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Foreword 

Application domains that entail planning and scheduling (P&S) problems present a set of 

compelling challenges to the AI planning and scheduling community, from modeling to 

technological to institutional issues. New real-world domains and problems are becoming 

more and more frequently affordable challenges for AI. The international Scheduling and 

Planning Applications woRKshop (SPARK) was established to foster the practical 

application of advances made in the AI P&S community. Building on antecedent events, 

SPARK'13 is the seventh edition of a workshop series designed to provide a stable, long-term 

forum where researchers and practitioners can discuss the applications of planning and 

scheduling techniques to real-world problems. The series webpage is at 

http://decsai.ugr.es/~lcv/SPARK/ 

 

We are once more very pleased to continue the tradition of representing more applied aspects 

of the planning and scheduling community and to perhaps present a pipeline that will enable 

increased representation of applied papers in the main ICAPS conference. 

 

We thank the Program Committee for their commitment in reviewing. We thank the 

ICAPS'13 workshop and publication chairs for their support. 
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Abstract

We confront the problem of scheduling the charge of electric
vehicles, under limited electric power contract, with the ob-
jective of maximizing the users’ satisfaction. The problem is
motivated by a real life situation where a set of users demand
electric charge while their vehicles are parked. Each space
has a charging point which is connected to one of the lines of
a three-phase electric feeder. We first define the problem as a
Dynamic Constraint Satisfaction Problem (DCSP) with Opti-
mization. Then, we propose a solution method which requires
solving a number of CSPs over time. Each one of these CSPs
requires in its turn solving three instances of a one machine
sequencing problem with variable capacity. We evaluated the
proposed algorithm by means of simulation across some in-
stances of the problem. The results of this study show that
the proposed scheduling algorithm is effective and produces
much better results than some classic dispatching rules.

Introduction
It is well known that the use of Electric Vehicles (EVs) may
have a positive impact on the economies of the countries and
on the environment, due to promoting the use of alternative
sources of energy and relieving the dependency of foreign
petrol. At the same time, the emerging fleet of EVs intro-
duces some inconveniences such as the additional load on
the power system. However, the charge of EVs is usually
more flexible than the conventional load of oil vehicles as in
many cases the owners require charging while their vehicles
are parked during large time periods. This flexibility may
be exploited to design appropriate algorithms for charging
control (Wu, Aliprantis, and Ying 2012).

In this paper we consider a real life problem that requires
scheduling the charging intervals of a set of EVs that de-
mand power while they are parked in their own spaces within
a community car park. A charging station is installed in
the car park so that each space has an independent charg-
ing point. However, if the power demand is very large dur-
ing a given time period, not all the requiring vehicles can be
charged simultaneously, as the contracted power is limited.
So, in these situations, an appropriate scheduling policy is
necessary to organize and control the charging intervals of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the vehicles along the time they are in the car park (Sedano
et al. 2012).

We propose modeling the problem of computing such a
schedule in the framework of Dynamic Constraint Satisfac-
tion Problems (DCSP) with Optimization. As it is usual,
one problem of this class requires solving a number of CSPs
over time. In order to solve each one of these CSPs, we
propose an algorithm that requires solving a number of in-
stances of a one machine scheduling problem with variable
machine capacity. The scheduling algorithm is evaluated by
means of simulation and compared with some dispatching
rules such as First Come First Scheduled (FCFS) or Latest
Starting Times (LST).

The rest of the paper is organized as follows. In the next
section we summarize the aspects of the charging station that
are relevant from the point of view of the scheduling algo-
rithm. Then, we define the problem and describe the pro-
posed algorithm to solve it. Finally, we report the results of
the experimental study and give some conclusions and ideas
for future research.

Description of the charging station
In this section we summarize the main characteristics of the
electrical structure and the operation mode of the charging
station. These elements are detailed in (Sedano et al. 2012).
Figure 1 shows a schema of the distribution net of the charg-
ing station. The net is feeded by a three-phase source of
electric power. In the model considered here, each line feeds
a number of charging points. The station has about 180
spaces, each one having a charging point which may be in
two states: active or inactive. When it is inactive, the charg-
ing point is not connected to the electric net, while in active
state it is connected to the net and transfers energy at a con-
stant rate (2.3Kw) in the so called mode 1 (Sedano et al.
2012).

The operation of the station is controlled by a distributed
system comprising a master and a number of slaves. Every
two consecutive charging points in the same line are under
the control of the same slave. The master has access to the
database where the vehicles’ data and the charging sched-
ule are stored. It receives information about the state of the
charging vehicles from the slaves, and transmits to the slaves
starting times and durations of charging intervals. So the
slaves are responsible for activating and deactivating charg-
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Figure 1: General structure of the distribution net of charg-
ing stations. It is formed by different parts such as: (1)
power source, (2) three-phase electric power, (3) charging
points, (4) masters, (5) server with database, (6) communi-
cation RS 485, (7) communication TCP/IP, (8) slaves.

ing points as well as registering asynchronous events such
as a new vehicle arriving to the system.

The operating mode of the station is as follows. Each user
has one vehicle and one space assigned. These are concrete
spaces as each user has to be the owner or the renter of its
stall and he cannot use the space of another user. This re-
striction makes the scheduling problem harder to solve as
each stall is connected to one of the three lines of the three-
phase feeder and so keeping the balance constraints may not
be easy. So, for a vehicle and user can use the station, they
have to be registered in the system. When entering in the
station, the user has to check in and identify himself and the
vehicle. At this time, the user has to connect the vehicle to
the charging point and provide the charging time, as well as
an expected time, or due date, for taking the vehicle away.
These values are then used by the control system to sched-
ule the vehicle, i.e., to establish a starting time. In principle,
the vehicle will start to charge at this starting time unless the
schedule is modified before it.

There are some constraints that must be satisfied for the
station to work properly. For example, although there are
180 spaces available, not all the charging points in these
spaces can be activated at the same time. In practice there
is a maximum number of vehicles N that can be in charge
(actives) at the same time in a line which depends on the
contracted power. Also, due to electro-technical and eco-
nomical reasons, the current consumption in the three lines
must be balanced. This condition is considered as a maxi-
mum imbalance between any two lines.

In this paper we consider a simplified model of the charg-
ing station which make the following assumptions: the user
never takes the vehicle away before the declared due date
and the battery does not get completely charged before the
charging time indicated by the user. Even though they are
unrealistic assumptions, the model may be adapted to deal
with these situations with nothing more than introducing
new asynchronous events.

In principle, each time a new vehicle requires charging,
the current schedule may get unfeasible and so a new sched-
ule should be built. However, in order to avoid the system to
collapse if many of such events are produced in a very short
period of time so that a new schedule cannot be obtained
from one event to the next, new schedules are computed at
most at time intervals of length ∆T . In order to do that,
the protocol is the following: every ∆T time units a super-
visor program, running on the server, checks for the events
produced in the last interval. If at least one event was pro-
duced that could make the current schedule unfeasible, then
the scheduler is launched to obtain a new feasible schedule
which is applied from this time on.

Modeling frameworks
Given the characteristics of the charge scheduling problem,
maybe the most appropriate framework for modeling is the
dynamic constraint satisfaction problem framework (DCSP)
introduced in (Dechter and Dechter 1988). A DCSP is a
sequence of CSPs, 〈P1, P2, . . . , Pn〉, where each Pi, 1 <
i ≤ n is derived from Pi−1 by adding and removing a
limited number of constraints. Some variants of the DCSP
framework has been proposed that capture other character-
istics such as dynamic domains of the variables, state vari-
ables which are controlled by the physical system and not
by the decision maker, or the uncertainty about the presence
of some constraints. However, none of these characteristics
appears in the version of the charging scheduling problem
considered here. All of these and other frameworks are sur-
veyed in (Verfaillie and Jussien 2005).

There are two main types of methods to solve a DCSP:
reactive and proactive. A reactive algorithm does not use
knowledge of the possible changes, so it may not produce
robust solutions, but at the same time it may react better to
any kind of change. On the contrary, a proactive method is
able to exploit any available knowledge and so it may pro-
duce robust or flexible solutions. In both cases, the algo-
rithms may either reuse the solutions of the previous CSP or
compute a new solution from scratch. Each of these options
has its own advantages and drawbacks. Solution reuse may
speed up the calculation of a new solution, but at the same
time may prevent the algorithm from obtaining a better one.

A particular case of proactive method is the online
stochastic optimization framework (Chang, Givan, and
Chong 2000), (Bent and Van Hentenryck 2004), which has
been applied to a variety of problems where a set of requests
are given over time. Online stochastic optimization algo-
rithms rely on two main components: an offline solver for
a set of requests, and a sampler that generates fictitious re-
quests with a given distribution along a time horizon. The
online stochastic algorithms solve instances which are com-
posed by subsets of requests including real and fictitious
ones, then they take decisions from the solutions of these
fictitious instances. So, the application of online stochastic
optimization to the charge scheduling problem may make it
difficult to maintain the balance constraints if the process-
ing times of the fictitious operations differ much from the
charging periods required for the incoming vehicles.
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From all the above, we have opted to model the electric
vehicle charging scheduling problem, termed PI in the se-
quel, in the framework of DCSP with optimization and to
use a reactive method to solve it. So, in the next sections
we give the formal definition of the problem and describe
the proposed algorithms. Before this, we also give a formal
definition of the problem as a static CSP, which assumes a
complete knowledge in advance about the vehicle arrivals.
This helps to understand the subsequent dynamic definition.

Definition of the PI problem as a static CSP
As we have pointed, if the problem data, i.e., the arrival
times of the vehicles and their charging times and due dates
were known in advance, the problem could be formalized as
a static CSP. Even though this is not the case for our prob-
lem, we consider here a static version of it. The purpose
is twofold, firstly to clarify the overall problem and then
to define the simulation framework which will be used in
our experimental study. In the next subsections we give the
problem data, the goal, the problem constraints and the eval-
uation function to be optimized.

Problem data. In an static instance P of the PI problem
there are 3 charging lines Li, 1 ≤ i ≤ 3, each one having ni
charging points. N > 0 is the maximum number of charg-
ing points that can be active at the same time in each one of
the three lines. The line Li receives a number of Mi vehi-
cles {vi1, . . . , viMi

} from a time 0 up to a planning horizon.
Each vehicle vij is characterized by an arrival time tij ≥ 0, a
charging time pij and a time at which the user is expected to
take the vehicle away, or due date, dij by which the battery
of the vehicle should be charged.

There is also a parameter ∆ ∈ [0, 1] which controls the
maximum imbalance among the lines.

Goal. The goal is to get a feasible schedule for P, i.e.,
assigning starting times to the decision variables stij for
each vehicle vij satisfying the constraints and optimizing the
evaluation function.

Constraints

I. For all vehicle vij , stij ≥ tij .

II. No preemption is allowed, so a vehicle vij cannot be
disconnected before its charging time Cij is reached,
i.e., Cij = stij + pij .

III. The number of active charging points in a line at a
given time cannot exceed N , i.e.,

max
(t≥0;i=1,2,3)

Ni(t) ≤ N (1)

where Ni(t) denotes the number of charging points of
line Li which are active during the time interval [t, t+
1).

IV. The maximum imbalance between any two lines Li

and Lj is controlled by the parameter ∆ as

max
(t≥0;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (2)

Evaluation function. The evaluation function is the total
tardiness defined as∑

i=1,2,3;j=1,...,Mi

max(0, Cij − dij) (3)

which must be minimized.

Definition of the PI problem as a DCSP
The PI problem may be naturally considered as a dynamic
problem due to the fact that the arrival of vehicles is not
known in advance. For this reason, an instance P can be
defined as a sequence of instances, P1,P2, . . . of a static
CSP termed PII. Each Pk is defined (see the next Section)
from the set of vehicles in the system which have not yet
completed their charging periods.

To solve this problem, we adopted here a similar strat-
egy to that used in (Rangsaritratsameea, Ferrell, and Kurzb
2004) for the dynamic Job Shop Scheduling problem where
the jobs are unknown until they arrive. In that paper, the
authors propose to build a new schedule at each ”reschedul-
ing point” combining all previous operations that have not
started processing together with operations arriving after the
previous rescheduling point.

Due to technological restrictions, we do not consider
rescheduling each time a new vehicle arrives. Instead, we
consider rescheduling each time the Supervisor is activated.
The new schedule involves the vehicles which have arrived
from the previous point together with all the vehicles in the
system which have not yet started to charge.

Solving the dynamic PI problem
Algorithm 1 shows a simulation of the actual algorithm to
solve a dynamic PI problem. In the simulation, the problem
data and the sequence of times for the Supervisor to be ex-
ecuted are given to the algorithm. The algorithm iterates on
this sequence of times T1, T2, . . . . In the iteration k, i.e., at

Algorithm 1 Solving the PI problem.
Require: The data of a P instance of the PI problem: tij , pij and

dij for all vehicles vij ; and the sequence of times T1, T2, . . . at
which the Supervisor is activated.

Ensure: A schedule S for P defined by the time each vehicle starts
to charge stij and the total tardiness produced by this schedule.
S = ∅;
for all k = 1, 2, . . . do

if a new vehicle vij has arrived at a time t = tij ∈ (Tk−1, Tk]
then

Generate a new instance Pk of the problem PII with all
vehicles vij s.t. tij ≤ Tk and that have not started charging
yet;
Calculate a solution S for the instance Pk; {A solution S
defines starting times st∗ij ≥ Tk to schedule all vehicles
vij that are not active at Tk}

end if
Establish S as the current solution along [Tk, Tk+1); i.e., for
each st∗ij ∈ S such that Tk ≤ st∗ij < Tk+1, set stij = st∗ij
in the final schedule S, so that vij starts charging at st∗ij ;

end for
return the schedule S for P and its total tardiness;
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time Tk, a new instance Pk of PII is created if some vehi-
cle arrived from the previous instant Tk−1. This instance is
solved and the new solution replaces the current one from Tk
on. If no vehicle has arrived from Tk−1 to Tk then the cur-
rent solution can remain active until the next iteration. The
current solution is applied during the time it is active. This
means that the vehicles start charging at the times st∗ij given
in the current solution, so stij is fixed to st∗ij in the solution
to the P instance, and disconnected at their expected times
Cij = stij + psij .

Definition of the PII problem
The PII problem can be defined as a static CSP as fol-
lows: In an instance Pk, we are given a set of vehicles
{vi1, . . . , vili , . . . , vimi} at time Tk in each line Li, 1 ≤ i ≤
3. Each vehicle vij requires a charging time pij and has a
due date dij . The vehicles vi1, . . . , vili are already active,
as they started to charge at a time t < Tk and have not yet
finished, i.e., Cij = stij + pij > Tk. While the vehicles
vili+1, . . . , vimi

have not yet started to charge. So, in the it-
eration k, the capacity of the line Li to charge new vehicles,
denoted Mk

i (t) is given by

Mk
i (t) = N −

∑
1≤j≤li

Xij(t), t ≥ Tk (4)

where

Xij(t) =

{
1, t < Cij

0, t ≥ Cij
(5)

The objective is to obtain a feasible schedule for all ve-
hicles in the system such that all of them can be sorted out,
even if no new vehicles arrive after Tk. This requires assign-
ing starting times st∗ij to all vehicles unscheduled at time Tk,
which are compatible with the starting times of the vehicles
already scheduled by Tk. This means that all the constraints
naturally derived from the static PI problem must be satis-
fied.

Also, the evaluation function will be, in principle, mini-
mizing the total tardiness. However, as the solution to the
instance Pk is expected to be useful along a short time pe-
riod (until the arrival of a new vehicle), we will try to maxi-
mize the number of charging vehicles at the beginning. So,
we could consider a time horizon th at which a new event
may be expected and try to maximize the charge along the
interval [Tk, Tk + th]. This new objective may be expressed
as maximizing∫ Tk+th

Tk

(N1(t) +N2(t) +N3(t))dt (6)

where Ni(t); i = 1, 2, 3 denotes the number of active vehi-
cles in line Li at time t.

Solving the PII problem
The PII problem is really hard to solve because of the con-
straint derived from constraint (IV) of the static PI problem,
which for the instance Pk may be expressed as

max
(t≥Tk;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (7)

It is not easy to build a schedule satisfying this constraint
and at the same time maximizing expression (6). To solve
this problem, we propose to use two simple dispatching rules
and a more sophisticated algorithm based on problem de-
composition.

Solving PII with a dispatching rule. We propose to use
a simple dispatching rule termed LTS (Latest Starting Time)
to solve each Pk instance. This rule works as follows: the
unscheduled vehicles at time Tk in the system are sorted in
accordance with their latest starting times given by dij −
pij , then these vehicles are scheduled in this order and each
one is given the earliest starting time such that the scheduled
vehicles satisfy all the constraints. This rule can be easily
implemented, but the restriction that the balance constraint
must be satisfied after scheduling each vehicle is very hard
and may prevent the algorithm from reaching near optimal
solutions.

Solving PII by problem decomposition. We also propose
a method that uses problem decomposition in the following
way. First of all, we establish a profile of maximum charge,
Nmax

i (t), i = 1, 2, 3, for each one of the three lines; so that
these profiles satisfy the constraint

max
(t≥Tk;1≤i,j≤3)

(|Nmax
i (t)−Nmax

j (t)|/N) ≤ ∆ (8)

Then, we try to obtain a schedule for each one of the lines,
so that Ni(t) is as close as possible to Nmax

i (t) for t ≥ Tk
while it satisfies the constraint

Ni(t) ≤ Nmax
i (t), t ≥ Tk (9)

Hence, combining the solutions to the three lines may give
rise to a feasible solution to the PII instance. If not, the pro-
files Nmax

i (t) are adjusted and new schedules are computed
for one or more lines.

The problem of calculating a schedule for a line subject
to a maximum load is denoted PIII herein and the instance
of this problem which consist in scheduling the vehicles in
the line Li, subject to the profile Nmax

i (t) at time Tk, is
denoted Pki. So, our proposed method starts from some
initial profiles and then these profiles are updated as long
as the solutions obtained to the Pki instances, 1 ≤ i ≤ 3,
derived from a Pk instance, do not make up a solution to the
Pk instance.

Algorithm 2 describes the calculation of a solution to
a Pk instance. The algorithm starts from trivial profiles
Nmax

i (t) and then iterates until a solution is reached. In
each iteration, it solves the three Pki instances subject to
the profiles Nmax

i (t). If these solutions make up a solution
for Pk, the algorithm finishes; otherwise, some profile is
adjusted from the earliest time t′ at which an imbalance is
detected onwards. In this way, the profiles are maintained as
large as possible at the beginning and so, hopefully, the eval-
uation function given in expression (6) is maximized. The
adjustment of the profiles is the most controversial operation
in this algorithm. We will reconsider this issue later.
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Algorithm 2 Solving the PII problem.
Require: The data of an instance Pk: pij and dij for all unsched-

uled vehicles vij that arrived by Tk; and the values stij and pij
for all vehicles scheduled before Tk such that stij + pij ≥ Tk.

Ensure: A schedule S for Pk defined by the time each vehicle
starts to charge st∗ij and the total tardiness produced by this
schedule.
Set the initial profiles to Nmax

i (t) = N, t ≥ Tk, 1 ≤ i ≤ 3;
while Pk remains unsolved do

Solve the instances Pki under the current profiles Nmax
i (t);

{The three PIII instances get solved with charge profiles
Ni(t)}
Let t′ ≥ Tk be the earliest time such that an imbalance exists,
i.e., Ni(t

′)−Nj(t
′) > ∆×N for some 1 ≤ i, j ≤ 3;

if there exists such a time t′ then
Adjust the profile of maximum load for the line Li so that
Nmax

i (t) ≤ Nj(t) + ∆×N , t ≥ t′;
else

The solutions to the Pki instances, 1 ≤ i ≤ 3, make up a
solution to Pk;

end if
end while
return the schedule S for P and its total tardiness;

Definition of the PIII problem
In an instance Pki of the PIII problem we are given the set of
vehicles {vi1, . . . , vili , . . . , vimi

} at time Tk in the line Li.
Additionally, we are given a maximum charge profile for the
line Li, Nmax

i (t), t ≥ Tk.
The objective is to obtain a schedule for the vehicles,

i.e., starting times st∗ij ≥ Tk for the inactive vehicles
vili+1, . . . , vimi

, such that the following two constraints, de-
rived from the PII instance, are satisfied:

i. st∗ij ≥ Tk, for each inactive vehicle.

ii. Ni(t) ≤ Nmax
i (t), for all t ≥ Tk.

The evaluation function is the total tardiness, defined as∑
j=li+1,...,mi

max(0, Cij − dij) (10)

which must be minimized.

Solving the PIII problem
The Pki problem can be viewed as that of scheduling a num-
ber ofmi− li jobs, all of them available at time Tk, on a ma-
chine whose capacity varies along the time, and the objective
is minimizing the total tardiness. The processing time of the
jobs are the charging times of the vehicles vili+1, . . . , vimi ,
respectively. Each job can use only one slot of the machine
at a time. In other words, the machine is a cumulative re-
source with variable capacity. Cumulative scheduling has
been largely considered in the literature, mainly in the con-
text of the Resource Constrained Project Scheduling Prob-
lem (RCPSP). However, to the best of our knowledge, cumu-
lative resources with time dependent capacity has not been
considered yet.

In our case, the capacity of the machine is defined by
the profile Nmax

i (t) and the vehicles already scheduled

vi1, . . . , vili , which complete charging at times Cij ≥ Tk.
So, the capacity of the machine may be expected to be in-
creasing at the beginning, as long as the scheduled vehicles
complete charging, and decreasing at the end, as the profiles
Nmax

i (t) are non increasing along time. To be concrete, the
capacity of the machine at time t for the line Li, Capki (t), is
calculated as

Capki (t) = min(Mk
i (t), Nmax

i (t)), t ≥ Tk (11)

We denote this problem as (1, Cap(t)||
∑
Ti) following

the conventional notation (α|β|γ) proposed in (Graham et
al. 1979).

Solving the (1, Cap(t)||
∑
Ti) problem. In the simple

case where the capacity Cap(t) is non decreasing, the prob-
lem is equivalent to the problem of identical parallel ma-
chines with variable availability denoted (P,NCinc||

∑
Ti)

following the notation used in (Schmidt 2000), where P is
the number of parallel machines and Ninc denotes that the
availability of machines is non decreasing along the time.
Scheduling problems with machine availability appear in
many situations, for example when maintenance periods are
considered, with different profiles of machine availability.
This kind of problems are surveyed in (Ma, Chu, and Zuo
2010).

In (Koulamas 1994), the (P ||
∑
Ti) problem, in which all

the machines are continuously available, is proved to be at
least binary NP-hard. An efficient simulated annealing al-
gorithm for this problem is proposed in (Sang-Oh Shim and
Kim 2007). In this algorithm, the starting solution is ob-
tained by means of the apparently tardiness rule. This rule
was adapted for similar problems in (Kaplan and Rabadi
2012), to deal with ready times and due date constraints.
In this paper, we propose to adapt this rule to solve the
(1, Cap(t)||

∑
Ti) problem as follows: let Γ(α) the earliest

starting time for an unscheduled job in the partial schedule
α built so far. Then for all unscheduled jobs that can start at
Γ(α) a selection probability is calculated as

Πj =
1

pj
exp

[
−max(0, dj − Γ(α)− pj)

gp

]
(12)

where p is the average processing time of the jobs and g
is a look-ahead parameter to be fixed empirically. These
probabilities may be applied deterministically, i.e., the job j
with the largest probability is selected to be scheduled next,
or probabilistically. In principle, we will consider the first
option in the experimental study.

Profiles of maximum load
As we have pointed out, the balance among the lines is the
most critical issue of the whole charge scheduling problem.
In order to deal with it, we propose to use the following
model for the profiles of maximum load. A profile Nmax

i (t)
is given by a stepwise non increasing function of the form:

Nmax
i (t) =

{
δj τj ≤ t < τj+1, 1 ≤ j < k
δk τk ≤ t (13)
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where δ1 > · · · > δk and τ1 < · · · < τk, k ≥
1. We represent this profile as a sequence of tuples as:
〈(δ1, τ1), (δ2, τ2), . . . , (δk, τk)〉.

In Algorithm 2, the initial profiles are Nmax
i (t) =

〈(N, 0)〉 for all three lines. Then, these profiles are ad-
justed as long as new imbalances are found after the solu-
tions of the three PIII instances. In particular, when an im-
balance of the form Ni(t

′) − Nj(t
′) > ∆ × N is detected,

then the profile Nmax
i (t) is modified so as a new element

(δ, τ) = (∆ × N + Nj(t
′), t′) is inserted and all tuples

(δj , τj) with δj > δ and τj > τ are removed fromNmax
i (t).

This is a very simple model which helps to keep the load
in the three lines as large as possible at the beginning, hope-
fully along the interval [T, T + th]. However, it may have
some inconvenience as well. For example, a new imbalance
may be produced at a time just after to t′. To avoid this draw-
back, we could adjust the new tuple as (δ − δH , τ − τH),
where δH ≥ 0 and τH ≥ 0 are parameters to be established
empirically. Also, the next imbalance may be at a time lower
than t′ due to the non-preemption constraint. In any case, the
value of Nmax

i (t), for each time t, is non increasing along
the subsequent adjustments. This guarantees that Algorithm
2 terminates after a finite number of steps.

Experimental study
As it was pointed out, we evaluated the scheduling algorithm
by simulation. To do that, we have firstly defined a set of
instances of the PI problem and then we implemented a sim-
ulator to run the Algorithm 1. In the next two subsections,
we give the details of the benchmark defined and summarize
the results of the experimental study.

Benchmark set
We consider that the charging station is installed in a car
park with 180 spaces distributed uniformly in the three lines.
We have generated some benchmarks1 considering a time
horizon of one day and a profile for arrival times which are
based on the expected behavior of the users in some week-
days. Also, we have considered different demand and due
date profiles.

Figure 2 shows the arrival profile of the vehicles along
the day. As we can observe, there are peaks of arrivals at
four different times of the day. The processing times pij
and due dates dij follow the profiles represented in Table 1.
We consider four different profiles depending on the state
of the battery at the arrival time. The second column of the
table represents the probabilities of each case and the two
last columns represent the probability distributions for the
values pij and dij , which are given by means of normal dis-
tributions.

We have defined two types of instances, in the first one
(type 1), 60 vehicles arrive at each line Li along the day
and demand charging, while in the second (type 2) the ve-
hicles are 108 in L1, 54 in L2 and 18 in L3, i.e., 60%, 30%
and 10% respectively. So, in the later case we may expect
that the scheduling algorithm has to control many situations

1These instances are available at http://www.di.uniovi.es/tc
(Repository).
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Figure 2: Arrival profile of vehicles along a day. x-axis rep-
resents the time of the day from 0 to 24 hours and the y-axis
represents the arrival probability.

Table 1: Charging time and due date profiles used to gener-
ate PI instances. N(x, y) denotes a normal distribution with
mean x and standard deviation y. Time is given in hours.

Case Prob. pij dij
1 0.1 N(2, 1) tij + max(pij , N(4, 2))
2 0.3 N(5, 1.5) tij + max(pij , N(6, 2))
3 0.3 N(6.5, 0.75) tij + max(pij , N(8, 2))
4 0.3 N(8.8, 0.6) tij + max(pij , N(11, 2))

of imbalance among the lines in order to build a feasible
schedule. Also, we will consider different values for the im-
balance parameter ∆ (0.2, 0.4, 0.6 and 0.8) and for the max-
imum number of vehicles that can be charging at the same
time in a line N (20, 30 and 40). 30 instances were gener-
ated for each combination of type, ∆ andN , so we have 720
instances in all.

Evaluation of the proposed algorithm
Our main purpose is to evaluate the proposed algorithm to
solve the problem PI, termed PD (Problem Decomposition)
herein, under different demand conditions. We also compare
it with two algorithms: a single dispatching rule FCFS (First
Come First Scheduled) that could be implemented by a hu-
man operator, and the aforementioned scheduling algorithm
that uses the LST rule. In FCFS, the vehicles are scheduled
in the order they arrive to the car park and then each one is
scheduled at the earliest time such that all the constraints of
the problem PI are satisfied. After this, the starting time is
never changed.

Table 2 summarizes the results of these experiments. Each
line of the table shows the average tardiness obtained for the
30 instances of the same type and the same values of ∆ and
N . The parameter ∆T was set to 120 s. Regarding the time
taken by the algorithms, in the case of PD it depends on the
number of adjustments required to reach a solution, and it is
larger for this algorithm than it is for the dispatching rules
FCFS and LST. However, in no case the time required by
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PD was larger than 1 s., which is negligible w.r.t. to 120
s. between two consecutive executions of the scheduler. As
we can observe the total tardiness is lower with PD than it
is with FCFS and LST in almost all the cases. In average,
the total tardiness obtained by FCFS and LTS in this bench-
mark is very similar and it is about 33, 4% larger than that
obtained by PD.

Analyzing the schedules obtained for the algorithms, we
have observed that PD is able to adjust the imbalance of the
schedules up to the limit allowed by the parameter ∆, at dif-
ference of the dispatching rules, and this is the very reason
for its superior performance. As we have conjectured, one
of the reasons of the poor performance of FCFS and LST
is that they have to keep the imbalance constraint after each
operation is scheduled, what requires delaying the starting
time of many operations.

Therefore, from these results, we can conclude that the
proposed algorithm PD is effective to solve the problem PI.

Adjustments of the maximum charge profiles Nmax
i (t).

It is also worth analyzing the number of adjustments re-
quired to reach a solution to a PII instance, as it may have
an important impact on the time required to reach a solution
to the whole PI problem.

Table 2: Summary of results from PD, LST and FCFS on
two instances of types 1 and 2 with different values of the
parameters ∆ and N . The values of tardiness are given in
minutes.

PI Instance Total Tardiness
Type N ∆ FCFS LST PD
1 20 0.2 2,03E+06 2,02E+06 9,26E+05

0.4 7,97E+05 7,96E+05 5,09E+05
0.6 5,73E+05 5,70E+05 4,62E+05
0.8 5,45E+05 5,42E+05 4,57E+05

30 0.2 6,80E+05 6,94E+05 2,14E+05
0.4 1,08E+05 1,04E+05 5,87E+04
0.6 6,73E+04 6,69E+04 5,50E+04
0.8 6,61E+04 6,56E+04 5,50E+04

40 0.2 2,21E+05 2,32E+05 7,76E+04
0.4 9,62E+03 9,01E+03 3,35E+03
0.6 1,50E+03 1,49E+03 1,04E+03
0.8 1,44E+03 1,43E+03 1,04E+03

2 20 0.2 2,00E+07 2,02E+07 1,53E+07
0.4 7,56E+06 7,53E+06 5,55E+06
0.6 3,98E+06 3,97E+06 2,76E+06
0.8 2,41E+06 2,42E+06 1,78E+06

30 0.2 1,15E+07 1,15E+07 8,70E+06
0.4 3,44E+06 3,43E+06 2,57E+06
0.6 1,40E+06 1,40E+06 9,69E+05
0.8 7,21E+05 7,20E+05 5,40E+05

40 0.2 7,37E+06 7,37E+06 5,53E+06
0.4 1,71E+06 1,72E+06 1,31E+06
0.6 5,99E+05 6,00E+05 4,22E+05
0.8 2,60E+05 2,59E+05 1,99E+05

Average 9,94E+06 9,95E+06 7,46E+06
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Figure 3: Number of adjustments of the maximum charge
profiles depending on the type of the problems (type 1 or
type 2), the maximum imbalance ∆ (0.2, 0.4, 0.6, 0.8) and
the maximum number of active vehicles in one line N (20,
30, 40). The x-axis represents the group of instances for
each type of problem (∆×100 N ) and the y-axis the average
number of profile adjustments made to solve the PI instances
of each class.

Figure 3 shows the average number of adjustments re-
quired to solve each one of the 24 groups of instances de-
fined by the same type and values of N and ∆. For the
instances of type 2, the number of adjustments depends on
the allowed imbalance ∆ and, as can be expected, this num-
ber is in inverse ratio with ∆. The adjustments also depend
weakly on the maximum number of active vehicles in a line
N , this dependency being also in direct ratio.

Regarding the instances of type 1, where the three lines
receive the same proportion of vehicles, these dependencies
are much more stronger than they are in the type 2. For the
largest values of ∆ the number of adjustments is negligible.
However, for ∆ = 0.2, i.e., when the allowed imbalance
is very low, the number of adjustments is really large. The
reason for this is that for the instances of type 1, when the al-
lowed imbalance is very low, the scheduling algorithm has to
do adjustments in the profiles of maximum load, Nmax

i (t),
in more than one line, while for the problems of type 2 the
adjustments are almost restricted to the line with the largest
number of vehicles.

Conclusions and future work
We have seen that scheduling the charging of electric vehi-
cles may be formulated as a Dynamic Constraint Satisfac-
tion Problem (DCSP) with Optimization. In this paper, we
have given a formal definition for one problem of this family.
This problem is termed PI and it is motivated by a real envi-
ronment in which a number of vehicles may require charge
from an electric system installed in a garage where each ve-
hicle has a preassigned space. This problem is hard to solve
due to the imbalance constraints among the three lines of
the three-phase electric feeder. We have proposed an algo-
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rithm that reduces the calculation of a solution for the dy-
namic scheduling problem to solving a number of instances
of the one machine sequencing problem with variable ca-
pacity, denoted (1, Cap(t)||

∑
Ti). As far as we know, the

(1, Cap(t)||
∑
Ti) problem was not yet considered in the

literature.
The overall charge scheduling algorithm was evaluated by

simulation over a benchmark set inspired in some real sce-
narios. The results of this study shown that the proposed
algorithm is better than some dispatching rules such as First
Come First Scheduled, which could be followed by a human
operator, and a more sophisticated scheduling algorithm that
uses the Least Staring Time rule. In our opinion, the perfor-
mance of our algorithm relies on how it deals with the im-
balance constraints. Instead of keeping this constraint after
each operation is scheduled, as it is done by the other two
algorithms, we define profiles of maximum load in the three
lines and then adapt the schedules to these profiles. Even
though these profiles may require a number of adjustments,
the algorithm produces much better schedules than the other
two algorithms.

This work leaves some issues open for future research.
Firstly, we will make a more comprehensive experimental
study considering instances derived from different expected
scenarios to that considered here. For instance weekend sce-
narios or situations derived from some contingencies. In this
study we will consider some variants of the algorithm that
solves the (1, Cap(t)||

∑
Ti) problem. As we have men-

tioned, the apparently tardiness rule may be used probabilis-
tically to obtain a variety of solutions.

Then, we will have to consider a number of characteristics
of the real situations that have been skipped here. For exam-
ple, the users may pick up the vehicle before the declared
due date dij , or the battery may get fully charged before the
expected charging time pij . In both cases an imbalance may
be produced in the system. To deal with these and other sit-
uations, we will have to add new asynchronous events to the
model.

Another important characteristic that must be considered
is the fact that the charging time of the vehicles may be re-
duced in situations of saturation in order to reduce the tardi-
ness of the vehicles. Furthermore, if the tardiness for some
vehicle is too large in situations of very high demand, the ve-
hicle may be discarded from the schedule and so not served.

Another line for future research will be devoted to gen-
eralize the problem formulation and the solution methods to
situations where, for example, the contracted power changes
over the time or the vehicles can be charged at non con-
stant rate. As it is pointed in (Sedano et al. 2012), the later
is technically possible under certain restrictions and offers
much more flexibility to organize the charging of vehicles
over time. At the same time, it may make the scheduling
problem harder to solve.
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carga de vehı́culos eléctricos: diseño y operación. Techni-
cal Report. Instituto Tecnológico de Castilla y León ITCL.
Verfaillie, G., and Jussien, N. 2005. Constraint solving
in uncertain and dynamic environments: A survey. Con-
straints 10(3):253–281.
Wu, D.; Aliprantis, D.; and Ying, L. 2012. Load scheduling
and dispatch for aggregators of plug-in electric vehicles.
IEEE Transactions on Smart Grid 3(1):368–376.

