->¢

Model checking Hybrid Systems
via Satisfiability Modulo Theories

Alessandro Cimatti
Embedded System Unit
Fondazione Bruno Kessler

Trento, Iltaly
cimatti@fbk.eu

Joint work with Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta

We gratefully acknowledge the support of the European Space Agency contracts OMC-ARE, COMPASS, IRONCAP,
AUTOGEF, FOREVER, FAME, HASDEL.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

mailto:surname@fbk.eu

e —————
'3(Fondazione Bruno Kessler

¢ Fondazione Bruno Kessler
— Private foundation with public finalities
— Owned by Provincia Autonoma di Trento
— Formerly IRST, Istituto Trentino di Cultura

¢ Center for Information Technology
— Director: Paolo Traverso

¢ The Embedded Systems Unit
— 28 people
— 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students
— Open call for more ph.d. students and postdocs!

¢ Strategy: tight integration of
— Basic research
— Tool development
— Technology transfer

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Take away messages

¢ The need for verification

— Very complex systems
¢ Verification in a broader sense

— Rigorous analysis of the behaviour of dynamic systems
¢ Hybrid automata

— A uniform and comprehensive formal model

¢ Satisfiability Modulo Theories
— Higher level symbolic modeling
— Efficient engines: SAT + constraint solving

¢ SMT-based Verification
— Many effective complementary algorithms

¢ Application in several project
— Strong potential for practical impact

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

-
:?5(Structure of the tutorial

¢ Motivations

¢ Hybrid Systems

¢ Satisfiability Modulo Theories

¢ SMT-based verification

¢ SMT-based verification of Hybrid Systems
¢ Requirements analysis

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

-:(

FONDAZ
BRUNO

¢ Designing complex systems

Automotive
Railways
Aerospace

Industrial production

¢ Sources of complexity:

Hundreds of functions
Networked control
Real-time constraints

Complex execution model with mixture of
real-time and event-based triggers

System composed of multiple
heterogeneous subsystems
Critical Functions:
» ABS, drive-by-wire
» Operate switches, level crossings, lights
» Manage on-board power production
Conflicting objectives:
» Avoid crashes vs move trains

The Design Challenge

55 ECUs & 7 Buses of 4 types with Gateways

Merondes-Beae

BOEING 719)547 el - ok eoilins

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=< Life Cycle of Complex Systems

BRUNO KESSLER

¢ How do we support
the design?

¢ Requirements
validation:

— Are the requirements

analysis ¢ Functional

correctness

gefinition — Does the system
Components Sa“S_fy the

design requirements?
_ ¢ Safety assessment
Safety analysis — Is the system able to
i 2
T deal with faults”
implement.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

FONDAZIONE
BRUNO KESSLER

¢ Planning

¢

¢

¢

¢

— plan how to achieve desired “firing” sequence

=>< From design to operation...

— retrieve pipes from holds, pre-weld, send to firing line, final weld
Execution Monitoring

— welding may fail, activities can take more time than expected
— plant may falil

Fault Detection, Fault Identification/Isolation
— is there a problem? where is it?

Fault Recovery

— put off-line problematic equipment

Replanning

— identify alternative course of actions, e.g. reroute pipes

b _:"Fc"
\\
'M

f;,i

17”77 \

.,—.&‘
I
‘ > ‘}

- '!r ll!

/’/Scd‘?

o SR

D e ———
~>< Complex systems operation

D

||| State Estimation
~_J Monttoring/ |

v I =S
Goals _ | |
B Planning/ Plan T/ m

— =y Damndl L L
Deliberation I m
m | Plan m
¢ How do we support m Execution \I\
operation? m :
— Planning, Monitoring, 'Sensing Actuation

FDIR, replanning \I\

— they all require —_— N J

reasoning about the
behaviour of a dynamic

system Hidden State

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=< Life Cycle of Complex Systems

BRUNO KESSLER

Operation

Requirements Plannin
analysis &

Architecture :
. Execution
definition
design
Safety analysis FDIR
: SW/HW Replanning
implement.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'3(A formal approach

¢ Both design and operation tasks require
— the analysis of the behaviour of dynamic systems over
time
» In fact, they often require the analysis of the same dynamic
systems

— the analysis must be “rigorous”
» predictability, certification

¢ We need a rich formalism
— to represent the behaviour of complex systems

— to provide the reasoning tasks required for design and
for operation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
~5< Model Checking in a nutshell

¢ Does system satisfy requirements?
¢ System as finite state model
¢ Requirements as temporal properties

N
Requirements | G(p->Fq) Ves
. Temporal X /
satisfied by Formula Chrqodfl \

ecker o+
N
q@plj
System

Counterexample
Finite State

Model

/

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Model checking

¢ Reactive System

— infinite computation, interacting with environment

— communication protocol, hw design, control software, OS

— modeled as a (finite) state transition system
¢ Requirements

— desirable properties of system behaviour

— modeled as formulae in a temporal logic (CLT, LTL, PSL, ...)
¢ Does my system satisfy the requirements?

— Is the set of traces “generated” by the system included in the set of
traces “accepted” by the requirements?

