
ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model checking Hybrid Systems

via Satisfiability Modulo Theories

Alessandro Cimatti
Embedded System Unit

Fondazione Bruno Kessler

Trento, Italy

cimatti@fbk.eu

We gratefully acknowledge the support of the European Space Agency contracts OMC-ARE, COMPASS, IRONCAP,

AUTOGEF, FOREVER, FAME, HASDEL.

Joint work with Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta

mailto:surname@fbk.eu

2

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Fondazione Bruno Kessler

 Fondazione Bruno Kessler
– Private foundation with public finalities

– Owned by Provincia Autonoma di Trento

– Formerly IRST, Istituto Trentino di Cultura

 Center for Information Technology
– Director: Paolo Traverso

 The Embedded Systems Unit
– 28 people

– 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students

– Open call for more ph.d. students and postdocs!

 Strategy: tight integration of
– Basic research

– Tool development

– Technology transfer

3

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Take away messages

 The need for verification
– Very complex systems

 Verification in a broader sense
– Rigorous analysis of the behaviour of dynamic systems

 Hybrid automata
– A uniform and comprehensive formal model

 Satisfiability Modulo Theories
– Higher level symbolic modeling

– Efficient engines: SAT + constraint solving

 SMT-based Verification
– Many effective complementary algorithms

 Application in several project
– Strong potential for practical impact

4

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Structure of the tutorial

Motivations

Hybrid Systems

 Satisfiability Modulo Theories

 SMT-based verification

 SMT-based verification of Hybrid Systems

Requirements analysis

5

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The Design Challenge

 Designing complex systems
– Automotive

– Railways

– Aerospace

– Industrial production

 Sources of complexity:
– Hundreds of functions

– Networked control

– Real-time constraints

– Complex execution model with mixture of
real-time and event-based triggers

– System composed of multiple
heterogeneous subsystems

– Critical Functions:
» ABS, drive-by-wire

» Operate switches, level crossings, lights

» Manage on-board power production

– Conflicting objectives:
» Avoid crashes vs move trains

Source: Prof. Rolf Ernst – CAV 2011

6

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Life Cycle of Complex Systems

 How do we support
the design?

 Requirements
validation:
– Are the requirements

flawed?

 Functional
correctness
– Does the system

satisfy the
requirements?

 Safety assessment
– Is the system able to

deal with faults?

Design

Requirements
analysis

Architecture
definition

Components
design

Safety analysis

SW/HW
implement.

7

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From design to operation…

 Planning
– plan how to achieve desired “firing” sequence

– retrieve pipes from holds, pre-weld, send to firing line, final weld

 Execution Monitoring
– welding may fail, activities can take more time than expected

– plant may fail

 Fault Detection, Fault Identification/Isolation
– is there a problem? where is it?

 Fault Recovery
– put off-line problematic equipment

 Replanning
– identify alternative course of actions, e.g. reroute pipes

8

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Control

State Estimation

Physical

Plant

Plan

Execution

Monitoring/

FDIR

Sensing Actuation

Hidden State

Planning/

Deliberation

Goals

Complex systems operation

Plan

 How do we support
operation?
– Planning, Monitoring,

FDIR, replanning

– they all require
reasoning about the
behaviour of a dynamic
system

9

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Life Cycle of Complex Systems

Design Operation

Requirements
analysis

Architecture
definition

Components
design

Safety analysis

SW/HW
implement.

Planning

Execution

Monitoring

FDIR

Replanning

10

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

A formal approach

 Both design and operation tasks require

– the analysis of the behaviour of dynamic systems over

time

» In fact, they often require the analysis of the same dynamic

systems

– the analysis must be “rigorous”

» predictability, certification

We need a rich formalism

– to represent the behaviour of complex systems

– to provide the reasoning tasks required for design and

for operation

11

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model Checking in a nutshell

Does system satisfy requirements?

 System as finite state model

Requirements as temporal properties

System

Requirements

satisfied by

12

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model checking

 Reactive System
– infinite computation, interacting with environment

– communication protocol, hw design, control software, OS

– modeled as a (finite) state transition system

 Requirements
– desirable properties of system behaviour

– modeled as formulae in a temporal logic (CLT, LTL, PSL, …)

 Does my system satisfy the requirements?
– Is the set of traces “generated” by the system included in the set of

traces “accepted” by the requirements?