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 8



 
Integrating Planning, Execution and Diagnosis to Enable Autonomous 

Mission Operations 

Jeremy Frank and Gordon Aaseng and K. Michael Dalal and Charles Fry and Charles Lee and 
Rob McCann and Sriram Narasimhan and Lilijana Spirkovska and Keith Swanson 

NASA Ames Research Center 
Mail Stop N269-1 

Moffett Field, CA 94035-1000 
{firstname.lastname}@nasa.gov 

 
Lui Wang and Arthur Molin and Larry Garner 

NASA Johnson Space Center 
Mail Code ER61 

2010 NASA Parkway 
Houston, TX 77085 

{firstname.lastname}@nasa.gov 
 
 
 

Abstract` 
NASA’s Advanced Exploration Systems Autonomous Mission 
Operations (AMO) project conducted an empirical investigation 
of the impact of time delay on today’s mission operations, and of 
the effect of processes and mission support tools designed to 
mitigate time-delay related impacts. Mission operation scenarios 
were designed for NASA’s Deep Space Habitat (DSH), an analog 
spacecraft habitat, covering a range of activities including 
nominal objectives, DSH system failures, and crew medical 
emergencies. The scenarios were simulated at time delay values 
representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 
sec) and Mars (300 sec) missions. Each combination of 
operational scenario and time delay was tested in a Baseline 
configuration, designed to reflect present-day operations of the 
International Space Station, and a Mitigation configuration in 
which a variety of software tools, information displays, and crew-
ground communications protocols were employed to assist both 
crews and Flight Control Team (FCT) members with the long-
delay conditions.  This paper describes the mitigation 
configuration, with specific attention on the plan and procedure 
execution tracking and fault detection, isolation and recovery 
software.   

Introduction 
NASA is now investigating a range of future human 
spaceflight missions that includes a variety of Martian 
destinations and a range of Near Earth Object (NEO) 
targets.  These possibilities are summarized in Table 1.  
                                                
Copyright © 2013. All rights reserved. 

Table 1 shows the approximate distance between the 
destination and the Earth, where the control center will be 
located, and the one-way light-time delay between the 
destination and Earth. 
 

On next-generation deep-space missions, crews will have 
to operate much more autonomously than they do today.  A 
higher degree of crew autonomy represents a fundamental 
change to mission operations. Enabling this new operations 
philosophy requires a host of protocol and technology 
development to answer the following question: How 
should mission operations responsibilities be allocated 
between ground and the spacecraft in the presence of 
significant light-time delay between the spacecraft and the 
Earth? 

Human Spaceflight Mission Operations Today 
Current International Space Station (ISS) operations are 
conducted with significant reliance on ground monitoring, 
control, and planning capability; some of which is by 

Destination Earth Distance (km) 1-way Time delay (s) 
Lunar 38,400,000 1.3 
NEOs (close) 100Ks 10s 
Mars (close) 545,000,000 181.6 
Mars (opposition) 4,013,000,000 1337.6 

Table 1.  One-way light-time delay (seconds) to 
candidate destinations. 
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design to maximize crew time available for onboard 
science. Nearly instantaneous feedback from ground 
commands combined with a computer architecture 
designed with more software control capability than 
previous vehicles provides Flight Control Team (FCT) 
personnel the ability to conduct critical mission operations 
while minimizing, or in some cases eliminating, the need 
for onboard crew intervention. 
 
Nearly continuous communication coverage is maintained 
with ISS for voice, telemetry, commanding, and video 
transfer with the various control centers during crew wake 
periods. Procedures are designed for Crew, Ground, or 
Multi-Center execution.  Crew procedures depend on 
existing spacecraft displays for commanding references 
and data telemetry checks.  Ground procedures may rely on 
additional displays, as well as references to command 
instances that are not readily available on the spacecraft. 
There is no existing data path that can join telemetry and 
commanding with the procedure viewer.  Further, there is 
no existing indication of the current step in progress 
transferred from crew to ground.  Voice call or telemetry 
indications showing that equipment was affected as 
intended are used to view progress through a procedure by 
another user. Execution of a procedure by a ground Flight 
Controller requires approval from the Flight Director.  
Upon proceeding into the execution steps, the Flight 
Controller enables command uplink capability and 
executes the commands called out in the procedure steps.  
 
Off-nominal events, such as system failures, may create a 
need to deviate from the original mission plan.  Such 
deviations typically have downstream impacts to plans 
later in the week or even further in the future.  The rest of 
the FCT works closely in these cases with the Ops Planner 
to coordinate plan impacts and reschedule events to later 
opportunities, while still meeting mission objectives and 
priorities wherever possible.  Off-nominal events may also 
change the environment around the ISS by changing the 
orientation or configuration of the vehicle.  These 
unplanned and unanalyzed changes are corrected as soon 
as possible, and post-event analysis is conducted to 
determine if damage was done to the ISS structure.  Future 
operations may be subjected to additional constraints 
should analysis indicate that increased protection is 
necessary.  In depth troubleshooting and analysis efforts 
are a coordinated effort between the FCT and mission 
analysists in the post-event timeframe. 

The Challenge of Distant Destinations 
For the last 50 years, NASA’s crewed missions have been 
confined to the Earth-Moon system, where speed-of-light 
communications delays between crew and ground are 

practically nonexistent.  The close proximity of the crew to 
the Earth has enabled NASA to operate human space 
missions primarily from the ground. This “ground-
centered” mode of operations has had several advantages: 
by having a large team of the people involved on the 
ground, the on-board crew could be smaller, the vehicles 
could be simpler and lighter, and the mission performed for 
a lower cost.  
 
The roles and responsibilities of the crews of the future 
will differ fundamentally from those of the past. 
Crewmembers will be the primary “doers” for more and 
more activities, responsible for performing most of the 
procedures associated with their assigned activities, and 
completing troubleshooting procedures in response to 
system failures and medical emergencies. While FCT 
members are expected to play an active role in some of 
these procedures as well, overall their role will be more 
supportive, advising and guiding crewmembers as they 
went about their activities. 
 
Accompanying this change in role and responsibility is a 
necessary change in the tools used by crews to manage the 
mission.  With fewer crewmembers onboard spacecraft 
comes the need to redesign tools used for the FCT, who 
may have more training and more time to understand the 
systems.  As responsibility for executing the mission shifts 
to the crew, the technology used to support them must 
evolve to suit the available time and resources, both 
computational and cognitive, that spacecraft and crews 
have to manage the tasks. 

The Autonomous Mission Operations 
Experiment 

NASA conducted an experiment assessing crew-ground 
interaction and operational performance was performed in 
May and June of 2012 in NASA Johnson Space Center’s 
Deep-Space Habitat (DSH) (Kennedy, 2010; Tri, et 
al.,2011) an Earth-analog of a workspace and living area 
that might house a crew during the transport and surface 
phases of a deep-space crewed mission. Crews consisting 
of a commander and three flight engineers followed a two-
hour mission timeline populated with activities 
representative of those that might occur during a typical 
day in the quiescent (cruise) phase of a long-duration space 
mission.  Crews were supported by a small Flight Control 
Team (FCT) consisting of eight console positions located 
in the Operations Technology Facility (OTF) in the 
Christopher Kraft Mission Control Center at Johnson 
Space Center.  The two-hour mission timeline was 
performed repeatedly under varying conditions: 
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• A simulated time delay between the ground and 
the vehicle of low (1.2 or 5 seconds), medium (50 
seconds), or long (300 seconds) duration. 
• Either no unexpected events (nominal), multiple 
spacecraft systems failures (off-nominal systems), or a 
crew medical emergency (off-nominal medical). 
• One of two mission operations configurations.  In 
the Baseline configuration, conducted first, the flight 
control team and crew performed their nominal and 
off-nominal tasks with support tools, interfaces, and 
communications protocols similar to those in use for 
International Space Station operations today. In the 
Mitigation configuration, crews and FCT members 
had access to an advanced suite of operations support 
tools and mission support technologies that we 
hypothesized would enable the crew to carry out 
nominal and off-nominal mission operations with 
greater autonomy and with enhanced crew-ground 
coordination capability under time delay. 

 
The AMO study complements and extends previous 
studies (Bleacher et al. 2011; Chappelle et al. 2011; 
Chappelle et al. 2012; Hurst et al. 2011; Kanas et al. 2010; 
Kanas et al. 2011) of time delay in ground-based analog 
environments in a variety of ways. The AMO study is the 
first of the studies in NASA’s Earth-analog environments 
to examine the effects of time delay in an operational 
environment that:  
 

• Exclusively utilized highly experienced NASA 
flight controllers and astronauts as study participants. 
• Achieved at least a medium level of mission 
operational fidelity (as rated by the participants). 
• Exclusively employed operations products (plans 
and procedures) like those used in crewed missions 
today.   

Mission Timeline 
The experiment employed variations of a timeline of 
activities that the crew needed to complete. For the 
simulation “initial conditions”, the vehicle was returning 
form an asteroid and was in a “quiescent” operational 
mode, meaning there are no significant, complex or 
dynamic operations scheduled (i.e. no burns or other 
maneuvers were planned for the day).  The vehicle was in a 
nominal configuration except for some designated 
conditions listed below, and there were no previous major 
systems failures.  This timeline was built by hand prior to 
the experiments and was unchanged during the 
experiments (even in response to system failures).  
 
The crew’s timeline consisted of 12 activities of varying 
duration during a two-hour period, and is shown in Figure 
1. In the Baseline configuration, these activities were 
preceded by a 10 minute schedule-prepwork activity and a 
15 minute Daily Planning Conference (DPC) activity, in 
which the flight control team briefed the crew on the 
specifics of the day’s timeline.  A total of 31 procedures 
accompanied these activities.  These procedures included 

both nominal and off-nominal procedures for operation of 
spacecraft subsystems and crew activities.  The activities 
and simulated failures were designed so that coordination 
was needed between the FCT and the crew, thereby 
magnifying the impact of time delay. 
 
The focus of this paper is on the technology used by flight 
controllers and crew to manage the Atrium Tank Fluid Fill 
activity, and in handling failures in the spacecraft 
Electrical Power System (EPS).  These subsystems had 
rich electronic interfaces and were the most amenable to 
fault injection, and were thus best suited to applying 

CDR 

FE1 

FE2 

FE3 

 

 

FCT 

Figure 1.  Mission Timeline. 
 

Figure 2.  (Simulated) Fluid Transfer System. 
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procedure execution and fault management technology; 
they are described in the next section.  

Fluid Transfer Activity 
The Atrium Tank Fluid Fill activity employed a software 
simulation of a spacecraft water tank and valve system; the 
schematic of the system is shown in Figure 2.  It consists 
of a DSH storage tank on the left and Atrium tank on the 
right. The fluid transfer activity involves transferring fluid 
from the storage tank to the atrium tank. This is achieved 
by using redundant transfer lines through a combination of 
valves and pumps. The G valves represent gate valves that 
can only be opened or closed manually and can only be 
controlled to be fully open or fully closed. The C valves 
represent control valves that can be commanded remotely 
and can also only be fully open or fully closed. The A 
valves represent annin valves that can be remotely 
controlled to any partially open status between 25% and 
100%. The pumps can be operated at different RPMs 
ranging from 0 to 3000. For a nominal fluid transfer 
operation the main transfer line on the top will be used 
while the auxiliary transfer line in the bottom is only used 
in case of contingencies.  This activity was planned to take 
roughly an hour and a half in total. 
 
The Fluids system had associated thresholds, which if 
exceeded, would produce Caution and Warning messages: 
 

C&W Threshold 
FLOW_HIGH > 26 GPM 
FLOW_LOW < 10 GPM 
FLOW_CHECK < 12 GPM or > 24GPM 
TANK_FULL >= 100% 
TANK_HIGH > 93% 
TANK_LOW < 10% 
TANK_EMPTY < 3% 

 
Only the flows at the outlet of annin valves and tank levels 
are measured and simulation is configured to publish only 
these values to the DSH communication infrastructure. 
These subsets of sensor locations were chosen to increase 
the diagnosis ambiguity, which was driven by the 
experiment design to increase ground/crew interaction. The 
simulation includes the capability to inject faults. The 
faults considered were valves stuck in fixed positions, 
pumps failed or operating at lower efficiency, and sensor 
faults. Only one fault was introduced in the system at any 
point in time. 
 
A total of 8 procedures were developed, including both 
nominal and off-nominal procedures. 

Electrical Power System and Wireless Sensors 
The DSH EPS system consists of an interconnection of 
120Vac, 28Vdc and 24Vdc power sources.  These power 
sources are distributed throughout the inside of the DSH 
through six Power Distribution Units (PDUs), each of 
which has 16 outlets.  These can be remotely commanded 
on and off. 
 
DSH data (temperature and humidity) was collected 
through a network of Wireless Sensor Nodes (WSNs); 
these sensors were powered via the DSH power system.  
They reported data via a Compact Remote I/O (cRIO) card, 
also powered by the DSH power system. 
 
Failure injection included the ability to fail the 24V 
converter or part of the cRIO.  These failures would also 
eliminate data delivery via the WSNs, leading to a typical 
‘C&W storm’ for both loss of sensor data as well as loss of 
power on the various power channels,  requiring diagnosis.  
Individual WSNs also proved unreliable and caused 
unplanned failures.  In the event the cRIO needed to be 
rebooted, this would take between 15 and 25 minutes, 
during which no WSN data is available. 
 
A total of 7 EPS procedures were developed, all of which 
were off-nominal procedures. 

Technology Enabling Crew Autonomy 
The AMO experiment included a wide range of 
technologies enabling autonomy; see (Frank et al. 2013) 
for a more complete discussion.  In this paper we focus 
attention on three key technologies that aided the FCT and 
crew in executing the plan: Mobile Score, WebPD, and 
Advanced Caution and Warning (ACAWS).  These tools 
are described in the next section.   

Figure 3.  Mobile Score. 
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Mobile Score 
Mobile Score is a browser and server based application to 
provide lightweight display of timeline information, and to 
provide easy access to procedures and other experiment 
documentation; an overview of Mobile Score is provided 
in Figure 3.  The FCT and crew used Mobile Score to 
display the plan, filter plan activities based on assigned 
crew performing the activity or activity time, show which 
activities were slated to occur soon, and quickly access 
procedure references, messages, and other information 
needed to perform activities. The Mobile Score UI was 
accessible via modern versions of web browsers like 
Firefox, or Google Chrome on desktop machines, and 
using Mobile Safari on the Apple iPads used by the AMO 
crew members in the DSH.  
 
As mentioned, previously, the timeline was not altered 
during the experiment; no activities were reordered, added 
or removed.  This was driven by the shortness and 
simplicity of our experiment timeline, and typical practice 
for ISS operations today is to limit plan updates to once per 
day. 
 
Easy access to procedures, and the AMO Message Library, 
was available via Mobile Score by selecting Links in the 
lower right corner. Mobile Score was used by the crew 
members while they were performing procedures that were 
being viewed on one of the four crew iPads. During 
Baseline experiments, crew members would use Mobile 
Score to navigate to PDF versions of their procedures. 
During Mitigation, they would use Mobile Score to 
provide convenient access to the desired procedures within 
WebPD (see the next section). After selecting a procedure 
from the index, the crew member could select either the 
PDF or WebPD version of the procedure. Note also that 
two separate procedure table-of-content (TOC) lists were 
available – one accessible from Mobile Score, and another 
available directly within WebPD. This is because the 
WebPD TOC also contained engineering procedures that 
were only intended for the DSH engineering team. 

WebPD 
The procedures for operating spacecraft systems and 
performing tasks were presented using an electronic 
interface called WebPD, shown in Figure 4. These 
resources were accessible to all team members from their 
browser, and from the DSH iPads. WebPD incorporated a 
focus bar, allowing the crew to track their place in a 
procedure.  The crew could issue commands to spacecraft 
systems from WebPD. Procedure instructions that verify 
telemetry readings display the current reading along with 
an indication of whether or not it is in range of the desired 
value(s).  Procedure steps often required reading system 

data values or checking limits; WebPD receives system 
data, and these are incorporated in the WebPD interface.  
 
The WebPD allows many users to monitor the execution of 
all procedures simultaneously.  However, only one client, 
the one that started the procedure, has control of the 
procedure's execution (e.g. takes input from the user); the 
others simply track execution and do not allow interaction.  
 
The WebPD presents a list of all available procedures, any 
of which can be selected for execution at any time, by any 
user. When a procedure from the list is selected, it is 
displayed, and can be started with the mouse-click (or 
finger touch on the iPad) of a button. The WebPD also 
maintains lists of procedures that are active, completed, 
and those that have been recommended by the AMO 

diagnostic tools (described further in a later section). Any 
number of procedures can be running concurrently and 
monitored by the WebPD.  However, only one procedure 
can be viewed a time; a single click switches the view to 
the desired procedure. 
 
WebPD procedures are stored in Procedure Representation 
Language (PRL), a derivative of XML (Kortenkamp et al. 
2008) and developed in a graphical environment called the 
Procedure Integrated Development Environment (PRIDE) 
(Izygon et al. 2008). PRL and a predecessor of WebPD 
have been used in previous simulations of mission 
operations environments. PRIDE is a graphical tool that 
allows easy drag-and-drop construction of procedures, in a 
fashion that only permits procedures with valid structure 
and content.  In particular, the most system-specific 
procedure content – telemetry and commands – are 
provided in a system menu and do not need be looked up 
manually in documents, as was the prior approach.  In 

Figure 4.  WebPD. 
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addition, PRIDE provides a host of GUI features that make 
procedure authoring convenient. Procedures in PRL can be 
automatically translated to the Plan Execution Interchange 
Language (PLEXIL), which allows instruction-by-
instruction automated execution of procedures according to 
the operator’s wishes (Frank 2010). 

Advanced Caution and Warning 
The Advanced Caution & Warning System (ACAWS) for 
both the fluid transfer simulation and EPS system consists 
of three main components. A diagnostics engine is 
responsible for diagnosis of any faults. This includes 
detection of off nominal behavior, isolating the cause for 
the off-nominal behavior, and determining the magnitude 
of the deviation from nominal behavior. A diagnosis to 
recommended procedure mapper is responsible for 
recommending disambiguation and/or mitigation 
procedures to be executed based on the current diagnosis 
provided. Finally, the ACAWS GUI is responsible for 
presenting the results from diagnosis and the procedure 
mapper to the user.   Procedure recommendations are also 
displayed by WebPD.  In the following sections we 
describe the diagnosis engine used to handle failures in that 
subsystem. 
 
TEAMS 
The diagnostics engine for EPS failure utilizes the 
Qualtech Inc. Testability Engineering and Maintenance 
System (TEAMS) tool (Mathur et al. 1998). TEAMS 
determines the root cause (failed components and their 
failure modes, the “bad” components in the TEAMS 
vernacular). When the sensor signature is ambiguous, 
TEAMS provides a list of possibly failed components (the 
“suspect” set). A companion tool, TEAMATE, provides 
the operator recommendations on additional observations 
to perform the most effectively reduce the ambiguity.  
 
TEAMS is a model-based system. The model captures a 
system’s structure, interconnections, tests, procedures, and 

failures. This dependency model captures the relationships 
between various system failure modes and system 
instrumentation. 
 
For real-time diagnosis, a dependency matrix (D-matrix) is 
generated from the model. The D-matrix is a two-
dimensional matrix of failure modes and effects (“tests”; 
things that can be observed). The values are binary with 1 
meaning a test can detect a failure mode and 0 meaning 
that a test cannot detect that failure mode.  
 
Input to TEAMS is a vector of binary health status tests as 
computed by the DSH software and supplemented by the 
ACAWS-EPS system. DSH software provides 
observations on whether certain telemetry parameters are 
valid and whether they are in bounds. The EPS system 
input used validity bits for a parameter rather than its 
actual value, since that provides the information necessary 
to determine whether an EPS component is being powered. 
ACAWS-EPS supplements these observations with 
heartbeat data providing observations on when the last time 
a component was heard from.  
 
A simple example of how TEAMS uses the D-matrix and 
tests vector is shown in Figure 5. The D-matrix is shown 
on the left. The same matrix can be represented by the 
graph on the right. The input vector is the observed state of 
the tests. The right column shows the output from TEAMS 
– a diagnosis that explains the input vector given the D-
matrix as generated by the model (not shown). In this case, 
given the two failed tests and two passed tests, TEAMS 
has determined that failure-mode-1 is definitely failed 
(“bad”), failure-modes 2, 3, 4, and 7 are all healthy 
(“good”), and failure-modes 5, 6, and 8 can each explain 
failed test T3, hence those three failure modes are placed 
into an ambiguity group of “suspects.”  In cases where the 
input vector leads to an ambiguity group, TEAMMATE 
recommends a procedure that can help disambiguate the 

Figure 6.  Subset of Fluid ACAWS model Diagnosis 
to Procedure Mapper. 

 
Figure 5.  TEAMS algorithm. 
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suspects. For the DSH system, this was exclusively a 
request for crew observation of data not available via 
telemetry, such as the status of an indicator light, the 
operation of an overhead light, etc. In the D-matrix above, 
these “manual tests” would be additional columns of the 
matrix, with mapping from those tests back to the failure 
modes they can observe or detect. 
 
HyDE 
HyDE (Narasimhan and Brownston, 2007) was used for 
fault detection and isolation of the fluids system.  A model 
in HyDE is a hybrid, consisting of a finite set of states and 
transitions between those states (a discrete model), as well 
as sets equations over real-valued quantities that either 
hold within a state, or can trigger transitions between states 
(a continuous model). The models describe the behavior of 
the system under nominal and faulty conditions. HyDE 
uses commands sent to actual system to drive these models 
to predict the behavior of the system as it evolves over 
time. These predictions are checked for consistency with 
the observations available from the sensors. Any 
inconsistencies indicate presence of faults in the system.  
These inconsistencies, if any, are then used in a search to 
identify cause for the inconsistencies. This is achieved 
back propagating through the model to identify 
components in the model contributing to the inconsistency. 
 
For the fluid transfer system HyDE was used to serve two 
purposes. First a hybrid quantitative model was used as an 
observer to track the behavior of the system. This observer 
used the same commands that were being sent to the 
simulation through the communication interface to predict 
the expected values for the flows and tank levels. These 
predictions were compared against sensor observations 
(available through the communications infrastructure) to 
generate qualitative symbols indicating low, high and no 

flow. 
 
These qualitative symbols are then fed into the qualitative 
part of the HyDE model which then determines the state of 
the components and sensors. Once an initial diagnosis has 
been established HyDE uses a fault disambiguation and 
mitigation tree to recommend procedures to isolate the 
fault and mitigate the effects of fault so that the fluid 
transfer activity can be completed as planned. This tree is 
generated manually based on the set of faults and 
ambiguity groups that would be generated by HyDE; a 
portion of which is illustrated in Figure 6. 
 
Figure 7 shows the architecture of the ACAWS-Fluids 
system as built for the Atrium fluid transfer system 
incorporating HyDE.  The ACAWS-EPS architecture 
differs from this in only minor ways (test result input and 
invocation of TEAMMATE). 

Technology Integration 
Figure 8 shows how all of these components were 
integrated for use by the crew and the FCT for the AMO 
Mitigation Configuration.  A crewperson examining the 
timeline in Mobile Score can automatically invoke 
WebPD, which would display the procedure corresponding 
to the activity.  The procedure (as written with PRIDE) has 
all necessary commands and telemetry elements embedded 
in it; using WebPD, the crew can send commands, check 
relevant telemetry values, step through the procedure and 
track the current instruction.  Using shared situational 
awareness between crew and ground, the FCT could 
monitor procedure progress without the need to bother the 
crew. In the event of faults, ACAWS would send 
procedure recommendation messages to the WebPD, 
prompting the crew to perform a procedure.  In cases 
where a further piece of information was needed (e.g. the 
crew had to examine a system and manually enter data) the 

Figure 7.  Fluids System ACAWS architecture. 
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procedure recommendation function was performed by 
TEAMMATE; in cases where a unique fault diagnosis 
required a recovery action, this was accomplished by the 
more generic diagnosis to procedure mapper. 
Shared Situational Awareness 
WebPD status was shared over the air-ground link, so that 
the flight control team could see what procedures were 
executing, and what procedure step the crewperson running 
a procedure was presently executing.  This information 
was rendered on the same WebPD UI the crew used, albeit 
after a delay.  This is accomplished via a publish-subscribe 
paradigm, in which the WebPD software on one end of the 
time delay publishes any change of status (e.g. the 
execution of a procedure step), which is then received by 
the WebPD and causes the update of the receiver side.  
ACAWS was run both onboard and on ground; the same 
data was ingested and used to perform diagnosis, thereby 
also providing shared situational awareness. 

Failure Scenarios 
In this section we describe the specific scenarios during 
which the plan execution and fault management 
technology were used during the AMO experiments. 

Fluid Transfer System Failures 
The fluid transfer is the first activity on the timeline.  The 
crew browses the plan with Mobile Score, and can either 
bring up the procedure as a PDF file (in Baseline) or 
navigate to the WebPD (in Mitigation) to initiate the 
activity. 
 
The activity is initiated through a procedure which first 
verifies that all components are closed/off and then sets all 
the annin valves to desired values (based on level in the 
storage tank) and then opens the main transfer line by 
opening valves G1 and C1 and setting Pump1 speed to 
1500 rpm. Initially while the flow stabilizes a low flow 
C&W is received, but ignored as per recommendation of 
the procedure.   
 
After the flow has stabilized, an A1 Valve stuck at 25% 
fault is injected. This results in a low flow C&W message, 
which directs the crew to check consistency between the 
flow sensors. At this point all components in the main 
transfer line (G1, C1, Pump1, A1, and A3) are suspected to 
be faulty. The first step of the troubleshooting focuses on 
the G1 valve. The crew is asked to manually inspect the 
Gate Valve and report the status. When the G1 status 
indicates that it is open, the next step is to cycle the C1 
valve (in case this gets the C Valve unstuck). When that 
does not resolve the problem, a test run using the auxiliary 
line is proposed. The main line components are closed or 

turned off and the auxiliary line components are opened or 
turned on. After the flow has stabilized the flow values are 
checked and indicate that the problem has been resolved. 
The crew records that one of C1, Pump1 or A1 is faulty 
and continues the fluid transfer activity using the auxiliary 
line.  Recall that in Baseline, all of this activity is managed 
by the crew reading the PDF version of the procedure, and 
using other tools to monitor the status of the fluid system, 
or command, as needed. 
 
By contrast, in the Mitigation configuration, HyDE is able 
to use the quantitative and dynamic information from the 
changes in the flow to determine that Pump1, A1 or A3 is 
causing the low flow. In addition HyDE is also able to 
provide estimates for the fault magnitude. The crew can 
see the fault candidates on the Fluids ACAWS system 
animated schematic of the Fluid system. Based on this 
diagnosis HyDE recommends a procedure to perform Test 
Run using Aux procedure. This recommendation is 
received by WebPD.  All commands and data are fully 
integrated, so the crew can execute this procedure from 
WebPD, without referring to other tools.  When this 
procedure is executed all the flows get back to normal and 
so HyDE does not recommend any more procedures. Steps 
involving troubleshooting G1 and C1 valves can be 
completely skipped because of the additional information 
available.  This configuration was not completed in time 

for the AMO experiments, was implemented later (along 
with fully automated procedure execution) and is described 
further in (Narasimhan et al. 2012). 

EPS System Failures 
The EPS system and WSNs are organized in such a way 
that, initially, a 24Vdc converter failure and a cRIO card 
failure exhibit the same symptoms, namely, loss of data 
from all of the WSNs.  This is distinguished from 
individual WSN failures.  The 24Vdc converter has an 

Figure 9.  ACAWS EPS UI. 
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LED that the crew can inspect manually, which 
disambiguates a 24Vdc failure from a cRIO card failure. 
 
In the Baseline configuration, the crew’s indication of a 
problem is loss of data from some or all of the WSNs and 
the accompanying ‘C&W’ storm. The 28Vdc failure has a 
similar flavor to the 24Vdc failure.  The crew had 
procedures available to handle this problem, but it was not 
actually introduced in simulation. The crew was trained on 
the EPS procedures, and would then have to call up the 
relevant EPS procedures and determine whether the 
problem was one or more WSN failures, a failure of the 
24Vdc, the 28Vdc, or the cRIO card.   
 
By contrast, in the Mitigation configuration, the crew had 
access via the ACAWS-EPS system to an animated 
schematic of the EPS system that was informed by the 
TEAMS model.  This UI rendered the diagnoses produced 
by TEAMS.  In addition, the procedure mapper would send 
recommended procedures to WebPD, which reduced the 
amount of time needed for the crew to bring up relevant 
procedures to run.  As the crew executed steps and 
provided the answers to the diagnostics questions, 
ACAWS would automatically refine its diagnosis, render 
this on the UI, and then produce new procedure 
recommendations, which would appear in WebPD.  
Finally, with commands and data integrated into the 
WebPD, the crew could issue commands and read 
telemetry directly in WebPD instead of turning to other 
software tools to command the EPS system.  The ACAWS-
EPS UI is shown in Figure 9. 

Measuring the Impact 
The AMO experiment incorporated both qualitative and 
quantitative measurements to assess the impact of time 
delay and the impact of the Baseline vs Mitigation 
configuration on operator performance.  Since this paper is 
focused on a subset of all of the protocols and technologies 
used in the Mitigation configuration we focus attention on 
a subset of the performance impact story; a more complete 
description of the experiment and the results can be found 
in (Frank et al. 2013). 

Quantitative Impact 
Quantitative performance measures for the experiment 
included task completion rates, crew and flight controller 
workload, and crew-flight controller coordination 
difficulty; discussions of how these metrics are collected 
can be found in (McCandless et al. 2005, McCann et al. 
2006). Task completion rates, surprisingly, did not vary 
significantly between Baseline and Mitigation 
configuration.  However, FCT and crew measurements of 

workload and coordination difficulty were positively 
impacted: 

• Workload and coordination difficulty decreased at 
every time delay as a result of the Mitigation 
configuration. 
• Communications acts decreased in the Mitigation 
configuration. 

It is notable that ACAWS also rendered some procedure 
steps and some procedures performed in the Baseline tests 
unnecessary.  For example, because of HyDE’s capability 
to maintain the current state of the system and the ability to 
fuse multiple sensors, steps associated with checking for 
consistency among sensors can be eliminated.  This also 
enabled revision of the set of procedures to a simpler and 
more concise set.  Similarly, TEAMS replaced procedure 
steps to both determine the likely EPS failure causes, and 
the TEAMMATE component automatically recommended 
both fault isolation and recovery procedures. 

Qualitative Impact 
Along with the quantitative measurements described 
above, experiment participants provided subjective 
comments on their experiences with the technology. 
 
ACAWS technology provided two different forms of 
automated assistance with FDIR activities: Automated 
fault diagnosis, and automated recommendation of fault 
isolation or recovery procedures.  Comments indicate both 
workload reduction and a reduction in the need for 
coordination followed from these capabilities: 
 
“ACAWS provided useful direction for the crew, so there 
was little need for us to do anything other than concur” 
 
“ACAWS told me which procedure to work which the 
ground later confirmed but I had already completed the 
procedure.” 
 
The last quote speaks to both the situation awareness and 
autonomy issues, and also notes the benefits of greater 
autonomy for mitigating the effects of time delay: 
 
“The time delay had little impact because ACAWS ran 
most of the procedure.  Since the ground and crew can 
follow ACAWS, it was pretty seamless.  MCC and DSH 
were able to come to common agreement with ACAWS. 
 MCC and DSH statused each other via voice calls and 
texting.” 
 
The following are two highly representative comments 
about the benefits of WebPD from FCT members: 
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“WebPD made it very easy to follow along in the 
procedures even with the time delay” 
 
“Very easy to see where the crew should go from the line 
they were on as well as where they were going”. 
  
“The ability to track procedures and where the crew was 
in each step was awesome”. 
 
Not only did WebPD help the ground keep track of where 
the crew with within a procedure, but several mentions 
were made of the usefulness of the windows that showed 
what procedures were currently active, and which 
procedures had been completed: 
 
“[I liked] [Ability to] see when crew brings up and starts a 
procedure, can see when they are done with a procedure.” 

Conclusions and Future Work 
Human spaceflight missions to distant destinations impose 
significant added burdens on the FCT and the crew.  The 
AMO experiment quantified these burdens, and showed 
that a tight integration of plan execution tracking (Timeline 
and procedures) and ACAWS provided both qualitative 
and quantitative benefits to both the FCT and crew during 
quiescent mission phases.   
 
Extending these benefits to more systems, increasing 
automation, and conducting experiments in higher fidelity 
settings are the subject of future work. 
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Abstract

We consider scheduling electric vehicles in a charging fa-
cility where customers arrive dynamically and tend to park
longer than their charge time. In this setting, it is reasonable
and technologically feasible to have charging docks with mul-
tiple cables, although such docks do not currently exist in
practice. Assuming such a dock design, we study three in-
formation conditions: we know the number of electric vehi-
cles at each dock, we know stochastic information about ar-
rival and charging requirements, and we are able to observe
exact charging requirements for vehicles in the system. We
formulate a continuous-time Markov decision process (CT-
MDP) to optimize the system performance under the first two
conditions and demonstrate that it does not scale to realistic-
size problems with multiple docks. However, a single-dock
version of the CTMDP is tractable. We propose and numeri-
cally evaluate a number of admission and scheduling schemes
building on both the single-dock CTMDP and approaches
from the scheduling literature under each of the three infor-
mation conditions. Our results demonstrate (i) the value of
a multi-cable dock, (ii) the importance of obtaining actual
charging requirement information, and (iii) the integral role
of admission and scheduling policies based on available in-
formation to improve performance.

1 Introduction
Advances in battery, electric engine and charging technolo-
gies have resulted in significant improvements in the perfor-
mance of electric vehicles (EVs) in terms of range, charg-
ing time, etc. Although reduced emissions and lower fuel
and maintenance costs over their lifetime favor EV adoption
over internal combustion engine vehicles (CVs), range anxi-
ety prevents more people from owning an EV. Range anxiety
is the fear of being stranded because an EV has insufficient
capacity to reach a destination (Tate, Harpster, and Savagian
2008). Unlike CVs which run on gasoline, an EV requires
an electrical power source to recharge its battery and com-
pletely recharging a fully depleted battery can take from half
an hour to almost a full day. For example, a Nissan Leaf with
a 24 kWh capacity battery has a range of about 73 miles on a
single charge and requires 16-18 hours to fully charge from
a depleted battery under level I AC (120V) chargers. Level

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

II AC (240V) chargers decrease the required charge time to
7 hours and level III DC (500+V) chargers further reduces
the time to approximately half an hour.1

To address range anxiety, charging stations are being
placed in convenient locations including highway rest stops
and gas stations. It is also becoming popular to place charg-
ing stations in parking lots. Cars generally spend a large
amount of time in parking lots, whether it is a shopping mall,
an airport, or work place. These charging stations provide a
convenient way to charge a battery by integrating the charg-
ing into time periods which drivers are naturally occupied.

Current charging docks have a single cable and can be
connected to one EV. In a gas station or rest stop, one would
expect customers to leave when charged and so a new car
can be connected immediately. However, in a parking lot,
a vehicle may be connected to a cable well after charging
has been completed. A charging dock which incorporates
multiple cables will allow as many connected cars as there
are cables, even if only one car can be charged at a time.
With a multi-cable dock, a car may complete its charge and
stay connected, while another EV immediately begins charg-
ing. Such a dock is an economical way to improve effective
charging capacity without purchasing more docks. For ex-
ample, the annual cost (purchase + maintenance) of a level
II AC charger ranges between $900 and $5000 USD over a
10-year life cycle, and only about 20% of the total cost is
due to initial capital investment (Botsford 2012). Although
the cost of adding a cable to a dock is not negligible, we ex-
pect much lower maintenance cost for the multi-cable dock
design in comparison to an equivalent system with multi-
ple single-cable docks. Hence, the multi-cable dock design
decreases the total cost of a charging facility due to fewer
docks needed to purchase and maintain, and lower initial in-
stallation cost.