¢ Model checker
— search configurations of state transition system
— detect violation to property, and produce witness of violation
— conclude absence of violation when fix point reached

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'9(Properties

¢ Temporal logic can be used to express properties
of reactive systems

¢ Safety properties: nothing bad ever happens
— Two concurrent processes never execute simultaneously
within their critical section
¢ Liveness properties: something desirable will
eventually happen

— A subroutine will eventually terminate execution and
return control to the caller

— Whenever a request arrives, it is sooner or later followed
by a response

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

{;3(Refuting temporal properties

¢ Safety: refuted by finite trace to

bad state @p

¢ Liveness: refuted by infinite
trace with invariant suffix

— Finitely presented as cycle

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Al

=14

Modeling hybrid systems

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S
'3(Representation Challenges

¢ A formalism to characterize systems with
— Nondeterministic behaviours
— Possible faults
— Operation in degraded modes
— Limited observability

— Parallel actions/tasks
» Start actuations in different subsystems

— Activities with duration
» Time taken by procedures
» e.g. moving, welding, checking, ...

— Resources
» Power consumption, space, bandwidth, memory, ...

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

I
~5< Modeling (1)

¢ Synchronous, finite case
— Circuits

¢ Finite state
— each state variable associated with value in finite range

VAR x, y: boolean

init(x) := 0, init(y) := 0
next(x) := Ix

next(y) := if x then !y else y

¢ Synchronous composition
— Both variables evolve at the same time

x: 01 010101
y: 00110011

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S
-5< Modeling (I1): infinite data

¢ Synchronous, Iinfinite case
— programs

¢ Infinite state: each state variable associated with
value In finite range

VAR n : integer;

next(n) := i1if (even n)
then (n / 2)
else (3*n + 1)

¢ Reaching a fix point no longer guaranteed

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- .
:?5(Modeling (lll): asynchronous composition

¢ Automaton with states and transitions

e ~N request e N

Wait Trying

- J _ J

4)
done

Critical < enter

- /
VAR s : { Wait, Trying, Critical};
IVAR label : { req, enter, done, stutter};
s=Wait & label = request -> next(s)=Trying
label = stutter -> next(s)=s

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Modeling (I11): Networks of automata

SYNC server.grantl Cl.enter
SYNC server.grant2 C2.enter

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Symbolic Representation

¢ State variables as variables in a logical language
- XY, Z, W
¢ A state is an assignment to state variables
— The bitvector 0011
— The assignment { z, w }
— Theformula - XxXAyAZAW
¢ A set of states is a set of assignments

— can be represented by a logical formula

— X A =y represents {1000, 1001, 1010, 1011}
or a larger set, if more variables are present

¢ Set operations represented by logical operations

— union, intersection, complementation as
disjunction, conjunction, negation

¢ 1(X), B(X) are formulae in X

— Is there a bad initial state?
— Is I(X) A B(X) satisfiable?

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Symbolic Representation

¢ Symbolic representation not only for finite case!
— Software: control flow graph + data path
— Hardware at RTL, SystemC, threaded software
— UML state machines, AADL descriptions

¢ Transition
— pair of assignments to state variables
¢ Use two sets of variables

— current state variables: x, y, z
— next state variables: x', y', Z'

¢ A formula in current and next state variables
— represents a set of assignments to X and X'

— a set of transitions
— R(X, X"

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'9(From discrete traces to hybrid traces

¢ So far
— no notion of real time
— traces as sequences of assignments to state variables

¢ This Is often not enough

¢ Example:
— Train moving on track
— Evolution of position and speed over time

— Movement authorithy (MA):
» Proceed until position “end of authority” (EOA)
» At EOA speed must be below “target speed” (TS)

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

e,

F(

LOCATION

SPEED

—— frain’s location
—-——- MA’s EOA

frain’s speed

MA’s Target Speed

» TIME

< Hybrid means discrete + continuous

State as values to
variables
— discrete variables
» Operation modes
— continuous variables
» Speed, position
Transitions from state to
State

Continuous transitions
— Discrete component
does not change

— time elapses
— Continuous variables
evolve accordingly
Discrete transitions
— Instananeous

— Discrete component
changes
— Continuous
component may have
jumps
» Timer reset
» Speed limit variation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'3(The formalism: hybrid automata

approach ¢ LocatIOHS
x = 1000
¢ Events
X < 5000 Far Near ‘ Tl’anSItIOﬂS
e —50 < x < —40 —40 < x < -30 .
x > 1000 x>0 ¢ Continuous
variables
exit ’ Gual’dS
o & 1600, 4800 . — Enable transtions
—50 < x < —40 ¢ Invariants
x > —100 .
N — Must be satisfied
In locations

¢ Flow conditions

— How do variables
evolve when time
elapses

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTRE————SSSSSS,
3(Hybrid automata

=
=
FON

BRUN

e ~N approach e v ~N
[x = 1000]
Far Near
-50 <= der(x) <= -40 -40 <= der(x) <= -30
K x >= 1000) \ x >0 j
4)
ex:l.t here
Past
[x = -100] -50 <= der(x) <= -40 [x = 0]
x := 1900..4900 _ x >= -100)
A
g O
5 w
2 ¢ !
O o
-]

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Properties of hybrid automata

¢ Well founded, comprehensive and well studied
— Clear definition of behaviors of model
— Which states are reachable

¢ Temporal properties to express scenarios and requirements
— never two processes in critical region
— always if req then within 5 sec response

¢ Model checking

» Does the system satisfy the requirements?

