation races) for e�cient validation

Holger Hoos: Programming by Optimisation 48

Cost & concerns

But what about ...

I Computational complexity?

I Cost of development?

I Limitations of scope?

Holger Hoos: Programming by Optimisation 49

Computationally too expensive?

Spear revisited:

I total configuration time on software verification benchmarks:
⇡ 30 CPU days

I wall-clock time on 10 CPU cluster:
⇡ 3 days

I cost on Amazon Elastic Compute Cloud (EC2):
61.20 USD (= 42.58 EUR)

I 61.20 USD pays for ...

I 1:45 hours of average software engineer
I 8:26 hours at minimum wage

Holger Hoos: Programming by Optimisation 50

Too expensive in terms of development?

Design and coding:

I tradeo↵ between performance/flexibility and overhead

I overhead depends on level of PbO

I traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

I design alternatives for individual mechanisms and components
can be tested separately

 e↵ort linear (rather than exponential) in the number of
design choices

Holger Hoos: Programming by Optimisation 51

Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

I computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

I optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

I compiler optimisation
(Pan & Eigenmann 2006, Cavazos et al. 2007)

I database server configuration
(Diao et al. 2003)

Holger Hoos: Programming by Optimisation 52

The road ahead

I Support for PbO-based software development

I Weavers for PbO-C, PbO-C++, PbO-Java

I PbO-aware development platforms

I Improved / integrated PbO design optimiser

I Best practices

I Many further applications

I Scientific insights

Holger Hoos: Programming by Optimisation 53

Leveraging parallelism

I design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

I deriving parallel programs from sequential sources
 concurrent execution of optimised designs
 (parallel portfolios)
(HH, Leyton-Brown, Schaub, Schneider 2012)

I parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)

Holger Hoos: Programming by Optimisation 54

Which choices matter?

Observation: Some design choices matter more than others

depending on . . .

I algorithm under consideration

I given use context

Knowledge which choices / parameters matter may . . .

I guide algorithm development

I facilitate configuration

Holger Hoos: Programming by Optimisation 55

3 recent approaches:

I Forward selection based on empirical performance models
Hutter, HH, Leyton-Brown (2013)

I Functional ANOVA based on empirical performance models
Hutter, HH, Leyton-Brown (under review)

I Ablation analysis
Fawcett, HH (to appear)

Holger Hoos: Programming by Optimisation 56

Ablation analysis

Fawcett, HH (to appear)

Key idea:

I given two configurations, A and B , change one parameter at a
time to get from A to B

 ablation path

I in each step, change parameter to achieve maximal gain (or
minimal loss) in performance

I for computational e�ciency, use racing (F-race)
for evaluating parameters considered in each step

Holger Hoos: Programming by Optimisation 57

Empirical study:

I high-performance solvers for SAT, MIP, AI Planning
(26–76 parameters),
well-known sets of benchmark data (real-world structure)

I optimised configurations obtained from ParamILS
(minimisation of penalised average running time;
(10 runs per scenario, 48 CPU hours each)

Holger Hoos: Programming by Optimisation 58

Ablation between default and optimised configurations:

����

��

���

����

�� �� ��� ��� ��� ���

3
HU
IR
UP
DQ
FH
��3

$
5
��
��V
�

�3DUDPHWHUV�PRGLILHG�IURP�GHIDXOW

'HIDXOW�WR�FRQILJXUHG
&RQILJXUHG�WR�GHIDXOW

LPG on Depots planning domain

Holger Hoos: Programming by Optimisation 59

Which parameters are important?

LPG on depots:

I cri intermediate levels (43% of overall gain!)

I triomemory

I donot try suspected actions

I walkplan

I weight mutex in relaxed plan

Note: Importance of parameters varies between planning domains

Holger Hoos: Programming by Optimisation 60

Programming by Optimisation ...

I leverages computational power to construct
better software

I enables creative thinking about design alternatives

I produces better performing, more flexible software

I facilitates scientific insights into

I e�cacy of algorithms and their components

I empirical complexity of computational problems

... changes how we build and use high-performance software

Holger Hoos: Programming by Optimisation 61

Acknowledgements

Collaborators:

I Domagoj Babić
I Chris Fawcett
I Quinn Hsu
I Frank Hutter
I Erez Karpas
I Chris Nell
I Steve Ramage
I Gabriele Röger
I Marius Schneider
I James Styles
I Chris Thornton
I Mauro Vallati
I Lin Xu

I Thomas Bartz-Beielstein
(FH Köln, Germany)

I Marco Chiarandini
(Syddansk Universitet, Denmark)

I Alfonso Gerevini
(Università degli Studi di Brescia, Italy)

I Malte Helmert
(Universität Basel, Switzerland)

I Alan Hu

I Kevin Leyton-Brown

I Kevin Murphy

I Alessandro Saetti
(Università degli Studi di Brescia, Italy)

I Torsten Schaub
(Universität Potsdam, Germany)

I Thomas Stützle
(Université Libre de Bruxelles, Belgium)

Research funding:

I NSERC, Mprime, GRAND, CFI

I IBM, Actenum Corp.

Computing resources:

I Arrow, BETA, ICICS clusters

I Compute Canada / WestGrid

Holger Hoos: Programming by Optimisation 62

Gli uomini hanno idee [...]
– Le idee, se sono allo stato puro, sono belle.

Ma sono un meraviglioso casino.
Sono apparizioni provvisorie di infinito.

People have ideas [...]
– Ideas, in their pure state, are beautiful.

But they are an amazing mess.
They are fleeting apparitions of the infinite.

(Prof. Mondrian Kilroy in Alessandro Baricco: City)

Communications of the ACM, 55(2), pp. 70–80, February 2012

www.prog-by-opt.net