In this paper, assuming multi-cable docks, we study the
admission and scheduling problem associated with manage-
ment of an EV charging facility. EVs arrive dynamically
over time and can be plugged into an available cable to be
charged. Admission and scheduling decisions must be made
immediately upon arrival of an EV and the system manager
aims to minimize the costs associated with rejecting and de-
laying customers. Given the relatively new application of

1http://www.nissan.ca/vehicles/ms/leaf/en.
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EV charging facilities and EVs themselves, available func-
tionality varies. In particular, the information available to a
system manager from both his/her docks and the customers’
EVs will vary. We therefore propose three information avail-
ability characteristics: (i) the number of EVs at each dock
is known, (ii) stochastic information is available about EV
arrival and charging rates, and (iii) exact charging require-
ments for all EVs in and arriving to the system are known.
We create and study policies for admission and scheduling in
each information environment and compare the performance
of a multi-cable charging dock facility.

Our study demonstrates:
• the value of a multi-cable dock for parking lot facilities,
• the importance of obtaining actual charging requirement

information from EVs, and
• the increase in system performance arising from intelli-

gent admission and scheduling policies.
In the following section, the charging facility we study

is described in detail. Section 3 presents a continuous-time
Markov decision process (CTMDP) for the system. How-
ever, the model suffers from the curse of dimensionality and
hence does not scale well to real life problems. Thus, heuris-
tic methods for admission and scheduling decisions are in-
troduced in Section 4. Experimental results are presented in
Section 5, followed by a discussion in Section 6. Some re-
lated work on EV charging can be found in Section 7 and
Section 8 concludes the paper.

2 System Model
We consider an EV charging facility with N ∈ N docks,
each with K ∈ N cables. A cable connects a dock to a car
and enables charging. However, being connected does not
mean that the car is able to immediately start charging. Each
dock is limited to charging a single car at a time.

The parking lot system studied assumes cars arrive dy-
namically following a Poisson process with rate λ. The
amount of charging time each EV requires is exponentially
distributed with mean µ−1. In order for the vehicle to leave
the system, two conditions must be met: 1) the required
charge is completed and 2) the deadline specified by the
driver is reached. We assume the deadline is exactly L time
units after the arrival of the EV and represents the time at
which the customer has agreed to return to remove the EV.
This is a simplification of the real system which one can
think of as having customers with different deadlines. How-
ever, our assumption represents a parking lot that sells an
exact amount of parking time to all customers, but each
customer will have different charging times. If a vehicle is
charged before the deadline, it must wait until the deadline
before it can exit because, typically, the driver will not return
for the EV before the deadline. On the contrary, if charge
completion occurs after the deadline, the EV is delayed and
must wait until the charge completes before exiting the sys-
tem.2

2An alternative system could have EVs leaving at the time of the
deadline regardless of charge. The models presented in this paper
can just as easily handle these systems with minor alterations.

We assume three information conditions for our sys-
tem. The first is referred to as the cardinality condition: it
is known how many EVs are at each dock and of those,
whether or not a vehicle is delayed or charged. Under the
second, stochastic, condition, the arrival (λ) and charging
(µ) rates and their distributions are available. It corresponds
to assumptions common to stochastic modelling (Puterman
1994) and queueing theory (Gross and Harris 1998). Finally,
we wish to consider information natural to the schedul-
ing community (Pinedo 2008) which tends to include de-
terministic information about job durations and, often, ar-
rival times. While deterministic arrival times are unrealistic
in our application, it is reasonable to assume that charging
time information is known upon an EV arrival. For exam-
ple, the charging time can be found from either requesting
the customer give the charge level they wish to purchase or
by having a wireless transmitter from the vehicle broadcast
this information.3 Therefore, our third condition, which we
term observable, assumes that the actual remaining charg-
ing times of every EV in the system at each time point can
be observed. For an arriving EV j, the charging time pj is
available upon arrival.

The system manager makes two decisions. The first is
whether to accept or reject an incoming vehicle. If rejected,
then there is a finite cost cr ≥ 0 for losing a customer. The
second decision is how to schedule an accepted EV. Schedul-
ing comprises of the decision of assigning a dock for an EV
and determining the order that EVs are charged. If accepted,
an EV is immediately assigned to an available cable and can-
not be switched. When the owner returns to pick up his/her
EV, if charging is not yet complete, the delay is penalized. If
Tj is the tardiness of a late EV j, that is, the time between
the EVs deadline and when its charge is completed, then the
delay cost is cdTj where cd is finite and non-negative.

The system manager wants to find an admission and
scheduling policy to minimize the overall system cost. How-
ever, the control a system manager has over a parking lot
may vary. One can see in most common parking lots, cus-
tomers arrive and choose a spot themselves. Here, a system
manager would have no direct control over customers. Thus,
an indirect method to control the system is by limiting the
available spots (docks and cables). Although we do not ex-
plore the capacity planning problem, we will observe some
of the effects of adding cables and docks to the system in
our experiments. A system with moderate admission control
could be seen as having a gate at the entrance of the park-
ing facility to turn customers away. Once admitted, the cus-
tomer is free to choose whichever spot they please. Finally,
we can imagine a facility where customers must purchase a
spot first and will then be assigned to a specific location. In
this way, complete control over the admission and schedul-
ing of a vehicle is possible upon arrival. Specific admission
and scheduling policies will be discussed in Section 4.

3Such transmitters are already available (Botsford 2012), but
not used widely.
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3 Continuous-Time Markov Decision Process
We present a CTMDP model to handle the admission and
scheduling of a charging facility when only cardinality and
stochastic information is available. Our current definition of
deadlines being a fixed L time units after arrival does not
adhere to the memoryless requirement of a CTMDP. There-
fore, we assume that deadlines are not deterministic, but ex-
ponentially distributed with mean L.4 We further simplify
the CTMDP representation by enforcing first-come, first-
served (FCFS) ordering of EVs once assigned to a dock.

The state of the system at time t is represented by, S(t) =
{Q(t), W(t), D(t)}. Here, Q(t), W(t), and D(t) are vectors
of sizeN . Q(t) indicates the number of EVs in the system at
time t that are waiting for a charge and not yet due on each
of the N docks. W(t) represents the number of vehicles that
have completed their charge, but are waiting for the deadline
and D(t) is the number of vehicles that are not yet charged
but have already reached their deadline, on each of the N
docks. We represent the element in each of the vectors using
a lowercase letter with index n to indicate the dock (e.g., the
nth dock is fully described by qn(t), wn(t), and dn(t)).

There are N + 1 possible actions when an EV arrives. An
action, a ∈ A, can either assign the EV to one of the N
docks or to reject the vehicle. Therefore, A ∈ {0, 1, . . . , N}
where 0 represents rejection. An EV cannot be assigned to
a dock with no available cables (i.e., if qn(t) + wn(t) +
dn(t) = K). The cost function, C(S(t), a) defines the ex-
pected cost associated with action a in state S(t). When
a vehicle is rejected, independent of the current state, the
cost is cr. If a vehicle is admitted, then we must calculate
the expected cost associated with the additional vehicle for
each particular state. We denote the time that an EV j com-
pletes its charge as φj . Thus, the delay cost of a vehicle is
max{0, (φj − L)cd}.

We calculate the expected delay of an accepted vehicle
by conditioning on the state of the system at time t and
the dock n that will be assigned the vehicle. Since there are
qn(t)+dn(t) vehicles not yet charged on dock n, admission
of a new vehicle requires a total of B = qn(t) + dn(t) + 1
exponentially distributed charges until the arriving vehicle
has completed its charge. B is the number of EVs present in
the system that requires a charge plus the new arriving job.
Thus, the expected delay given a state i and assignment to
dock n is,

E[delay|S(t), a = n] =

∫ ∞
L

(x− L)f(x;B,µ)dx,

where f(x;B,µ) is the density function of the Erlang distri-
bution. This yields

E[delay|S(t), a = n] =

[
µ−1Γ(B + 1, µL)− LΓ(B,µL)

]
Γ(B)

.

4We found numerically through simulation that a system with
deterministic deadlines does not behave differently from the cal-
culated CTMDP with exponentially distributed deadlines under
FCFS. Due to space restrictions, we do not present these details.

Here, Γ(b) is the gamma function and Γ(b, µL) is the upper
incomplete gamma function. Therefore, for any action a, we
know the expected delay, which we multiply by cd to obtain
the expected delay cost.

The transition rates depend on the current state of the sys-
tem, {Q(t),W(t),D(t)}. Transitions occur because of three
types of events: EV arrival, charge completion, and meeting
a deadline. Actions only affect transition rates for the arrival
events; the other events are independent of the actions taken.

We define an N-sized vector en that has 1 as the nth el-
ement and the rest 0. A deadline can occur on any dock
which has qn(t) + wn(t) > 0. If wn(t) > 0, then a transi-
tion occurs with rate qn(t)+wn(t)

L and will change the state
to {Q(t),W(t) − en,D(t)}. If wn(t) = 0, a transition
occurs with rate qn(t)

L to state {Q(t) − en,W(t),D(t) +
en}. Charge completions can occur on any dock which has
qn(t) + dn(t) > 0. If qn(t) + dn(t) > 0, a transition oc-
curs with rate µ to {Q(t),W(t),D(t) − en} if dn(t) > 0,
and {Q(t)− en,W(t) + en,D(t)} otherwise. For an arrival
event, we must consider the action taken. If an EV is re-
jected, then there is no transition. If we decide to assign an
arriving vehicle to the nth dock, then there is a transition rate
of λ to {Q(t) + en,W(t),D(t)}. Since we consider expo-
nentially distributed inter-arrival times, charging times, and
deadlines, the system is memoryless and we can restrict the
decision epochs to only the times when the state changes.

A policy, π, specifies the action, aπ(S), for each state S =
{Q,W,D}. We can use uniformization (Lippman 1975) to
discretize the MDP and solve for an optimal policy using
policy iteration (Howard 1960) since we have a finite state
space with bounded costs (Puterman 1994).

The CTMDP suffers from the curse of dimensionality:
solving the CTMDP for real life problems is intractable as
the number of states grows exponentially. The number of
states for any particular system is (K + 1)2N . With five
cables and five docks, we see that there are more than 60
million states. Thus, such a model is intractable for park-
ing facilities of even moderate capacity. Nevertheless, this
model can guide us to heuristics that use stochastic informa-
tion which we present in the following section.

4 Admission and Scheduling
We propose admission and scheduling policies to manage
the charging facility for each of our information availabili-
ties. Depending on the particular conditions of information
availability, some policies may not be possible to perform.

4.1 Admission Policies
The admission policy decides whether to accept or reject an
EV upon arrival. The policies consider each dock and de-
cides which docks are able to be assigned the EV. We present
three policies which represent systems that, respectively, use
cardinality, stochastic, and observable information:

• Free Cable - A vehicle is admitted if there are available
cables - i.e., if ∃n : qn(t) + wn(t) + dn(t) < K. Any
dock with an available cable may be assigned the EV.
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• CTMDP1 - Consider a single-dock version of the model.
Solve for the optimal single-dock policy using CTMDP
of Section 3 with the same parameters of the original
multi-dock model (µ, L, cd, cr) except an arrival rate
of λ

N . Given the state of the system S, for every dock
n = 1, 2, . . . , N , check whether an arriving EV would
be admitted in state (qn(t),wn(t),dn(t)) under the opti-
mal single-dock policy. The docks that accept an arriving
EV are the only ones that can be assigned the EV.

• Myopic - Using the charging times, calculate the delay
cost of scheduling an EV on each dock. If the cost of ac-
cepting the EV on the dock is less than the cost of reject-
ing the EV, then accept and assign to one of these docks.

Although the admission policy will limit how one can assign
an EV, it does not assign a dock.

4.2 Scheduling Policies
Once an EV is admitted, a policy is used to assign a dock.
Again, each policy represents systems that, respectively, use
cardinality, stochastic, and observable information.

• Random - Randomly choose among one of the possible
docks determined by the admission policy.

• CTMDP2 - Similar to CTMDP1, restrict the CTMDP
model to a single dock and solve the Bellman equations
to find the expected cost of being in each state. From the
set of possible docks as defined by the admission policy,
choose the dock in a state that yields the minimum ex-
pected cost.

• Earliest - From the set of possible docks defined by the
admission policy, choose the dock that will result in the
earliest completion time for the EV if all other already
assigned EVs complete charge first.

These policies represent different levels of control from
no involvement, where we expect customers to enter and
choose a cable randomly, to complete control where a
customer is sent to a particular dock in order to maximize
performance. Once assigned to a dock, EVs are charged in
FCFS order.

A system manager couples an admission policy with a
scheduling policy to control the charging facility. It is ob-
vious that the information availability would limit his/her
choice of policies above. For example, CTMDP1-Earliest
can only be used if cardinality, stochastic, and observable
information conditions are met.

5 Experimental Results
We simulate the charging facility to observe the effects of
using multiple cables and different policy combinations. For
each experiment, 10 instances of 100,000 time units are sim-
ulated for every admission-scheduling policy pair. In all ex-
periments, customers set a deadline of exactly 1 time unit
after their arrival (L = 1) and docks have a charging rate
of µ = 6. For example, if our time unit is 3 hours, the pa-
rameters represents a parking lot which customers park for
3 hours and request on average 30 minutes charging time.
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Figure 1: Experiment 1 - Single Dock Charging Facility.

As mentioned earlier, we wish to understand the effects of
information availability. Since the underlying system does
not change, only the available information, we can observe
how having certain information affects performance.

The first experiment is a single dock charging facility.
EVs arrive to this system with a rate λ = 4 and K varies
from 1 to 10. The cost of rejecting an EV is cr = 1 and the
delay cost is cd = 5. Since there are no scheduling decisions
to be made, this system only tests the admission policies,
hence, comparing the three information availabilities.

Figure 1 presents simulation results for the single dock
system. In general, we see a large decrease in cost with ad-
ditional cables due to a significant increase in accepted EVs.
The cost gap between CTMDP1 and Myopic, especially for
K > 6, shows the extent of performance improvement that
can be achieved by obtaining the actual charging time infor-
mation.

Interestingly, the average cost per EV of the Free Cable
policy increases with eight or more cables. To get a bet-
ter idea of why the increase in cost occurs, we can think
of accepting an EV when there are 7 other EVs waiting for
a charge. In this scenario, it is likely that completing eight
charges will require more time than the deadline allows be-
cause the docks are expected to only charge 6 EVs in 1 time
period. Therefore, rejecting is generally a better choice. The
Free Cable policy does not do so and continues to accept
EVs when there are free cables.

The second experiment looks at a multi-cable, multiple
dock system. In this system, there are ten identical docks
with between one and ten cables each. Vehicles arrive at
a rate of λ = 50. The rejection cost is cr = 1 and the
delay cost is cd = 5. Results are shown in Figure 2 for
each combination of admission and scheduling policy. Note
that CTMDP1 does not always perform better than Free Ca-
ble. With observable information, using the Earliest policy
favours Free Cable. Figure 2 illustrates the importance of
information availability. The strong performance of Myopic-
Earliest shows the clear advantages of having observable in-
formation. Further, obtaining some control of the system is
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Figure 2: Experiment 2 - Multiple Dock Charging Facility.

quite important as Free Cable-Random is found to perform
very poorly once there are seven or more cables. In fact,
even Myopic-Random suffers when K increases since there
is less control over the scheduling of EVs.

To further study the effects of the system parameters, we
experiment with varying the cost structure. Using the param-
eters from the multiple dock facility of the previous experi-
ment, we fix the number of cables to ten and vary cd between
1 and 200. Figure 3 shows the results of this experiment.

We see for most policy pairs, increasing cd leads to in-
creased overall costs per EV. However, this trend is not true
when Myopic is paired with Random or CTMDP2. A pos-
sible explanation for this anomaly is that increasing cd will
restrict potential candidate docks under the Myopic policy.
We believe Myopic can give guidance when delay costs are
high by removing the busier docks from consideration.

An interesting observation is that for cd = 200, Myopic-
CTMDP2 out-performs Myopic-Earliest. A scheduling pol-
icy using only stochastic information out-performs the pol-
icy that exploits exact information with Myopic admission.
In the previous experiments, we have seen a large dom-
inance when using observable information over stochastic
but clearly this is not always the case. We return to this ob-
servation below.

The last experiment studies a charging facility with ten
docks and ten cables each. Costs are as in the first two ex-
periment: cr = 1 and cd = 5. We vary the arrival rate
λ = {50, 55, 60} to observe how the policies behave un-
der varying system loads. Figure 4 graphs the results. We
see a larger increase in costs for the Free Cable based policy
pairs as load increases when contrasted with CTMDP1 and
Myopic. Of interest in particular is the performance of Free
Cable in comparison to CTMDP1 when using the Earliest
scheduling policy. As before, we see at λ = 50 that Free
Cable is better. However, as λ increases, CTMDP1 becomes
better.

Figure 3: Experiment 3 - Multiple Dock Charging Facility.

Figure 4: Experiment 4 - Multiple Dock Charging Facility.

6 Discussion and Future Work
The results from simulating the charging facility provide in-
sights into the facility designs as well as the directions for
building stronger system management models. For facility
design, we see that multi-cable docks provide large perfor-
mance improvements when there is a disparity between the
charging requirements of an EV and the expected deadlines
(pj < L). Botsford (2012) discusses such systems and pro-
vides two solutions: valet parking and reduced power charg-
ing docks to increase charging time. Although these solu-
tions increase dock utilization, they are not always practical
as the cost for valet parking or requiring a dock for every
customer can be high. If L is much larger than pj , adding
cables to a dock will greatly improve utilization.

Comparisons of the different policy combinations gives
us insight into how one would manage a charging facility.
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The most important questions that must first be addressed
is what information is available and how much control ex-
ists for the admission and scheduling of a customer. Parking
facilities are used in a variety of settings and different park-
ing lots will have different features. As mentioned in Sec-
tion 2, management may not have substantial control over
a shopping mall parking lot. Customers arrive and choose
their spots freely as long as there is space. We can see the
similarities to Free Cable-Random where there is no con-
trol over the customers. Here, the only decision making re-
quired is one of capacity planning; how many docks should
be purchased and how many cables will these docks have.
As we can see from Figures 1 and 2, more cables may lead
to a decrease in performance, so choosing the right capacity
is very important to the overall system costs. If the man-
ager does have some control over the assignment of EVs
and stochastic information is available without observable
charging times, CTMDP1-CTMDP2 is the best performing
policy. Since exact charging times are not known, using the
Earliest scheduling rule is not possible and our experiments
show, as expected, that Free Cable does not outperform CT-
MDP1 in these circumstances.

Although the policies using observable information were
able to achieve the best overall performance, our results sug-
gest the potential for using stochastic information. With in-
creased delay costs, the best performing policy combina-
tion was Myopic-CTMDP2. This combination makes use
of cardinality, stochastic, and observable information. We
believe that to achieve the best performance, policies de-
signed to use the stochastic and observable information is
required. Myopic-CTMDP2 only achieves the lowest cost
in one scenario, but a more sophisticated scheduler that ac-
tively uses all the available information has potential to per-
form favourably on most, if not all, cases.

Such hybrid reasoning in optimization has previously
been proposed in the literature. Recent work by Terekhov et
al. (2012) and Tran et al. (2013) looks at combining queue-
ing theory and scheduling models to incorporate stochastic
reasoning into combinatorial optimization. In Tran et al.’s
(2013) work, a queueing model, using stochastic informa-
tion, was shown to out-perform a number of scheduling
models that made use of observable information. The seem-
ing inconsistency with our result is interesting but is likely
due to the very different underlying systems and solution
approaches. However, the investigation of when combining
stochastic and observable information benefits performance
is a promising area of future work and our results from test-
ing a system with high delay costs is an example of how such
a combination can be advantageous.

Another direction for future work is online stochastic
combinatorial optimization (OSCO) (Van Hentenryck and
Bent 2006). OSCO creates schedules by generating and opti-
mizing over samples of future arrivals derived from stochas-
tic information. We see it as a promising direction, espe-
cially for more complicated scheduling problems.

We would like to expand this work by further examining
the CTMDP model and building more sophisticated schedul-
ing models that make use of stochastic reasoning. We believe
that a deeper understanding of the characteristics of the opti-

mal CTMDP policy will help provide necessary components
one can utilize when creating a sophisticated scheduler that
considers both the dynamics of the system and the combina-
torial complexities. As well, we would like to explore pos-
sible methodologies of solving the CTMDP. Factored rep-
resentations of an MDP, which uses dynamic Bayesian net-
works to represent the stochastic decisions of an MDP, are
an interesting possibility for being able to solve the CTMDP
(Boutilier, Dearden, and Goldszmidt 2000).

7 Related Work on EV Charging
While there are a few studies on EV charging, we are not
aware of any work that investigates our parking lot charg-
ing scenario with multi-cable docks and dynamically arriv-
ing customers. Furthermore, to the best of our knowledge,
our paper is the first to study the performance of a multi-
cable dock design where the cables in a charging dock are
modelled as a limited resource. In all other works, it is either
assumed that docks always switch to other cars immediately
or the system has unlimited single-cable docks.

Raghavan and Khaligh (2012) examine the effects of
EV charging in a smart grid environment. They emphasize
the differences between charging methods and time-of-day
(evening or night). Li et al. (2011) use dynamic program-
ming to minimize charging costs when electricity prices vary
over time. Sioshansi (2012) develops two mixed integer pro-
gramming models to minimize costs. These works consider
the larger power grid problem where people are charging at
home rather than in a shared charging facility.

Lee et al. (2011) focus on the problem of a charging sta-
tion system where there are multiple charging docks and ve-
hicles have different charge lengths, arrival times, and dead-
lines. In their work, they assume that complete information
is known a priori, including the number of EVs. Each vehicle
has a different power consumption profile and the objective
is to reduce peak power usage over all time periods.

Work on waiting time performance of charging EVs is
due to Qin and Zhang (2011). A network of roads is created
where nodes represent rest stops to recharge EVs. Drivers
are assumed to stop at nodes to charge when required and
immediately leave once they are charged. A performance
bound is derived and a distributed scheme is proposed which
is shown empirically to perform closely to the bound results.

8 Conclusion
We studied scheduling electric vehicles in a charging facil-
ity where customers arrive dynamically and tend to park
longer than their charge time. Our study considered three
information conditions: cardinality, stochastic, and observ-
able. We formulated a CTMDP to optimize the system per-
formance under the first two conditions and demonstrate
that it does not scale to realistic-size problems with multi-
ple docks. However, a single-dock version of the CTMDP
is tractable. We proposed and numerically evaluated a num-
ber of admission and scheduling schemes building on both
the single-dock CTMDP and approaches from the schedul-
ing literature under each of the three information conditions.
We found that the information available significantly alters
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the overall performance of the system by limiting the admis-
sion and scheduling policies that can be implemented. Thus,
it is crucial for any system manager to properly understand
the information limitations of his/her system and choose the
appropriate methodology to optimize performance.
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Abstract 

Factory assembly robot systems are becoming increasingly 
more complex due to shortened product cycles and the need 
to rapidly manufacture many different types of products. It 
is necessary to generate efficient sequences which coordi-
nate the actions of multiple, complex devices under a multi-
tude of constraints. We investigate the application of do-
main-independent planning techniques to the sequence gen-
eration problem for a modern, cellular assembly robot sys-
tem. We evaluate a PDDL model for this domain, and show 
that this domain poses some challenges for current planners. 
We propose and evaluate a new, steady-state model which 
enables high-quality plans to be generated using standard 
planners. 

 Introduction  

 Industrial robots play a vital role in manufacturing, and 

are widely used for processing, assembly, carry-

ing/manipulation, welding, paintwork, and inspection. 

 Due to the shortened life cycles of manufactured products 

in recent years, there is a need for flexible, robotic manu-

facturing systems that can be used for a wide range of 

products. The traditional, large-scale assembly lines de-

signed for mass production (“1 product per belt conveyor”), 

are being replaced by flexible, cellular manufacturing sys-

tems which are staffed by relatively few workers. In cellu-

lar manufacturing systems, each “cell” consists of several 

pieces of manufacturing equipment, and is designed to 

allow efficient manufacturing of a wide array of low-

demand products.  

The robotic assembly system described in this paper is 

one example of a cellular manufacturing system. An as-

sembly robot system automates assembly tasks that are 

traditionally performed by human workers. In an assem-

                                                 
Copyright © 2013, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

bly robot system, a single robot can handle multiple tasks, 

such as attachment of parts, manipulation/transport, and 

inspection. By using multiple cooperating robots in a sin-

gle cell, the system can be used to manufacture a variety of 

products.  

Since a control sequence for a robotic assembly system 

(i.e., a sequence of parallel operations which are performed 

in an assembly system) needs to manufacture multiple 

products simultaneously, while minimizing takt time (cycle 

time), generating efficient sequences that make effective 

use of the increased capabilities of new robotic assembly 

systems is a difficult task. Sequence generation, which has 

traditionally been performed by a human worker, has be-

come an increasingly challenging task which requires sig-

nificantly more skill and time than for the simpler robotic 

systems that were used in the past. 

In order to deal with the difficulties of sequence genera-

tion for complex, assembly systems, we are investigating 

methods for automating the sequence generation process 

using domain-independent planning technology. The use of 

domain-independent planning has two motivations: (1) 

automatic generation of efficient sequences for complex 

scenarios, with the goal of ultimately generating sequences 

that are more efficient than sequences developed by hu-

mans, and (2) fast, automated generation of sequences in 

order to enable rapid reconfiguration and deployment of 

the assembly system in response to demand. 

Given a model of the robot’s actions, which encodes do-

main constraints such as resource and ordering constraints 

on the actions, a tool that generates sequences which are 

competitive with current, human-generated sequences is 

required. 

In this paper, we first introduce the assembly robot do-

main. We describe the overall assembly system, as well as 

the structure and components of the products (called 
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“Work” in this domain) which are produced by the assem-

bly system. 

 

We then describe a PDDL model for the assembly robot 

system. We evaluate this model using a temporal planner 

which first generates a sequential plan and applies postpro-

cessing to generate a concurrent plan. We show that it is 

difficult to generate high-quality plans using this straight-

forward model, and that the plan quality degrades as the 

amount of products being produced is increased. Then, we 

propose a technique for modeling our assembly problem as 

a steady-state process. We show that using this technique, 

efficient sequences that can be used to generate an arbitrary 

amount of the same product can be generated using a com-

bination of Fast Downward [Helmert 2006, Fast Down-

ward 2012] and a simple postprocessor for concurrency. 

Assembly Robot System 

In this section, we describe the assembly robot system. 

Work and Parts 

In this domain, the term “Work” refers to a product that is 

assembled by the system. The assembly robot system con-

sists of multiple robots that cooperate in order to assemble 

products (Work). Examples of Work include automobile 

parts and precision instruments.  

A piece of Work consists of a single base and multiple 

parts that are screwed to the Base. An example of a type of 

Work that can be assembled by the system is shown in 

Figure 1. The cylindrical object near the middle of the fig-

ure is the base. Part A is the bottom cover, and is screwed 

to the base. Part B is a piston which is inserted into the 

base. Part C is the top cover, which is screwed to the base. 

The upper and bottom cover prevent the piston from pro-

truding from the object. 

Assembly 

Assembly of a piece of Work involves several types of 

operations, including screwing a part to the base, attaching 

a part to the base using an adhesive, and welding opera-

tions. Assembly is subject to the following kinds of con-

straints. 

Ordering Constraints  

There are ordering constraints when assembling a piece of 

Work. For example, in the example shown in Figure 1, if 

the top/bottom covers are screwed to the base before the 

piston is inserted into the base, then it will become impos-

sible to insert the piston. These ordering constraints are 

determined during the design of the Work. 

Assembly Operation Times  

Each operation in the assembly requires a specific amount 

of time to execute, and the time required for an operation 

can be context-dependent. For example, the amount of time 

required to attach a part to a base varies, depending on the 

part. Assembly operation times are determined when the 

Work is designed. 

Location Constraints 

For each assembly operation, there are constraints on 

where they can be performed. For example, screw tighten-

ing operations must be performed at a dedicated screw 

tightening device, and insertion of a piston must be per-

formed at a specific type of location called an “Assembly 

Table”. These location constraints are also determined dur-

ing the Work design process. 

Constraints on the Work 

Summarizing the constraints on the Work shown in Fig-

ure 1, the Work must be assembled as follows: 

(a). Using an arm, the top cover (Part A) must be attached 

to the base at Table 1 

Figure 1: Example of Work. 

 

 
 
 

Model 2-(a) 

 
 
 

Model 2-(b) 

 
 
 

Figure 2: Assembly Robot System. 
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(b). Part A must be screwed to the base using Machine A 

(c). Using an arm, the piston (Part B) must be attached to 

the base at Table 2. 

(d). Using an Arm, the bottom cover (Part C) must be 

attached to the base at Table 2. 

(e). Using Machine B, Part C must be screwed to the base. 

It should be clear from the description above that the or-

der in which a single base (Work) flows through the sys-

tem is fixed. However, the need to coordinate the actions 

of multiple arms and simultaneously process multiple 

Works leaves a significant amount of freedom in sequenc-

ing. 

Assembly Robot System 

As explained in the previous section, assembling a Work 

requires various operations. In case of the Work shown in 

Figure 1, operations for attaching the top and bottom co-

vers to the base, screwing the covers to the base, as well as 

moving the parts/base to appropriate locations so that oper-

ations can be performed,are necessary. In addition, because 

attachment and screwing operations must be performed at 

different locations, the Work must be moved from the loca-

tion where the part is attached to the location of the ma-

chine which tightens the screw. An assembly robot system 

integrates multiple robots/machines so that these processes 

can be performed automatically and efficiently in order to 

assemble products. 

The assembly robot system is comprised of the “assembly 

table”, the base is placed, the “parts tray” where the parts 

are placed, multiple robot arms, specialized robotic devic-

es/machines (e.g., screw tightening device, transport de-

vice). 

In this section, we describe each of these components. 

Figure 2 shows a model of an example system as a whole. 

(a). Robot Arm: Robot arms are the centerpieces of the 

assembly system. Each arm has sensors and a hand at the 

end, and can be used to perform multiple tasks. Some tasks 

that can be performed by the arm are described below. In 

addition, by exchanging the robot hand attachment, it is 

possible to perform additional tasks such as tightening a 

screw (with a screw tightening attachment), or inspection 

of the Work using force sensors. 

i) Part attachment: The robot hand is used to grasp a 

part from the part tray, take it to the current location of 

the base, and attach it to the base, e.g., attachment of a 

cover or insertion of a piston. 

ii) Movement of the base: Using the robot hand, the arm 

grasps the base. The arm moves to the destination, and 

then places the Base onto a table or processing device. 

(Example: movement of the base from the table to a 

screw tightening device after a cover has been attached 

to the base). 

 (b). Processing Device (“Machine”): A machine which 

performs a specific function (tightening a screw, welding, 

painting, inspection) on a base, e.g., the specialized ma-

chine which tightens the screw attaching a part and the 

base. 

 (c). Slide (carry-in/carry-out) device: A device which 

moves an object from/to a predetermined 

source/destination. For example, the carry-in device moves 

a new, unprocessed Base onto a table in the assembly sys-

tem. The carry-out device moves a completed Work out of 

the assembly system to another location.  

 (d). Assembly Table: The location where the base is 

placed in order to attach parts to it using an arm, e.g., in the 

example Work, the covers and pistons must be attached to 

the base at a table. 

 (e). Parts-Tray: The place where parts used by the assem-

bly system are initially placed. When an arm attaches a 

part to a base, the arm must first move to the parts tray, 

grasp a part, and then attach it to the base. 

Parallelism in cellular assembly sequences 

At any given time, a cellular assembly system can be pro-

cessing multiple Works in parallel. While one device is 

attaching a part to a base, another device can be tightening 

the screw on another base. A setup such as the one shown 

in Figure 2-(a) normally processes 3-5 Works in parallel.  

Applying Domain-Independent Planning to 

Assembly Planning  

We are developing an automated sequence generation 

system for the cellular assembly robot system described 

above. As shown below, the system can be modeled 

straightforwardly using PDDL. Since the objective is to 

generate a sequence which effectively uses resources in 

parallel, the system needs to output a concurrent plan. Thus, 

one approach would be to apply planning algorithms that 

are designed to handle concurrency. 

However, one major goal for this research project was to 

investigate the use of off-the-shelf, domain-independent 

planners as the core planning engine, to see whether it is 

feasible to develop a system for our domain without having 

to develop/modify/maintain the core planner – given the 

rapid rate of improvement in the state of the art of domain 

independent planning, it is preferable to use the core plan-

ner as an easily replaceable, commodity tool, much like a 

programming language compiler, and focus our efforts on 

model design and system integration, implementing 

pre/post processors as necessary. While numerous, tem-

poral planners that output parallel plans have been devel-

oped, we found that the older, publicly available systems 

(e.g., Temporal Fast Downward) are not visibly actively 

maintained, and do not have a substantial open-source de-

velopment community. Furthermore, preliminary experi-
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ments showed that for the models described above, the 

results did not differ significantly from the sequential plan-

ners we used below.  

On the other hand, sequential planning is a more mature 

technology, and the current state of the art planner, Fast 

Downward has a significant user base and development 

community, which makes it attractive as an off-the-shelf 

component for our system. Therefore, we investigated an 

approach where we use a sequential planner (e.g., Fast 

Downward) to generate an initial, sequential plan, which is  

postprocessed using a scheduler we implemented in order 

to generate a plan with concurrent actions. 

A PDDL Model for Assembly System 

We modeled the assembly system using PDDL version2.1 

There are 7 types of objects, representing the objects de-

scribed in the previous sections: (i) Robot Arm (“Arm”), 

(ii) Base, (iii) Parts, (iv) Parts Tray, (v) Machine, (vi) Ta-

ble, and (vii) Slide Device. 

There are 8 types of actions: 

(a) Move Arm: Moves the arm (?arm) from the source 

(?from) to the destination (?to). The occupied and not-

occupied propositions enforce a mutual exclusion con-

straint so that only one arm can occupy any given location 

at a time. 

 (action: move_arm 
 parameters (?arm - arm ?from – position ?to - position) 
 preconditions (at ?arm ?from) (not-occupied ?to) (reachable ?arm ?to) 
 effects  (at ?arm ?to) (not-occupied ?from) (occupied ?to) 
   (not (at ?arm ?from)) (not (occupied ?from)) (not (not-occupied ?to))) 
(b) Eject Base: Uses an arm (?arm) to grasp and pick up a 

base (?base) from a machine or a table (?pos). Resets the 

mutual exclusion constraint enforcing the rule that at most 

1 base can be at a location (notbaseplaced ?pos) 
 (action: eject_base 
 parameters (?base - base ?arm - arm ?pos - position) 
 preconditions  (at ?base ?pos) (at ?arm ?pos) (free ?arm) 
 effects  (hold ?arm ?base) (notbaseplaced ?pos)  
    (not (free ?arm)) (not (at ?base ?pos))) 
(c) Set Base Base: Commands an arm (?arm) that is hold-

ing a particular base (?base) to set the base on a machine or 

table (?pos). Each machine/table has a mutual exclusion 

constraint ensuring at most 1 base is placed on it (notbase-
placed). 

 (action: set_base 
 parameters (?base - base ?arm - arm ?pos - position) 
 preconditions (hold ?arm ?base)  (at ?arm ?pos) (notbaseplaced ?pos) 
      (baselocation ?pos)) 
 effects (at ?base ?pos) (free ?arm)  
    (not (hold ?arm ?base)) (not (notbaseplaced ?pos))) 

(d) Slide Base: Uses a slide (carry-in/carry-out) device to 

move a base. 

 (action slide_base 
 parameters (?base - base ?from - position ?to - position) 
 preconditions  (at ?base ?from) (connect ?from ?to) 
      (notbaseplaced ?to) (baselocation ?to)) 
 effects  (at ?base ?to) (not (at ?base ?from)) 
    (not (notbaseplaced ?to)) (notbaseplaced ?from))) 
(e) Pick Parts by Arm: Use an arm (?arm) to pick up a part 

(?part). The part will later be used by a BaseAssem-

blePickedPartsXByArm action (see below). 

 (action: pickup-part_X 
 parameters (?part_X - part_X ?arm - arm ?pos - position) 
 precondition (free ?arm) (at ?arm ?pos) (at ?part_X ?pos) 
 effects  (hold ?arm ?part_X) (not (at ?part_X ?pos)) 
    (not (free ?arm))) 
(f). Base Assemble by Machine: Use a machine (?pos) to 

perform an assembly operation (e.g., tighten the screw) on 

a base (?base).  