¢ Temporal reasoning
» Strong/weak/dynamical controllability?

¢ Planning
» Find the inputs that will bring the system to required state

¢ The workhorse: satisfiability modulo theories

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(An example

Start a -> s = STANDBY
Start a -> next(s) = TAKING PICTURE
Start a -> next(t) = 0.0

s = TAKING PICTURE -> t <= 50.0
End a -> s = TAKING PICTURE

End a -> next(s) = STANDBY
End a -> t >= 30.0

- ~ Start_a /] t :=0 s v ~
TAKIN
STANDBY ¢
PICTURE
\ : / End a [t >= 30] S~—— 0/

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
'3(Nondeterminism and uncertainty

¢ Nondeterminism
— Discrete choice

¢ Uncertainty

Certain Duration |Uncertain Duration|

— Continuous
Determ. + | + |¢|
Effects
¢ Controllable
— Start
¢ Uncontrollable ,i : + .i.
NonDeterm.| | E> | S >
— Effects Effects C— I — A
— End t

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

~2~ From HA to SMT formulae
v
~ ~N approach e ~N
x = 1000
Far Near
-50 <= der (x) <= -40 ~40 <= der (x) <= -30
\ x >= 1000 j \ x>0 j
N
[x = 0]
4)
exit
Past N
[x = -100] 50 <= der (x) <= -40
x := 1900..4900 \ x >= -100 y
s = Past -> x >= -100 -> next(s) = s
exit -> s = Past & x = -100 & s = Past ->

exit -> next(s)

Far
exit -> next(x) in 1900..4900

next(x) >= x - 50%*
next (x) <= x - 40%*

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

[;3(The SMT representation

VAR s : { Past, Near, Far }

VAR x : real;

INIT x <= 5000

INIT s = Past
TRANS

s = Past -> x >= -1
exit -> s = Past

exit -> next(s) = Far

exit -> next(x) >=
exit -> next(x) <=

-> next(s) =
-> next (x) >=
-> next (x) <=

Hybrid automata symbolically
represented by SMT formulae!

1(X) Initial states
00 1R(X,X) transition relation
B(X) bad/target states

1900
4900

x - 50*
x - 40%*

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

->¢

Engines for symbolic verification

From SAT to SMT

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>{_ Satisfiability vs Verification

AZIONE
(or, combinational vs sequential)

BRUNO KESSLER

Boolean Modulo

theories

Verification eeoe 0000

Finite state model Infinite state

checking ‘Model checking
. .

BDDs,
SAT soIvers‘ SMT solvers

Satisfiability

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

D e ———
'9(Underlying engines

¢ Finite case

— Binary Decision Diagrams

— Boolean Satisfiability Solving
¢ Infinite case

— Satisfiability Modulo Theories

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Binary Decision Diagrams

¢ Representation of boolean functions
¢ Canonical form for propositional logic
¢ Widely used in formal verification

¢ Efficient BDD packages provide
— boolean operations
— universal and existential quantification (QBF)
— caching and memoizing

¢ Used to represent
— accumulated states
— partial policies

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'3(BDD-based Symbolic Model Checking

¢ Based on Binary Decision Diagrams
— canonical representation for logical formulae
— boolean operations, quantifier elimination

¢ 1(X), R(X, X'), B(X)
— each represented by a BDD

¢ Image computation: compute all successors of all
states in S(X)
— based on projection operation
— exists X.(S(X) and R(X, X))
¢ Reachabillity algorithm
— Expand new states until bug, or fix point

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>< Boolean DPLL

\

LS} .T\ >§

SATI
The DPLL procedure
Incremental construction of satisfying assignment
Backtrack/backjump on conflict
Learn reason for conflict
Splitting heuristics

® & & o o

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

38

RS,
'3(Satisfiability modulo theories

¢ Satisfiability of a first order formula ...
— where the atoms are interpreted modulo a background theory

¢ Theories of practical interest
— Equality Uninterpreted Functions (EUF)
» x =1(y), h(x) = g(y)
— Difference constraints (DL)
» X—y <3
— Linear Arithmetic
» 3X—08y+7z<1
» reals (LRA), integers (LIA)
— Arrays (Ar)
» read(write(A, 1, V), J)
— Bit Vectors (BV)
— Their combination

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

I
->< gtatisfiability Modulo Theories

¢ An extension of boolean SAT

¢ Some atoms have non-boolean (theory) content
»Al . Xx—-y<3
»A2:y—-z=10
» A3:X—z215

¢ Theory interpretation for individual variables,

constants, functions and predicates

»ifx=0,y=20,z2=10
»then A1=T,A2=T,A3=F

¢ Interpretations of atoms are constrained
» Al, A2 and A3 can not be all true at the same time

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'3(SMT solvers

¢ Boolean reasoning + constraint solving
— SAT solver for boolean reasoning
— theory solvers to interpret numerical constraints

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(MathSAT: search space

SAT!