 Model checker
– search configurations of state transition system

– detect violation to property, and produce witness of violation

– conclude absence of violation when fix point reached

13

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Properties

 Temporal logic can be used to express properties

of reactive systems

 Safety properties: nothing bad ever happens

– Two concurrent processes never execute simultaneously

within their critical section

 Liveness properties: something desirable will

eventually happen

– A subroutine will eventually terminate execution and

return control to the caller

– Whenever a request arrives, it is sooner or later followed

by a response

15

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Refuting temporal properties

 Safety: refuted by finite trace to

bad state

 Liveness: refuted by infinite

trace with invariant suffix

– Finitely presented as cycle

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling hybrid systems

17

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Representation Challenges

 A formalism to characterize systems with

– Nondeterministic behaviours

– Possible faults

– Operation in degraded modes

– Limited observability

– Parallel actions/tasks

» Start actuations in different subsystems

– Activities with duration

» Time taken by procedures

» e.g. moving, welding, checking, …

– Resources

» Power consumption, space, bandwidth, memory, …

18

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (I)

 Synchronous, finite case
– Circuits

 Finite state
– each state variable associated with value in finite range

 VAR x, y: boolean

 init(x) := 0, init(y) := 0

 next(x) := !x

 next(y) := if x then !y else y

 Synchronous composition
– Both variables evolve at the same time

 x: 0 1 0 1 0 1 0 1 ...

 y: 0 0 1 1 0 0 1 1 ...

19

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (II): infinite data

 Synchronous, infinite case

– programs

 Infinite state: each state variable associated with

value in finite range

VAR n : integer;

next(n) := if (even n)

 then (n / 2)

 else (3*n + 1)

Reaching a fix point no longer guaranteed

20

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (III): asynchronous composition

 Automaton with states and transitions

VAR s : { Wait, Trying, Critical};

IVAR label : { req, enter, done, stutter};

s=Wait & label = request -> next(s)=Trying

label = stutter -> next(s)=s

Wait

Critical

Trying

request

done enter

21

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (III): Networks of automata

SYNC server.grant1 C1.enter

SYNC server.grant2 C2.enter

...

22

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Representation

 State variables as variables in a logical language

– x, y, z, w

 A state is an assignment to state variables

– The bitvector 0011

– The assignment { z, w }

– The formula ¬x ⋀ ¬y ⋀ z ⋀ w

 A set of states is a set of assignments

– can be represented by a logical formula

– x ⋀ ¬y represents {1000, 1001, 1010, 1011}
or a larger set, if more variables are present

 Set operations represented by logical operations

– union, intersection, complementation as
disjunction, conjunction, negation

 I(X), B(X) are formulae in X

– Is there a bad initial state?

– Is I(X) ⋀ B(X) satisfiable?

23

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Representation

 Symbolic representation not only for finite case!
– Software: control flow graph + data path

– Hardware at RTL, SystemC, threaded software

– UML state machines, AADL descriptions

 Transition
– pair of assignments to state variables

 Use two sets of variables
– current state variables: x, y, z

– next state variables: x', y', z'

 A formula in current and next state variables
– represents a set of assignments to X and X'

– a set of transitions

– R(X, X')

24

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From discrete traces to hybrid traces

 So far

– no notion of real time

– traces as sequences of assignments to state variables

 This is often not enough

 Example:

– Train moving on track

– Evolution of position and speed over time

– Movement authorithy (MA):

» Proceed until position “end of authority” (EOA)

» At EOA speed must be below “target speed” (TS)

25

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Hybrid means discrete + continuous

 State as values to
variables

– discrete variables
» Operation modes

– continuous variables
» Speed, position

 Transitions from state to
state

 Continuous transitions
– Discrete component

does not change

– time elapses

– Continuous variables
evolve accordingly

 Discrete transitions
– Instananeous

– Discrete component
changes

– Continuous
component may have
jumps

» Timer reset

» Speed limit variation

26

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The formalism: hybrid automata