The ordering constraints which are determined when the 

object is designed are encoded as a set of ordering proposi-

tions, finished_Step_X and unfihished_Step_X, which rep-

resent whether an assembly step X has been performed 

already.  

 (action: Base_Assemble_JobA_by_Machine 
 parameters (?base - base ?pos - position) 
 preconditions (Assemble_Parts_B ?base) (at-Job_A ?pos) (at ?base ?pos) 
 effects  (finished_Job_A ?base) (not (unfinish_Job_A ?base))) 
(g). Base Assemble Picked Parts by Arm: Uses an arm 

(?arm) to attach a part (?part) to a base.  

 (action: Base_Assemble_Picked_PartsX_by_Arm 
 parameters (?parts_X – parts_X ?base - base ?arm – arm ?pos - position) 
 preconditions (finished_Job_A ?base) (unused ?parts_X) 
      (at ?base ?pos) (at ?arm ?pos)  
      (at-Assemble_PartsX ?pos) (hold ?arm ?parts_X) 
 effect  (Assemble_Parts_X ?base) (used ?parts_X) (free ?arm) 
     (not (unused ?parts_X)) (not (hold ?arm ?parts_X)) 
    (not (unfinish_JobB ?base))) 
 

Evaluation of the Assembly System Model 

We evaluated the assembly system PDDL model using 

several publicly available, domain-independent planners to 

generate sequential plans for the model.  

Benchmark Problem  

As a benchmark problem, we use the Layout shown in 

Figure 2-(a) and described in detail in the previous sections. 

The assembly robot system consists of 2 Arms, 5 Ma-

chines, 2 Tables, and 2 Slide Devices. Note that Arm A 

cannot reach Machine C because Arm B is in the way. 
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The Work requires 1 base and 4 parts. 9 assembly opera-

tions are required, including 5 assembly operations that use 

a Machine, and 4 assembly operations that are performed 

with an Arm. The amount of time required to assemble this 

Work is 465. 

Initial/Goal States  

In the initial state, N bases are at the carry-in device, and 

the final state has N completed pieces of Work in the car-

ryout device (1 <= N <= 6). 

We evaluated model using 5 configurations of Fast 

Downward, a state-of-the-art sequential planner [Helmert 

2006, Fast Downward 2012].  

(a). seq-sat-lama-2011 – a configuration which mimics the 

Lama 2011 planner, which won the IPC 2011 configura-

tion [Richter et al 2011] 

(b). seq-sat-fd-autotune-1 

(c). seq-sat-fd-autotune-2 

(d). seq-opt-fd-autotune 

(e). FF/WA* - weighted A* (heuristic weight=6) using 

Fast Forward heuristic [Hoffman and Nebel 2001] 

 

The first 4 configurations are standard configurations in-

cluded in the current Fast Downward distribution. While 

seq-sat-lama-2011, seq-sat-fd-autotune-1, seq-sat-fd-

autotune-2, and FF/WA** are satisficing configurations 

which are not admissible, seq-opt-fd-autotune uses only 

admissible heuristics. 

The plans that are generated by Fast Downward are se-

quential plans (1 action executed at each step). These are 

postprocessed with a simple, earliest-dispatch scheduler in 

order to parallelize the plans. 

The experiments were performed on an Intel Core i7 975 

3.33GHz with 4GB RAM. The tested code is single-

threaded, and was run until either the search completed, or 

RAM was exhausted. The results are shown in Table 1. 

The costs of the concurrent plans for assembling 1-6 

Works are shown, as well as the cost per work (cost for the 

N-work sequence divided by number of Works). 

The rightmost column in Table 1 shows the makespan of 

a human-generated (parallel) sequence for N Works. 

 

Table 1 shows that for 1-2 Works, the plans generated by 

the planners are competitive with the human-generated 

sequence. However for 3-6 Works, the human generated 

sequences are significantly more efficient than the se-

quences generated by the planners, and we see that the 

cost/work for the automatically generated sequences is 

approximately twice the cost/work for the human-

generated sequences. Inspection of the suboptimal plans 

showed that the suboptimality is due many unnecessary 

actions, i.e., suboptimality is due to problems in the se-

quential plans generated by Fast Downward, and not due to 

a failure to parallelize the plans optimally. For example, 

there is a tendency to repeatedly try to move the arm into 

the position where they should be in the goal state. It ap-

pears that current heuristics are deceived into prematurely 

trying to move the arms into their final positions; this prob-

lem may be caused by the long lengths of the plans that are 

required in this assembly domain (hundreds of steps). 

While we included the seq-opt-fd-autotune configuration 

to see whether optimal sequential plans might lead to high-

quality concurrent plans, the results for 1-2 Works shows 

that this is not necessarily the case (for 2 Works, the con-

current plan cost for seq-opt-fd-autotune is not as good as 

 N (Number 

of Work) 
  FF/WA* 

seq-opt- 

fd-autotune 
seq-sat-fd- 

autotune-1 

seq-sat-fd- 

autotune-2 
seq-sat- 

lama-2011 
Human-generated 

sequence 

1 cost 453 441 441 441 441 465 

 
cost/Work 453  453 441  441   441  465 

2 cost 921 657 633 699 687 738 

  cost/Work 460.5 328.5 316.5 349.5 343.5 369 

3 cost 1302 - 1401 1290 1212 984 

  cost/Work 434 
 

467 430 404 328 

4 cost 1836 - 2253 1767 1560 1230 

  cost/Work 459 
 

563.25 441.75 390 307.5 

5 cost 2271 - 2913 2214 1917 1476 

  cost/Work 454.2 
 

582.6 442.8 383.4 295.2 

6 cost 2937 - 3627 2754 3393 1722 

 
cost/Work 587.4 

 
725.4 550.8 678.6 287 

 

Table 1: Parallel plans generated from PDDL model using four configurations of Fast Downward (with 
postprocessing for plan parallelization). 
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seq-sat-fd-autotune-1. Furthermore, the seq-opt-fd-

autotune configuration fails for more than 2 Works, show-

ing that search with nonadmissible heuristics is necessary 

for this domain model. 

In addition to the results shown in Table 1, we experi-

mented with numerous configurations that used the various 

heuristics included in the Fast Downward code distribution 

(context-enhanced heuristics, merge-and-shrink abstrac-

tions, landmark-based heuristics), and could not find a con-

figuration that could find significantly higher-quality plans. 

In addition to Fast Downward, we also evaluated SatPlan 

(Kautz et al 2006). However,  SatPlan exhausts memory 

during the conversion to SAT phase when the number of 

Works was more than 1. 

Based on these results, we concluded that it is difficult to 

obtain high-quality plans by applying current state-space 

search based planners to the standard PDDL model of our 

assembly robot domain described above. 

A Steady-State Model for Assembly 

In the previous section, we evaluated the assembly of up 

to N=6 Works. However, in practice, an order to be ful-

filled by an assembly robot system typically requires the 

assembly of 20-100 Works of each type, and a total of over 

1000 Works for an entire order. The results in the previous 

section indicate that a standard approach where we simply 

increase the number of Works to be generated in the PDDL 

problem file does not seem like a viable approach, as we 

have already shown that there are scaling issues even with 

N>2 Works. 

Therefore, we developed an alternative approach to mod-

eling the system which naturally scales to large number of 

Works. Instead of starting with an “empty” start state and 

searching for a path to a goal state where all of the Work 

has exited the system through the carryout device, we for-

mulate a steady-state problem, where the start and goal 

states are essentially the same, except that all objects have 

moved “forward” a step. 

The manually generated sequences that are currently used 

in production are called steady-state sequences (Dawande 

et al 2005). In a steady-state sequence, start and goal states 

are basically identical, if we ignore the unique object IDs 

for objects that are the same type. When a single cycle of a 

steady-state sequence is executed, one Work is completed, 

and one new base enters the system. The sequence can be 

repeatedly executed an arbitrary number of times (as long 

as new bases are provided to the carry-in tray and parts are 

provided to the parts tray), and multiple Works are simul-

taneously processed. 

 

We developed a PDDL model in order to generate a 

steady-state sequence. A start state consists of an unpro-

cessed base is at the carry-in device and 4 bases in various 

stages of processing. The goal state contains 1 completed 

Work, and each of the 4 Works that were incomplete in the 

start state have advanced 1 additional processing state (and 

are placed in new, appropriate locations). For example, 

Table 2 shows an example of a start state and goal state for 

this stead-state formulation. The “Assembled” column 

shows the number of assembly steps that have been com-

pleted already for a particular base. For example, in the 

start state, Base 0 is at Position 8, and has 8 out of 9 as-

sembly steps completed. 

When a plan for the model in Table 2 is executed, the sys-

tem goes through 1 cycle of this steady-state model. Base0 

is completed and exits the system. Base 1, goes through 

one more stage of processing, and moves to the same loca-

tion as Base 0 in was (8/9 assembled, at Pos 8). Similarly, 

relative to the start state, Base 2 replaces Base 1, Base 3 

replaces Base 2, and Base 4 replaces Base 3. Finally, by 

adding a new base(Base 5) in the carry-in device, we end 

up with a state where the locations and the processing 

states of all of the bases are the same as in the start state, 

except for the IDs. 

 

Designing a steady-state model requires identifying an 

appropriate steady-state, and this does require some do-

main knowledge. However, this is relatively straightfor-

ward. As explained above, in the assembly robot domain, 

the order in which assembly steps are applied to a new 

base, resulting in a completed Work, is determined during 

the design of the Work, so the major degree of freedom 

remaining is the scheduling of the arm motions. A simple 

heuristic approach is to place a base at each location, in the 

correct state that the base needs to be in such that the pre-

conditions for being in that position (these are already fully 

defined in the PDDL domain model described above) are 

satisfied. This is sufficient to specify a candidate start/goal 

state for a steady-state model. While this is currently done 

manually, automated generation of the steady-state model 

(e.g., by inferring feasible steady-states directly from the 

basic PDDL domain model) is a direction for future work. 

Table 2: Start and end states in a steady-state 
model 
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The PDDL model for this steady-state formulation was 

evaluated using two configurations of Fast Downward: (a) 

Weighted A* with the Fast Forward Heuristic, weight=6, 

and (b) the seq-sat-lama-2011 configuration. The sequen-

tial plans generated by Fast Downward were then convert-

ed into parallel plans using the same postprocessor used 

above in the experiments for the simple PDDL model. 

In order to actually execute a steady-state model plan, the 

execution time/cost will need to also include the setup time 

required to get from an initial state with no bases in the 

system (i.e., the start state used in the standard model) to 

the start state of the steady-state model. In addition, we 

must also generate a sequence that “flushes” the system by 

starting at the goal state of the steady-state model and ends 

up with all Work completed and out the carry-out tray. If 

the number of Work to be produced is small, these over-

heads can be significant, but in practice, 10’s or 100’s of 

Work need to be produced, so this one-time overhead is 

not significant. 

 

We evaluated the system using the Layout model for Fig-

ure 2-(a) (Model 1-1), as well as 5 other product models. In 

Table 3, Model 1-1 is the same model used for the experi-

ment in Table 1, except that a steady-state formulation is 

used (the basic models are the same, but the start/goal 

states are as described above for the steady-state model). In 

Models 1-2 and 1-3, the same assembly system layout as 

Model 1-1 is used (i.e., Figure 2-(a)), but different products 

are assembled. Models 2-1, 2-2, and 2-3 use the assembly 

system layout in Figure 2-(b), which has 1 Arm, 3 Tables, 

and 2 Machines.  

 

Table 3 shows the results. First, note that for Model 1-1, 

which is the same domain used in the experiments for the 

straightforward PDDL model (Table 1), the cost of one 

cycle of the steady-state model is 258. Even accounting for 

the fact that the cycle makespans for the steady-state model 

do not include the setup/cleanup required to initialize the 

start state and flush the goal state, this is clearly signifi-

cantly lower than the cost/work for the planner-generated 

sequences in Table 1. Furthermore, while the standard 

PDDL model becomes increasingly less efficient (increas-

ing cost/Work) as the number of Works increases, the 

steady-state model incurs the same cost per cycle (i.e., per 

Work) for an arbitrary number of Works, and as previously 

mentioned, the setup/cleanup overhead for the steady-state 

model can be amortized over a large number of cycles. 

 

The “Make 1 Work” column shows the optimal makespan 

for sequentially assembling 1 Work for each of the models. 

The cycle makespan for the steady-state plans are compa-

rable with the time required to assemble 1 Work in that 

model, indicating that they are also fairly efficient in an 

absolute sense (not just relative to the straightforward 

PDDL model).  

We also compared the steady-state plan generated by the 

system for Model 1-1 with a steady-state plan generated by 

a human expert. The manually crafted (parallel) plan has a 

cycle cost of 153, compared to 258 for the automatically 

generated steady-state plan. Thus, there is room for im-

provement.  

However, using a prototype, proprietary implementation 

of weighted A* using the FF heuristic instead of the 

WA*/FF configuration for Fast Downward, we have ob-

tained a steady-state plan with cost 144, which is better 

than the manually crafted sequence. There is no fundamen-

tal algorithmic difference between our prototype imple-

mentation of WA*/FF and Fast Downward WA*/FF, so 

this difference seems to be due to low-level details (e.g., 

tie-breaking). We are currently investigating the cause for 

this performance discrepancy.. 

Related Work 

Manufacturing applications of automated planning has 

been studied by previous researchers (c.f. Nau, Gupta, 

Regli 1995; Castillo, Fdez-Olivares, Gonzalez 2001; Fer-

nandez, Aler, Borrajo 2005; Klein, Johnsson, Backstrom 

1999). As far as we know, this is the first investigation of 

domain-independent planning for a multi-arm, assembly 

robot system. The problem considered in this paper is more 

constrained than previous research because the processing 

order for attaching parts to the base is predetermined, and 

the main remaining problem is how to coordinate the mul-

tiple arms and machines. While previous work has focused 

on models which, like our initial PDDL model, start with 

raw parts and result in one or more products, we intro-

duced a new cyclic, steady-state formulation where the 

start and goal states are identical modulo part IDs, which is 

applicable when the processing ordering is highly con-

strained. 

Model 
seq-sat- 

lama-2011 

+postprocessing 

WA+/FF + 

postprocessing 

Make 1 Work 

 (sequential) 

1.1 258 258 465 

1.2 456 270 585 

1.3 177 174 471 

2.1 228 228 357 

2.2 354 342 411 

2.3 270 300 369 

Table 3. Steady-state model results. 
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Conclusions 

The problem of generating sequences for cellular assem-

bly systems is well suited for domain-independent plan-

ning techniques because there are a multitude of con-

straints, and a constantly changing demand for different 

types of products, which makes automation of sequence 

generation highly desirable. 

We applied domain-independent planning to sequence 

generation for cellular assembly systems. We showed that 

standard cellular assembly systems could be modeled using 

PDDL. However, state-of-the-art planning algorithms such 

as those implemented on Fast Downward have some diffi-

culties generating sequences for these domains. We devel-

oped a steady-state approach for modeling a continuous 

production cycle, which enabled us to generate much more 

efficient sequences which can be used to assemble an arbi-

trary amount of the same product. Directions for future 

work include automated generation of the steady-state 

model, as well as investigation of other approaches such as 

HTN planning. 
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Abstract

Alternative plan generation can be used to meet the user’s
preferences in a scheduling problem, when either the schedul-
ing model does not take every available preference into ac-
count, or the user does not specify his preferences correctly
in a formal manner. In this paper, an alternative plan gener-
ation method that takes into account in-domain specific at-
tributes of the scheduling problem, is applied to an electronic
calendar management scheduler in order to generate signif-
icantly different qualitative alternative plans. The scheduler
is based on an adaption of the Squeaky Wheel Optimization
Framework (SWO) and addresses the problem of optimizing
individual activity plans (that concern activities one person
has to accomplish independently of others), based on a rich
model for their specification involving complex constraints
and preferences and enhanced with extra attributes that mea-
sure the distance of each plan from the already found.

Introduction
Generating alternative plans for planning and scheduling
problems is another way of ensuring that at least one plan
will meet the user’s preferences. According to Kambham-
pati (Kambhampati 2007), in many real world planning sce-
narios the user’s preferences are either unknown or at best
partially specified. Other systems attempt to elicit user pref-
erences in a non-intrusive manner, by presenting alternative
plans to the user and building a preference model based on
his choices (Berry et al. 2011), (Myers et al. 2007).

Intelligent assistance with time and task management has
been targeted by many AI researchers (Myers et al. 2007),
(Freed et al. 2008), (Refanidis 2007) (Refanidis and Alexi-
adis 2011), (Berry et al. 2011), (Bank et al. 2012). Electronic
calendar applications are usually based on a series of fully
specified and independent events. These events are specified
by a fixed start-time, a duration for the event and usually
a location. In addition, many systems support tasks. These
represent individual commitments potentially having a dead-
line to be met (e.g., preparing for a lecture or planning for a
trip). Tasks are kept in separate task lists and do not have a
specific start time. Conversion of a task to event is, usually
straightforward, accomplished by dropping the task into the
electronic calendar.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Refanidis and Yorke-Smith 2010) presents a model that
treats events and tasks in a uniform way. They are specified
as activities in the model and are characterized by a number
of attributes, such as a temporal domain, a duration range, a
set of alternative locations, interruptibility, utilization, pref-
erences over the temporal domain and alternative durations,
constraints and preferences over the way the parts of an in-
terruptible activity are scheduled in time. The model also
supports binary constraints (ordering, proximity and impli-
cation), as well as preferences between pairs of activities,
thus specifying a Constraint Optimization Problem (COP).
In the same work a scheduler, based on the Squeaky Wheel
Optimization framework (SWO) and combined with domain-
dependent heuristics to automatically schedule activities, is
presented. (Alexiadis and Refanidis 2012) presents a post-
processing module for SWO that increases solution quality
via local-search post-optimization.

There are a number of ways for introducing alternative
plan generation in a planner or scheduler. In the literature
we found two main approaches for tackling this issue. One
being the management of either the set of states or the order
in which they are evaluated by the search algorithm (Roberts
et al. 2012), (Dechter, Flerova, and Marinescu 2012). The
other—which we based our alternative generation method
on—being the modification of the heuristic of the planning
algorithm (Coman and Muñoz-Avila 2011), (Nguyen et al.
2012).

In this paper we present our approach to generate qual-
itatively, significantly different alternative plans, based on
the enhancement of the plan evaluation function used by
the scheduler during the optimization process with addi-
tional attributes that measure the differences with the already
generated solutions. We define the plan difference function
that takes into account domain-specific traits of the problem
formulation, as defined in the SWO article (Refanidis and
Yorke-Smith 2010).

The rest of the paper is structured as follows. Firstly, we
formulate the optimization problem and illustrate the SWO-
based approach. Next, we present the new evaluation func-
tion that considers (among other criteria) differences with
one generated plan. We proceed to define the plan difference
function (PDiff ) for comparing two plans. Afterward, we
extend the above functions to work with an arbitrary num-
ber of pre-generated solutions. In the Evaluation Section we
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demonstrate their usage on a number of randomly generated
problem instances. Finally, we conclude the paper and iden-
tify directions of future work.

Background
In this Section we present the problem formulation, as well
as the SWO approach to cope with the problem.

Problem Formulation
In previous work (Refanidis and Yorke-Smith 2010), time
is considered a non-negative integer, with zero denoting the
current time. A set T ofN activities, T = {T1, T2, . . ., TN},
is given. For each activity Ti∈T , its minimum duration is de-
noted with dmini and its maximum duration with dmaxi . The
decision variable pi denotes the number of parts in which
the i-th activity has been split, with pi≥1. Tij denotes the
j-th part of the i-th activity, 1≤j≤pi. The sum of the dura-
tions of all parts of an activity must be at least dmini and no
greater than dmaxi .1 For each Tij , the decision variables tij
and dij denote its start time and duration. The sum of all dij ,
for a given i, must equal di.2 Non-interruptible activities are
scheduled as one part.

For each Ti, we define the minimum and maximum part
duration smini and smaxi,3 as well as the minimum and
maximum temporal distances between every pair of parts,
dmini

4 and dmaxi.5
For each activity Ti, its temporal domain is de-

fined as a set of temporal intervals defining Di =
[ai1, bi1]∪[ai2, bi2]∪. . .∪[ai,Fi , bi,Fi ], where Fi is the num-
ber of intervals of Di.6

A set of M locations, Loc = {L1, L2, . . ., LM}, as well
as a two dimensional, not necessarily symmetric, matrix
Dist that holds the temporal distances between locations
are given. Each activity Ti has a set of possible locations
Loci⊆Loc, where its parts can be scheduled. The decision
variable lij∈Loci7denotes the particular location where Tij
is scheduled.8

Activities may overlap in time. Each activity Ti is char-
acterized by a utilization value, utilizationi.9 At any exact
time point, the set of scheduled activities should have com-
patible locations (i.e., locations with no temporal distance to
each other as a person cannot be in two places at the same
time) and the sum of their utilization values should not ex-
ceed the unit (the time point maximum utilization value).

The model supports four types of binary constraints: Or-
dering constraints, minimum and maximum proximity con-
straints and implication constraints. An ordering constraint
between two activities Ti and Tj , denoted with Ti < Tj ,
implies that no part of Tj can start its execution before all
parts of Ti have finished.10A minimum (maximum) distance
binary constraint between activities Ti and Tj implies every
two parts, one of Ti and another of Tj , must have a given
minimum (maximum) temporal distance.11 Finally, an im-
plication constraint of the form Ti ⇒ Tj implies that in or-
der to include Ti in the plan, Tj should be included as well.12

Scheduling personal activities is considered a constraint
optimization problem. That said, the empty schedule is a
valid schedule but with low utility, thus we are interested

in better schedules. There are several sources of utility. The
main source concerns the activities themselves. Each activ-
ity Ti included in the schedule contributes utility Ui(di) that
depends on its allocated duration. The way Ti is scheduled
by a schedule πi within its temporal domain constitutes an-
other source of utility, U timei (πi). The user can define linear
and stepwise utility functions of time over the temporal do-
main of each activity.

Any form of hard constraint can also be considered a
soft constraint that might contribute utility. So, minimum
and maximum distance constraints between the parts of
an interruptible activity might contribute Udmini(πi) and
Udmaxi(πi) respectively. Similarly, binary preferences can
be defined as well over the way pairs of activities are sched-
uled. Especially for ordering and proximity preferences, par-
tial satisfaction of the preference is allowed. The Degree of
Satisfaction for a partial preference p, denoted withDoS(p),
is defined as the ratio of the number of pairs of parts, one
from Ti and another from Tj , for which the binary prefer-
ence holds, to the total number of pairs of parts.

To summarize, the optimization problem is formulated as
follows:

Given:
1. A set of N activities, T = {T1, T2, . . ., TN}, each one

of them characterized by its duration range, duration util-
ity profile, temporal domain, temporal domain preference
function, utilization, a set of alternative locations, inter-
ruptibility property, minimum and maximum part sizes as
well as required minimum and maximum part distances
for interruptible activities, preferred minimum and maxi-
mum part distances and the corresponding utilities.

2. A two-dimensional matrix with temporal distances be-
tween all locations.

1∀Ti, d
min
i ≤ di ≤ dmax

i OR di = 0 (C1)

2∀Tij ,

pi∑
j=1

dij = di (C2)

3∀Tij , smini ≤ dij ≤ smaxi (C3)
4∀Tij , Tik j 6= k ⇒ tij + dij + dmini ≤ tik ∨

tik + dik + dmini ≤ tij (C4)
5∀Tij , Tik j 6= k ⇒ tij + dmaxi ≥ tik + dik ∧

tik + dmaxi ≥ tij + dij (C5)
6∀Tij , ∃k, 1 ≤ k ≤ Fi : aik ≤ tij ≤ bik − dij (C6)
7lij ∈ Loci (C7)
8∀Tij , Tmn, Tij 6= Tmn ∧

(Dist(lij , lmn) > 0 ∨Dist(lmn, lij) > 0)
⇒ tij + dij +Dist(lij , lmn) ≤ tmn ∨

tmn + dmn +Dist(lmn, lij) ≤ tij (C8)
9∀t,

∑
Tij

tij ≤ t < tij + dij

utilization ≤ 1 (C9)

10∀Ti, Tj , Ti < Tj ⇔ di > 0 ∧ dj > 0
⇒ ∀Tik, Tjl, tik + dik ≤ tjl (C10)

11∀Tik, Tjl, tik + dik + dminij ≤ tjl ∨
tjl + djl + dminij ≤ tik (C11)
∀Tik, Tjl, tik + dmaxij ≥ tjl + djl ∧

tjl + dmaxij ≥ tik + dik (C12)
12∀Ti, Tj , Ti ⇒ Tj ⇔ di > 0⇒ dj > 0 (C13)
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Figure 1: (a) The SWO cycle. (b) Coupled search spaces

3. A setC of binary constraints (ordering, proximity and im-
plication) over the activities.

4. A set P of binary preferences (ordering, proximity and
implication) over the activities.

Schedule
the activities in time and space, by deciding the values of

their start times tij , their durations dij and their locations lij ,
while trying to maximize the following objective function:

U =
∑
i

di ≥ dmini

(Ui(di) + U timei (πi) + Udmini (πi)
+Udmaxi (πi))

(1)

+
∑

p(Ti,Tj)∈P

up ×DoS(p(Ti, Tj))

subject to constraints (C1) to (C13).

The SWO Approach
(Refanidis and Yorke-Smith 2010) solves the problem us-
ing the Squeaky Wheel Optimization (SWO) framework
(Joslin and Clements 1999). At its core, SWO uses a Con-
struct/Analyze/Prioritize cycle as shown in Figure 1(a). The
solution is found by a greedy approach, where decisions
are based on an order of the tasks determined by a prior-
ity queue. The solution is then analyzed to obtain the tasks
that cannot be scheduled. Their priorities are increased, en-
abling the constructor to deal with them earlier on the next
iteration. The cycle will be repeated till a termination condi-
tion occurs. The algorithm searches in two coupled spaces,
as shown in Figure 1(b). These are the priority and solution
spaces. Changes in the solution space are caused by changes
in the priority space. Changes in the priority space occur as
a result of analyzing the previous solution and using a dif-
ferent order of the tasks in the priority queue. A point in the
solution space represents a possible solution to the problem.

SWO can easily be applied to new domains. The fact that it
gives variation on the solution space makes it different than
more traditional local search techniques such as WSAT (Sel-
man, Kautz, and Cohen 1995). (Refanidis and Yorke-Smith
2010) presents how SWO was adapted to to the Constraint
Optimization Problem presented in the previous Section.

Generating Mutiple Plans
In this Section we present our work on generating and eval-
uating qualitatively, significantly different alternative plans.
We begin by presenting a method to generate the first alter-
native plan (after the standard one is found) and we continue
with extending the method so as it can generate an arbitrary
number of alternative plans.

Generating Qualitatively, Significantly Different
Alternative Plan
Both the model and the scheduler have been designed with
the assumption of generating one high-quality schedule for a
set of activities. For generating an arbitrary number of qual-
itatively, significantly different alternative schedules, so as
the user can choose one according to her preferences, we
extended the model so as to integrate the notion of the value
of an alternative plan.

We define the value of an alternative plan as a linear com-
bination of its utility (1) with its deviation from the already
generated plans. In the simplest case, when there is a single
generated plan π′ to which we want to compare an alterna-
tive plan π, we adopt the following formula for evaluating
π, as a replacement to formula (1):

V (π) = U(π) + C × U(π′)× PDiff(π, π′) (2)

where C is a constant that weights π’s difference over
π′ and PDiff(π, π′) is a function assessing the two
plans’ differences. As it will be shown later in this Sec-
tion, PDiff(π, π′) ranges between 0 and 1. The higher
PDiff(π, π′) is, the greater the differences between the
two plans; PDiff(π, π′) = 0 stands for no differences.

In the initial stage, when the main plan hasn’t been gen-
erated yet, U(π′) = 0, so the above formula is simpli-
fied to V (π) = U(π), thus resulting in no differences
over the main plan generation procedure. When the sched-
uler has already found a plan for the user, it will try to
maximize concurrently both the utility of the current plan,
U(π), as well as the deviation from the already found plan,
C ×U(π′)×PDiff(π, π′). Note that the latter term of the
sum depends both on the difference between the two plans
and on the quality of the already found one. The factor of
U(π′) is introduced in order to scale two terms of the sum
similarly.

Quantifying the Degree of Deviation Between Two
Plans
We measure the deviation between two plans, π and π′, by
function PDiff(π, π′), which takes into account the fol-
lowing metrics:

1. The change in the total duration of each plan’s activity.
2. The change in the location of each plan’s activity or part

of it.
3. The change in the time windows where the various parts

of each activity have been scheduled.
4. The change in the order in which pairs of activities have

been scheduled.
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In order to define precisely the above metrics, we
introduce two extra functions. First we define function
τ(π, Ti, x) = t ∈ Di, which for a schedule π, an activity
Ti and time-slot index x, 1 ≤ x ≤ di, maps it into the x-th
time-slot of that activity, as scheduled in π. Time-slots are
individual discrete points of time. So, this function maps the
order of a time-slot of an activity in the solution, to the abso-
lute time where this time slot has been scheduled. Similarly,
we define function λ(π, Ti, x) = l ∈ Loci, which maps the
triple (π, Ti, x) to the location where the x-th time-slot of
Ti has been scheduled, according to π.

Durations Deviation: For the activities Ti ∈ T , which ap-
pear in at least one of the two plans, π and π′, the total dura-
tion deviation between the two plans is computed according
to formula:

∆D =

∑
i |di − d′i|∑

imax(di, d′i)
(3)

where di is the duration of Ti in plan π and d′i is the duration
of Ti in plan π′. ∆D ranges between 0 and 1. If Ti appears
in one of the two plans, its duration in the plan that does not
appear in is considered zero.

Locations Deviation: For the activities Ti ∈ T , which ap-
pear in at least one of the two plans, π and π′, the total loca-
tion deviation between the two plans is computed according
to formula:

∆L =
1∑

imin(di, d′i)
×
∑
i

min(di,d
′
i)∑

x = 1

λTi
x 6= λ′

Ti

x

1 (4)

where λTi
x = λ(π, Ti, x) and λ′

Ti

x = λ(π′, Ti, x). ∆L
ranges between 0 and 1. If Ti appears in one of the two plans
only, ∆L is set equal to 1.

Absolute Time Deviation: For each activity Ti ∈ T ,
which appears in both plans π and π′, the total absolute time
deviation for Ti among the two plans is computed according
to formula:

∆Timei =

min(di,d
′
i)∑

x=1

|τTi
x − τ ′

Ti

x |
maxτDi

−minx(τTi
x , τ ′Ti

x )
(5)

where maxτDi
is the is the maximum time-slot of the

domain of activity Ti, τTi
x = τ(π, Ti, x) and τ ′

Ti

x =
τ(π′, Ti, x). ∆Timei ranges between 0 and 1. For activities
Ti appearing in one only of π and π′, we define ∆Timei =
1. On the other hand, for activities Ti appearing in none of
π and π′, we define ∆Timei = 0.

The overall absolute time deviation is defined as:

∆Time =

N∑
i=1

∆Timei (6)

Ordering Differences: For each pair of activities, Ti and
Tj ∈ T , which both appear in a plan π, the precedence of Ti
over Tj in π is computed as:

νij =
1

di × dj

di∑
x=1

dj∑
y=1

{
1 if τTi

x ≤ τ
Tj
y

0 otherwise
(7)

That is, νij represents the percentage of pairs of parts,
one from Ti and one from Tj , such that the part of Ti is
scheduled not later than the part from Tj . νij ranges between
0 and 1. It Ti appears in π but Tj does not appear, we define
νij = 1. If Ti does not appear in π (irrelevant to whether Tj
appears in π or not), we define νij = 0.

Subsequently, the ordering deviation for a pair of activi-
ties, Ti and Tj in two plans, π and π′ is defined as:

∆Oij = |νij − ν′ij | (8)
where ν′ij refers to plan π′. ∆Oij ranges between 0 and 1.

Finally, we define the total ordering deviation as:

∆O =
2

N × (N − 1)
×

N∑
i=1

N∑
j=i+1

|νij − ν′ij | (9)

∆O also ranges between 0 and 1.

Plan Difference Between Two Plans
Based on the above formulas, we define the plan difference
between two plans, PDiff(π, π′) as:

PDiff(π, π′) =
∆D ×WD + ∆L×WL

+∆Time×WTime + ∆O ×WO

(10)
where WD, WL, WTime and WO are non-negative weights
and WD + WL + WTime + WO = 1. The user can specify
the values of the weights, thus specifying his preferences on
multiple plan generation (thas is, emphasizing his priorities
over the above attributes of an already found plan). If an
activity is not scheduled in one of the two plans, it obtains
the full difference penalty as it is considered to deviate in all
the above methods.

Generating More than Two Alternative Plans
In order to generate more than two plans, we extended for-
mula (2) as follows:

V (π) = U(π) + C ×

∑
∀π′∈∆

Uπ′ × PDiff(π, π′)

|∆|
(11)

where ∆ is the set of the already generated plans and C is
a parameter representing the weight standing for the user’s
preference on the deviation from the already found plans
versus the utility of the alternative plan.

The new formula for calculating the utility V (π) (formula
9) is simplified back to formula (2), when comparing be-
tween only two plans (the one being evaluated and one pre-
generated). When generating the original plan it is simplified
back to the original utility function (1).
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Figure 2: Percentage difference of utility between the alternative plans and the original
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Figure 3: PDiff values for the two alternative plans for each test case

Evaluation
The scheduler SWO (written in C++) was extended to in-
clude the alternative evaluation function V (using PDiff ),
when generating plans and to allow the generation of more
than one plan, by means of restarting itself. At each restart
a dynamic list ∆, holding the already generated plans, gets
updated.

We generated three plans, on 35 random test cases, rang-
ing in size from problem instances of six activities to thirty
six in steps of five. We set the parameters used for the alter-
native plan generation as follows: C = 1.0,WD = WL =
WTime = WO = 0.25.

In Figure 2 we show the utility differences between the
three plans, for each of the 35 problem instances of the test
set. The solid line represents the utility percentage difference
between the second plan (first alternative) and the original

plan, whereas the dashed line represents the utility percent-
age difference between the third plan and the original. The
original’s (first plan’s) quality is represented by the top line.
We use the original utility function (formula 1) when com-
paring plan quality, as shown in the figure. V is used for the
generation phase only, when an intermediate solution gets
evaluated while the scheduler optimizes the plan. The two
alternative plans are of a slight lower utility value than the
original plan though they are not far below in quality. The
drop in utility for the second plan, in comparison to the first,
ranges from 1.47% to 11.25%. For the third plan the mini-
mum and maximum drops are 1.6% and 9.51% respectively.
The average drop for the second plan is 4.2% and of the third
4.5%.

In Figure 3 we represent the PDiff values for the two al-
ternative plans, the first alternative comparing to the origi-
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nal plan, and the second alternative comparing to the orig-
inal plus the first alternative. The difference of each alter-
native plan to the original depends heavily on each problem
instance’s specific attributes, such as the available domain
for each activity (more so than the number of activities in
the problem instance), how strong (in utility values) are the
preferences set on it and how many of them exist, as well
how they intertwine. The minimum PDiff value was one of
0.2179, in the second (after the original) alternative plan of
a problem instance. The maximum value was one of 0.6224,
in the first (after the original) alternative plan of another
problem instance.

One looking at the actual alternative solutions immedi-
ately sees apparent changes in many of the activities’ parts
temporal positions (the most common change), as well as
their durations (another common change when applicable)
and locations (rarest, as location selection don’t provide a
utility to standard SWO, except in the alternative plan gener-
ation phase). Changing the C value parameters will shift the
preference to either more different plans (of lower standard
utility) or similar ones to the original.

Conclusions and Future Work
The SWO scheduler with the alternative plan generation
method, presented in this paper, manages to generate an ar-
bitrary number of alternative plans for a user’s scheduling
problems, so the user can choose the best one suited to her
needs. It is based on the premise that a user will not always
be able to specify her constraints and preferences correctly
in the formal model—which has been found to be the case
in many real situations. In such cases, offering a number of
alternative plans to the user provides her with more possibil-
ities for picking a plan according to her actual preferences.
A number of parameters for this method are also customiz-
able by the user, enabling her to choose which in-domain
characteristics she considers more important.