Malrﬁt EESJIean modgls are not theory consistent!

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
'9(Early pruning

Check theory consistency of partial assignments

/\@T

‘,, ‘\. P gath T
Pruned away \E
in the EP Step =

Bool L Bool T
Math T
SAT!

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T
=3¢ Learning Theory Conflicts

The theory solver can detect a
reason for inconsistency

|.e. a subset of the literals that EP:Th 1 /\Ep@am

are mutually unsatisfiable \

E.g.Xx=y,y=2z X!=z ,/ % PST
Pruned away \E

_ in the EP Step Ppriath T

Learn a conflict clause LN

Xl=yoryl=zorx=z 5 > T

By BCP the boolean T el B\oow

enumeration will never make van T

same mistake again |

44

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Theory Deduction

The theory solver can detect that
certain atoms have forced values

E.g.fromx=yand x =z

infer that y = z should be true
S _ EP: MathJ_ \

Force deterministic assignments

. P@th T
. .' .
Theory version of BCP Prunéd awgy \E
in the EP Step <
Furthermore, we can learn the s e
deduction: Ern T
X=y & X=2z->y=z » \
Theory Conflict vs theory deduction Y ool BoolT
ThT
SAT!

45

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
'3(Optimizations

¢ Incrementality and Backtackability
— add constraints without restarting from scratch
— remove constraints without paying too much

¢ Limiting cost of early pruning
— filtering, incomplete calls

¢ Conflict set minimization
— return T-inconsistent subset of assignment

¢ Deduction
— return forced values to unassigned theory atoms

¢ Static learning
— precompile obvious theory reasoning reasoning to boolean

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTRE————SSSSSS,
-5{ SMT solvers in practice

FON

BRUI

¢ In practice, the integration is very tight
— SAT solver working as an enumerator

— Theory solver follows the stack-based search
» Inconsistent partial assignments are pruned on the fly
» conflicts clauses learnt from theory reasoning
» used to drive search at the boolean level

¢ Additional features
— Model construction
— Incremental interface
— Unsatisfiable core
— Proof production
— Interpolation

¢ Satisfiability Modulo Theories: a sweet spot?
— increase expressiveness
— retain efficiency of boolean reasoning

¢ Trade off between expressiveness and reasoning
— SAT solvers: boolean case, automated and very efficient
— theorem provers: general FOL, limited automation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTTTTE—————————————
'9(The SMT community

¢ Standard language and benchmarks
- http://www.smt-1ib.org

¢ Yearly competition
— http://www.smt-comp.org

¢ Solvers
— YICES, OpenSMT, Z3, CVC, ...

¢ The MathSAT solver
— http://mathsat. fbk. eu

— Solving, core extraction, interpolation, allsmt, costs

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Notable achievements

¢ Successful applications in various fields
— verification of pipelined microprocessors
— equivalence checking of Microcode
— software verification
— whitebox testing for security applications
— design space exploration, configuration synthesis
— discovery of combinatorial materials

¢ Reasons for success?
— allows to deal with richer representation
— Increase capacity by working above the boolean level

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

SMT-based verification

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTTTTE—————————————
'9(Symbolic Encoding

¢ Vectors of state variables
— current state X
— hext state X'

¢ Initial condition 1(X)

¢ Transition relation R(X, X")

¢ Bug states B(X)

¢ Key difference

— X, X"are not limited to boolean variables
» In addition to discrete
» reals, integers, bitvectors, arrays, ...

— I, R, B are SMT formulae

¢ Representation
— higher level
— structural information is retained

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Bounded Model Checking

¢ State variables replicated K times
- XO y Xl’ ey Xk-l’ Xk

¢ Look for bugs of increasing length

1(Xo) A R(Xg, X)) A ... AR(X .1, X)) A B(X,)
bug if satisfiable
increase k until ...

¢ Advanced use of satisfiability solver

incremental interface
theory lemmas should be retained

theory lemmas can be shifted over time

» from ®(X,, X;) to ®(X;, X,,)
Unsat core and generation of interpolants
Elimination of quantifiers

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
;?(Inducﬂon

¢ Prove absence of bugs by induction

1(Xo) A B(Xo)
—B(Xp) A R(Xo, X1) A B(Xy)

(X)) A R(Xo, X) A -+ . A R(Kr X) A BOX)
B(Xo) * R(Xg, X1) Ao A =B(Xoq) A R(X—q, Xi) A B(Xy)

¢ Proved correct if unsatisfiable (and no bugs until k)

¢ Commonly used techniques

— Invariant strengthening

» Sometimes trying to prove a stronger fact may be easier
— Simple path condition

» Explore only paths that do not contain repetitions

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Interpolation

An interpolant for an unsatisfiable formula
S (X, Y)NP(Y,2Z)

is a formula /fp(Y') such that:
@ ltp(Y) A da(Y,Z)is unsatisfiable

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

3(Interpolation-based model checking

(D'I()J(E:X'O
1(Xo) AR(X0, X1) A R(X1,Xo)..
ltp(X1)

D
o _

Precise

Overapproximated

Reachable from I(X) Can reach B(X) in k-1 steps

Itp(X1) = Itp(R, 1(X0), k)