 Locations

 Events

 Transitions

 Continuous
variables

 Guards
– Enable transtions

 Invariants
– Must be satisfied

in locations

 Flow conditions
– How do variables

evolve when time
elapses

27

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Hybrid automata

Far

Past

Near

approach

[x = 0] [x = -100]

x := 1900..4900

-50 <= der(x) <= -40

x >= -100

-40 <= der(x) <= -30

x >= 0

-50 <= der(x) <= -40

x >= 1000

Continuous

transition

D
is

c
re

te

tra
n

s
itio

n

[x = 1000]

exit here

28

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Properties of hybrid automata

 Well founded, comprehensive and well studied
– Clear definition of behaviors of model

– Which states are reachable

 Temporal properties to express scenarios and requirements
– never two processes in critical region

– always if req then within 5 sec response

 Model checking
» Does the system satisfy the requirements?

 Temporal reasoning
» Strong/weak/dynamical controllability?

 Planning
» Find the inputs that will bring the system to required state

 The workhorse: satisfiability modulo theories

29

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

An example

Start_a -> s = STANDBY

Start_a -> next(s) = TAKING_PICTURE

Start_a -> next(t) = 0.0

s = TAKING_PICTURE -> t <= 50.0

End_a -> s = TAKING_PICTURE

End_a -> next(s) = STANDBY

End_a -> t >= 30.0

STANDBY
TAKING

PICTURE

Start_a / t := 0

End_a [t >= 30]
t <= 50

30

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Nondeterminism and uncertainty

Nondeterminism

– Discrete choice

Uncertainty

– Continuous

Controllable

– Start

Uncontrollable

– Effects

– End

Certain Duration Uncertain Duration

Determ.

Effects

NonDeterm.

Effects

31

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From HA to SMT formulae

s = Past -> x >= -100

exit -> s = Past & x = -100

exit -> next(s) = Far

exit -> next(x) in 1900..4900

timed -> next(s) = s

timed & s = Past ->

 next(x) >= x - 50*delta &

 next(x) <= x - 40*delta

Far

Past

Near

approach

x = 1000

[x = 0]

exit

[x = -100]

x := 1900..4900
-50 <= der(x) <= -40

x >= -100

-40 <= der(x) <= -30

x >= 0

-50 <= der(x) <= -40

x >= 1000

32

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The SMT representation

VAR s : { Past, Near, Far }

VAR x : real;

...

INIT x <= 5000

INIT s = Past

...

TRANS

s = Past -> x >= -100

exit -> s = Past

exit -> next(s) = Far

exit -> next(x) >= 1900

exit -> next(x) <= 4900

...

timed -> next(s) = s

timed -> next(x) >= x - 50*delta

timed -> next(x) <= x - 40*delta

Hybrid automata symbolically

represented by SMT formulae!

I(X) initial states

R(X,X’) transition relation

B(X) bad/target states

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Engines for symbolic verification

From SAT to SMT

34

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Satisfiability vs Verification
(or, combinational vs sequential)

Boolean Modulo

theories

Verification
Finite state model
checking

Infinite state
Model checking

Satisfiability
BDDs,
SAT solvers

SMT solvers

35

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Underlying engines

 Finite case

– Binary Decision Diagrams

– Boolean Satisfiability Solving

 Infinite case

– Satisfiability Modulo Theories

36

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Binary Decision Diagrams

 Representation of boolean functions

 Canonical form for propositional logic

 Widely used in formal verification

 Efficient BDD packages provide

– boolean operations

– universal and existential quantification (QBF)

– caching and memoizing

 Used to represent

– accumulated states

– partial policies

37

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

BDD-based Symbolic Model Checking

 Based on Binary Decision Diagrams

– canonical representation for logical formulae

– boolean operations, quantifier elimination

 I(X), R(X, X'), B(X)

– each represented by a BDD

 Image computation: compute all successors of all

states in S(X)

– based on projection operation

– exists X.(S(X) and R(X, X'))

Reachability algorithm

– Expand new states until bug, or fix point

38

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

 T

SAT!