This paper presents our work on an alternative plan gen-
eration method, which can be potentially enriched with the
exploration of more characteristics of domain-specific at-
tributes of the scheduling problem being solved. Particu-
larly, location differences should be further examined, as the
model does not support location preferences but only alter-
native location options. Other domain dependent attributes
to measure the deviation between two plans, either at the ac-
tivity level or at a global level, could be considered as well.
Last of all, alternative plans of user-given problem instances
will be evaluated.
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Abstract
Robust execution of exploration mission plans has to
deal with limited computational power on-board a plan-
etary rover, and with limited rover’s autonomy. Typi-
cally, these limitations prevent the rover to synthesize a
new mission plan when contingencies arise.
The paper shows that when contingencies are deviations
on the consumption of resources, robust execution can
be achieved efficiently through action reconfiguration
rather than replanning from scratch. The paper therefore
introduces a novel representation of actions with modal-
ities, and proposes an action reconfiguration module -
ReCon - that detects the violation of mission resource
constraints, and finds (if any) a new configuration of ac-
tion modalities to resolve these violations.

Introduction
The execution of a space exploration mission is a critical
activity that has to take into account several challenges. A
planetary rover, in fact, operates in an environment which is
just partially observable and loosely predictable. As a con-
sequence, the rover must have some form of autonomy in
order to guarantee robust plan execution (i.e., reacting to un-
expected contingencies). The rover’s autonomy, however, is
typically bounded both because of limitations of on-board
computational power, and because the rover is not in general
allowed to change the high level plan synthesized on Earth.
Space missions therefore exemplify situations where con-
tingencies occurs, but plan repair must be achieved through
novel techniques trading-off rover’s autonomy and the sta-
bility of the mission plan.

Robust plan execution has been tackled in two ways:
on-line and off-line. On-line approaches, such as (Gerevini
and Serina 2010; van der Krogt and de Weerdt 2005;
Garrido, Guzman, and Onaindia 2010; Brenner and Nebel
2009), interleave plan execution and replanning: whenever
unexpected contingencies cause the failure of an action,
the plan execution is stopped and a new plan is synthe-
sized as a result of a new planning phase. Off-line ap-
proaches, such as (Block, Wehowsky, and Williams 2006;
Conrad, Shah, and Williams 2009), avoid replanning by an-
ticipating, at planning time, the possible contingencies. The

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

result of such a planning phase is a contingent plan that en-
codes choices between functionally equivalent sub-plans. At
execution time, the plan executor is able to select a con-
tingent plan according to the current contextual conditions.
However, as for instance in the work of (Policella et al.
2009), the focus is mainly on the temporal dimension and
they do not consider consumable and even continuous re-
sources.

In this paper we propose a novel on-line methodology to
achieve robust plan execution, which is explicitly devised
to deal with unexpected deviations in the consumption of
rover’s resources. First, in line with the action-based ap-
proach a-la STRIPS (Fox and Long 2003) and differently
from the constrained based planning (Fratini, Pecora, and
Cesta 2008; Muscettola 1993), we model consumable re-
sources as numeric fluents (introduced in PDDL 2.1 (Fox
and Long 2003)). Then, we enrich the model of the rover’s
actions by expliciting a set of execution modalities. The ba-
sic idea is that the propositional effects of an action can be
achieved under different configurations of the rover’s de-
vices. These configurations, however, may have a different
impact on the consumption of the resources. An execution
modality explicitly models the resource consumption profile
when an action is carried out in a given rover’s configuration.
The integration of execution modality at the PDDL level al-
lows a seamless integration between planning and execution.

Relying on this extension, we propose to handle excep-
tions arising at execution time as a reconfiguration of action
modalities, rather than as a replanning problem. In particu-
lar, the paper proposes an adaptive plan execution strategy,
i.e. ReCon; once (significant) deviations from the nominal
trajectory are detected, ReCon intervenes by reconfiguring
the modalities of the actions still to be performed with the
purpose of restoring the validity of resource constraints.

After introducing a motivating example, we introduce the
employed action model, enriched with the notion of execu-
tion modality. Then we introduce the ReCon strategy and an
example showing how the system actually works in a explo-
ration rover mission. Finally, an experimental section, which
evaluates the competence and the efficiency of the strategy
w.r.t. a traditional replanning from scratch.
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Figure 1: A simple mission plan.

Motivating Example
Let us consider the simple exploration mission showed in
Figure 1, involving take picture, drive and communications
activities. This mission represents a feasible solution for
a planning problem with goal: {in(r1,l3), mem>=120,
pwr>=0, time<=115} ; that is, at the end of plan the rover
must be located in l3 (propositional fluent), the free mem-
ory must be (at least) 120 memory units, there must be a pos-
itive amount of power, and the mission must be completed
within 115 secs.

The figure shows how the four actions (regular boxes)
change the status of the rover over the time (rounded-corner
boxes)1. Note that the status of a rover involves both propo-
sitional fluents, (e.g., in(r1, l1) meaning rover r1 is
in location l1); and numeric fluents: memory represents
the amount of free memory, power is the amount of avail-
able power, time is the mission time given in seconds, and
com_cost is an overall cost associated with communica-
tions.

The estimates about the rover’s status are inferred by pre-
dicting, deterministically, the effects of the actions. In par-
ticular, the numeric fluents have been estimated by using a
“default setting” (i.e., a standard modality) associated with
each action.

Let us now assume that during the execution of the first
drive action the rover has to travel across a rough terrain.
Such an unexpected condition affects the drive as the rover is
forced to slowdown2, and as a consequence the drive action
will take a longer time to be completed; the effects are prop-
agated till the last snapshot, s 4 where the goal constraint
time <= 115 will be no longer satisfied.

After detecting this inconsistency, approaches based on
pure replanning step would compute a new plan achiev-
ing the goal by changing the original mission. For instance,
some actions could be skipped in order to compensate the
time lost during the first drive.

However, robotic systems as a planetary rover have typi-
cally different configurations of actions to be executed and
each configuration can have a different impact on the mis-
sion progress. For instance the robotic systems described
in (Calisi et al. 2008) and in (Micalizio, Scala, and Torasso
2011) can perform a drive action in fast or slow modes. Re-
liable transmission to the earth, for example, can be slow

1To simplify the picture, we show in the rover’s status just a
subset of the whole status variables

2In (Micalizio, Scala, and Torasso 2011) we have showed that
the slowdown of the rover can be a consequence of a reactive su-
pervisor, which operates as a continuous controller.

and cheap, or fast and expensive, depending on the devices
actually used.

Our proposal is to explicitly represent such different con-
figurations within the action models, and hence try to resolve
an impasse via a reconfiguration of the actions still to be
performed. Intuitively, our objective is to keep the high level
plan structure unchanged, but to adjust the action modalities.

In the next section we will introduce the rover action
model that explicitly expresses the set of execution modality
at disposal.

Modeling Rover’s Actions
As we have seen in the previous section, a planetary rover
can perform the same set of actions via different configura-
tions of parameters or devices. To capture this aspect, this
section introduces the rover action model adopted in this
work. The model exploits (and extends) the numeric PDDL
2.1 action model ((Fox and Long 2003)), i.e. where the no-
tion of numeric fluents has been proposed. In particular, we
use the numeric fluents to model continuous and consumable
resources.

The intuition of the extension is that, while actions dif-
fer each other in terms of qualitative effects (e.g. a drive
action models how the position of the rover changes after
the action application), the expected result of an action can
actually be obtained in many different ways by appropri-
ately configuring the rover’s devices (e.g. the drive action
can be performed with several engine configurations). Of
course, different configurations have in general different re-
source profiles and it is therefore possible that the execution
of an action in a given configuration would lead to a con-
straint violation, whereas the same action performed in an-
other configuration would not. We call these alternative con-
figurations modalities and we propose to capture the impact
of a specific modality by modeling the use of specific con-
figurations in terms of pre/post conditions on the numeric
fluents involved, which becomes explicit in the action model
definition.

The resulting model expresses the rover actions at two dif-
ferent levels of abstraction. The higher one is the qualitative
level indicating ”what” the action does. The lower one is the
quantitative level expressing ”how” the action achieves its
effect.

By recalling our motivating example, Figure 2 shows
the model of the drive action. The action template drive
(?r, ?l1, ?l2) requires a rover ?r to move from a lo-
cation ?l1 to location ?l2. :modalities introduces the
set of modalities associated with a drive; in particular, we
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express for this action, three alternative modalities:
- safe: the rover moves slowly and far from obstacles; in-
tuitively the action should spend more time but consuming
less power
- cruise: the rover moves at its cruise speed and can go
closer to obstacles;
- agile: the rover moves faster than cruise, consuming
more power but requiring less time.
The :precondition and :effect fields list the ap-
plicability conditions and the effects, respectively, and are
structured as follows: first a propositional formula encodes
the condition under which the action is considered appli-
cable; the second field (:effect) indicates the positive
and the negative effects of the action. For each modality
m in :modalities we have the amount of resources re-
quired (numeric precondition) or consumed/produced (nu-
meric effect) by the action when performed under that spe-
cific modality m.

For instance, in the preconditions (reachable
l1, l2) and (in r1, l1) are two propositional
atoms required as preconditions for the applica-
tion of the action. These two atoms must be satis-
fied independently of the modality actually used to
perform the drive action. While the comparison
(safe: (>= (power ?r) (* (safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))))
means that the modality safe can be selected when the
rover’s power is at least greater than a threshold given by
evaluating the expression on the right side. Analogously,
(safe: (decrease (power ?r) (*(safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))) de-
scribes in the effects how the rover’s power is reduced
after the execution of the drive action. More precisely,
we have modeled the power consumption as a function
depending on the duration of the drive action (computed
considering distance and speed) and the average power
consumption per time unit given a specific modality. For
instance, in safe modality, the amount of power con-
sumed depends on two parameters (safe_cons ?r) and
(safe_speed ?r) which are the average consumption
and the average speed for the safe modality, respectively,
while (distance ?l1 ?l2) is the distance between the
two locations ?l1 and ?l2.
Finally, note that in the numeric effects of each modality,
the model updates also the fluent time according to the
selected modality. Also in this case, the duration of the
action is estimated by a function associated with each
possible action modality.

Analogously to the drive action we model modalities also
for the Take Picture (TP) and the Communication (COMM).
For TP we have the low (LR) and high (HR) resolution
modalities which differ in the quality of the taken picture
and the memory spent. Intuitively, the more the resolution
is, the more the memory consumption will be. Whereas for
the Communication we assume to have two different chan-
nels of transmissions: CH1 with low overall comm cost
and low bandwidth, and CH2 with high overall comm cost
but high bandwidth.

The selection of action modalities has to take into account

(:action drive
:parameters ( ?r - robot ?l1 - site ?l2 - site)
:modalities (safe,normal,agile)
:precondition (and (in ?r ?l1) (road ?l1 ?l2)
(safe: (>= (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r)))))
(cruise: (>= (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (>= (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)
:effect
(and

(in ?r ?l2) (not (in ?r ?l1))
(safe: (decrease (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (safe_speed ?r)))
(increase (powerC ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(cruise: (decrease (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (cruise_speed ?r))
(increase (powerC ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (decrease (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (agile_speed ?r))
(increase (powerC ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)

Figure 2: The augmented model of a drive action.

that complex dependencies among resources could exist. For
instance, even if a high resolution TP takes the same time as
a low resolution TP, the selection has a big impact on the
amount of time spent globally, too. As a matter of facts, as
long as the amount of stored information increases, the time
spent by a (possible) successive COMM grows up accord-
ingly, which means that also the global mission horizon will
be revised.

Given the rover’s actions defined so far, a rover mission
plan is a total ordered set of fully instantiated rover’s action
template3. Given a particular rover’s state S and a given set
of propositional goals G to be reached (including constraints
on the amount of resources), the mission plan is valid iff it
achieve G from S.
Executing the mission plan. As we have seen in the pre-
vious section, the rover’s mission can be threatened many
times by unexpected contingencies; so the validity of the
mission can be easily compromised during its actual exe-
cution.

Nevertheless, when the detected unexpected contingency
at execution time just invalidates the resource consumption
expectations, even if the current modality allocation would
not be consistent with the constraints involved in the plan
and in the goal, there could be ”other” allocations of modal-
ities still feasible. By exploiting this intuition, the next sec-
tion introduces an adaptive execution technique which, in-
stead of abandoning the mission being executed, tries first to
repair the flaws via a reconfiguration of the action modali-
ties. The reconfiguration considers all those actions still to
be executed.

Given a plan P, to indicate when a plan is just resource in-
consistent, we will use the predicate res incon over P, i.e.

3The plan can be also generated automatically by exploiting a
numeric planner system, properly modified to handle actions with
modalities. In our tests we used Metric-FF (Hoffmann 2003)
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we will say res incon(P). Otherwise we will say that the
plan is valid or structurally invalid. This latter case happens
when, given the current plan formulation, at least an action
in the plan is not propositional applicable, or there is at least
a missing goal.

ReCon: adaptive plan execution
In this section we describe how the plan adaptation process
is actually carried on by exploiting a Constraint Satisfaction
Problem representation. The main strategy implemented,
namely ReCon, is a continual planning agent ((Brenner and
Nebel 2009),(desJardins et al. 1999)), extended to deal with
the rover actions model presented in the previous section. In
order to handle with the CSP representation, ReCon exploits
two further sub-modules: Update by means of which new
observations are asserted within the CSP representation, and
Adapt which has the task of making the mission execution
adaptive to the incoming situation.

The Continual Planning Loop
Algorithm 1 shows the main steps required to execute and
(just in case) adapt the plan being executed. The algorithm
takes in input the initial rover’s state S0, the mission goal
Goal, and the plan P expressed as discussed in the previous
section. Note that each action has to have a particular modal-
ity of execution instantiated. The algorithm returns Success
when the execution of the whole mission plan achieves the
goal; Failure otherwise. In this case, a failure means that
there is no way to adapt the current plan in order to reach
the goal satisfying mission constraints. To recover from this
failure, a replanning step altering the structure of the plan
should be invoked, but this step requires the intervention of
the ground control station on Earth.

The first step of the algorithm is to build a CSPModel
representing the mission plan (line 1). Due to lack of space,
we cannot present this step in details; our approach, how-
ever, inherits the main steps by Lopex et al. in (Lopez and
Bacchus 2003) in which the planning problem is addressed
as a CSP. As a difference w.r.t. the classical planning, the
encoding exploited by our approach needs to store variables
for the modalities to be chosen, and variables for the numeric
fluents involved in the plan. Numeric fluents variables are
replicated as many steps in the plan. The purpose is to cap-
ture all the possible evolutions of resources profiles given the
modalities that will be selected. The constraints oblige the
selection of the modality to be consistent with the resource
belonging to the previous and successive time step. More-
over, further constraints allow only reconfigurations consis-
tent with the current observation acquired (which at start-up
corresponds to the initial state), and the goals/requirement
of the mission.

Once the CSPModel has been built, the algorithm loops
over the execution of the plan. Each iteration corresponds to
the execution of the i-th action in the plan. At the end of the
action execution the process verifies the current observation
obsi+1 with the rest of the mission to be executed. In case the
plan is structurally invalid (some propositional conditions
are not satisfied or the goal cannot be reached) ReCon stops

the plan execution and returns a failure; i.e., a replanning
procedure is required.

Otherwise we can have two other situations. First, there
have been no consistent deviations from the nominal predic-
tions therefore the execution can proceed with the remaining
part of the plan. Second the plan is just resource inconsis-
tent (res incon(P ), line 10). In this latter case, ReCon has
to adapt the current plan by finding an alternative assign-
ments to action modalities that satisfies the numeric con-
straints (line 11). If the adaptation has success, a new non-
empty plan newP is returned and substituted to the old one.
This new plan is actually the old plan, but with a different
allocations of action modalities. Otherwise, the plan cannot
be adapted and a failure is returned; in this case, the plan
execution is stopped and a new planning phase is needed.

Algorithm 1: ReCon
Input: S0, Goal, P
Output: Success or Failure

1 CSPModel = Init(S0, Goal, P ) ;
2 i = 0;
3 while ¬ P is completed do
4 execute(ai, curMod(ai));
5 obsi+1 = observe();
6 if P is structurally invalid w.r.t. obsi+1 and Goal

then
7 return Failure

8 else
9 Update(CSPModel,ai,num(obsi+1));

10 if res incon(P ) then
11 newP =

Adapt(CSPModel,i,Goal,P );
12 if newP 6= ∅ then
13 P = newP

14 else
15 return Failure

16 return Success

Update
The Update step is sketched in Algorithm 2. The algorithm
takes in input the CSP model to update, the last performed
action ai, and the set NObs of observations about numeric
fluents. The algorithm starts by asserting within the model
that the i-th action has been performed; see lines 1 and 2
in which variable modi is constrained to assume the spe-
cial value exec. In particular, a first role of the exec value
is to prevent the adaptation process to change the modality
of an action that has already been performed, as we will see
in the following section. Moreover, exec allows also the ac-
quisition of observations even when the observed values are
completely unexpected. In fact, by assigning the modality
of action ai to exec, we relax all the constraints over the
numeric variables at step i + 1-th (which encode the action
effects). This is done in lines 3-5 in which we iterate over
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the numeric fluents N j mentioned in the effects of action ai,
and assign to the corresponding variable at i+ 1-th step the
value observed in NObs. On the other hand, all the numeric
fluents that are not mentioned in the effects of action ai do
not change, so the corresponding variables at step i + 1 as-
sume the same values as in the previous i-th step (lines 6-8).
The idea of the Update is to make the CSP aware of the cur-
rent new observations and the modalities already executed.
In this way, a reconfiguration task does not need to rebuild
the structure completely from scratch.

Algorithm 2: Update
Input: CSPModel, ai,NObs
Output: modified CSPModel

1 delConstraint(CSPModel,modi=curMod(ai)) ;
2 addConstraint(CSPModel,modi=exec) ;
3 foreach N j ∈ affected(ai) do
4 addConstraint(CSPModel,
5 (modi=exec)→ N j

i+1=get(NObs,N j
i+1))

6 foreach N j ∈ ¬affected(ai) do
7 addConstraint(CSPModel,
8 (modi=exec)→ N j

i+1=N j
i )

Adapt

The Adapt module, shown in Algorithm 3, takes in input
the CSP model, the index i of the last action performed by
the rover, the mission goal, and the plan P ; the algorithm
returns a new adapted plan, if it exists, or an empty plan
when no solution exists.

The algorithm starts by removing from CSPModel the
constraints on the modalities of actions still to be performed;
i.e., each variable modk with k greater than i is no longer
constrained (ai is the last performed action and its modality
is set to exec) (lines 1-3). This step is essential since the cur-
rent CSPModel is inconsistent; that is, the current assign-
ment of modalities does not satisfies the global constraints.
By removing these constraints, we allow the CSP solver to
search in space of possible assignments to modality vari-
ables (i.e., the actual decisional variables, since the numeric
fluents are just side effects of the modality selection), and
find an alternative assignment that satisfies the global con-
straints (line 4). If the solver returns an empty solution, then
there is no way to adapt the current plan and Adapt returns
no solution. Otherwise (lines 7-12), at least a solution has
been found. In this last case, a new assignment of modalities
to the variables modk (k : i + 1..|P |) is extracted from the
solution, and this assignment is returned to the ReCon algo-
rithm as a new plan newP such that the actions are the same
as in P , but the modality labels associated with the actions
ai+1, .., a|P | are different.

Note that, in order to keep updated the CSP model for
future adaptations, the returned assignment of modalities is
also asserted in CSPModel; see lines 9-9.

Algorithm 3: Adapt
Input: CSPModel, i,Goal,P
Output: a new plan, if any

1 for k=i+1 to |P | do
2 delConstraint(CSPModel,
3 modk=currentMod(ak));
4 Solution = solve(CSPModel);
5 if Solution = null then
6 return ∅
7 else
8 newP=extractModalitiesVar(Solution);
9 for k=i+1 to |newP | do

10 addConstraint(CSPModel,
11 modi=curMod(newP [i]));
12 return newP

Running the Mission Rover Example
Let us consider again the example in Figure 1, and let us
see how RoCon manages its execution. First of all, the plan
model must be enriched with the execution modalities as
previously explained; Figure 3 (top) shows the initial config-
uration of action modalities: the drive actions have cruise
modalities, the take picture (TP) has LR (low resolution)
modality, and the communication (Comm) uses the low band-
width channel (CH1). This is the enriched plan ReCon re-
ceives in input.

Now, let us assume that the actual execution of the first
drive action takes a longer time than expected, 47s instead
of 38s, and consumes more power, 3775 Joule instead of
3100 Joule. While the discrepancy on power is not a big is-
sue as it will not cause a failure, the discrepancy on time will
cause the violation of the constraint time <=115; in fact,
performing the subsequent actions in their initial modalities
would require 120 seconds. In other words, the assignment
of modalities to the subsequent actions does not satisfies the
mission constraints. This situation is detected by ReCon that
intervenes and, by means of the Adapt algorithm discussed
above, tries to find an alternative configuration of modalities.

Let us assume that communication cost is con-
strained; that is, the mission goal includes the constraint
com_cost = 1; this prevents ReCon from using the fast
communication channel. In order to gain some time, ReCon
can just switch the modality of the second drive action from
cruise to agile, which allows the rover to move faster.
Figure 3 (bottom), shows the reconfigured plan with the es-
timation on the resource and time consumption. Note that
the new configuration has an impact not only on time, but
also on power; such an impact, however, does not represent
a violation of the global constraints (the constraint on power
is not so strict), and hence the proposed (re)configuration is
a solution.

Of course, we assume that mission constraints leave Re-
Con some room to repair resource inconsistent situations.
For instance, if the constraint on the power were very tight,
the drive action performed in agile modality would not be
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Figure 3: The initial configuration of modalities (above), and the reconfigured plan (below).

applicable, and hence no reconfiguration would be possible.

Experimental Validation
To assess the effectiveness of our proposal, we evaluated two
main parameters: (1) the computational cost of reconfigura-
tion, and (2) the competence of ReCon, that is, the ability of
completing a mission.

To this aim, we have compared ReCon with two alterna-
tive strategies: REPLAN and NoRep. Whenever the plan be-
comes resources inconsistent, REPLAN stops the execution
of the plan and synthesizes a new plan from scratch. Con-
versely, NoRep just stops the plan execution as soon as it is
no longer valid. Note that although REPLAN is not allowed
in our rover scenario, we used it as a benchmark to better
assess the contribution of ReCon.

We have implemented ReCon in Java 1.7; the Choco CSP
solver (version 2.1.3) 4 has been used in the Adapt algorithm
to find an alternative configuration. Whereas REPLAN in-
vokes Metric-FF (Hoffmann 2003) by converting the rover
actions with modalities in PDDL 2.1 actions, as explained
in (Scala 2013). Each repair problem has a time computa-
tion threshold set to 60 secs.

Our test set consists of 105 plans; each plan involves from
9 up to 30 actions (i.e., drives, take pictures, and communi-
cations), it is fully instantiated (a modality has been assigned
to each action), and feasible since all the goal constraints are
satisfied when the plan is submitted for the execution.

To simulate unexpected deviations in the consumption of
the resources, we have run5 each test in thirteen different set-
tings. In each of these settings we have noised the amount of
resources consumed by the actions. In particular, in setting
1, an action consumes 10% more than expected at planning
time. In setting 2, the noise was increased to 15%, and so on

4The Choco Solver implements the state of the art algorithms
for constraint programing and has already been used in space ap-
plications, see (Cesta and Fratini 2009). Choco can be downloaded
at http://www.emn.fr/z-info/choco-solver/.

5Experiments have run on a 2.53GHz Intel(R) Core(TM)2 Duo
processor with 4 GB.

until in setting 13 where the noise was set to 70%, i.e. an ac-
tion consumes 70% more resources than initially predicted.

Figure 4 reports the competence - measured as the per-
centage of performed actions in the plan - of the two strate-
gies ReCon and REPLAN, in the thirteen settings we have
considered. As expected, the competence of both solutions
decreases as long as the amount of noise increases. Note
that ReCon is more competent than REPLAN. In fact, even
though REPLAN can modify the plan, and hence it can solve
repair problems that ReCon cannot, REPLAN is less com-
petent than ReCon due to the time limit of 60 secs. In par-
ticular we can observe an average gap of 20% between the
percentage of plan completed by ReCon and REPLAN.

Figure 5 shows the computational cost, on average, of the
two strategies. As for the competence evaluation, it is easy to
see that ReCon outperforms REPLAN. In fact, even for the
worst case (when the noise is set to be 70%), ReCon is ex-
tremely efficient, indeed it takes, on average, just 356 msec.
Whereas, even for the cases with few noise, REPLAN takes
about 5 secs of cpu-time till the 20 secs employed for the
worst cases. For each case considered, the time for the repair
corresponds to the sum of all the adaptation (reconfiguration
or replanning) performed untill the end of the mission.

Finally, in Figure 6, we show the number of invocations
to ReCon and REPLAN. It must be noticed that in the first
ten noise settings (i.e., noise from 10% to 55%), REPLAN is
activated, on average, more often than Recon. However, for
the last three noise settings (i.e., noise from 60% to 70%)
ReCon is invoked slightly more times than REPLAN. This
happens because, as long as the plan execution process goes
on, the constraints becomes more and more tight, causing the
detection mechanism to be invoked more frequently. Differ-
ently, each invocation of REPLAN generates a completely
new plan; therefore the plan execution till the end is not di-
rectly related to the previous plan execution problem. This is
the reason why REPLAN almost preserves the same amount
of invocations throughout the cases we have tested.
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Figure 4: Competence: Percentage of performed actions

Figure 5: CPU time

Figure 6: Average Number of Reconfiguration

Conclusions
We have proposed in this paper a novel approach to the
problem of robust plan execution. Rather than recovering
from plan failures via a re-planning step (see e.g., (Gerevini
and Serina 2010; van der Krogt and de Weerdt 2005;
Garrido, Guzman, and Onaindia 2010)), we have proposed
a methodology, called ReCon, based on the re-configuration
of the plan actions. ReCon is justified in all those scenarios
where a pure replanning approach is unfeasible. This is the
case, for instance, of a planetary rover performing a space
exploration mission. Albeit a rover must exhibit some form
of autonomy, its autonomy is often bounded by two main
factors: (1) the on-board computational power is not always
sufficient to handle mission recovery problems, and (2) the
rover cannot in general deviate from the given mission plan
without the approval from the ground control station.

ReCon presents many advantages w.r.t. re-planning. First

of all, reconfiguring plan actions is computationally cheaper
than synthesizing a new plan from scratch, as the experi-
ments have demonstrated. Moreover, ReCon leaves the high-
level structure of the plan (i.e., the sequence of mission
tasks) unchanged, but endows the rover with an appropriate
level of autonomy for handling unexpected contingencies.
ReCon can be considered as a complementary repair strat-
egy to other works in the context of autonomy for space as
those in (Chien et al. 2012); as matter of facts, ReCon ex-
plores a different dimension of the repair problem, which is
based on an action-centered planning representation rather
than on a timeline based perspective ((Fratini, Pecora, and
Cesta 2008)).

The approach we have presented can be improved in a
number of ways. A first important enhancement is the search
for an optimal solution. In the current version, in fact, ReCon
just finds one possible configuration that satisfies the global
constraints. In general, one could be interested in finding the
best configuration that optimizes a given objective function.
Reasonably, the objective function could take into account
the number of changes to action modalities; for instance, in
some cases it is desirable to change the configuration as little
as possible. Of course, the search for an optimal configura-
tion is justified when the global constraints are not strict, and
several alternative solutions are possible.
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Abstract
Next generation commercial air transportation will
likely see an increased use of rotorcraft, including heli-
copter and tilt-rotors. Two advantages of rotorcraft with
respect to fixed wing aircraft are the optimized aero-
dynamic levitation and the possibility of takeoff and
landing without a runway, which minimizes their in-
terference with fixed wing traffic. A recurring obsta-
cle to rotorcraft integration is the ground noise they
generate, particularly near residential areas and hos-
pitals. The problem of rotorcraft ground noise can be
partially addressed by designing new flight profiles, in
particular landing trajectories, that have a lower im-
pact in the noise produced by a rotorcraft. In this pa-
per we approach this problem computationally by mod-
eling a high dimensional environment able to capture
many parameters of landing trajectories that contribute
to ground noise, and using probabilistic road maps
(PRMs), coupled with a robust ground noise simulation
system, for identifying noise-minimal approach trajec-
tories.

Introduction
Redesigning rotorcraft trajectories to optimize for ground
noise is part of a set of improvements in rotorcraft oper-
ations that will facilitate their increased used for commer-
cial transportation. Rotorcraft are of particular interest due
to their runway independence which allows them to oper-
ate at an airport without directly interfering with major air
carrier and commuter aircraft operations. The main concern
which has prevented a more extensive use of rotorcraft is
regarding the impact of noise on the communities surround-
ing the transportation facilities. However, steps can be taken
to make flight trajectories less noisy through the careful re-
design of approach and landing procedures.

This has lead to recent efforts (Morris et al. 2012; Atkins
and Xue 2004) that aim at applying automated reasoning
techniques to design flight profiles that may differ from
standard pilot practice but reduce the accumulated ground
noise while enforcing constraints related to safety and com-
fort of passengers. In most cases the problem of designing
low noise flight profiles can be viewed as a trajectory opti-
mization problem (LaValle 2006), informally consisting of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a set of states, a vector of control decisions, a start and goal
state, a cost function, and a set of constraints. Recent meth-
ods for solving trajectory optimization problems address
the challenges of high-dimensional, non-linear systems by
using randomized path-planning methods. Examples of re-
cent trends include Rapidly expanding Random Trees (RRT)
(P. Cheng and LaValle 2001) and Probabilistic Road Maps
(PRMs) (Kavraki et al. August 1996).

This paper formulates a trajectory noise optimization
problem and applies Probabilistic Road Maps to find low
ground noise trajectories. Our system couples the power of
path planning search with a state of the art rotorcraft noise
simulator to produce more quiet landing trajectories. The
strength of our results lies especially in the capability to pro-
duce very general trajectories and to allow for the embed-
ding of obstacles, where obstacles could include restricted
fixed-wing airspace or noise-sensitive areas such as hospi-
tals. Moreover, the PRM approach appears ideal in terms
of the deployment of our system on board of rotorcrafts. In
this respect we envision making precomputed roadmaps for
different landing sites available for upload and thus to limit
the online effort to computing the noise-minimal trajectory
given the starting point of the approach.

The remainder of this paper is structured as follows. In the
background section we provide fundamental notions con-
cerning rotorcraft noise, noise simulation and PRMs. We
then describe our PRM implementation and we discuss ex-
perimental results which include a comparison with a local
search approach. We conclude by suggesting some interest-
ing future directions.

Background
Rotorcraft Noise and Noise Simulation Helicopter noise
sources include the main rotor, the tail rotor, the engine(s),
and the drive systems. The most noticeable acoustical prop-
erty of helicopters is referred to as BVI (Blade Vortex Inter-
action) noise. This impulsive noise occurs during high-speed
forward flight as a result of blade thickness and compress-
ible flow on the advancing blade. A common noise measure
is the Sound Exposure Level (SEL). SEL provides a compre-
hensive way to describe noise events for use in modeling and
comparing noise environments. The average SEL value over
the ground plane is called the SEL average (SELav). The
equation for SELav is
SELav = 10log10Σn(Σi10SPLdB,i,n/10∆ti,n/T0)∆An/A0 [1]
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Here, n ranges over the locations on the ground plane and i
refers to path elements. SPLdb,i,n refers to the Sound Pres-
sure Level in decibels for a location and a path element,
and the ∆s are elemental ground- or trajectory elements. A0

refers to the area of the ground plane and T0 is a reference
interval of one second.

One challenge in performing a systematic study of ap-
proach trajectories for optimization is the cost of verifying
results. The most accurate means of verification is through
field tests, but these are too costly and time-consuming to
perform on a casual basis. Fortunately, there are a num-
ber of robust noise models that allow for the evaluation of
trajectories through simulation. One such modeling tool is
the Rotorcraft Noise Model (RNM) (RNM 2007), a simu-
lation program that predicts how the sound of a rotorcraft
propagates through the atmosphere and accumulates on the
ground. The core of the RNM method is a database of ve-
hicle source noises defined as sound spheres. Spheres are
obtained through measured test data or through models. The
spheres allow for a representation of the 3D noise directivity
patterns associated with the operating rotorcraft. A sphere is
associated with one noise source and one flight condition (a
value for flight path angle and airspeed). Each sphere rep-
resents constant airspeed conditions for a given flight path
angle. The sound source properties are extracted from the
sphere database using a linear interpolation of both required
speed and flight path angle.

As inputs to RNM, a user specifies a flight path (in terms
of acceleration and flight path angle). RNM outputs a time
history and the effective SEL (or similar metrics) at any lo-
cation along the path. The result is usually displayed as a
contour plot (Figure 1) over a ground plane. Each color cor-
responds to a dB level (redder and lighter colors noisier).

Figure 1: A Noise Contour Plot over a ground plane.

In (Morris et al. 2012) a method for aggregating the
information in the contour plot into a scalar value us-
ing a Binning Heuristic function (Bin) was proposed.
Given trajectory t, and a SEL value for each grid point
(x, y), denoted SEL(t, x, y), a sequence of decreasing
ranges, 〈r1, r2, . . . , rn〉 partitioning the SEL values of
the grid points is defined. Moreover, given Si(t) =

{(x, y)|SEL(t, x, y) ∈ ri}, that is, the set of grid values
within the range ri, a vector b(t) = 〈b1(t), b2(t), . . . , bn(t)〉,
where bi(t) = |Si(t)|, represents the number of grid points
with an associate SEL value within each range. The bin-
score of solution t can then be defined as Bin(t) =
Σi=1...nwibi(t) where wi is the weight associated to the i-th
bin, wi > wi+1 and Σi=1,...,nwi = 1. Thus a solution that
assigns lower levels of noise to larger regions of the grid is
to be preferred. Weights can be tuned in various ways to pe-
nalize the presence of noisy regions in the grid.

Probabilistic Road Maps The trajectory planning prob-
lem is defined as the simultaneous planning of path and
velocity for robotic systems (LaValle 2006). The search
space is described in terms of a configuration space C, cap-
turing the significant parameters of the problem. C is di-
vided into free space Cfree and obstacle space Cobj where
the latter represents the forbidden regions of the space. A
planning instance is defined by the pair (cs, cf ) of an ini-
tial and a final configuration. A feasible solution for plan-
ning instance (cs, cf ) is a sequence of configurations in C,
(cs, ..., ci, .., cf ) such that each configuration is in Cfree.

Sampling-based path planning techniques emerged out of
the need to address the complexity of realistic path-planning
problems. The main idea behind sampling-based approaches
is to generate and organize a sequence of samples from Cfree
into a graph, where the edges are labeled with a cost, usually
a metric on C. The graph is then traversed to find a path that
solves the planning instance.

Probabilistic Road Maps (PRMs) (Kavraki et al. August
1996) is a sampling-based method that consists of a road
map construction phase and a user-defined query phase in
which the roadmap is consulted for planning purposes. The
basic PRM algorithm is easy to implement and performs
well on a variety of problems. In the next section we de-
scribe how PRMs can be used to find noise-minimal landing
trajectories for rotorcrafts.

PRM for rotorcraft noise minimization
The configuration space for our rotorcraft trajectory opti-
mization problem consists of state variables X,Y, Z, V (lo-
cation (X,Y ), altitude (Z) and forward speed (V )). For now
we ignore non-translational motion (i.e., roll, pitch and yaw)
in the configuration model. They are not strong determinants
of noise in the simulation, so their inclusion is not important.
Let (0, 0, 0, 0) represent the landing point and configuration
space C be defined around the landing point by the following
limit constraints:

0ft ≤ z ≤ 1500ft
−8000ft ≤ x ≤ 8000ft
−8000ft ≤ y ≤ 8000ft

0ft/s ≤ v ≤ 140ft/s.