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

H?(Interpolation-based model checking

DPL\J O KESSLER

oD _

Precise

<
=
E
g
2
3
8
| | |
Reachable from I(X) Can reach B(X) in k-1 steps
@ Precise reachability

Qo Ro =/
@ R; = Img(R,R;_Q UR;_1
@ Interpolation based reachability
® Itpo = I(X4)
@ Itp; = Itp(R, Itp;_1, k) U Itp;_4

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

== Counter-Example Guided
‘ Abstraction-Refinement (CEGAR)

CP
09 Abstraction

Morelnfo AProgli]

‘ Refinement I ‘ Model Check I

No CCex

Counter-example
Analysis

[No ACex
— >Safe

Uns afe&t:ex

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>{ predicate abstraction

not P,

not P,

Py Wo(X)

Bbo

001

101

State vars X

Abstract
1(X)

R(X, X))
980

not

State vars F
Al (P)

AR(P,P")

il

62

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
->{ CEGAR with Predicate abstraction

Preds|[0] |

CProg—— Predicate
/ Abstraction
NewPers[iH] APrl)g[i]
‘ Refinement I ‘ Model Check I

No CCex

Uneafes Counter-example o Acgxg
%Cex An alysis Cex

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
:?ﬁ(Computing Abstractions

¢ Given concrete model CI(X), CR(X, X")

¢ Given set of predicates W,(X)
each associated to abstract variable P,

¢ Obtain the corresponding abstract model
¢ AR(P, P") Is defined by

I X X(CRX, X) A\ o W) AN P o wixy))

¢ Existential quantification as AlISMT

— SMT solver extended to generate all satisfying
assignment

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

-
:?ﬁ(Implicit Abstraction

¢ Abstract transition system computed with AlISMT:
— Exponential in the number of predicates.
— Major bottleneck of CEGAR.
— Prevents the analysis of the abstract system.

¢ Main idea: avoid upfront computation of the abstract
program

¢ How: embedding the abstraction definition into the
BMC/k-induction encodings;

¢ abstract transitions implicitly computed by the SMT
solver;

¢ similar to lazy abstraction but completely symbolic and
without any image computation/quantifier elimination.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Implicit abstraction

Applicable when the abstraction « induces an equivalence
relation £EQ, among the concrete states.

@ For predicate abstraction,
EQu.(X.X") = Apep P(X) = P(X").
Example of application:

o Concrete unrolling: A\g-py_1 R(Xn, Xn11)
@ Abstract unrolling: Ag_,_1 R(Xp, X})) N EQ. (X}, Xpi1)

J J
X0 XO X1 Xl Xk Xk
SR
1 [J
\ J \ \
)) e N N e e
\ y \ / - \ J J o T \ \
G SR e N N s

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Specialized technigues

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
T?(Specialized technigues

¢ From hybrid traces to infinite-state transition
system over discrete traces

¢ Time elapse has the effect of a global
synchronization

¢ Interleaving may induce very long paths
¢ Encoding may have significant impact!
¢ Generate transition systems with shorter/less paths

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(The effect of interleaving

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

:?‘(Local clocks

20, 050, 00, o1

20, 0 0. 050 070

S0, 00 010 050
|

0. 0 0. 018 -0r0

ﬂ@@@o

'3(Local clocks + sync constraints

0. 0°0. 00 00
0. 0'0 o0 0®
e@o»@Q

oov

..,
->{ Local Time Encoding

"ON IONE
BRU (ESSLER

INIT == /\(loc = q — I4(X))At =0
qeQ
INVAR = /\ (loc = q — Z,(X))

qeER

TRANS = /\ (loc = q —
qe
(STUTTER V TIMED4 V \/ UNTIMED,))

(q.p)cE
STUTTER = e=SAd=0A/loc" =loc AN X" = X\t'=t
TIMEDy = e=TAJ>0A/loc'=loc A Fq(X ;X)/\t’t +0
UNTIMEDgp, = e=Lgp Ao =0AI0C"=p A Jgp(X,X)Nt'=t

o and T are local

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————————
T?;(Exploiting Shallow Synchronization

@ Shallow synchronization:

o for all systems S; and Sy, the sequence of shared events
performed by S; and S, is the same;

o for all systems S; and S, for all events a shared by S; and
Sp, S; performs the /-th occurrence of a at the same time S
performs the /-th occurrence of a;

o for all systems S; and S, the time in the last step of S; is the
same to the time in the last step of Sy.

@ Different variants of the encoding:

@ Enumerating all possible combinations of occurrences.
@ EXxploiting uninterpreted functions.

@ Different interaction with the solver:

@ Adding sync while unrolling vs after unrolling.
@ Depth-first search vs. breadth-first search.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR
T?;(Possible semantics

Global-time:

Local-time:

Shallow
synchronization:

S = stutter event. 7 = local event (no stutter or time). 74

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'9(Scenario-based verification

¢ A scenario Is a partially specified behaviour
— E.g. message sequence chart

¢ Can a scenario be refined to a concrete trace?