Boolean DPLL

P

 The DPLL procedure

 Incremental construction of satisfying assignment

 Backtrack/backjump on conflict

 Learn reason for conflict

 Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R

39

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Satisfiability modulo theories

 Satisfiability of a first order formula …
– where the atoms are interpreted modulo a background theory

 Theories of practical interest
– Equality Uninterpreted Functions (EUF)

» x = f(y), h(x) = g(y)

– Difference constraints (DL)
» x – y ≤ 3

– Linear Arithmetic
» 3x – 5y + 7z ≤ 1

» reals (LRA), integers (LIA)

– Arrays (Ar)
» read(write(A, i, v), j)

– Bit Vectors (BV)

– Their combination

40

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Statisfiability Modulo Theories

 An extension of boolean SAT

 Some atoms have non-boolean (theory) content
» A1 : x – y ≤ 3

» A2 : y – z = 10

» A3 : x – z ≥ 15

 Theory interpretation for individual variables,
constants, functions and predicates

» if x = 0, y = 20, z = 10

» then A1 = T, A2 = T, A3 = F

 Interpretations of atoms are constrained
» A1, A2 and A3 can not be all true at the same time

41

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT solvers

 Boolean reasoning + constraint solving

– SAT solver for boolean reasoning

– theory solvers to interpret numerical constraints

42

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bool

Bool Bool T Bool

MathSAT: search space

Many boolean models are not theory consistent!

P T x – y ≤ 3

P1 F

P2 T y – z = 10

Q F

R T x – z ≥ 15

R1 F

S F z – 2*w = 1

S1 T

P

Q

R

S

S

R

T

Q

S

T

R

Th

Bool T

Th

Bool T

Th T

SAT!!!

43

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bool Bool T

Math T

SAT!

EP:Th EP:Th T

EP:Math T

EP:Th T

EP:Math T

Pruned away

in the EP step

Early pruning

Check theory consistency of partial assignments

P

Q

S

T

R

44

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Learning Theory Conflicts

The theory solver can detect a
reason for inconsistency

I.e. a subset of the literals that
are mutually unsatisfiable

E.g. x = y, y = z, x != z

Learn a conflict clause
 x != y or y != z or x = z

By BCP the boolean
enumeration will never make
same mistake again

Bool Bool T

Math T

SAT!

EP:Th EP:Math T

EP:Th T

EP:Math T

EP:Th T

Pruned away

in the EP step

P

Q

S

T

R

45

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Theory Deduction

The theory solver can detect that
certain atoms have forced values

E.g. from x = y and x = z
infer that y = z should be true

Force deterministic assignments

Theory version of BCP

Furthermore, we can learn the
deduction:

 x=y & x = z -> y=z

Theory Conflict vs theory deduction Bool Bool T

Th T

SAT!

EP:Math EP:Th T

EP:Math T

EP:Th T

EP:Th T

Pruned away

in the EP step

P

Q

S

T

R

46

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Optimizations

 Incrementality and Backtackability

– add constraints without restarting from scratch

– remove constraints without paying too much

 Limiting cost of early pruning

– filtering, incomplete calls

 Conflict set minimization

– return T-inconsistent subset of assignment

 Deduction

– return forced values to unassigned theory atoms

 Static learning

– precompile obvious theory reasoning reasoning to boolean

47

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT solvers in practice

 In practice, the integration is very tight
– SAT solver working as an enumerator

– Theory solver follows the stack-based search
» Inconsistent partial assignments are pruned on the fly

» conflicts clauses learnt from theory reasoning

» used to drive search at the boolean level

 Additional features
– Model construction

– Incremental interface

– Unsatisfiable core

– Proof production

– Interpolation

 Satisfiability Modulo Theories: a sweet spot?
– increase expressiveness

– retain efficiency of boolean reasoning

 Trade off between expressiveness and reasoning
– SAT solvers: boolean case, automated and very efficient

– theorem provers: general FOL, limited automation

48

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The SMT community

 Standard language and benchmarks

– http://www.smt-lib.org

 Yearly competition

– http://www.smt-comp.org

 Solvers

– YICES, OpenSMT, Z3, CVC, …

 The MathSAT solver

– http://mathsat.fbk.eu

– Solving, core extraction, interpolation, allsmt, costs

49

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Notable achievements

 Successful applications in various fields

– verification of pipelined microprocessors

– equivalence checking of Microcode

– software verification

– whitebox testing for security applications

– design space exploration, configuration synthesis

– discovery of combinatorial materials

Reasons for success?