[2]

Sampling the configuration space
The first step of the PRM approach is to densely sample
the configuration space. The sampling strategy used here is
via Halton sequences. A Halton sequence is a deterministic
low discrepancy sequence used to generate points in a space
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which has been shown to be sufficiently random for many
purposes (Choset et al. 2005). An example of Halton se-
quence sampling for a 2-dimensional space is shown in Fig-
ure 2. We remark that in our case we sample a 4-dimensional
configuration space.

Figure 2: 2000 Halton sequence points in [0, 1]× [0, 1].

Building the roadmap
Each point in the configuration space sampled in the pre-
vious step can be viewed as a node in a graph. In order to
build the roadmap we must decide which points to connect
with edges and how to label the connections with noise-
dependent costs.

Defining edges. We describe a feasible connection be-
tween two sampled points, say ci and cj , as an edge ci → cj
and via constraints defined on their physical distance, their
airspeed difference, their altitude difference and the obstacle
avoidance constraints.

First, a constraint on distance is imposed via
the Euclidean distance function dist(ni, nj) =√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 in the 3D space
and by choosing a range [distmin, distmax] ⊂]0,+∞[
of allowed distances. In our scenario we have set
[distmin, distmax] = [100ft, 3000ft]. We note that
the lower bound has been chosen sufficiently large in order
to allow for sufficient time pilots to implement the changes
in direction, speed or descent.

Second, we note that decelerations exceeding 0.1g (i.e.
201ft/sec2) are considered uncomfortable for the average
passenger. This induces a constraint on deceleration ∆vij =

|vi−vj | among two points: ∆vij ≤
√
v2i + 2 · 0.1 · distij−

vi.
Third, passenger discomfort can be caused by too steep

descents and, in particular, by those exceeding a correspond-
ing descent angle of roughly 12o. This induces a constraint
on altitude difference ∆zij = |zi− zj |, between two points:
∆zij > tan(12o) · distij .

The final constraint enables the enforcement of obstacle
avoidance. In this domain, obstacles might be residential

areas or hospitals, or restricted airspace, such as the space
used for fixed-wing traffic as well as limitations related to
the specific rotorcraft model. We employ standard methods
such as those described in (LaValle 2006), in which a set
of logical predicates fi : C → [0, 1] ⊂ R define whether
a configuration is or is not in the obstacle space. Given
logical predicates f1, ..., fm describing m obstacles in C,
Obsi = {p ∈ C|fi(p) = 0} ∀i = 1, ...,m, we have that
Cfree = C\

⋃m
i=1Obsi. A real value ε > 0, is derived empir-

ically to define the sensitivity (constraint relaxation) of the
obstacle, and the following approximation describes flyable
points:

∀p ∈ C p ∈ Cfree ⇐⇒ fi(p) > ε ∀i = 1, ...,m.

For example, the sensitivity could be used to specify separa-
tion distance between a point of interest (like a hospital) and
any trajectory. With the obstacles fi defined, the collision
detection algorithm subdivides each path edge ci → cj gen-
erated during roadmap construction to determine whether
there is collision. The finer the subdivision the smaller the
error in ensuring obstacle avoidance.

Edge labeling Computing a noise cost for an edge in the
road map involves an invocation of the RNM noise simu-
lator. In particular, for each feasible edge, we consider an
area on which to compute the SEL contour plot that is large
enough to allow for at least 2000ft around the projection on
the ground of each edge point. The density of grid points in
which this area is partitioned is defined by a grid distance
of 500ft. We then run RNM and obtain the corresponding
SEL contour plot and aggregate it into a Bin score, as de-
fined earlier. After this step we obtain a weighted directed
graph G (our road map).

Query Phase
Given a user-defined query Pstart and Pgoal, PRM solves
the query by connecting these nodes to the road map G
via a distance function, and running Dijkstra’s single-source
shortest path algorithm to find the lowest-cost feasible path,
where cost is the sum of the Bin scores of the edges in the
path.

Experimental results
In the tests reported here we created a roadmap with
12000 nodes using the Halton sampling method on the
4-dimensional space [−8000, 8000] × [−8000, 8000] ×
[0, 1500]× [0, 140] which is a realistic approximation of the
area around a landing site. Without constraints we would
have 120002 = 144 · 106 edges but, after all the con-
straints (defined before) are enforced we have approximately
376000 edges. For each of such edges we have computed the
corresponding Bin value by running RNM. Roadmap con-
struction took roughly 20 hours on a laptop1 with medium
capabilities. We note however that such a pre-processing
must occur only once.

1Intel Core i7-2600K CPU @ 3.40 GHz 3.70GHz, 8 GB RAM.
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In the query phase we tested the algorithm with different
numbers of obstacles, all having the same volume. The ob-
stacles we consider are parallelepipeds of type:

[xs, xf ]× [ys, yf ]× [0, 1500]× [0, 140] ⊂ C.
We first consider the impact of adding new obstacles on

the average time to find an optimal path with its new road
map.

The results are shown in Figure 3 and, as predictable, each
time a new object is added a smaller number of edges must
be checked in the query phase, thus yielding a sub-linear
growth of time with respect to the number of objects.

Figure 3: Impact of number of objects on computation time.

We have also conducted several experiments to confirm
the soundness of our approach in terms of obstacle avoid-
ance. In Figure 4 we show a 3D representation of a trajectory
generated for a problem with 2 obstacles.

Figure 4: Correct trajectory avoiding two obstacles.

Another set of experiments we have conducted measures
the performance of our PRM implementation in terms of so-
lution quality when increasing the number of nodes. We se-
lected two tasks:

1. A simple task, with only an object, defined as follows:
Pstart = {−5000,−5000, 800, 80}
Pgoal = {5000, 5000, 0, 60}
Obstacle: {−3500, 3500,−3500, 3500, 0, 1500, 0, 140},
shown in Figure 5.

2. A more difficult task, with two objects and one speed
limit:

Pstart = {−5000,−5000, 800, 80}
Pgoal = {5000, 5000, 0, 60}
Obstacles:
{{−8100, 8100,−3500,−3000, 0, 850, 0, 140}, (1)
{−8100, 8100, 3000, 3500, 100, 1400, 0, 140}, (2)
{−3000, 3000,−3000, 3000, 0, 1500, 50, 150}}, (3)

shown in Figure 6.

Figure 5: Easy task.

Figure 6: Hard task (with low opacity, in the middle, the
speed limit obstacle (3)).

The results are:
Nodes Easy, Dijkstra-Noise Hard, Dijkstra-Noise

1000 +∞ +∞
1800 10.32 13.06
2000 9.55 11.77
3000 8.06 9.61
4000 6.85 7.96
8000 5.46 5.92
12000 5.26 5.36

The results are shown in Figure 7 where we plot the cost of
the shortest path returned by the Dijkstra algorithm (propor-
tional to the noise of the path). With only 1000 points the
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graph G is not connected and the algorithm doesn’t find a
solution. Obviously the best path found in the easy task is
better than the one found for more difficult one. Moreover,

Figure 7: Solution cost vs number of nodes for the problems
depicted in Figs. 5 and 6.

we observe that the number of nodes has to grow exponen-
tially to improve the solution quality and that the more dif-
ficult path problems gain more advantage from an increased
number of nodes than the easy one.

Comparison with Local Search
Our final set of experimental results are aimed at provid-
ing a comparison with a different search technique, i.e. lo-
cal search, which has been applied to solve a similar trajec-
tory noise optimization problem in (Morris et al. 2012). The
work presented here shares with the approach in (Morris et
al. 2012) the use of RNM and of the Bin score function.
However, there are differences worth noting before mak-
ing the comparison. First, the search space in (Morris et al.
2012), is limited to “box”-shaped trajectories with two stan-
dard 45o turns before the final approach leg. Second, with
local search RNM is given as input a complete trajectory
rather than single segments, as is the case with roadmap con-
struction. Moreover, the result produced by RNM is not de-
composable, in the sense that the SEL values computed for
a complete trajectory are not linear combinations of those
corresponding to segments of the trajectory.

Despite these differences, it is instructive to compare the
performance of PRM with local search. To make the com-
parison more fair, we imposed a “box-shape” obstacle for
PRM to use, as shown in Figure 8.

We performed a comparison between the Bin value of the
solution obtained with PRM in the “box-shape” configura-
tion space and the Bin value of the solution returned by local
search on a fixed “box-shaped” trajectory lying in the free
space of the configuration space.

Specifically, we ran PRM with the following initial con-
figurations coinciding with the initial node of the seeds used
for the local search runs:

Figure 8: Box-shaped configuration space with 3 obstacles
in order to better compare PRM and Local Search.

Pstart = {−3900, 3600, 1000, v} ∈ Cfree,
Pgoal = {0, 0, 0, 0} ∈ Cfree
v ∈ {60, 80, 100, 120, 140}.

The average results of 100 Local Search tests with two
levels of probability of random moves (low,high) and ran-
dom initial velocity (from 60 ft/s to 140 ft/s) are reported in
the following table:

Test number Local Search (high) Local Search (low)

1 147.9593 151.173
2 147.6934 151.5384
3 148.4025 151.1155

However PRM has obtained the following values:

Start velocity (ft/s) RNM-Noise value of PRM

60 137.34
80 139.55

100 141.60
120 143.73
140 145.12

The results showed that PRM, even when constrained to a
fixed trajectory shape, produced around a 6% improvement
in noise minimization with respect to local search (an in-
tensive search focussed on that class of trajectories). These
results should, however, be taken with a grain of salt since,
PRM, although limited, still benefits from a slightly larger
configuration space, and from the advantage of a lengthy
road map construction phase. In general, techniques like
PRM are expected to perform better in higher dimensional
configuration spaces than simpler approaches such as local
search.
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Future Work
The work presented in this paper is a first step in the appli-
cation of path planning techniques in the context of trajec-
tory noise optimization for rotorcrafts. As such it suggests a
number of extensions, which are summarized here.

We are currently finalizing the design and implementa-
tion of an A*-based approach to this problem in a similar
setting as the one considered by local search (that is, with
a fixed trajectory physical path). Preliminary results make it
already obvious that PRM, as well as local search, outper-
forms complete search in terms of scalability and flexibility.
We plan to study in more depth a comparison between these
two approaches.

A natural extension of our current PRM is that of adding
a 5th dimension to the configuration space representing the
rotorcraft heading (see Figure 9) and the associated feasi-
bility constraints. This would allow the generation of more
realistic trajectories, in particular, in terms of connections
between segments of the road map, in fact rotorcrafts can
travel in one direction while they are oriented along an-
other heading. Another alternative we plan to pursue is post-
processing the PRM solution with an interpolation or with
a smart smoothing of the connections of the segments. We
plan to implement and compare both these approaches in
order to evaluate the tradeoff between configuration space
augmentation and post-processing.

Figure 9: Heading in rotorcraft.

Finally, a possible development of PRM is its integration
with local search in a two-phase process: for example by first
finding a solution with PRM and then using this solution as
an initial seed to local search. In particular, we think this
may be effective if a smart way is found to set up the neigh-
borhood for local search given the generality of the PRM so-
lution. In that case the complementary strengths of the two
approaches would allow to mitigate each others limitations.

Conclusion
This paper has proposed the use of Probabilistic Road Maps
to solve a 4D trajectory optimization path planning prob-

lem for rotorcraft. Sampling-based methods like PRMs were
developed to address the problem of solving complex path
planning problems in continuous, high-dimensional config-
uration spaces. In addition, sampling-based methods for path
planning enable the representation of obstacles in the config-
uration space. These advantages of PRM suggest it as a log-
ical approach to solving the problem defined here. One tech-
nical challenge in automated design of low noise trajectories
is the need to deploy robust simulation tools for evaluating
candidate trajectories during planning. Another challenge is
to define a set of dynamic constraints on the solution space
to allow solutions to be ’flyable’ by pilots as well as quiet.
The results of using PRMs documented in this paper, though
preliminary, show their potential for devising effective rotor-
craft noise mitigation strategies through approach trajectory
design.
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Abstract

There is an emerging interest in designing fractionated space-
craft that can share or take over duties from one another, lead-
ing to more flexibility and robustness in the face of require-
ment changes, failures, and delays. This new paradigm re-
quires new software design tools to help with: (i) complex
interdependency constraints and objective functions; (ii) un-
certainties; and (iii) a very large number of feasible designs.
FRACSAT, our design tool, automatically synthesizes feasible
designs and graphically displays the results with all of their
important quality measures. This allows designers to visually
compare among various designs along different key metrics,
and hone in on designs that are more likely to offer the best
tradeoff. At the core of our design tool is the PlanVisioner
planning system that takes on a PDDL-like model of the prob-
lem and generates all feasible designs. In this paper, we de-
scribe the fractionated spacecraft design synthesis problem,
how it can be modeled in a PDDL-like language, the chal-
lenges that our particular application poses for the planning
research community, and the empirical results of our plan-
ning software in this domain.

Introduction and System Overview
Given a set of mission requirements and a library of avail-
able spacecraft components, spacecraft designers must de-
sign a completely functional spacecraft, along with a sched-
ule to build and launch it, to satisfy the mission require-
ments while providing the best tradeoff between different
quality measures. A fractionated spacecraft consists of mul-
tiple separate modules, or fractions1, working together to
provide improved flexibility, robustness, adaptability, and
upgradability compared to a monolithic design with a single
module/fraction. The challenge is how to choose and assign
components to a set of fractions while respecting the func-
tional and design constraints and optimizing various metrics.

Fractionated spacecraft design has not been previously
addressed adequately by automated tools and typically re-
quires a committee of domain experts over a span of several
weeks. Furthermore, spacecraft design is complex enough
that typical designs often forgo cost-benefit optimization in
favor of safe, previously-proven, and simpler monolithic de-
signs. Better value may be realized through fractionated de-
sign, but it is a more complex design problem that is often
only manageable with automated design tools.

1Each fraction can be considered as a single working (small)
satellite.

FRACSAT is our solution to conceptual design, cost-
benefit analysis, and detailed trade studies for fractionated
space systems2. It automatically synthesizes, compares, and
explores thousands of feasible fractionated space architec-
tures, leading to a short list of all solutions and their ex-
pected cost-benefit values within user-specified service re-
quirements. Figure 1 summarizes FRACSAT while this pa-
per concentrates on the software framework underlying the
first and second steps: feasible designs generation and de-
sign tradeoff exploration. FRACSAT uses a familiar cost-
benefit analysis framework to display the space of poten-
tial solutions, leading the user toward the preferred Pareto-
optimal frontier of cost and utility. The core of our design
tool is the PlanVisioner planning system, which generates
and compares all feasible designs.

While this design problem can be solved by other opti-
mization techniques, such as Constraint Satisfaction Prob-
lem or genetic algorithm, we use planning and scheduling
technology due to the natural fit:
• Explicit mission objectives, requirements, and preferred

system capabilities map well into planning goals (both
hard and soft goals).

• Causally related tasks in different major steps (e.g., de-
sign, build, launch, operate) map well into planning ac-
tions.
Technically, PlanVisioner uses model-based forward

state-space planning framework utilizing advanced search
algorithms and techniques3. Its input are:

1. Library of spacecraft components, each with a different
set of properties and constraints;

2. Multi-dimensional mission requirements.

Taking these inputs modeled in a PDDL-like standard
planning modeling language, PlanVisioner exhaustively
searches for all designs that (1) are consistent with all con-
straints such as mass, power, component compatibilities,
and (2) satisfy all of the hard and some of the soft require-
ments. For each candidate, PlanVisioner reports various
quality metrics, including estimated total cost and utility,

2The FRACSAT project was funded under DARPA System F6
program.

3Forward-state space search is a good choice to find simple
valid solutions quickly while keeps on searching for more complex
solutions within the full set of feasible solutions. That is impor-
tant when there are human users looking at the screen waiting for
solutions to analyze.
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Figure 1: FRACSAT Overall Framework.

adaptability measure, and uncertainty level (due to mission
risks). These metrics allow the user to narrow down the
search space and focus on the most desirable designs. Once
the space is narrowed down to a few choices, the user can
initiate more detailed analyses including orbital geometry,
cluster configuration, data throughput, campaign duration,
or the use of certain components and a detailed adaptability
analysis.

While the soft-goal constraints in this domain allow for
the easier finding of a single plan than the traditional plan-
ning problems, this domain poses a set of challenges that are
not common in current planning research benchmarks. Thus
require significant extensions to existing planning systems.
Specifically, our main contributions are:

• Introduce an application of automated planning technol-
ogy in a new domain: fractionated spacecraft design.

• Extend the existing heuristic-search planning framework
to find all feasible plans (not a single plan) quickly4.

• Handling of complex goals/requirements that are: (1)
both hard and soft constraints; (2) each involves multi-
dimensional quality measures that are non-linear and not
combinable; and (3) susceptible to changes resulted from
various risks and uncertainties.

Our system is fully implemented and can run on multiple
platforms. It was tested on several sets of benchmarks, find-
ing up to more than 150,000 valid unique candidate designs
for a given mission. Each design is returned with extensive
information on: (1) quality measures: total cost, utility, and

4In many critical applications, a person in charge would like to
inspect all options and make the final decision himself instead of
relying on the planner to select a single “best” solution for him.

adaptability – all adjusted for various risks and uncertain-
ties; (2) component composition; (3) build/launch timelines;
and other useful information. The candidate designs are
displayed through a web-based graphic user interface that
has multiple filtering capabilities to assist human designer
to navigate, compare, and select the final most suitable de-
sign.

The rest of this paper is structured as follow: we will start
with a section on introducing the fractionated space-craft de-
sign problem and describe how we model it as a planning
problem. We then follow with outlining the PlanVisioner
software, its output, and the key techniques developed to
solve this domain. We next provide the current empirical
result and finish with the related and future work.

Fractionated Spacecraft Design as a Planning
Problem

The dominant paradigm in space operations is the mission,
defined as a possibly repeating sequence of activities in-
tended to achieve a given objective. Given a library of avail-
able spacecraft components, fixed objectives, timeframe,
and budget, the design team finds the most suitable space-
craft design for that particular mission. From the planning
research point of view, mission objectives can naturally be
considered as planning goals and design activities as ac-
tions.

In FRACSAT, the process of building, assembling, and
then launching a plausible spacecraft design is represented
as a “plan” that consists of a sequence of primitive design
actions. As the computation proceeds, this plan is refined
from a set of design requirements, which include mission
objective, to a concrete design. The design actions are
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(:functions
;; MASS-related of module/component/launch-vehicle
(mass ?c - (either fraction physical object)) - float
(allowed mass ?f - (either fraction spacecraft bus)) - float
(launch capability ?v - launch vehicle ?o - orbit) - float
;; COST (manufacturing/assemble/launch)
(manufacturing cost ?c - physical object) - float
;; TIME & duration
(manufacturing duration ?c - physical object) - float
(lifespan ?o - (either component fraction)) - float
;; POWER: total power allowed for a spacecraft-bus
(power ?f - (either fraction spacecraft bus)) - float
(power consumption ?c - (either component fraction)) float
;; ORBITAL constraint
(can operate on ?f - (either fraction spacecraft bus)) orbit

.....................................
;; Initial setting for a spacecraft-bus
(:init

(= (manufacturing cost LEOStar) 6000000) ;; USD
(= (manufacturing duration LEOStar) 29) ;; months
(= (mass LEOStar) 263) ;; kg
(= (allowed mass LEOStar) 473) ;; kg
(= (power LEOStar) 200) ;; watt
(= (lifespan LEOStar) 120) ;; month
(= (power consumption LEOStar) 82) ;; watt
(= (reliability LEOStar) 0.98) ;; success probability
(= (can operate on LEOStar) LEO)
(= (data rate LEOStar) 2000) ;; kb/s

Figure 2: Spacecraft component properties modeled as func-
tion templates in the PTDL domain file and concrete speci-
fications in problem file.

modeled in terms of action pre-conditions (e.g., an imager
needs a bus and a power source) and effects (e.g., the
imager can cover a certain spectrum and it increases the
mass, power consumption, and cost of the fraction). The
design action preconditions check for if a given set of
constraints on component properties can be satisfied when
adding/assigning a component to a design and the action
effects reflect the overall design changes when such a
component is added. Component properties and design
actions are modeled using the PTDL modeling language,
which is a variation of PDDL, a standard planning modeling
language (Fox and Long 2003)5.

Examples: Figure 2 shows examples of (i) component prop-
erties and constraints in PTDL in which they are modeled as
functions, each with a list of parameters and the function
value type; and (ii) how the actual values stored in the com-
ponent library database are represented in PTDL as part of
the initial state specification. Figure 3 shows an example
of the design action that integrates an imager into a given
spacecraft bus.

5While PDDL3.1 would be mostly sufficient, PTDL was used
for two reasons: (1) the main reason is that it has been used as
the modeling language for the planner at PARC for several earlier
projects; that planner provides the basis for the PlanVisioner soft-
ware in this project; (2) some actions such as “launch” use features
beyond PDDL such as effects happening within the duration of an
action.

(:action integrate imager into fraction
:parameters (?f - fraction ?i - imager ?o - orbit)
:duration (manufacturing duration ?i)
:condition
(start (has bus ?f )

(not (launched ?f ?o))
(<= (mass ?f ) (- (total allowed mass ?f ) (mass ?i)))
(<= (power consumption ?f )

(- (power ?f ) (power consumption ?i))))
:effect
(end (change (has imager ?f ?i) F T))
(start (increase (mass ?f ) (mass ?i))

(increase (power consumption ?f ) (power consumption ?i))
(increase (total cost) (manufacturing cost ?i)))

(end (increase (total mission utility) 0.075))
:conditional-effect)

Figure 3: Example of a design action modeled in PTDL:
adding an imager to a fraction/module.

PlanVisioner: Finding All Legal Designs
PlanVisioner6, our design-space exploration engine, find all
possible designs utilizing heuristic-search based planning
framework. Specifically, PlanVisioner is a forward-state-
space planner that uses either depth-first or best-first search
with customized duplicate and symmetry detection routines.

Like other search-based planners, PlanVisioner first en-
codes/builds the planning-relevant structure and rules:
• Start state (root search node): an empty design.
• Expansion function: check for design actions’ applicabil-

ity and change the partial design when apply them.
• Goal/terminal condition: represents when a partial design

satisfies all hard goal/requirement constraints.
It then calls either a depth-first or a best-first search algo-

rithm to generate and navigate the search graph dynamically
and exhaustively.

To ensure broad coverage of the design space and avoid
neglecting some outliner design, our algorithm usually finds
a much larger set of design alternatives than human design-
ers could possibly create, resulting in a far more thorough
exploration of the design trade space. Furthermore, upon ter-
mination the algorithm can prove that it has reached 100%
of the design space implied by the design rules, offering a
mathematically sound way to enumerate the space of all pos-
sible distinct designs. Again, this is an important feature in
critical applications like spacecraft design.

To generate all unique designs effectively, it is important
that we employ some advanced search/planning techniques.

Pruning identical (duplicate) designs: The set of all
possible designs grows rapidly with the increasing total
number and types of components. A naive approach
can produce identical designs that not only slow down
the enumeration process but also create difficulty for the
comprehension of human user. This is due to the fact that
applying the same set of design actions in different order
can create identical designs, and the number increases
exponentially with the number of design actions. To remove

6Envisioning is a technique, popular in diagnostic, to envi-
sion/find all possible solutions.
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identical designs, our algorithm stores the set of partial and
complete designs found so far in a lookup table: each time
a new design is generated, it is checked against the table for
potential duplicates, and only designs that have never been
generated before are kept for further design refinement. To
conserve memory, the set of design actions applied so far
for each design state is summarized in a 64-bit integer as the
“signature”of the design, and if two designs have the same
signature, then they are considered as duplicates. With 264

possible design signatures, the likelihood of having a false
positive is very low7.

Pruning symmetrical designs: Symmetrical designs
are non-identical designs that create essentially the same
fractionation of the spacecraft. For example, in a design
with two fractions/modules, if one swaps all the components
originally assigned to the first fraction with those assigned
to the second fraction, nothing really changes, but the two
designs would not be identical because the mapping from
components to fractions are different. To detect symmetrical
designs, we introduce the concept of canonical fractionation
as follows: because each component in our system has
a unique ID, the set of components assigned to a single
fraction can be seen as a word with the set of possible com-
ponent IDs as its alphabet. A canonical fractionation is the
one such that all the fractions are ordered lexicographically.
For example, if fraction #1 has components {3, 4} and
fraction #2 has {1, 2}, then the two fractions do not make
a canonical fractionation, since {1, 2} should come before
{3, 4} in a lexicographical ordering. Our software only
returns canonical fractionation.

Parallel design space exploration: To further speed up de-
sign space exploration, we developed a parallel search algo-
rithm to enumerate different parts of the design space simul-
taneously. It is based on depth-first search with two phases:
In the first phase, the algorithm enumerates the design space
up to a maximum depth d, and any partial designs generated
at that depth are distributed to multiple concurrent search
threads using a hash function that maps a state to an inte-
ger between 0 and p − 1, where p is the number of parallel
threads specified by the user (default is 7). In the second
phase, the remaining search space is explored concurrently
by multiple threads until they all finish enumerating the de-
signs contained in the sub-space assigned to them. For max-
imal concurrency, the parallel algorithm chooses a shallow
depth d to limit the amount of search in the first phase, which
is performed sequentially. Typically, the second phase is by
far more time-consuming and thus the parallel speedup is
close to linear.

Measuring Design Quality
The main role of FRACSAT is to be able to extract and
display intuitively all information that are deemed important
to human spacecraft designers, help them quickly compare
between all possible designs, and hone in on the ones

7The 64-bit signature, produced by a hash function, has been
widely used in model checkers such as SPIN, and is also known as
“hash compaction”. In case of duplication, since any two designs
can have a non-zero probability of having the same signature, in
general there is no way to bound or estimate their cost/utility dis-
tance.

Design #9823
Number of fraction: 4
On pareto-frontier: No
Design cost:

Expected: $311.6M
Range: $293.023 - $359.338M with 95% confidence level

Mission requirement satisfaction (mission-utility):
Expected: 90.39%
Range: 86.87% - 95% with 95% confidence level

Adaptability Measure:
Architectural adaptability: 0.76
Valuation adaptability: 0.73
Overall adaptability measure: 0.75

Fraction composition and specification:
Fraction/module 1:

Launch time: April 2013
Launch vehicle: Atlas V
Spacecraft-bus: Mid Star
Spare power: 40.5 W
Spare mass on the bus: 1303.54kg
Spare mass on launch vehicle payload: 28783.5kg
Cameras (Imagers): ECAM and HiRiseJr IR
Other equipment: F6 TechPackage S, ANPED 1 laser de-

tector
Fraction/module 2:

............
Fraction/module 3:

............
Fraction/module 4:

............

Figure 4: Example design synthesized by PlanVisioner.

that provide the best tradeoff between different objective
functions. Therefore, when a legal design is found, it
needs to be evaluated based on mission-relevant objective
function. The evaluation is then used to visually guide
the user in selecting the final design. Figure 4 shows one
example output of PlanVisioner with spacecraft-design
related important information. They are extracted by (1)
first mapping the set of design actions in the design plan
into the list of components and processes involved; and then
(2) extracting the relevant information from the components
and processes used. For each design, the tool also indicates
if it’s on the Pareto-frontier based on the computed quality
measures. For the rest of this section, we outline for each of
them why it is important and how to compute it.

Design Cost: design cost and utility are the two most
important criteria in measuring the usefulness of a given
design, they answer the key question: how much would a
customer get for a given paid price? Design cost is easier
to compute due to the additive nature. A cost of a design
is the summation of the costs of all “design actions”, be it
manufacture or assembly a component into the final design
or to launch and operate a spacecraft. However, due to
cost-uncertainty (more on this in the next section), we return
both the expected and range of the total cost within the 95%
confidence level.

Design Utility: Total utility is measured by aggregating over
the mission duration to determine how well the overall ca-
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Figure 5:  Example Design Utility Calculation 

 

During our analysis, we compute a rough estimate of design utility as well as a more detailed 
analysis taking uncertainties into account.  In our example in Figure 5, suppose we have only a 
single risk, namely that Imager 1 is associated with a fraction whose launch vehicle has a 
success rate of 90%.  In this case we only expect Imager 1 to contribute to our utility 
computation 90% of the time.  Overall design expected utility is computed by aggregating over 
utilities computed with all possible failure combinations. Besides the expected utility value, we 
also compute the 95% confidence intervals of design utility (or any user-selected confidence 
level). More details on expected utility computation are in the separate report on uncertainty 
handling. 

In addition to the design utility approach outlined above, we have also implemented 22 basic 
parameterized utility functions (e.g., step, linear, sigmoidal).  They can be used individually or as 
a combination (e.g., weighted sum, nested functions) to compute design utility with regard to 
different mission requirements.  Each numerical performance requirement is associated with a 
utility function, describing the relative penalty or reward for not quite meeting or exceeding the 
specification.  This also allows users to designate performance parameters as unimportant by 
choosing a “unity” utility function (viz. = 1 for any value). 

User%requirement%
1-meter%

400%nm% 1000%nm%

resolu2on%

wavelength%

Imager%2%
Imager%1%

Camera%1:%Wavelength:%200-%700;%Resolu2on:%2-meter%%

700%500% 600%

2-meter%

Camera%2:%Wavelength:%500-%850;%Resolu2on:%0.6-meter%%

1.5-meter%

0.6-meter%

850% 1200%

Camera%3:%Wavelength:%600-%1200;%Resolu2on:%1.5-meter%%

Imager%3%

Figure 5: Imager-based Utility function

pabilities of a candidate design satisfies requirements. Thus,
the maximum utility value is 1 when all requirements are
satisfied and the minimum value is 0 when no requirement
is met. Design utility computation is complex8; thus, we will
only address time-sensitive image-quality related require-
ments in this paper as a concrete example. In the example
depicted in Figure 5, assume that the user requirement is col-
lecting images covering the entire 400 nm - 1000 nm wave-
length range, with an image resolution of 1m during the four-
year period. If for a duration D there are 3 imagers available
on all fractions of a fractionated design, then during D the
maximum design utility with regard to this requirement can
be measured by how well the union of the three “rectangles”
(see Figure 5), representing the three imagers, overlap with
the rectangle representing the user requirement. Given that
different fractions in this architecture may be launched at
different times during the mission, and that each component
may operate with a different lifespan, the set of equipments
available at different time periods within the overall mission
lifecycle will change. Therefore, we calculate design util-
ity separately for each period where the set of operational
equipment does not change and return the total aggregated
design utility.

During our analysis, we compute a rough estimate of
design utility as well as a more detailed analysis taking
uncertainties into account. In our example in Figure 5,
suppose that there is only a single risk, namely that Imager
1 is associated with a fraction whose launch vehicle has a
success rate of 90%, then we only expect Imager 1 to con-
tribute to our utility computation 90% of the time. Overall
design expected utility is thus computed by aggregating over
utilities computed with all possible failure combinations.
Besides the expected utility value, like design cost, we also
compute the 95% confidence intervals of design utility.

Design Adaptability: Given that vari-
ous changes will happen during the design-
ing/manufacturing/launching/operating phases of the

8Overall, we have implemented 22 basic parameterized utility
functions (e.g., step, linear, sigmoidal). They can be used individ-
ually or as a combination (e.g., weighted sum, nested functions)
to compute design utility with regard to different mission require-
ments. Each numerical performance requirement is associated with
a utility function, describing the relative penalty or reward for not
quite meeting or exceeding the specification.

spacecraft, adaptability is a critical criterion in measuring
the quality of a given design. Whenever a point design is
generated by the PlanVisioner, it will invoke adaptability
computation to measure three different adaptability values:
(1) valuation-based adaptability measure; (2) architecture-
based adaptability measure; and (3) overall/combined
adaptability measure (as shown in Figure 4):

• Valuation-based adaptability measure is related to the
ability to gain additional value, possibly at additional
cost, when requirements change. We calculate adaptabil-
ity measure by aggregating over all possible requirement
changes and compute the discrepancy in design utility
measures with regard to the old and new requirements.

• Architecture-based adaptability measure is an alterna-
tive in which we identify characteristics of the prod-
uct architecture that are conducive to change and quan-
tify that characteristic for a given design. In the cur-
rent implementation, this metric is computed using spare
power (P ), spare mass on bus (M ), and spare mass on
launch vehicle payload (L) (see Figure 4); the more they
are, the more possibility for adaptation to changes. The
architecture-based adaptability measures for a given de-
sign, among all n candidate designs, are then computed
as: Xi = Pi/(MAX

1≤j≤n
Pj), Yi = Mi/(MAX

1≤j≤n
Mj), and

Zi = Li/(MAX
1≤j≤n

Lj). Unlike valuation-based measure,

we do not need to know the concrete set of possible
changes to compute this adaptability measure.

The overall-adaptability measure of a given ith design is
computed as a weighted sum of all adaptability measures:
Ai = w1 × Ri + w2 × Xi + w3 × Yi + w4 × Zi with

Σ
1≤j≤4

wj = 1.

Design components: As shown in Figure 4, for each
design, we output the detailed component composition such
as: spacecraft-bus (frame) used, launch-vehicle (rocket)
used for each module, and on-board cameras/imagers and
other equipments (e.g., communication). The detailed
composition will help the human designer, when using
FRACSAT, to analyze each design at a detailed component
level.

Other design information: Additionally, the planner also
outputs various architectural information, as identified by
experts, that are useful for the designer to access the qual-
ity of each design, such as spare mass and power on the
bus (frame) and launch vehicles – indicating the flexibility
in which additional equipments can be put on and launched
along with that particular spacecraft design.

Uncertainty & Risk in FRACSAT
Risks to the mission and outcome uncertainty are important
to mission designers. For a given design, PlanVisioner
computes a set of final results based on possible outcomes
of a given uncertain event. In relatively simple cases, the
entire set of outcomes is generated, with each outcome an-
notated with its probability of occurrence. In more complex
situations, where it is computationally infeasible to generate
and store the entire set of outcomes, a statistical profile of
that set is generated using Monte Carlo sampling (Michael

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 59



Design Navigation 
& Control Window 

Mission 
Requirement 

Summary 

Highlight & 
Filtering based 

on different 
Quality Measures 
(adaptability, risk) 

Point Design 
detailed-view 

Window 
 

X axis: cost 
Y axis: utility 

(degree of satisfying 
mission requirements 

Important 
Information 
about the 

selected Design 
(for analysis) 

 
see Figure 4 

Total of 13243 
Feasible Designs 
for this Mission 

Figure 6: Analysis pane displaying FRACSAT designs

2002).

Examples: Instead of a launch rocket functioning correctly,
it might explode or otherwise fail to deliver its payload to
orbit. New components such as a new camera based on
emerging technologies may have uncertain costs, since the
cost of the technology may change as it is being developed.
Supply chain disruptions and other delays in availability
of a component may cause slips in the launch schedule,
affecting both the mission utility and costs.

Currently, PlanVisioner represents risks as discrete events
with two possible outcomes, each with an associated prob-
ability. It also represents the uncertainty associated with a
measure (e.g., cost, schedule deadlines, component perfor-
mance metrics) using a triangle distribution, comprising a
triple of low, expected, and high values. Selection of the
triangle distribution as FRACSAT’s default representation is
due to its advantage in situations of very limited informa-
tion such as the development of new technologies, or the use
of novel combinations of existing technologies (of Defence
2007).

When computationally feasible, PlanVisioner explores
all interactions of these risks and their ensuing effects on
cost and utility, weighted by the probability of such occur-
rence. The results are used to compute intervals for the user-
specified level of confidence. At present, we have focused
on launch vehicle failure and launch delay risks, though the
method can be extended to reason over many other forms of
risk.

As mentioned in the previous section and shown in the ex-
ample output (Figure 4), quality measures affected by risk-
related computation include the expected utility and cost,
the standard deviation, the minimum and maximum cost and

utility values for a 95% confidence interval.

Empirical Evaluation
Our PlanVisioner software is written in C++ and has been
compiled for and tested on multiple platforms, including
Windows, Linux, and Mac.