¢ A simple idea
— encode scenario as temporal property
— run “starndard” temporal logic model checker

¢ A much better idea

— use the structure of the MSC to localize the encoding
and to drive the search

— orders of magnitude speed ups

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Encoding MSC Iinto automata

7] [o2) [o3] [0]

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- .
:?‘(Specialized scenario encoding

@ for all the automata:
@ fix the position of the shared events.

(o) [(72) (7] [oa

transition is simplified wrt shared event A B
@ encode the sequences of local

transitions. c

transition is simplified wrt 7 D

@ add the synchronization constraints.

OSOS0O5 - OAOSOSOS -
OSOS05S - QAL LSO

OH0505 CBOS0R0S OS0S050% - OBOS0S05 -

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

?P(Proving unfeasibility

¢ Use k-induction to detect limit in expansion of
seqguences of local transtions

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Requirements validation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
:?ﬁ(Requirements are flawed

¢ The bugs are not in the system, but in the requirements!

— The systems often implement correctly wrong/incomplete
requirements.

— Software system errors caused by requirements errors
¢ Not just a slogan, but a real user need.

¢ Considered as major problem of software development
process by most European companies (EPRITI survey).

¢ Confirmed by NASA studies on Voyager and the Galileo
software errors

— Primary cause (62% on Voyager, 79% on Galileo):
mis-understanding the requirements.

¢ Confirmed by the ESA and ERA recent calls on requirements.

¢ Widely acknowledged from industry across domains
— 1Al, RCF, Intecs, ...

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Reqguirements validation

¢ Requirements: descriptions of the functions provided
by the system and its operational constraints.

¢ Requirements validation: checking if the requirements
are correct, complete, consistent, and compliant with
what the stakeholders have in mind.

¢ Target requirements errors:
— Incomplete (e.g., incomplete description of a function),
— Missing (e.g., missing assumption on lower levels),

— Incorrect (e.g., wrong value in condition used to trigger some
event),

— Inconsistent (i.e., pair-wise incompatible),
— Over-specified (e.g., more restrictive than necessary).

¢ Cover 89% of faults examined in NASA projects.

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'=§ Which flaws in requirements?

¢ Aset of requirement is a set of constraints over possible evolutions of the entities in
the domain

Requirements

¢ Possible questions
— Are my requirements too strict?
— Are my requirements too weak?

¢ Possible checks

— Consistency check (too strict?)
» is there at least one admissible behaviour?

— Possibility check (too strict?)

» IS a given desirable behaviour admissible?
— Assertion check (too weak?)

» IS a given undesirable behaviour excluded?

¢ Warning: no way to formalize design intent! Possible
Behaviours

84

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

f?(A Logic for Hybrid Traces

¢ HRELTL: A logic to describe hybrid traces
¢ continuous and discrete evolution

¢ Decision based on reduction to RELTL with SMT
constraints

¢ Enforce continuity by constraining values of predicates

HRELTL [T
RELTL 000000000000 0000000000

(with SMT constraints)

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

->¢

Conclusions

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'3(Conclusions

¢ Hybrid Automata as an expressive and practical formalism to
model complex dynamic systems

¢ SMT as a powerful symbolic representation formalism
— “Model everything as one gigantic automaton? | don’t think so...”
— Well studied composition primitives
— Structure may also help partitioning verification

¢ SMT solvers as powerful reasoning engines

— to support the design phase
» Helping designers to gain confidence
» Build more predictable systems
» Write more reliable software
» Assess behaviour under faults

— to support the operation phase
Generate better plans

Monitor execution

Perform diagnosis

Support replanning

Recalibrate control strategies

>

\v4

>

\4

>

\4

>

\4

>

\4

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTRE————SSSSSS,
'3(Take away messages

¢ The need for verification
— Very complex systems

¢ Verification in a broader sense
— Rigorous analysis of the behaviour of dynamic systems
— From off line to operation, from requirements to low level code

¢ Hybrid automata
— A uniform and comprehensive formal model

¢ Satisfiability Modulo Theories

— Higher level symbolic modeling

— Efficient engines: SAT + constraint solving
¢ SMT-based Verification

— Many effective complementary algorithms

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

D e ———
'9(Tools and applications

¢ The MathSAT SMT solver
— http://mathsat. fbk.eu

¢ The NuSMV model checker
- http://nusmv. fbk.eu

¢ A MathSAT-based extension of NuSMV

— HyDI: a structured language for automata networks
- https://es.fbk.eu/tools/nusmv3/

¢ Applied in
— OMC-ARE, COMPASS, AUTOGEF, FAME, FOREVER

— Industrial technology transfer
» Avionics, railways, oil and gas

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=
i |
F

3(Open issues and future directions

B

¢ Improving scalability of hybrid systems verification

— Exploit structure of the problem
» scenario-based validation

— Tighten connection between planning and temporal reasoning
» SMT-based scheduling

¢ Diagnosability checking and synthesis
— Automated synthesis of sensors configurations that guarantee
diagnosability
— Generalize to the case of hybrid automata
¢ FDIR: fault detection, identification, recovery
— Specification, verification and synthesis of FDIR modules

¢ Mixed software + physical system

— Nasty interaction between continuous and sampled timing
» 100ms duty cycle with flight duration

— Often scale very different, key is avoid trace fragmentation

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Thanks for your attention

Questions?