– allows to deal with richer representation

– increase capacity by working above the boolean level

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT-based verification

51

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Encoding

 Vectors of state variables
– current state X

– next state X'

 Initial condition I(X)

 Transition relation R(X, X')

 Bug states B(X)

 Key difference
– X, X' are not limited to boolean variables

» in addition to discrete

» reals, integers, bitvectors, arrays, …

– I, R, B are SMT formulae

 Representation
– higher level

– structural information is retained

52

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bounded Model Checking

 State variables replicated K times
– X0 , X1, …, Xk-1, Xk

 Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– bug if satisfiable

– increase k until …

 Advanced use of satisfiability solver
– incremental interface

– theory lemmas should be retained

– theory lemmas can be shifted over time
» from Ф(X0, X1) to Ф(Xi, Xj+1)

– Unsat core and generation of interpolants

– Elimination of quantifiers

54

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Induction

 Prove absence of bugs by induction

 I(X0) ⋀ B(X0)

 ¬B(X0) ⋀ R(X0, X1) ⋀ B(X1)

 . . .

 I(X0) ⋀ R(X0, X1) ⋀ . . . ⋀ R(Xk−1, Xk) ⋀ B(Xk)

 ¬B(X0) ^ R(X0, X1) ⋀ . . . ⋀ ¬B(Xk−1) ⋀ R(Xk−1, Xk) ⋀ B(Xk)

 Proved correct if unsatisfiable (and no bugs until k)

 Commonly used techniques
– Invariant strengthening

» Sometimes trying to prove a stronger fact may be easier

– Simple path condition
» Explore only paths that do not contain repetitions

56

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation

57

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation-based model checking

58

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation-based model checking

61

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Counter-Example Guided

Abstraction-Refinement (CEGAR)

62

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

P0

P1

not P1

01 00

10 11

P2

not P2

000

010 011

001

100 101

Ψ0(X)

Ψ1(X)

Ψ2(X)

I(X)

R(X, X')

State vars X

Abstract State vars P

AI (P)

AR(P,P')

not P0

Predicate abstraction

63

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

CEGAR with Predicate abstraction

64

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Computing Abstractions

Given concrete model CI(X), CR(X, X')

Given set of predicates Ψi(X)

each associated to abstract variable Pi

Obtain the corresponding abstract model

 AR(P, P') is defined by

∃ X X'.(CR(X, X') ⋀ ⋀i Pi ↔ Ψi(X) ⋀ ⋀i Pi' ↔ Ψi(X'))

 Existential quantification as AllSMT

– SMT solver extended to generate all satisfying

assignment

65

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Implicit Abstraction

 Abstract transition system computed with AllSMT:
– Exponential in the number of predicates.

– Major bottleneck of CEGAR.

– Prevents the analysis of the abstract system.

 Main idea: avoid upfront computation of the abstract
program

 How: embedding the abstraction definition into the
BMC/k-induction encodings;

 abstract transitions implicitly computed by the SMT
solver;

 similar to lazy abstraction but completely symbolic and
without any image computation/quantifier elimination.

66

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Implicit abstraction

= = … =

X0 X’0 X1 X’1 Xk
X’k

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Specialized techniques

68

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Specialized techniques

 From hybrid traces to infinite-state transition

system over discrete traces

 Time elapse has the effect of a global

synchronization

 Interleaving may induce very long paths

 Encoding may have significant impact!

Generate transition systems with shorter/less paths

69

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The effect of interleaving

70

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Local clocks

71

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Local clocks + sync constraints

72

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Local Time Encoding

73

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Exploiting Shallow Synchronization

74

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Possible semantics

75

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Scenario-based verification

 A scenario is a partially specified behaviour

– E.g. message sequence chart

Can a scenario be refined to a concrete trace?

 A simple idea

– encode scenario as temporal property

– run “starndard” temporal logic model checker

 A much better idea

– use the structure of the MSC to localize the encoding

and to drive the search

– orders of magnitude speed ups

76

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Encoding MSC into automata

77

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Specialized scenario encoding

78

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Proving unfeasibility

Use k-induction to detect limit in expansion of

sequences of local transtions

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Requirements validation

80

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Requirements are flawed

 The bugs are not in the system, but in the requirements!
– The systems often implement correctly wrong/incomplete

requirements.

– Software system errors caused by requirements errors

 Not just a slogan, but a real user need.