We have created several benchmark sets with different
component libraries and classes of mission requirements,
each set contains more than 10 problems varying by: (1)
the type of components involved; (2) number of components
for each type; (3) complexity of the mission requirements.
In all cases, the component library contains actual publicly
available spacecraft component specifications and reliability
measure. For the mission requirements, we use the most
common mission scenarios. Overall, there are up to: 21
components, 6 launch sites, up to 4 fractions, 2 objectives, 3
requirements, 10 required capabilities, approximately 5-year
of mission duration, and 22 utility functions.

For the set of simpler surveillance objectives, our software
found over 156,000 distinct designs, each contains no more
than three fractions, completing the search in less than 30
seconds. In a more complex scenario sets, the PlanVisioner
has found up to 90K solutions within up to an hour of search
time. All experiments were run on either Windows or Linux
servers with 4-8 GB of RAM. When the problems are too
complex and take too much planning/search memory to find
all designs, switching from best-first-search to depth-first-
search helps reduce the memory consumption.

All designs when found and analyzed by PlanVisioner
are displayed to user for further investigation through the
Analysis Pane within the FRACSAT’s GUI. Figure 6 shows
the analysis pane of an exemple scenario. In this particular
example, PlanVisioner found 13243 designs in about 90
seconds. There are two navigation windows, the smaller
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Figure 7: Detailed-view window with Show Uncertanty option:
design cost and utility ranges are shown besides the expected val-
ues.

control/summary window at the top-left corner is used to
select any smaller subset of designs. The detailed-view
window at the top-right corner, which can be zoomed-in/out,
displays in more details all designs selected in the control
windows. The mission requirement summary pane is at
left-middle. The detailed information (similar to the one
in Figure 4) is shown in the lower-right corner. At the
lower-left corner, the Visual Controls pane allows users to
use different filters when viewing valid designs in the main
window (including putting bounds on cost/utility). In this
figure, the adaptability filter is shown where designs are
color-coded according to their adaptability values. Figure 7
shows an example of the main analysis windows when show
uncertainty option is selected: each individual design’s cost
and utility value is expanded from a single point into ranges
of [min,max] value with 95% confidence level.

Effectiveness of Duplicate & Symmetry Detection:
duplicate and symmetry detection helped greatly both in
terms of speeding up the exhaustive search process and also
in significantly reducing the number of designs being shown
to the user. In one instance, the PlanVisioner algorithm
found 912,672 designs after 8,031,080 expansions in 172
seconds. After activating symmetry detection, we found
that only 156,848 designs are truly unique, which can be
computed in 29 seconds. In this particular test case, given
the upper bound of 3 fractions on each fractionated design,
the improvement achieved by symmetry detection is a factor
of 6 (= 3!). In general, the savings is O(n!), where n is the
maximum number of fractions allowed.

Uncertainty & Risk Computation Performance: Because
our algorithm is able to perform either an exploration of all
combinations of events or a Monte-Carlo simulation, the
user can choose to trade off between performance and so-
lution quality. For risks of launch delay and launch vehicle
failure, for example, with three fractions we would have to
explore a tree of 22×3 possibilities and compute the cost and
utility for each of these combinations. Similarly, with four
fractions we would have to compute 22×4 possibilities. This
problem grows exponentially with the number of risks and
fractions, so we limit this exact computation to only risks
that a user might believe to have low likelihoods of occurring
but have high impact on cost and utility, otherwise known as

“black swans”. The effect of all other risks are computed
by Monte-Carlo sampling such as with component cost un-
certainties. We have found that assessing launch risks and
component costs with 10,000 Monte-Carlo samples provides
a reasonable response time of a few seconds to the user. The
leaves from the combinatorial search tree as well as the sam-
ples from the Monte-Carlo method are used to determine the
confidence intervals for cost and utility. As shown in Fig-
ure 7, each design is a dot represented on the cost-utility
plot, with error bars representing the 95% confidence inter-
val for the cost or utility value of the corresponding design.

Related & Future Work
There are previous work on utilizing planning & scheduling
and optimization techniques in spacecraft and mission de-
sign, especially work done at the Jet Propulsion Lab (JPL).
They range from applying to a particular mission (Knight
et al. 2012) to a metaheuristic optimization framework that
can be applied and adapted to solve multiple problems re-
lated to spacecraft designs (Fukunaga et al. 1997). Perhaps
the most closely related to our work is Smith et al.’s (2000)
in which a planner is used to generate mission plan to best
satisfy mission objectives while staying within constraints
(e.g., cost, mass, and operability). This allow mission engi-
neers to evaluate candidate designs against a given mission
scenario. While previous work have gone to deeper length
with test on actual missions, which we haven’t, our work
is different in the sense that we automatically generate all
possible designs along with the most suitable mission plans
that satisfy all hard constraints. This is in contrast to finding
the best mission plan for a given design or evaluating cost
surface for a particular component design.

The PTDL modeling language used in this project share a
lot of similarities with the standard PDDL2.1 modeling lan-
guage (Fox and Long 2003). The main extensions are: (1)
the ability to model conditions and effects happening at any
point during the action duration, and (2) it supports multi-
valued variable natively, similar to PDDL3.1. The state rep-
resentation of PlanVisioner is based on timeline representa-
tion developed within the Plantrol project (Do and Uckun
2011).

Computation of risk and uncertainty is commonplace.
However, there is novelty in the FRACSAT application of
these computations to the interrelated factors of cost, sched-
ule and performance (utility) in the design of space system
architectures. For risk, conventional design practice is to as-
sess risks individually (e.g., via a 5x5 risk matrix) and plan
the mitigation of the most serious of them. For uncertainty,
conventional design practice is to hold program reserve (e.g.,
budget margin), with the fallback of descope options, as the
approach. While these practices might have proven suffi-
cient for monolithic architectures, the evolution to fraction-
ated architectures exacerbates the complexity of the design
challenge, and motivates the FRACSAT approach to explic-
itly compute the interrelated effects of risk and uncertainty.

Our fractionated spacecraft design problem introduces a
challenging application domain, including many features
that are of interest in planning and search community. The
goal description can be defined by different teams of scien-
tists with potential conflicting, and thus may not be fully sat-
isfied (i.e. soft goals). This over-subscription planning prob-
lem has been motivated and formalized by Smith 2004, and
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several approaches to solving this problem based on heuris-
tic search framework (Benton et al. 2009) and a method
of compilation to planning with action costs (Keyder and
Geffner 2009) have been devised. The goal conditions in
our domain may also contain scientific “outcomes”, such as
the number of soil images, during some specific interval of
time. Such time-dependent goals have not been much con-
sidered by planning researchers.

While utility values of multiple soft goals are combined
into a single objective function in over-subscription plan-
ning, several criteria in our design problem are not com-
mensurable, and thus need to be optimized simultaneously.
Though multiple objective search problem has long been
considered in AI (c.f., (Stewart and White III 1991; Mandow
et al. 2005; Mandow and De La Cruz 2010)), few plan-
ning work considers this realistic planning scenarios. The
MO-GRT planner (Refanidis and Vlahavas 2002) derived
a heuristic for state-space planners to find a most preferred
plan, but can not handle prioritizing criteria of interest in
a hierarchical fashion. On the other hand, Nguyen et al.
(Nguyen et al. 2009) considers optimizing plan makespan
and total execution cost at the same time, returning a repre-
sentative set of plans to the user. It therefore shares similar
motivation with ours where we are interested in presenting
set of designs to the user on the space of design cost and
mission utility.

As mentioned earlier, the users in our domain are inter-
ested in multiple requirements, which are modeled with
different utility functions in our system. Such functions, in
order to reflect realistic situations, can be complicated for
the planner to optimize, and in fact planning with non-linear
objective functions has not been paid enough attention in the
planning community. Recently, Kawas et al. (Kawas et al.
2011) considers a planning problem with risk-averse utility
function and formalizes it as both a mixed-integer nonlinear
formulation and stochastic constraint satisfaction problem,
tacking the function directly. Solving a risk-sensitive
planning problem in MDP setting with one-switch utility
function, Liu and Koenig (2005) takes different approach
by approximating the function as multiple linear functions,
and thus enabling optimization algorithm based on value
iteration. We believe that these lines of work need to be
closely considered in the community to bridge the gap
between domain-independent planning techniques and
real-world applications like ours.

Future Work: The main challenge that we want to address
is related to the lack of the complete knowledge of user pref-
erence model. Even though the software needs to eventually
return all designs so that it can guarantee the completeness
and provide the user’s assurance that there is no legal de-
sign that is overlooked (this is important in mission-critical
task), we would like to return designs that are more likely
to be valuable and “interesting” to human designer (i.e., the
ones that are more likely to be selected as the final design)
earlier in the search process. This will allow the designers
to inspect them closely while other (hopefully less interest-
ing) designs are found. In other word, let S be the set of
designs that the planner has found and retuned to the hu-
man designer (|S| = 0 at the beginning and expands in real-
time), we would like S to be the most rep representative set
of “good design” at any moment during the planning/search

process9. We currently looking into extending the diverse-
plan set finding framework (Nguyen et al. 2009) to adapt to
the the metric measuring plan set quality in this domain.
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Abstract
Finding the optimal solution for a scheduling problem
is hard, both from a computational perspective and be-
cause it is frequently difficult to articulate what the user
wants. Often there are a range of possible key perfor-
mance indicators (such as makespan, resource utilisa-
tion, and priority of tasks), and thus there can be many
objectives that we want to optimise. However, it will
typically be hard for the user to state numerical trade-
offs between these objectives. Instead, it can be helpful
if the user can explore the solution space themselves, to
find which compromises between objectives they prefer.
This paper demonstrates the use of Multi-valued De-
cision Diagrams in consideration of scheduling a real
maintenance problem, namely the scheduling of Irish
Navy dockyard maintenance. We show how candidate
schedules can be compiled into MDDs, based on their
associated Key Performance Indicators (KPIs). This
representation allows the possible values of KPIs to be
restricted by the user, and achievable values of other
KPIs can be quickly determined, thus enabling fast it-
erative interaction with the user in order to achieve a
satisfactory balance between the KPIs. We experimen-
tally compare the performance of the MDD with that of
a database, showing that the MDD can be considerably
faster.

1 Introduction
Generating a good schedule is a complex task, for which
highly optimised methods and software have been devel-
oped, see, e.g., (Brucker 2004; M.L.Pinedo 2008). This is
especially true when there are multiple, possibly conflicting,
objectives. There are several approaches for dealing with
this problem, ranging from a simple linear combination of
the objectives (for example, used by (Berrada, Ferland, and
Michelon 1996)) to Pareto-based evaluation (such as em-
ployed by, e.g., (Johnston and Giuliano 2011)). However,
when building a scheduling support tool, the clients’ require-
ments and priorities are often unclear, even to themselves.
As a consequence, it takes significant effort to elicit these
from the end-user (van der Krogt, Little, and Simonis 2009).
In the past, we have found that prompting the user with a
schedule can generate feedback regarding what they want

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of a schedule. This can be used to produce another sched-
ule, and over the course of several iterations, it is possible to
learn the user’s preferences.

However, the priorities are often subjective and can
change between actual instances of a problem. It is there-
fore desirable to have ways of allowing the user to explore
the possible solution space interactively—in particular, by
putting bounds on the key performance indicators (KPIs)—
before settling on a workable solution to move forward with.
In order to facilitate this idea we need to generate sufficient
compact compiled schedules in advance and to store them in
such a way that makes navigation through them easy.

This paper proposes a system using Multi-valued Deci-
sion Diagrams (MDDs) to achieve this. In particular, it sup-
ports the Irish Navy in solving a maintenance scheduling
problem. Initially, schedules, in the form of their key per-
formance indicators, are compiled into an MDD. The KPIs
can include, for example, such measures as makespan, util-
isation of resources and duration of certain tasks. From the
MDD, the system can efficiently retrieve the possible ranges
of the KPIs, and show what is available in terms of pos-
sible schedules and their performance indicators. The user
can inspect those, and focus on particular classes of solu-
tions by constraining the KPIs, such as by enforcing that the
utilisation of resource X should be at least 60%. The MDD
can then be used to update the ranges of the indicators by
enforcing the constraints proposed by the user. In parallel,
each solution in the form of a set of KPIs has an associated
actual schedule which the user can inspect at any time. This
gives the user an end view to make a further judgement of
choosing this plan or continuing searching.

The benefits of such a system are two-fold: (i) it takes
away the burden of having to fully specify the desired be-
haviour; and (ii) it allows for a more flexible system where
the user can easily vary preferences from one instance to the
next. Also, since it puts the user in control, they may more
easily accept the outcome of the tool, which does not always
happen (see, e.g. (Fagerholt 2004), discussing vessel fleet
scheduling).

This paper focuses not on the scheduling model (for that,
we refer the reader to (Boyle et al. 2011)), but rather on the
system around it. The remainder of this paper is therefore
organised as follows. Section 2 briefly describes the mainte-
nance scheduling problem; Section 3 discusses how we use
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MDDs for representing achievable combinations of KPI val-
ues. The system architecture and experimental evaluation is
described in Sections 4 and 5, and Section 6 concludes.

2 Context: Irish Navy Maintenance
Scheduling

The context of our work is a maintenance scheduling prob-
lem on sea-going vessels for the Irish Naval Services. Their
maintenance/refit policy across all their ships is based on
a 28 day period (or 20 working days) every year. During
that time, a team of specialist fitters, riggers, electricians and
plumbers are employed at the dockyard to carry out the ma-
jority of tasks associated with the maintenance. Ideally, the
schedule will have all the tasks completed within the time
window without the need for unplanned outsourcing. Re-
garding the evaluation of a schedule, there are many crite-
ria of interest, expressed as KPIs, representing utilisation of
different resources, durations of activities, and so on.

The problem and our solution approach is described in
detail in (Boyle et al. 2011); here we present only a short
overview to give the user some context to the problem at
hand. The constraints present in this problem can be divided
into the following categories.

Resource Constraints There are two types of
labour/equipment resources identified. The first type is
the type one commonly sees in scheduling, which is
dedicated to a single task for its entire duration (e.g. a
welder replacing a piece of piping). The other type are
those which are spread across a number of tasks at the
same time in a supporting role such as cranes and foremen.
A limit is imposed on how many tasks can be supervised
simultaneously. The tasks are constrained generally in their
durations, although several can be done in a variable amount
of time depending on the number of resources assigned to
it.

Space Constraints The restricted space on a ship can
mean that it is sometimes difficult for two or more tasks to
take place in the same area, or use the same access routes.
The Naval Dockyard (NDY) (human) scheduler has already
indicated which areas these are and hence which tasks are
affected. For the same type of reason, tasks involving gas or
welding, even in a large area, may require other tasks to be
absent.

Temporal Constraints There are some cases where one
task must follow another sequentially for logical reasons.
Examples are Deammunition before Magazine Service, and
Remove Turbo before Rebalance Turbo.

Other Constraints The granularity of time is half a day
since this is the minimum the NDY scheduler currently al-
locates any task to a person. Using a scheduling model, it is
easy to change this, and future work could look at the pos-
sible merits of adjusting the granularity. Of particular sig-
nificance to scheduling is the task of engine service which
takes the full 20 days to complete and sets a lower bound on
completion time.

Objectives The objective is to maximise the number of
tasks carried out internally, before any essential work is out-
sourced within the scheduling window. Beyond that, it is to
finish the tasks as early as possible.

3 Background: MDDs
Multi-valued Decision Diagrams (MDDs), which gener-
alise Binary Decision Diagrams (BDDs) (Bryant 1986;
1995) to non-Boolean values, have been studied for exam-
ple in (Amilhastre, Fargier, and Marquis 2002; Wilson 2005;
Andersen, Hadzic, and Pisinger 2010). An MDD is a di-
rected graph with a unique source (i.e., initial) node and a
unique sink (i.e., final) node. Each edge is associated with
an assignment to a variable. Paths from Source to Sink cor-
respond to assignments to a set of variables, and so the MDD
represents a set of complete assignments via its set of paths.
This can be a very compact representation, since the number
of complete assignments represented can even be exponen-
tial in the number of nodes in the MDD.

We use MDDs as a compact representation of KPI val-
ues achievable by a consistent schedule for our problem. We
have one variable for each KPI; the possible values of the
variable represent small ranges of possible values for the
KPI. An illustration of such an MDD is given in Figure 1.
Here, the first variable might represent the KPI “Utilisation
of Plumbers”, with four possible value ranges. The second
variable could represent the duration of some particular task.
A path in the MDD now corresponds to a feasible assig-
nent to all KPI variables, which corresponds to one or more
schedules.

From such an MDD we can efficiently compute a number
of things. Firstly, an MDD can efficiently return the number
of possible designs remaining at any time, given a number of
choices having already been made, simply by counting the
remaining paths in the graph. For example in Figure 1, there
are six paths left. This means that the user is informed of the
size of the remaining search space at any time, helping the
user in understanding the impact of their decisions. We can
also use this information to guide the user to those variables
whose choice makes the biggest impact.

Secondly, MDDs can invoke propagation between cate-
gories. When a particular choice/value is made for a sched-
ule KPI, then all other associated edges of that choice in the
MDD are removed. All paths going through those edges are
therefore also no longer present in the MDD, thus removing
some values in others choices. The remaining edges there-
fore represent the possible values for decisions within this
new solution space. For example, suppose the user restricted
the value of the first (topmost) variable to be one of the two
edges on the left. This leaves only four paths in the MDD,
none of which goes through the second value of the last (bot-
tom) variable. Thus, this value can be removed from the set
of possible values for this variable.

Thirdly, optimisation of any numerical decision simply
becomes one of choosing the lowest (in the case of minimis-
ing) value and eliminating all the other edges for that par-
ticular KPI before propagating. This will leave at least one
single path through the network representing the optimal set
of decisions around the best value.
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Figure 1: An example MDD

All of the above operations can be performed in time lin-
early dependent on the size of the MDD; indeed some of the
results in Section 5 make this apparent.

4 System Architecture
The system described in this paper is comprised of five inter-
connected components:

1. a schedule generator to generate the initial set of sched-
ules;

2. a database to store the schedules found;
3. an MDD server that stores the MDD generated for the set

of solutions;
4. the user interface to allow the user to interact with the

MDD server; and
5. a local search module to improve upon the schedules re-

trieved from the DB.
The following subsections describe each component in turn.

Schedule Generator The role of the schedule generator is
to generate a large sample of schedules from a list of tasks,
resources, resource assignments and schedule constraints
provided by the user. In addition, the schedule generator cre-
ates an MDD from the values of KPIs derived from the gen-
erated schedules. Since our aim was to explore the useful-
ness of the MDD structure, the generator is very straight-
forward.

It creates schedules by iteratively altering the duration of
each task and finding valid schedules for each task duration
combination (if one exists). The schedule generator begins
by calculating the minimum and maximum duration that is
possible for each task, given the resources available. It then
breaks up the minimum/maximum range into a series of seg-
ments, resulting in a list of possible durations for each task.
For each of these durations, the generator first checks to en-
sure that a schedule is possible for a given task duration.
If it is not, the task duration in question is blacklisted and
not employed further. The generator then iterates through all
possible combinations of task durations and attempts to gen-
erate schedules for each.

For each combination of task durations, the generator may
find a large number of solutions. Many of these solutions

will represent schedules that are very similar to one another
which is not desirable from a user perspective. To limit this
effect, each generated schedule is checked against previous
schedules to ensure that it is significantly different. For sim-
plicity, we use task start time as a symmetry breaking strat-
egy. To be considered for inclusion, a schedule must have
task start times that are different from previous schedules
for the same set of task durations. To achieve this, we only
include a candidate schedule if its task start times differences
from other schedules are above a given threshold.

If the schedule is considered sufficiently different, an
XML representation of the schedule along with the values
for its KPIs are stored in the database (see the next section).
A GANTT chart is also generated using GNUplot for each
schedule and stored.

Once all the schedules have been stored, the generator
builds an MDD from the KPI values in the following man-
ner. For each KPI, its minimum and maximum values are ob-
tained from the schedules. The minimum/maximum range is
then broken into intervals and each interval for each KPI is
added to the MDD and the MDD is stored on disk.

Database The database stores information on tasks, re-
sources, the generated schedules and their corresponding
KPI value assignments. The database is a MySQL database
comprised of 6 tables. The schedules table holds the num-
ber of valid schedules (solutions) that have been found for a
given task duration combination. These solutions are stored
in the solutions table (each set of task durations may produce
a number of valid schedule solutions). The KPI Assignment
table holds the KPI values for each solution.

MDD Server The MDD server application loads the
MDD from disk and listens for requests from the user in-
terface to provide a number of functions:

1. Get the list of KPIs and their current value ranges;

2. Get the list of available schedules;

3. Select a value range for KPIs and update the MDD; and

4. Fetch schedule data from the database.

User Interface The user interface (see Figure 2 for a snap-
shot of the relevant part) allows the user to interact with the
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Figure 2: Part of example User Interface

MDD Server by selecting ranges of values for each KPI, by
moving the associated min and/or max sliders. The user can
alter the desired range of a KPI by moving the sliders. For
example, by dragging the left-most slider of the top range
to the right, the user can specify that their desired value for
the minimum “Plumber Utilisation” is more than the current
value of 10%. Each time the user alters the range of a KPI,
the MDD Server updates its MDD and returns a list of avail-
able KPI values remaining for this and other KPIs. These are
then updated in the user interface, by automatically moving
the min and max sliders to their new minima and maxima.
For example, dragging the minimum plumber utilisation to
20% may result in the Alternator Removal duration chang-
ing to 4–6, which is indicated by the relevant slider moving.
The user can then go on to restrict other KPIs. Maximising
(minimising) a particular KPU can be achieved by moving
the min slider (max slider) to the position of the other slider.

It is important to realise that although each of the values
of a particular KPI can be achieved, this does not hold for
arbitrary combinations of values for KPIs. When a choice
in range alters the available options on another KPI, these
are highlighted, so the user can clearly see the impact of
their choices. An undo-mechanism allows the user to retract
choices again (even out-of-order).

“Local Search” for tweaking schedules Once the user
has set KPIs to their satisfaction and obtained a set of sched-
ules from the system, they may find that while some sched-
ules fit their constraints, they are prepared to relax certain
KPI values in order to achieve better results elsewhere. For
example, though they might like the KPIs of a particular
schedule, they would prefer to increase the utilisation of fit-
ters. This is similar to solution critiquing in recommender
systems (McGinty and Reilly 2011; Ricci et al. 2011). How-
ever, adjusting KPI values manually at this point would be-
come a trial-and-error process and so we devised a simple
local search mechanism to perform this type of search auto-
matically. Once the user has selected a schedule of interest,
they have the option of selecting a KPI that they would like

to either increase or decrease in value. To continue the exam-
ple, the system might present the user with a list of choices
such as including a different set of tasks or decreasing the
duration of certain tasks by employing more fitters.

Again, the MDD data structure is helpful in this task.
Given a particular new value or range that we want to
achieve, the question essentially boils down to finding a new
path through a particular edge (or one of a set of edges, as
the same range or value may occur multiple times). This can
be done as follows. For a particular edge, perform a best-first
search both “upwards” and “downwards” to find nodes in the
tree that are included in the current solution set. We define
a cost function for each of the potential paths, with the cost
being the number of edges whose values are not currently in
the solution set. In this way, the cost reflects the number of
changes we have to make to existing choices. Having found
a new path, we can propose it to the user as a way of im-
proving the desired KPI.

The procedure is illustrated in Figure 3. This shows only
the upper part of an MDD for clarity. The user wants to in-
clude a value or range for the third variable. This occurs in
the graph in three places, denoted by the numbers 1–3:

(1) This occurrence can be reached by expanding the restric-
tions on the second variable to allow the value or range
represented by edge a, a cost of one change;

(2) This occurrence requires relaxing the restrictions on both
the first and second variable, corresponding to edges b and
c, a cost of two changes; and

(3) This occurrence can be included by increasing the possi-
ble values of the first variable (edge d). This comes at a
cost of one change, as it makes use of edge e, which rep-
resents a value for the second variable that is still included
in some other valid path.

5 Experimental Evaluation
The justification for building an MDD to store possible user
choices about schedules is motivated primarily by the effi-
ciency at which such choices can be made and the model up-
dated. In order to test whether our MDD approach has been
successful in this regard, we conducted three experiments to
compare the approach with the most obvious alternative of
employing a database directly to search for solutions each
time a user makes an adjustment to a KPI value.

The experiments are designed to simulate user interac-
tions with the system in the form of repeated KPI min and
max value adjustments. We compare our approach with a
pure database system which uses SQL queries to retrieve the
new minimum and maximum value ranges for each KPI as
each choice is made. The experiments use data taken from
Irish Navy ship maintenance schedules and consist of 64
tasks taking place over a fixed makespan utilising 47 re-
sources. For our experiment we consider 2 types of KPI:
task duration and resource utilisation (i.e., the amount of
time that a resource is utilised over the entire makespan).
This gives a total of 111 KPIs and the experiments employ
1329 schedules. (In practice, a human scheduler may choose
to focus on a smaller set of KPIs.)
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Figure 3: Illustration of the local search procedure. Shown is the upper part of an MDD

Experiment 1 For the first experiment, a number of KPIs
(between 1 and 111) are randomly selected for adjustment
(with each KPI being chosen only once). Each selected KPI
is set to a random range between its currently available mini-
mum and maximum range, after which the MDD is updated.
The times taken to retrieve the new minimum and maximum
KPI ranges for each adjustment were measured for both ap-
proaches and the experiment was repeated for 19 runs. Fig-
ure 4a shows the average time taken for each system to re-
spond to a KPI adjustment. It is clear from this figure that the
time taken to make these adjustments is significantly lower
for the MDD approach than for the database approach.

Experiment 2 The second experiment initially sets all KPI
value ranges to their minimum and maximum. Then, the
range of a single KPI is altered, after which each of the
remaining 111 KPIs are incrementally altered one by one.
Again, the MDD is updated after each alteration. In each
case, the value of the adjustment is randomly chosen be-
tween the current minimum and maximum range of the KPI
being altered.

Figure 4b shows the average time taken for each KPI
choice to be made for the MDD and database approaches
(averaged from 20 independent runs). For low numbers
of choices made, the MDD approach requires significantly
more time than the database approach due to the initial over-
head of loading the MDD. However, once the number of KPI
choices reaches 5 the MDD approach begins to significantly
outperform the database approach.

The performance difference between the MDD and
database approaches is further illustrated by Figure 4c,
which shows the time taken for each system to respond as
more and more choices are made. As the number of choices
increases, the time taken for the database approach to find
new minimum and maximum ranges for each KPI increases
linearly, while the MDD approach remains almost static.

Experiment 3 The final experiment replicates the setup
of Experiments 1 and 2 but for each run, the schedule con-
straints are randomly perturbed. The goal of the experiment
is to examine whether the advantages of the MDD approach
are not limited to a single set of schedule constraints. The
perturbations proceed as follows. A number of resources to
perturb is selected at random and the value for each resource

is multiplied by a number randomly chosen between 0.05
and 2.0. The perturbation step occurs for each run of the ex-
periments.

The results in Figures 4d, 4e and 4f show that the ap-
proach maintains its advantage even under different initial
constraints.

6 Discussion
An often occurring problem in real-world scheduling is the
fact that there are multiple, conflicting objectives. Often,
users find it hard to describe how the system should trade
off one objective with another. The context of this work is a
navy maintenance scheduling problem in which we ran into
exactly this problem.

Configuration and recommender systems, such as de-
scribed by (Hadzic et al. 2004; Nicholson, Bridge, and Wil-
son 2006; Andersen, Hadzic, and Pisinger 2010) have used
compact compiled representations of sets of solutions. The
main purpose of such representations is to allow fast in-
teraction with the user, allowing extra (unary) conditions
(including assigning a value to a variable) to be quickly
added and retracted, and the consequences made visible to
the user. In this paper we explore a similar system for pre-
senting the possible schedules for the navy problem, based
on MDDs as the representation, influenced in particular by
the use of solution critiquing (McGinty and Reilly 2011;
Ricci et al. 2011). The motivation for this kind of function-
ality seems even stronger for scheduling problems, because
of the computational difficulties of solving scheduling prob-
lems, and the exponential number of schedules (even Pareto-
optimal ones).

Our results show that the approach can work well on our
problem. The MDD approach outperforms a database for the
same task, which would be the obvious choice. This holds
both for the original problem we faced, but also for random
perturbations of that problem.

Future work includes a broader exploration of our
methodology. Having shown promising results in one do-
main, we are keen to explore other types of scheduling prob-
lems to see if we can achieve the same results. We are also
looking into cleverer ways of finding the initial set of solu-
tions. This is a time-consuming step, so any reduction in the
number of schedules we need to compute, while retaining
the same or similar coverage would be a big benefit.
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(a) Average time per choice made (random
choices) (b) Average time per choice made (c) Total time taken for choices

(d) Average time per choice made (random
choices) (e) Average time per choice made (f) Total time take for choices

Figure 4: Experimental results. Figures (a), (b), and (c) are based on results from the actual problem; (d)–(f) are based on
random variations of it

Finally, we are looking into a more advanced User Inter-
face. We want to explore different ways of showing the re-
lationships between KPIs (e.g. indicating which other KPIs
are most influenced by making a choice for a particular KPI)
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Abstract

Traffic congestion management is a global challenge
that engineers, city planners, policy makers, and the
public at large are likely to contend with for decades.
It is unlikely that traditional physically-centered mit-
igation strategies by themselves will be successful or
sustainable in the current economical and environmen-
tal climate. Numerous strategies have been proposed to
construct Intelligent Transportation Systems (ITS), by
incorporating sensing, information, and communication
technologies in transportation infrastructure and vehi-
cles. Through networks of sensors, recent cutting-edge
efforts can provide real-time traffic monitoring, visual-
ization, and some rather limited vehicle-based rerout-
ing, but do not offer immediate, coordinated system-
level relief to the traffic congestion problem.
In this position paper, we propose a concept on adap-
tive route planning to alleviate traffic congestion in a
metropolitan area using stochastic route planning cou-
pled with real-time traffic reconstruction. We demon-
strate some of our early results on our traffic route plan-
ner that can more accurately predict future traffic con-
ditions, which results in a reduction of the travel time
for those vehicles that use our algorithm (Wilkie et al.
2011).

Introduction
Traffic congestion management is a global challenge that en-
gineers, city planners, policy makers, and the public at large
are likely to contend with for decades. Besides the obvious
energy and environmental impacts, traffic congestion im-
poses tangible costs on society. It is unlikely that traditional
physically-centered mitigation strategies by themselves will
be successful or sustainable in the current economical and
environmental climate. Numerous strategies have been pro-
posed to construct Intelligent Transportation Systems (ITS),
by incorporating sensing, information, and communication
technologies in transportation infrastructure and vehicles.
Many of these efforts tend to perform off-line simulation
and decoupled analysis. Most existing traffic simulations fo-
cus on either microscopic (e.g. agent-based simulation) or
macroscopic (e.g. flow-like) behaviors; few have examined
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Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the intriguing interplay across different physical scales in a
complex transportation system. Through networks of sen-
sors, recent cutting-edge efforts can provide real-time traffic
monitoring, visualization, and some limited vehicle-based
rerouting, but do not offer immediate, coordinated system-
level relief to the traffic congestion problem.

State-of-the-art route planners consider possible delays
due to traffic congestion based on current traffic conditions
and/or historical traffic data. Live traffic data can be col-
lected by loop-detectors, cameras, toll port data, and cell
phone localization. These systems provide the traffic veloc-
ity at certain locations at a fixed frequency (Brakatsoulas et
al. 2005), which can then be used for vehicles to plan around
congested areas. Live data alone does not enable predicting
future traffic conditions. For example, if a route is planned
to let a car arrive at a certain road in half an hour, the current
conditions may no longer be an accurate estimate for that
road 30 minutes later. This problem can be addressed by us-
ing a prediction scheme of the future traffic conditions based
on historical probabilistic data of traffic conditions at simi-
lar times of the day under the similar weather (Horvitz et al.
2005), (Nikolova, Brand, and Karger 2006), (Min, Wynter,
and Amemiya 2007).

However, given a large-scale system view of the entire
road network and the traffic in the system, such an approach
still has a problem: a route planner can affect future traffic
conditions by planning for a large portion of the vehicles,
thus making prediction based on current and historical data
insufficient. Instead, the route planner must also take into
account its own previous actions. For example, if a route
planner controlled every car in the system, historically con-
gested areas would be unduly avoided, causing congestion to
appear at the routes that the planning system has provided.
This is clearly the worst-case scenario, but the underlying
problem is that the historical prediction assumes that cars
tend to act the same way as they have historically, which
may no longer be the case if a route planner is controlling
the trajectories of all vehicles. We propose a novel adaptive
traffic route planner that uses the routes of vehicles that it
has planned based on current traffic condition to more ac-
curately predict future traffic conditions for vehicles whose
routes are subsequently planned (see Fig. 1). As a result, our
approach overcomes the oscillation issue in case of large-
scale adoption of traffic route planners.
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Our adaptive approach accounts for the fact that a route
planned for a car will cause a little extra traffic density at
the roads it will traverse. We use the predicted paths of the
route planner itself in addition to historical data to estimate
future traffic conditions. Assuming that a large percentage
of the cars use the route planning system, the collection of
all their planned routes can be used to accurately estimate
the future traffic conditions. Every car that queries the route
planner can then use this information to plan a route for it-
self. Its planned route is then used to update the estimate of
future traffic conditions for vehicles come in later in the road
network. Our experimental results suggest that our adaptive
route planner can more accurately predict future traffic con-
ditions, resulting in a reduction of the travel time for those
vehicles that use our algorithm.

The rest of the paper is organized as follows. In Section
2, we discuss background work related to our approach. In
Section 3, we detail the method used to update the historical
probabilistic prediction and the overall planning system. In
Section 4, we discuss the implementation and validation of
our method.

Prior Work and Background
Our work is perhaps most similar to that of (Nikolova et
al. 2006) and (Lim et al. 2009). In fact, our work directly
extends these methods to perform ‘adaptive’ routing. In
(Nikolova et al. 2006), the authors propose a method to op-
timally route cars given uncertain information about travel
times within a network. (Lim et al. 2009) provides an opti-
mization to the procedure that allows fewer paths to be ex-
plored, while optimizing for a specific arrival deadline, and
additional extensions were carried out in (Nikolova 2010)
and (Hua and Pei 2010).

Another area of similar work is the study of Dynamic
Traffic Assignment (DTA) done primarily in Civil Engineer-
ing. This problem involves flows of traffic from known ori-
gins to destinations (OD flows). The solution approaches at-
tempt to optimally route all the flows in order to maximize
aggregate or individual statistics. A summary of approaches
can be found in (Peeta and Ziliaskopoulos 2001). The most
relevant of these approaches are the simulation methods,
such as (Florian, Mahut, and Tremblay 2008). In these ap-
proaches, cars are iteratively routed and simulated. The sim-
ulation provides the estimate of the network state that is used
for the next iteration of routing. Over a number of iterations,
the routes settle into an equilibrium.

Our work is inspired by (Lim et al. 2009), which presents
an planning algorithm using graphs with stochastic (time-
invariant) edge costs. Their planner assumes a cost func-
tion that invalidates the “optimal substructure” property
of paths, which prevents using a straightforward A* algo-
rithm, and present an efficient approach to compute opti-
mal paths for such cost functions. In contrast, our algo-
rithm uses a simpler cost function that still makes it possi-
ble to use an A* search algorithm, but assumes time-varying
stochastic edge costs. We use insights from (Chabini and
Lan 2010) regarding the first-in-first-out property of traf-
fic that allows us to use A* even if the edge-costs are

time-dependent (in general, time-dependent edge costs pro-
hibit the use of A*). Typical traffic related planning ap-
proaches assume the edge cost to be given as travel times
(potentially time-varying and stochastic) (Lim et al. 2009;
Chabini and Lan 2010).

Our approach assumes the input data to be traffic densi-
ties of the road segments in the network, and we use the
fundamental diagram of traffic to translate these densities to
velocities and travel times. Maintaining densities allows us
to update the data with the routes that our system generate
to create an adaptive routing system. The observation that
the flow (and velocity) of traffic was dependent on the traf-
fic density was made in early traffic studies (Greenshields
and others 1935). Since then, the concept has been used as a
basis for continuum traffic simulation formulations (Siebel
and Mauser 2005) as well as in schemes to estimate the state
of traffic given sparse data, such as cell phone localization
signals(Work et al. 2010).