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Additional Material

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

->¢

Some Interesting applications

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- .
'3(Applications to High-level HW Design

¢ Ongoing work with Intel Haifa
— Application described in "high level" language
— words and memories are not blasted into bits

¢ Custom decision procedure for Bit Vectors

¢ Applications
— Register-transfer level circuits
— Microcode

¢ Functionalities
— more scalable verification
» currently based on boolean SAT
— tight integration with symbolic simulation
» pipe of proof obligations
— Automated Test Pattern Generation
» enumerate many different randomized solutions

¢ Results

— MathSAT currently “in production”
» Integrated in design environment deployed to microcode engineers

— Best paper award at FMCAD’10

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Analysis of Railways Control Software

¢ Control software for Interlocking
— controls devices in train station
— Application independent scheduler
— Parameterized, object oriented
— Instantiation with respect to station topology

¢ Model Checking to analyze single modules
— SMT-based software model checking
— checking termination, functional properties
¢ Compositional reasoning for global proofs
— based on scheduler structure
¢ Reverse engineering from the code
— Inspection, what-if reasoning

¢ Other potential role of SMT solving
— dealing with quantified formulae over lists of entities

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Parametric Schedulability Analysis

¢ Schedulability analysis
— given set of processes and scheduling policy
— check whether deadlines can be met

¢ Key problem: sensitivity analysis
— where do the numbers come from?
— typically, these are estimates

— traditional schedulability theory based on numerical raesoning, lifting
results to practical cases may be nontrivial

¢ Goal: analyze sensitivity with respect to variations
¢ Analytical construction of schedulability region!

¢ The role of SMT

— SMT allows for parametric representation

— SMT-based bounded model checking to generate one fragment of
unschedulability region

— Iterate to generate all fragments
— CEGAR to terminate the iteration

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'3(Design Mutation

¢ The problem: find "good" spatial position of aircraft
components with respect to safety constaints
— no electrical components "below" component that potential leakage
— not all components implementing critical function on same impact
trajectory
¢ Required functionalities
— 1S a configuration satisfactory
— reasons for violation
— find acceptable solution
— find optimal solution

¢ Encode problem into SMT
— may require dedicated, custom theory
— may require extension to "optimal constraints"

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

->¢

A design flow based on Formal Methods

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

-3¢ The flow of design phase

Fault Nominal
Models Models

Requirements

\ »
Validation

Extended
Model

Tables L) (Requirements
Fault (Performability] (FDIR)
Trees __Measures j |Effectiveness | 99

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Requirements Validation

FOND

 The error is in the requirements, not in the system
— areal user need

» Validate system requirements before detailed design and implementation
— “Are we capturing the right system?”

 Available functionalities:
— Property simulation

— Check logical consistency
» Are there any contradictions?

— Check property strictness
» Are the properties strict enough to rule out undesired behaviours?

— Check property weakness
» Are the properties weak enough to allow desirable behaviours?

A whole research line on its own:
— Temporal logic satisfiability engines
— Diagnostic information: unsatisfiable cores

— Relevant projects
» Formal requirements validation of European Train Control System [ERA]
» OthelloPlay [MRS research award]

100

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

'9(Requirements: Informal to Formal

NATURAL LANGUAGE

- SEMIFORMAL
LANGUAGE

FORMAL LANGUAGE
o

EpUq

EXp EGp
¢ e D e

101

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'=§ Which flaws in requirements?

¢ Aset of requirement is a set of constraints over possible evolutions of the entities in
the domain

Requirements

¢ Possible questions
— Are my requirements too strict?
— Are my requirements too weak?

¢ Possible checks

— Consistency check (too strict?)
» is there at least one admissible behaviour?

— Possibility check (too strict?)

» IS a given desirable behaviour admissible?
— Assertion check (too weak?)

» IS a given undesirable behaviour excluded?

¢ Warning: no way to formalize design intent! Possible
Behaviours

102

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Functional Correctness

» Correctness verification
— “Are we building the system right?”

* Avallable functionalities:
— Model Simulation
» Animate model to produce execution traces

— Property Verification
» Check that a specification holds in all model traces
» E.g. “always (voltage >= 5.8)”

103

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

3(Safety Analysis

BRUN

« Safety analysis
— Evaluate hazards and risks
— Check system behavior in presence of faults

« Modeling combined nominal and faulty behaviour:

— Nominal model annotated with possible faults
» “Valve stuck at open”, “jammed engine”

— Select model behaviour under fault
» E.g. “constant value”, “ramp down until stop”

— Combined behaviour automatically extended
» Fault variables model presence of faults
» Mutiplex nominal/faulty behaviour

* Analyses:
— Fault Tree Analysis (FTA)
— Failure Modes and Effects Analysis (FMEA)

 Based on the FSAP tool
— Various UE projects: ESACS, ISAAC, MISSA

— Recent book on topic [BV10]:
104

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Safety Analysis

(Ctrl. Alarm_high_level
& Pump_in_capacity >

* Fault Tree Analysis (FTA) 5

— Find the minimal combinations of faults
that may cause a top event B
» E.g.: “Which combinations of faults may
cause alarm to be raised” COnﬁZﬁﬁﬁion ;
/"N
» Reduction to parametric model ’”ﬁcj‘("
checking
_ Parameters are failure mode variables | stk | suck e o
— Intuition: i N =
» Find violation to property lm\)ml S
» Extract assignment to fault variables
» Accumulate, block, and iterate until fix point 105

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'3(Safety Analysis

FC |

BR

Failure Modes and Effects Analysis (FMEA)

— Analyze the impact of fault configurations on a set of
system properties

» E.g. “What are the consequences of a battery failure: i) on the
output voltage of the power generator? ii) on the output alarm?”