 Considered as major problem of software development
process by most European companies (EPRITI survey).

 Confirmed by NASA studies on Voyager and the Galileo
software errors
– Primary cause (62% on Voyager, 79% on Galileo):

mis-understanding the requirements.

 Confirmed by the ESA and ERA recent calls on requirements.

 Widely acknowledged from industry across domains
– IAI, RCF, Intecs, ...

81

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Requirements validation

 Requirements: descriptions of the functions provided
by the system and its operational constraints.

 Requirements validation: checking if the requirements
are correct, complete, consistent, and compliant with
what the stakeholders have in mind.

 Target requirements errors:
– Incomplete (e.g., incomplete description of a function),

– Missing (e.g., missing assumption on lower levels),

– Incorrect (e.g., wrong value in condition used to trigger some
event),

– Inconsistent (i.e., pair-wise incompatible),

– Over-specified (e.g., more restrictive than necessary).

 Cover 89% of faults examined in NASA projects.

84

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Which flaws in requirements?

 A set of requirement is a set of constraints over possible evolutions of the entities in
the domain

 Possible questions
– Are my requirements too strict?

– Are my requirements too weak?

 Possible checks
– Consistency check (too strict?)

» is there at least one admissible behaviour?

– Possibility check (too strict?)
» is a given desirable behaviour admissible?

– Assertion check (too weak?)
» is a given undesirable behaviour excluded?

 Warning: no way to formalize design intent!

Requirements

Possible

Behaviours

??

85

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

A Logic for Hybrid Traces

 HRELTL: A logic to describe hybrid traces

 continuous and discrete evolution

 Decision based on reduction to RELTL with SMT

constraints

 Enforce continuity by constraining values of predicates

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Conclusions

87

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Conclusions

 Hybrid Automata as an expressive and practical formalism to
model complex dynamic systems

 SMT as a powerful symbolic representation formalism
– “Model everything as one gigantic automaton? I don’t think so…”

– Well studied composition primitives

– Structure may also help partitioning verification

 SMT solvers as powerful reasoning engines
– to support the design phase

» Helping designers to gain confidence

» Build more predictable systems

» Write more reliable software

» Assess behaviour under faults

– to support the operation phase
» Generate better plans

» Monitor execution

» Perform diagnosis

» Support replanning

» Recalibrate control strategies

88

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Take away messages

 The need for verification
– Very complex systems

 Verification in a broader sense
– Rigorous analysis of the behaviour of dynamic systems

– From off line to operation, from requirements to low level code

 Hybrid automata
– A uniform and comprehensive formal model

 Satisfiability Modulo Theories
– Higher level symbolic modeling

– Efficient engines: SAT + constraint solving

 SMT-based Verification
– Many effective complementary algorithms

89

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Tools and applications

 The MathSAT SMT solver
– http://mathsat.fbk.eu

 The NuSMV model checker
– http://nusmv.fbk.eu

 A MathSAT-based extension of NuSMV
– HyDI: a structured language for automata networks

– https://es.fbk.eu/tools/nusmv3/

 Applied in
– OMC-ARE, COMPASS, AUTOGEF, FAME, FOREVER

– Industrial technology transfer
» Avionics, railways, oil and gas

90

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Open issues and future directions

 Improving scalability of hybrid systems verification
– Exploit structure of the problem

» scenario-based validation

– Tighten connection between planning and temporal reasoning
» SMT-based scheduling

 Diagnosability checking and synthesis
– Automated synthesis of sensors configurations that guarantee

diagnosability

– Generalize to the case of hybrid automata

 FDIR: fault detection, identification, recovery
– Specification, verification and synthesis of FDIR modules

 Mixed software + physical system
– Nasty interaction between continuous and sampled timing

» 100ms duty cycle with flight duration

– Often scale very different, key is avoid trace fragmentation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Thanks for your attention

Questions?

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Additional Material

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Some interesting applications

94

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Applications to High-level HW Design

 Ongoing work with Intel Haifa
– Application described in "high level" language
– words and memories are not blasted into bits

 Custom decision procedure for Bit Vectors
 Applications

– Register-transfer level circuits
– Microcode

 Functionalities
– more scalable verification

» currently based on boolean SAT

– tight integration with symbolic simulation
» pipe of proof obligations

– Automated Test Pattern Generation
» enumerate many different randomized solutions

 Results
– MathSAT currently “in production”

» Integrated in design environment deployed to microcode engineers

– Best paper award at FMCAD’10

95

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Analysis of Railways Control Software

 Control software for Interlocking

– controls devices in train station

– Application independent scheduler

– Parameterized, object oriented

– Instantiation with respect to station topology

 Model Checking to analyze single modules

– SMT-based software model checking

– checking termination, functional properties

 Compositional reasoning for global proofs

– based on scheduler structure

 Reverse engineering from the code

– inspection, what-if reasoning

 Other potential role of SMT solving

– dealing with quantified formulae over lists of entities

96

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Parametric Schedulability Analysis

 Schedulability analysis
– given set of processes and scheduling policy

– check whether deadlines can be met

 Key problem: sensitivity analysis
– where do the numbers come from?

– typically, these are estimates

– traditional schedulability theory based on numerical raesoning, lifting
results to practical cases may be nontrivial

 Goal: analyze sensitivity with respect to variations

 Analytical construction of schedulability region!

 The role of SMT
– SMT allows for parametric representation

– SMT-based bounded model checking to generate one fragment of
unschedulability region

– iterate to generate all fragments

– CEGAR to terminate the iteration

97

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Design Mutation

 The problem: find "good" spatial position of aircraft
components with respect to safety constaints
– no electrical components "below" component that potential leakage

– not all components implementing critical function on same impact
trajectory

 Required functionalities
– is a configuration satisfactory

– reasons for violation

– find acceptable solution

– find optimal solution

 Encode problem into SMT
– may require dedicated, custom theory

– may require extension to "optimal constraints"

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

A design flow based on Formal Methods

99

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Nominal

Models

Fault

Models

Model

Extension

Verification

Validation
Extended

Model

Requirements

Observability

Requirements

Fault

Trees

FMEA

Tables

FDIR

Effectiveness

Traces

Performability

Measures

Analysis

The flow of design phase

100

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Requirements Validation

• The error is in the requirements, not in the system
– a real user need

• Validate system requirements before detailed design and implementation
– “Are we capturing the right system?”

• Available functionalities:
– Property simulation

– Check logical consistency
» Are there any contradictions?

– Check property strictness
» Are the properties strict enough to rule out undesired behaviours?

– Check property weakness
» Are the properties weak enough to allow desirable behaviours?

• A whole research line on its own:
– Temporal logic satisfiability engines

– Diagnostic information: unsatisfiable cores

– Relevant projects
» Formal requirements validation of European Train Control System [ERA]

» OthelloPlay [MRS research award]

101

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Requirements: Informal to Formal

NATURAL LANGUAGE

SEMIFORMAL

LANGUAGE

FORMAL LANGUAGE

102

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Which flaws in requirements?

 A set of requirement is a set of constraints over possible evolutions of the entities in
the domain

 Possible questions
– Are my requirements too strict?

– Are my requirements too weak?

 Possible checks
– Consistency check (too strict?)

» is there at least one admissible behaviour?

– Possibility check (too strict?)
» is a given desirable behaviour admissible?

– Assertion check (too weak?)
» is a given undesirable behaviour excluded?

 Warning: no way to formalize design intent!

Requirements

Possible

Behaviours

??

103

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Functional Correctness

• Correctness verification

– “Are we building the system right?”

• Available functionalities:

– Model Simulation

» Animate model to produce execution traces

– Property Verification

» Check that a specification holds in all model traces

» E.g. “always (voltage >= 5.8)”

104

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

• Safety analysis
– Evaluate hazards and risks

– Check system behavior in presence of faults

• Modeling combined nominal and faulty behaviour:
– Nominal model annotated with possible faults

» “Valve stuck at open”, “jammed engine”

– Select model behaviour under fault
» E.g. “constant value”, “ramp down until stop”

– Combined behaviour automatically extended
» Fault variables model presence of faults

» Mutiplex nominal/faulty behaviour

• Analyses:
– Fault Tree Analysis (FTA)

– Failure Modes and Effects Analysis (FMEA)

• Based on the FSAP tool
– Various UE projects: ESACS, ISAAC, MISSA

– Recent book on topic [BV10]:

Safety Analysis

105

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

• Fault Tree Analysis (FTA)

– Find the minimal combinations of faults

that may cause a top event

» E.g.: “Which combinations of faults may

cause alarm to be raised”

• Reduction to parametric model

checking

– Parameters are failure mode variables

– Intuition:

» Find violation to property

» Extract assignment to fault variables

» Accumulate, block, and iterate until fix point

Safety Analysis

106

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

• Failure Modes and Effects Analysis (FMEA)

– Analyze the impact of fault configurations on a set of

system properties

» E.g. “What are the consequences of a battery failure: i) on the

output voltage of the power generator? ii) on the output alarm?”

• Reduction to model

checking

– Failure mode variables

suitably constrained

– Simplify extended model

– Solve multiple properties in simplified model

Safety Analysis

107

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

 Fault Detection
– “Will given FDIR procedure always

detect a fault?”

 Fault Isolation
– “Will given FDIR procedure identify

the fault responsible for an event?”

 Fault Recovery
– “Will given FDIR procedure recover

from a fault?”

 Solved by direct reduction to
model checking of extended
model
– Analysis of closed loop behaviour

» system + controller + FDIR

FDIR effectiveness analysis

108

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Diagnosability Analysis

• Diagnosis feasibility
– “Is there a diagnoser for a given property?”

• Diagnoser synthesis
– “Find a good sensors configuration”

• Diagnosability re-cast to model checking
in the twin plant model:

• Twin plant: synchronous product of the
model of the plant with itself
imposing equality of the actions and of the
observations

• There is no pair of execution one reaching a
bad state, the other reaching a good state,
with identical observations

O1 O2 O3 O4
O5 O6

I1 I2 I3 I4
I5

109

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Designing FDIR

 A very important problem

Currently no adequate methodologies for FDIR

 AUTOGEF
– Formal requirements specification for FDIR components

» Correctness – raise alarms only when required

» Completeness – raise alarms whenever required

 What if not diagnosable?

– Verification and synthesis of FDIR modules

 FAME
– Take into account timed fault propagation

HASDEL
– Application to launchers

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Contract-based Design

111

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Contract-based design

 Modeling of a space systems supporting:
– Functional step-wise refinement

– From system to software

– Exploiting the SRA

 FoReVer adopts a component-based approach to:
– Describe the architectural blocks of the system.

– Consider such blocks as black boxes until they are refined.

– Identify the SRA parts that can be reused.

 FoReVer adopts a contract-based design to:
– Formalize properties of system and components distinguishing between

assumption and guarantees.

– Formalize the guarantees provided by the SRA and the correct reuse of
SRA components.

– In general, to support:
» Step-wise refinement

» Compositional verification

» Reuse of components

112

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Step-wise
refinement

Reuse of
components

Contract-based approach

A

B C

D E

Compositional
verification

113

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Refinement

Component decomposed

into subcomponents

Contract refined into

collection of contracts over

subcomponents

Contract refinement can be

formally proved

– Contracts as formulae

– Correctness of refinement as

validity checking of proof

obligations

 Formal check within OCRA

A

B C

D E

115

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Correctness

 The FoReVer model is correct iff

– For every refined contract, the refinement is correct.

– For every state machine, the state machine is a correct

implementation of the component’s contracts.

116

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

EagleEye example

 First collected info on the system physical architecture.

 Identified FDIR requirements to detail system-to-
software refinement.

 Decomposed in one requirement for each type of
anomaly:
– Critical Values Reading

– Alive Flag Failure

– Consistency Check Failure

– TC/TM Correctness

– TC failed execution

 Chosen Critical Value as first example to exercise the
methodology and the tool support.

117

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

FDIR Critical Values

 Monitoring a critical variable.

 Triggering an alarm when the value reaches a threshold.

 More complex checks can be formalized:
– Ranges or delta variation or expected value.

– Alarm can be triggered after repeated checks.

 When the alarm is triggered, move to SHM to be controlled
by ground.

 More complex recovery can be formalized:
– First try reconfiguration procedure.

 4 architectures formalized in FoReVer and enriched with a
contract refinement.

 In the software architecture, the SRA pseudo-components
have been defined with their contracts.

 These components and contracts will be reused in the GB2
case study.