Ref. | Irem Failure Failure Local System Detection Severity | Corrective
No. mode cause effects effects means Actions
1 Pump Fails to | Comp. Coolant Reactor Temperature| Major Start
operate broken temperature| temperature| alarm secondary
R ed u Cti O n to m Od e I increases | increases pump
No input Switch to
- flow secondary
checking
2 Valve Stuck Comp. Excess Reactor Coolant Critical | Open
. . closed broken liquid pressure level release
— Failure mode variables enaes L
3 Stuck Comp. Insufficient | Reactor Coolant Critical | Open tank
. . open broken liquid temperature | level valve
suitably constrained s | s

— Simplify extended model
— Solve multiple properties in simplified model

106

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

S
'3(FDIR effectiveness analysis

¢ Fault Detection
— “Will given FDIR procedure always

detect a fault?” sel wars lme

¢ Fault Isolation :

— “Will given FDIR procedure identify | State \Estimation |

the fault responsible for an event?” m - |

¢ Fault Recovery | Planning |

— “Will given FDIR procedure recover | anel Sen |

from a fault?” I |

Sensing Actuation
I |
¢ Solved by direct reduction to s QEE%EE@« -
model checking of extended

model Hidden State

— Analysis of closed loop behaviour
» system + controller + FDIR

107

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=9(Diagnosability Analysis

« Diagnosis feasibility
— “Is there a diagnoser for a given property?”
« Diagnoser synthesis |
— “Find a good sensors configuration”

- Diagnosability re-cast to model checking |
in the twin plant model:
« Twin plant: synchronous product of the \H

model of the plant with itself |
iImposing equality of the actions and of the !

observations Sensing
« There is no pair of execution one reaching a I
bad state, the other reaching a good state, b

with identical observations

|
?FDIR [« -

|

| |

State ! Estimation |
v |

|

|

|

Planning |
and Control
|
Actuation
|
o —
Hidden State
108

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Designing FDIR

¢ A very important problem
¢ Currently no adequate methodologies for FDIR

¢ AUTOGEF

— Formal requirements specification for FDIR components
» Correctness — raise alarms only when required

» Completeness — raise alarms whenever required
¢ What if not diagnosable?

— Verification and synthesis of FDIR modules

¢ FAME
— Take into account timed fault propagation

¢ HASDEL
— Application to launchers

109

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Contract-based Design

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
'3(Contract-based design

¢ Modeling of a space systems supporting:
— Functional step-wise refinement
— From system to software
— Exploiting the SRA
¢ FoReVer adopts a component-based approach to:
— Describe the architectural blocks of the system.
— Consider such blocks as black boxes until they are refined.
— ldentify the SRA parts that can be reused.

¢ FoReVer adopts a contract-based design to:

— Formalize properties of system and components distinguishing between
assumption and guarantees.

— Formalize the guarantees provided by the SRA and the correct reuse of
SRA components.
— In general, to support:
» Step-wise refinement
» Compositional verification
» Reuse of components

111

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Y
->< Contract-based approach

BRU\L} K[‘x LLK

112

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
'9(Refinement

4 N ¢ Component decomposed
Into subcomponents

¢ Contract refined into
collection of contracts over
subcomponents

¢ Contract refinement can be
formally proved
— Contracts as formulae

— Correctness of refinement as
validity checking of proof
obligations

¢ Formal check within OCRA11

3

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Correctness

¢ The FoReVer model is correct |ff
— For every refined contract, the refinement is correct.

— For every state machine, the state machine is a correct
Implementation of the component’s contracts.

115

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

- .
'3(EagleEye example

¢ First collected info on the system physical architecture.

¢ ldentified FDIR requirements to detall system-to-
software refinement.

¢ Decomposed in one requirement for each type of
anomaly:
— Critical Values Reading
— Alive Flag Failure
— Consistency Check Failure
— TC/TM Correctness
— TC failed execution

¢ Chosen Critical Value as first example to exercise the
methodology and the tool support.

116

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
:?ﬁ(FDIR Critical Values

¢ Monitoring a critical variable.
Triggering an alarm when the value reaches a threshold.
¢ More complex checks can be formalized:

— Ranges or delta variation or expected value.
— Alarm can be triggered after repeated checks.

¢ When the alarm is triggered, move to SHM to be controlled
by ground.

¢ More complex recovery can be formalized:
— First try reconfiguration procedure.

¢ 4 architectures formalized in FoReVer and enriched with a
contract refinement.

¢ In the software architecture, the SRA pseudo-components
have been defined with their contracts.

¢ These components and contracts will be reused in the GB2
case study.

2

117

ICAPS’13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