Approach
We assume the road network to be given as a directed graph
G = (V,E) consisting of a set of vertices V that model
road intersections and edges E ⊂ V × V that model road
segments between intersections. Associated with each edge
e is the capacity Ce, maximum speed vmax

e , and length `e
of the corresponding road segment. In addition, a stochas-
tic function ρe(t) ∼ N (ρ̄e(t), ρ̃e(t)) is maintained for all
road segments e that gives a normal distribution with mean
ρ̄e(t) and variance ρ̃e(t) of the traffic density of e at time t.
We assume this distribution is independent from the density
distributions at other road segments or at other times (sim-
ilar assumptions were made in (Lim et al. 2009)). Further,
we assume that the time-axis is cyclical (e.g. with a daily
or weekly period) and discretized into small steps, such that
only a finite amount of data is stored with each edge e. The
stochasticity of the density function models the uncertainty
about future traffic conditions as well as the variability of
conditions from day to day.

Our approach can be summarized as follows. We assume
that over time, different queries for optimal routes come in
from cars that use our adaptive planning system. If a query
comes in from a car i at a given time t0, we plan a route
for car i between its start node s and goal node g that opti-
mizes a cost function based on its expected travel time given
the current density functions ρe(t) for each edge e. Subse-
quently, assuming this car will actually follow the route it
was given, we update the density functions ρe(t) along its
route such that its presence is accounted for when a route
is planned for a subsequent car i + 1. This cycle continues
indefinitely with each query coming in for an optimal route
computation. As such, the planner is aware of the routes it
has suggested earlier, in order to optimally estimate future
traffic conditions.

We will first describe how an optimal route is planned for
a car given the stochastic density functions ρe(t). Next, we
will discuss how this plan is used to update the stochastic
density functions such that the presence of the car is ac-
counted for in future plans for other cars. Finally, we will
discuss how the problem of ”double-counting” cars can be
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Figure 1: A schematic picture illustrating the idea of our ap-
proach. A road network is shown with edge costs. (a) If a
route from s to g is requested, the optimal path is computed
(shown with thick arrows). If the car follows this route, the
densities and hence the edge costs along its path increases
(in this case with 1). In (b), the network with the updated
edge costs are shown. If a same query (s, g) comes in from
a subsequent car, it takes a different route (shown with thick
arrows) to avoid the increased traffic densities. Note that this
schematic picture does not illustrate the stochastic and time-
varying aspects of our approach.

Figure 2: The fundamental diagram relating traffic density
to travel speed.

avoided, which would occur when a car being routed also
appears in the historical data.

Route Planning
Density and Travel Time Given a query (s, g, t0) for a
car between a start node s ∈ V and a goal node g ∈ V
leaving s at time t0, we want to compute a route that mini-
mizes the travel time to g given the stochastic density func-
tions ρe(t). To relate density to travel time, we use the fun-
damental diagram, which is a well-known empirical concept
in traffic simulation research (Greenshields and others 1935;
Siebel and Mauser 2005; Work et al. 2010) that gives a map-
ping from the traffic density ρ to the average speed v on a
road segment e, given the maximum speed vmax

e and capac-
ity Ce of the road segment e. Let the function described by
the fundamental diagram be given by v = fe(ρ) (see Fig. 2).

Now, if a car arrives at the beginning of a road segment e
at time t, we assume the speed with which it can traverse the
road segment is given by fe(ρe(t)). The travel time τe(t) to
traverse e starting at time t is then given by:

τe(t) =
`e

fe(ρe(t))
. (1)

Since, the density function ρe(t) is stochastic, the travel time
is stochastic too. We approximate it with a normal distribu-
tion as N (τ̄e(t), τ̃e(t)), with mean τ̄e(t) and variance τ̃e(t)
given by the first-order Taylor expansion of τe(t):

τ̄e(t) =
`e

fe(ρ̄e(t))
(2)

τ̃e(t) =
(dτe(t)

dρ
[ρ̄e(t)]

)2
ρ̃e(t). (3)

For a path π = {e1, . . . , en} consisting of a series of
road segments when travel is commenced at time t0, the total
travel time τπ(t0) is given recursively by:

τ{e1}(t0) = τe1(t0) (4)

τ{e1,...,ek}(t0) = τ{e1,...,ek−1}(t0) + (5)

τek(t0 + τ{e1,...,ek−1}(t0))

Its mean τ̄π(t0) and variance τ̃π(t0) are hence given by:

τ̄{e1}(t0) = τ̄e1(t0) (6)

τ̃{e1}(t0) = τ̃e1(t0) (7)

τ̄{e1,...,ek}(t0) = τ̄{e1,...,ek−1}(t0) + (8)

τ̄ek(t0 + τ̄{e1,...,ek−1}(t0))

τ̃{e1,...,ek}(t0) = τ̃{e1,...,ek−1}(t0) + (9)

τ̃ek(t0 + τ̄{e1,...,ek−1}(t0)).

Cost Function Our objective is to find a route π that min-
imizes the expectation E[c(τπ(t0))], given a cost function
c(τ) on the travel time τ . We consider two cases here:
• Linear cost: The cost increases linearly with the travel

time: c(τ) = τ . Let pdfA(t) denote the probability density
function of normal distributionA. Then, the expected cost
is given by

E[c(τπ(t0))] =
∫ ∞
−∞

pdfτπ(t0)(t) · t dt = τ̄π(t0),

which is the mean of the travel time of route π when travel
is commenced at time t0.

• Exponential cost: The cost increases exponentially with
the travel time to more heavily penalize late arrivals:
c(τ) = exp(2wτ) for some weight parameter w. The ex-
pected cost in this case is given by

E[c(τπ(t0))] =
∫ ∞
−∞

pdfτπ(t0)(t) exp(2wt) dt

= exp(τ̄π(t0) + wτ̃π(t0)).
The result of minimizing for E[c(τ)] in equivalent to min-
imizing for log E[c(τ)]. Following this, the cost then be-
comes τ̄π(t0) + wτ̃π(t0), and is hence a linear combina-
tion of the mean and the variance of the travel time (Lim
et al. 2009).

Our approach works for either of these cost functions. In our
implementation we used the exponential cost function, for it
attempts to minimize both the mean and the variance of the
travel time.
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Planning Algorithm To find a path in the graph G be-
tween start node s and goal node g, we are confronted with
a shortest path problem in a graph with time-varying and
stochastic edge costs. In general, such problems are hard
(Lim et al. 2009; Chabini and Lan 2010), but in our case
we can exploit properties of the cost function that allow us
to a standard A* algorithm, which we will slightly adapt to
handle the stochastic travel times.

Firstly, both of the cost functions as defined above are ad-
ditive given the way the mean and variance of the travel time
are computed (see Equations (8) and (9)). That is,

E[c(τ{e1,...,ek}(t0))] = E[c(τ{e1,...,ek−1}(t0))] + x, (10)

where x is a linear combination of the second terms of Equa-
tions (8) and (9). Second, traffic observes the so-called first-
in-first-out property (Chabini and Lan 2010). This means
that arriving earlier at a node u in the graph will never pro-
duce a costlier route than a route that arrives later at u.
Note that this is not the case for graphs with general time-
dependent edge costs.

These two properties allow us to use the standard A* algo-
rithm, which is adapted to handle the stochastic travel times
along a route. The algorithm is given in Fig. 3. Instead of
maintaining a single cost value of each node u in the graph as
in standard A*, we maintain both the mean τ̄u and variance
τ̃u of the travel time of the current-best route from s to u. Ini-
tially, these are infinity for all nodes u, except the start node
s, for which they are zero. The heuristic value h̄(u) pro-
vides a lower-bound estimate of the mean travel time to the
goal g from a given node u, for which we use the Euclidean
distance between u and g divided by the largest maximum
speed in the road network. The heursitic value h̃(u) provides
a lower-bound estimate of the variance of the travel time be-
tween u and g, for which we use h̃(u) = 0. The functions
τ̄e(t) and τ̃e(t) which we refer to in lines 9 and 10 are given
by Equations (2) and (3).

Maintaining Density Functions
Once a route has been planned for a car, we wish to take its
presence into account when subsequent routes are planned
for other cars. Based on the route that has been suggested,
we can assume the car will follow it and add to the traffic
densities at the road segments along its route at the times it is
expected to traverse these road segments. At the same time,
not all cars on the road use our adaptive planning system,
and the system is not aware of the future plans of the cars
that do use our system but have not entered the road network
(yet). So, existing planned routes alone do not provide an
accurate estimate of future traffic data.

Blending Historical and System Data In order to predict
future traffic conditions, we let the density functions ρe(t)
used in the above algorithm be a combination of historical
traffic density data ρhist

e (t), and density data ρsyst
e (t) gener-

ated by route plans provided by our planning system. How-
ever, care needs to be taken that the historical data is partly
phased out when actual data of planned routes is included
in the densities, as to avoid cars being double counted. We
proceed as follows. Let α ∈ [0, 1] be the proportion of cars

TRAFFICA*(s, g, t0)
1: ∀u ∈ V : τ̄u ←∞, τ̃u ←∞; τ̄s ← 0; τ̃s ← 0
2: OPEN ← {s}
3: while OPEN 6= ∅ do
4: u← arg maxu∈OPEN {τ̄u + h̄(u) + w(τ̃u + h̃(u))}
5: OPEN ← OPEN \ {u}
6: if u = g then
7: return
8: for each edge e = (u, v) in G do
9: µ← τ̄e(t0 + τ̄u)

10: σ ← τ̃e(t0 + τ̄u)
11: if τ̄u + µ+ w(τ̃u + σ) < τ̄v + wτ̃v then
12: τ̄v = τ̄u + µ
13: τ̃v = τ̃u + σ
14: pred(v)← u
15: OPEN ← OPEN ∪ {v}

Figure 3: The modified A* algorithm to compute an optimal
route with respect to the exponential cost metric between
start node s and goal node g when traffic is commenced at
time t0. When planning has finished, the optimal route is
inferred by following the backpointers from the goal g.

that use our system to compute their routes. Further, let there
be a function β(∆t) ∈ [0, 1] that provides the proportion of
cars that will be on the road at ∆t time into the future which
are already on the road currently. We assume β(∆t) is time-
independent, and can be inferred from historical traffic data
on average travel times.

The traffic density ρe(t) as used in our algorithm for a car
starting travel at time t0 is then computed as follows:

ρe(t) = (1− αβ(t− t0))ρhist
e (t) + ρsyst

e (t). (11)

This can be explained by the fact that a fraction αβ(t − t0)
of all cars that will be on the road at time t have already
been accounted for at time t0 in the densities generated by
our system.

Updating Traffic Densities When a route has been
planned for a car by our algorithm, we wish to take its pres-
ence into account when subsequent routes are planned for
other cars. To this end, we update the density data ρsyst

e (t)
that only counts cars for which routes have been planned
using our adaptive route planning system. We update these
traffic densities as follows.

The algorithm above will give us a route π = (e1, . . . , en)
and distributions τu ∼ N (τ̄u, τ̃u) of the travel times from
the start node s to each node u along path π. Let edge e =
(u, v) be part of π. The car for which a path is planned will
be on e = (u, v) at time t with probability:

q(u,v)(t) =
∫ t−t0

−∞
pdfτu(t′) dt′ ·

∫ ∞
t−t0

pdfτv (t′) dt′, (12)

where t0 is the time at which the car commences its route π.
The above equation computes the probability that the car

both arrives at e before time t and leaves e after time t. The
density on e at time t is defined by the number of cars on e at
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time t divided by the length `e of e. Hence, the distribution
of the density ρsyst

e (t) at time t is updated as follows:

ρ̄syst
e (t)← ρ̄syst

e (t) + qe(t)/`e (13)

ρ̃syst
e (t)← ρ̃syst

e (t) + qe(t)(1− qe(t))/`2e, (14)

which follows from treating the distribution ρe(t) for each
edge e and for each time t as an independent Poisson bi-
nomial distribution consisting of a number of cars each
with a different probability of contributing to the density.
When the number of cars gets large, the Poisson binomial
distribution is well approximated by a normal distribution
N (ρ̄e(t), ρ̃e(t)). This justifies the assumption in the plan-
ning algorithm of Fig. 3 that ρe(t) is a normal distribution.

As the time axis is discrete, we only need to update a finite
set of density distributions along the route planned for the
car. We use the same discretization to compute the integrals
in Equation (12). We use the updated mean and variances for
the densities to route subsequent cars. This cycle of routing
cars and updating densities continues indefinitely.

Empirical Results
In this section, we present our empirical study of the perfor-
mance of our approach. Our hypothesis is that our system
plans routes that have, on average, lower travel times than
routes planned using the shortest path metric or stochastic-
historical prediction method, increasingly so when the pro-
portion of users of our system increases. This reinforces
the essential claim of our paper: by taking into account the
routes planned by the system itself, a planning system can
find routes with substantially shorter travel time.

We have validated our approach by calculating plans for
a fixed population of cars and queries using varying route
planning methods. The validation was done in four parts.
First, we compare our method with using a single path in a
network. Next, we compare the performance of our adaptive
route planning algorithm to using shortest path A* search-
ing. Next, we compare our algorithm to using stochastic-
historical prediction. Finally, we investigate the performance
of our algorithm as the percentage of total number of cars
that are controlled varies.

Traffic Simulation
To simulate the travel times of the cars in these experiments,
we use the same derivation as above. We calculate the esti-
mated travel times using the fundamental diagram and the
time-varying density data. This density data is then updated
for every car that travels the network. For these experiments,
we have added a cutoff-capacity to our road network edges.
This is the maximum density value the edge will be as-
signed, regardless of how many cars are routed on it. This
ensures that the planners we compare against do not plan
routes with infinite time duration.

Avoiding Congestion on a Single Path
We designed this benchmark to showcase the basic premise
of our approach. The road network is a rectangular grid of 5
× 5 intersections, connected by a road segments with equal
maximum speeds, 22.35 m/s, capacities, 0.09 cars per meter,
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Figure 4: We highlight the performance of our algorithm
compared with routing cars along a single path. The flow
of cars quickly leads to congestion and long travel times for
the single path. Our approach distributes the cars and settles
to a constant travel time.

and cut-off capacities, 0.085 cars per meter. Each road seg-
ment is approximately 1000m. We assume the road network
is initially empty (i.e. there is no traffic). Then, we begin
routing a set S of cars, each defined by a tuple (s, g, t) of
a starting vertex s, an ending vertex g, and a starting time
t, enter the road network and traverse the route given by a
route planner. We assign the starting vertex for each car to
be the bottom left corner of the grid and the goal to be the
top right corner. Each car is given a starting time t = 2 ∗ i
seconds, where i is the car index in S.

We ran this experiment for both planners, the route plan-
ner that simply returns the shortest path between the start
and goal vertex, independent of traffic conditions, and our
adaptive route planning system.

The result of this can be seen in Figure 4. Obviously,
since all cars have the same start and goal vertices, they
are all assigned the same route by the shortest-path plan-
ner, quickly causing growing congestion on this route. The
incoming flow is enough to cause significant congestion, but
not to cause a complete traffic jam. Our method distributes
the cars along multiple paths to the goal based on densities
predicted by earlier planned routes. By doing so, it can han-
dle the flow of vehicles at a relatively constant travel time.

Comparison with Shortest Path Planner
In the second benchmark, we compare the behavior of our
algorithm to the shortest path planner while routing a set
of cars S with random initial and goal intersections. This
scenario takes place on a grid road network with 15 × 15
intersections and a road length of 100m. The road network
is initially empty. As above, we perform the experiment for
both planners: first, we route each car in S using a shortest
path planner and calculate the resulting travel times. Second,
we do the same assuming all cars are routed using our route
planner. To best illustrate the effect of network load in this
scenario, each car has a starting time of zero. The parame-
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Figure 5: This figure shows the speedup factor that our
method achieves over a shortest path planner for a series of
cars. Each car has a random start and goal position.

ters used for the experiment were capacity = 0.09 cars per
meter, maximum velocity = 22.35 m/s, and cut-off capacity
= 0.085. For storing the density information for each edge, a
time discretization of 15s was used.

Figure 5 shows the result of this experiment. The result is
given in terms of the speedup of our method over the short-
est path planner, i.e. the ratio of the travel time planned by
the shortest path planner over the travel time planned by our
method. The speedup for every car routed is displayed as the
cyan scatter plot, and the average speedup factor for each co-
hort of 100 cars is displayed as the blue line. As can be seen,
initially the speedup factor is negligible, since the road net-
work has low traffic densities that do not significantly slow
down traffic. Hence, in these cases the shortest path is indeed
also the time-optimal path. However, as more an more cars
have entered the road network, the average speedup in travel
time by using our planner rather than a shortest path planner
increases, peaking at a factor of approximately 4 after 6,000
cars have been planned. Eventually, the average speedup de-
creases again, since the road network has become so con-
gested that alternative routes do not provide any benefit in
terms of travel time.

Comparison with Stochastic Planner Using
Historical Data
In this experiment, we compare the behavior of our algo-
rithm to a stochastic planner using historical data (SPUHD)
when routing a population of cars S. This experiment takes
place on the same grid road network as above, with 15 ×
15 intersections. We generate historic traffic data by defin-
ing a set of cars S with random start and goal intersections,
routing each car in S using a shortest path planner, and cal-
culating the resulting densities. The cars are created in 40
batches of 200, with each batch having a starting time of 5
seconds later than the preceding batch. This creates a maxi-
mum average network density, using the shortest path rout-
ing, of 0.054 cars per meter, and areas of full congestion,
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Figure 6: This figure shows the speedup factor (up to 20 for
the 100-car mean) that our method achieves over a stochas-
tic planner using only historical data for a series of cars, in-
dexed from 0 to 2500. Each car has a random start and goal
position.

i.e. 0.085 cars per meter. These time-varying, edge specific
stochastic densities are the history for the scenario. We as-
sume that S represents the typical traffic flow. We compare
our method and the SPUHD by planning for all of S, given
the calculated stochastic history. In our routing algorithm,
the planned routes are used to update the traffic densities for
plans of future cars, but our planner is unaware of the his-
tory. In the SPUHD, each car in S is planned for assuming
the history is a valid prediction, and these predicted densities
are not updated based on the SPUHD’s planned routes.

The results are shown in Figure 6. We can see that only
using the stochastic history is not an effective strategy when
all cars are being navigated by the planner. This is an ex-
treme example, but it illustrates a basic motivating problem
with using stochastic prediction. If the planner were rout-
ing one car in S, then the history would be almost perfect;
as the planner is routing all of S, the predictions based on
the history are not valid. As the SPUHD believes a certain
congestion pattern will occur, due to the history, it routes
cars around that congestion pattern. However, as the SPUHD
is controlling all the cars, the predicted congestion pattern
does not occur, but instead the planner creates congestion
in other areas. The SPUHD assigns cars sub-optimal routes
due to its belief that the typical, historical traffic flows will
remain constant. Our method, on the other hand, distributes
car routes and achieves a 100-car mean speedup of up to a
factor of 20.

The high speedup factors here illustrate how unsuitable
pure historical prediction is when the entire set of cars is
being routed. In attempting to avoid predicted densities, the
stochastic planner using historical data irrationally prefers
domains of the road network, which then causes congestion
and traffic jams in those areas. Even at low network densi-
ties, approximately 0.014 cars per meter, the SPUHD causes
traffic jams, with some roads being saturated to their cutoff
capacity, 0.085 cars per meter.
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Figure 7: The 100-car mean speedup of our method over the
simple planner for varying adoption percentages.

Effect of Adoption Rate
In our final benchmark, we analyze the effect of the adop-
tion rate of our system in scenarios in which part of the cars
use our route planner system, and the other part of the cars
use a shortest path planner. We let a set S of cars with ran-
dom start and goal intersections enter the (initially empty)
road network at a rate such that over time heavy conges-
tion is likely to be created on the road network. We use the
same road network as above. A percentage α of the cars
(randomly sampled from S) use our adaptive traffic route
planner to plan their routes, whereas 1 − α of the cars use
a shortest path planner. For the sake of the simplicity, our
adaptive route planner ignores the portion of cars it does not
control; in reality this data can be estimated from historical
data (see Section Blending Historical and System Data).
We repeat this experiment for various values of α. The pro-
portion of cars, α, that are routed by our method are chosen
using a consistent random number seed: this implies that a
car routed for a low α will also be routed for a high α, pre-
serving features of the graphs for each value of α. The cars
enter the road network at a rate of 50 per second.

Figure 7 shows the results, a graph depicting the 100-
car mean speedup for various adoption values from 50% to
100%. We see a peek speedup of over 10 when 100% of the
cars are controlled: our system avoids the creation of heavy
congestion and large scale traffic jams. However, the maxi-
mum speedup and the integral of the speedup curve decrease
rapidly with α, showing a strong sensitivity to uncontrolled
cars creating traffic jams. At the 50%, a maximum speedup
of 2 is observed, and for smaller α values, a similarly small
speedup is observed. These results clearly show that the ben-
efit of our system increases with the adoption rate.

Conclusion and Future Work
State of the art approaches can handle stochastic planning
and can make use of traffic predictions, but they ignore a use-
ful source of information, i.e. the existing planned routes. As
routing systems become more pervasive, the routes they plan

will begin to significantly influence the future state of traf-
fic. Prior plans then become relevant to future plans. Our ap-
proach addresses this issue. We provide a method to update
stochastic traffic predictions with existing planned routes.
Given stochastic predictions of future traffic states, we plan
for cars within this space. For each path planned, we up-
date the stochastic predictions based on the routes planned
for each car. The density of each edge is updated according
to the estimated arrival and departure times for the car. The
velocity of each edge is then updated according to the fun-
damental diagram, an empirical relationship between den-
sity and velocity. In our simulations, the improved routing
algorithm results in better utilization of the road network,
reduces congestion and the travel time for each car.

There are many avenues for future work. We would like to
perform more analysis and validate the performance of our
algorithm on actual traffic data. It would be useful to relax
some of our assumptions in terms of normal distributions
along each edge of the road network. Finally, it may be use-
ful to develop a decentralized version of our adaptive traffic
planning algorithm.

Acknowledgments
This work was supported in part by ARO Contract W911NF-
10-1-0506, NSF awards 0917040, 0904990 and 1000579,
and RDECOM Contract WR91CRB-08-C-0137. The earlier
version of this paper was presented at AAAI 2011 (Wilkie
et al. 2011).

References
Brakatsoulas, S.; Pfoser, D.; Salas, R.; and Wenk, C. 2005.
On map-matching vehicle tracking data. In Proceedings of
the 31st international conference on Very large data bases,
853–864. VLDB Endowment.
Chabini, I., and Lan, S. 2010. Adaptations of the A* Algo-
rithm for the Computation of Fastest Paths in Deterministic
Discrete-Time Dynamic Networks. IEEE Transactions on
Intelligent Transportation Systems 3(1):60–74.
Florian, M.; Mahut, M.; and Tremblay, N. 2008. Application
of a simulation-based dynamic traffic assignment model.
European Journal of Operational Research 189(3):1381–
1392.
Greenshields, B., et al. 1935. A study of traffic capacity.
In Highway Research Board Proceedings, volume 14, 448–
477.
Horvitz, E.; Apacible, J.; Sarin, R.; and Liao, L. 2005. Pre-
diction, Expectation, and Surprise: Methods, Designs, and
Study of a Deployed Traffic Forecasting Service. Conf. on
Uncertainty in Artificial Intelligence.
Hua, M., and Pei, J. 2010. Probabilistic path queries in road
networks: traffic uncertainty aware path selection. In Pro-
ceedings of the 13th International Conference on Extending
Database Technology, 347–358. ACM.
Lim, S.; Balakrishnan, H.; Gifford, D.; Madden, S.; and Rus,
D. 2009. Stochastic Motion Planning and Applications to
Traffic. Algorithmic Foundation of Robotics VIII 483–500.

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 75



Min, W.; Wynter, L.; and Amemiya, Y. 2007. Road traffic
prediction with spatio-temporal correlations. In Proceedings
of the Sixth Triennial Symposium on Transportation Analy-
sis, Phuket Island, Thailand (June 2007).
Nikolova, E.; Kelner, J.; Brand, M.; and Mitzenmacher, M.
2006. Stochastic shortest paths via quasi-convex maximiza-
tion. Algorithms–ESA 2006 552–563.
Nikolova, E.; Brand, M.; and Karger, D. 2006. Optimal route
planning under uncertainty. In Proceedings of International
Conference on Automated Planning and Scheduling.
Nikolova, E. 2010. High-Performance Heuristics for Opti-
mization in Stochastic Traffic Engineering Problems. Large-
Scale Scientific Computing 352–360.
Peeta, S., and Ziliaskopoulos, A. 2001. Foundations of dy-
namic traffic assignment: The past, the present and the fu-
ture. Networks and Spatial Economics 1(3):233–265.
Siebel, F., and Mauser, W. 2005. On the fundamental dia-
gram of traffic flow. Arxiv preprint cond-mat/0503290.
Wilkie, D.; van den Berg, J.; Lin, M. C.; and Manocha, D.
2011. Self-aware traffic route planning. Proc. of AAAI.
Work, D.; Blandin, S.; Tossavainen, O.; Piccoli, B.; and
Bayen, A. 2010. A traffic model for velocity data assim-
ilation. Applied Mathematics Research eXpress.

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 76



Constraint based Berth Allocation and Ship Scheduling with Upstream Supply
Planning

S Kameshwaran and Alfiya Tezabwala and Vinayaka Pandit
IBM Research - India, Bangalore

{kameshwaran.s, alfiya.tezabwala, pvinayak}@in.ibm.com

Abstract

Allocation of ships to berths significantly contributes
to the operational efficiency and revenue at the ports.
Popularly called as the berth allocation problem, many
of its variants have been solved using scheduling algo-
rithms and math programming techniques in the liter-
ature. Our work is motivated by a real world scenario
where the port belongs to a mining company. In this
case, the berth allocation is equivalent to scheduling of
demand fulfilled by the mining company. The schedul-
ing of demand is contingent on the upstream supply of
materials from the mine area to the port, through a rail
network. Given a schedule of incoming ships with re-
quired demand for next two to three weeks, our problem
is to allocate berths and schedule the ships such that the
required demand can be fulfilled with appropriate up-
stream supply planning. The problem has both the fea-
tures of detailed scheduling at the port and aggregate
multi-period, multi-stage planning of the upstream sup-
ply chain. In this paper, we propose a constraint based
modeling for the integrated planning-scheduling prob-
lem using IBM ILOG Constraint Programming Opti-
mizer.

Introduction
The berth allocation problem is concerned with the alloca-
tion of berth space to ships in the ports. Many variants of
the problem have been studied based on one or more of the
following cases:
• Berth layout: Discrete, continuous, hybrid;
• Ship arrival time: Static, dynamic;
• Ship handling time: Static, dynamic;
• Port type: Container, bulk;

The berth layout can be classified as discrete, continu-
ous, and hybrid (Bierwirth and Meisel 2010). Discrete berth
layout defines a finite set of berths to which ships can be
allocated, whereas a continuous case defines continuous
berthing space in which the ships can be packed. Port with
a hybrid layout will have both the discrete set of berths and
continuous berth space. In the static ship arrival problem,
ships are already at the port, whereas in the dynamic case,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only a subset of the ships to be scheduled are present. In the
static handling time problem, ship handling times are con-
sidered as input, whereas in the dynamic case, they are de-
cision variables. In a container port, the cargo to be loaded
or unloaded are packed inside standard containers. Thus the
handling is independent of the cargo type and will not con-
strain the ship berth allocation. On the other hand, bulk ter-
minals use different types (dry, liquid) and varieties (miner-
als, food, oil, gas) of cargo that require specialized equip-
ments and storage areas, which constrain the feasibility of
berthing a ship depending on the cargo.

In general, the berth allocation problem is NP-hard (Imai,
Nishimura, and Papadimitriou 2001; Umang, Bierlaire, and
Vacca 2011). Math programming is the predominant solu-
tion approach (Buhrkal et al. 2011), while constraint pro-
gramming has also been showed to be successful (Kelareva
et al. 2012). The berth allocation problem we consider in this
paper is for a bulk port with discrete berth layout, dynamic
ship arrival time, and static handling time. The problem we
consider in this paper is motivated by mining supply chains
with their own ports for private use.

Some large mining companies own the end-to-end supply
chain starting from the mines, rail network, and the port. The
bulk ore from the mine is moved through the rail and stocked
at the port. Ships arrive with customers demands and the port
schedules the ships on the berth and loads the required or-
ders. The main difference in the problem considered here is
that the mining company (port) has to make sure that there
is enough bulk in the port yard to fulfill the demand. This is
not the case in other ports, where the availability of cargo to
be loaded and removal of the unloaded cargo from the port
are handled by the customers. Also, note that there is no
unloading of cargo in our case. Thus, the problem of berth
allocation in this case is equivalent to scheduling of demand
fulfillment, which is contingent on the availability of the ma-
terials stocked at the yard.

The berth allocation is usually solved for a horizon of two
to three weeks. With limited capacity of the yard at the port
for stocking, the bulk needs to be continuously replenished
from the mine area through the rail. There are multiple bulk
ore types, with different storage location and capacity in the
yard. Hence the choice and quantity of the bulk to be moved
from the mine area to the port should closely be synchro-
nized with the fulfillment of the demand at the port.
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Figure 1: Schematic of moving bulk from mine to port

We consider the berth allocation problem at the port, inte-
grated with the upstream planning of supply from the mines.
The upstream supply planning is done at aggregate level
from mine area to port, whereas the berth allocation is de-
tailed scheduling of ships at the port. Hence our problem
is integrated planning and scheduling, where the integration
is across vertical stages in the supply chain. We propose a
constraint based modeling for the above problem using IBM
ILOG CP Optimizer.

Berth Allocation with Upstream Supply
Planning

The schematic of the mining supply chain that moves the
bulk ores from mine to ships is illustrated in figure 1. Our
primary interest is in the berth allocation and ship schedul-
ing problem at the port. Given the set of ship arrivals in the
two to three weeks horizon, the berth allocation problem
schedules the ships on the berths and loads the ships with
the demanded materials. Failure to schedule and load a ship
results in penalty for not fulfilling the demand. Also the port
is liable to pay penalty if there is a delay in the loading of
ship beyond its demurrage time. Thus the berth allocation
problem directly influences the port utilization and revenue.

From the perspective of the mining company, the berth
allocation problem is equivalent to demand scheduling and
fulfillment. The bulk to be loaded on to the ships is stored
in the open yard at the port area. The capacity of yard can
only cater to few days of demand. Hence, for a horizon of
two to three weeks, the materials required should be contin-
uously replenished at the yard in the port area from the mine.
There are different types of materials in the supply chain and
hence the upstream supply from the mine to the port will be
driven by the demand at the port. Similarly the scheduling
of demand fulfillment should take into account the upstream
supply capability. The problem we study in this paper is mo-
tivated by this real world scenario of berth allocation prob-
lem in the mining industry.

The movement of materials from the mine to the port is
a series of following interdependent scheduling problems:
A) rail logistics, B) yard operations (dumping of bulk from
rail rakes to yard and loading of bulk to the ships), and C)
berth allocation. Each of the above scheduling problems is
individually hard. Thus an end-to-end integrated scheduling

across the entire supply chain would be challenging. Fur-
ther, some mining companies use third party rail services
and hence cannot schedule the rail operations. Taking into
account the above factors, we define a new variant of the
berth allocation problem - berth allocation with upstream
supply planning. The upstream supply from the mine is not
handled at detailed operations scheduling level, but at aggre-
gate planning level.

Detailed Scheduling versus Aggregate Planning
There are two key differences between detailed scheduling
and aggregate planning. Firstly, the unit time in the horizon
is different - detailed scheduling is at the granularity of min-
utes, whereas the aggregate planning is done at hours. Sec-
ondly, scheduling takes into account all the resources and
tasks. The aggregate planning ignores the finer details. For
example, consider the rail logistics stage that moves the bulk
from mine area to port area. The operations scheduling of
rail logistics should take into account the following: number
of rakes available at the mine, loading of bulk from mine to
the rakes, formation of trains with rakes, minimum time gap
between two trains, number of trains in transit, etc.

On the other hand, the aggregate planning problem for
rail logistics can be expressed by a single planning parame-
ter - number of rakes that can be supplied from the mine per
planning period. In order to meaningfully approximate the
detailed scheduling constraints by a single planning parame-
ter, the planning period should be long enough. The planning
period of six hours and above is usually used in practice.

Aggregate planning for the upstream supply from mine
area to port area thus replaces large number of finer schedul-
ing constraints with few planning parameters, thereby reduc-
ing the problem complexity. The plan generated at this level
is then used to drive the dedicated rail scheduling system that
comes with a detailed schedule to meet the plan. The multi-
level approach (Caimi et al. 2011) in rail logistics is popular
in planning and scheduling of manufacturing as hierarchical
decomposition (Pinedo 2009, Ch. 8). In the reminder of the
paper, we use planning and aggregate planning interchange-
ably.

Upstream Supply Planning
The upstream supply planning problem for the supply chain
depicted in figure 1 consists of three activities: A) rail logis-
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tics, B) dumping, and C) loading, where the dumping and
loading happen at the port area. There are three inventories
in the supply chain: A) yard in the mine area, B) loaded rakes
in the port area, and C) yard in the port area. We briefly de-
scribe them below.

Rail Logistics The mine and ports could be separated by
hundreds or even thousands of miles requiring several hours
or days of transportation time. The transportation through
rail, carries the bulk in rakes of fixed capacities. The ag-
gregate planning parameter is the number of rakes supplied
from the mines per period. The decision to be taken is the
number of rakes per material that can be supplied from the
mines per planning period. Note that the reverse logistics of
the trains back to the mine need not be considered at plan-
ning level. If the third party rail service is used for trans-
portation, then the service level agreement from the service
provider - maximum number of rakes between mine and port
in six hours - can be interpreted as the planning parameter.

Dumping Dumping is rail car dumping activity where the
material from the loaded rakes in the port area are dumped
on to the stockpiles at the open yard in the port. The ag-
gregate planning parameter is the number of rakes that can
be dumped per period, and the decision to be taken is the
number of rakes dumped per material per planning period.

Loading Loading is the activity of loading the bulk ore
from the stockpiles in the open yard to the incoming ships.
At the aggregate level, we characterize the loading activity
by loading rate at each berth. The decision to be taken is the
quantity of each material that needs to be loaded from the
yard.

Yard in the Mine Area There are different types of bulk
ores, which require separate stockpiles to avoid contamina-
tion and quality issues. We are looking at a horizon of two to
four weeks of demand fulfillment. The supply from the mine
is scheduled and is considered as input. For the time horizon
under consideration, we can assume the inventory capacity
at the mine yard to be infinite, with addition of material to
the inventory happening as per the given supply schedule.

Loaded Rakes in Port The rail logistics activity pack the
bulk ore into discrete units of rakes and transport them to
the port area. The loaded rakes once arriving at the port area,
wait to be dumped to the open yard. The inventory of loaded
rakes is capacitated with an upper bound on the number of
rakes.

Yard in the Port Area The bulk dumped from the loaded
rakes are stacked to stockpiles in the yard. The yard in the
port area is similar to that of at the mine area with separate
stockpiles for different materials, but the capacity of stock-
piles in the port area is limited.

The upstream supply planning problem is to determine
each of the following per planning period: A) number of
rakes per material supplied from the mine, B) number of
rakes per material dumped at the port area, C) amount of ma-
terial loaded on to the incoming ships. This is a multi-stage
multi-period flow and inventory problem across the supply

chain. The decision of loading the materials on to the in-
coming ships is closely tied to the berth allocation problem
in terms of scheduling of ships and the material demanded.
Thus we have a scheduling problem integrated with a supply
planning problem.

There are two challenges in modeling the integrated plan-
ning and scheduling as single monolithic optimization prob-
lem. Firstly there are two different time units in the problem,
where the planning period aggregates over large schedul-
ing time units. Secondly, the problem has a generous mix
of combinatorial and logical constraints of scheduling with
the linear structure of planning. We propose in this paper a
constraint based modeling of the integrated scheduling and
planning problem, using the IBM ILOG CP Optimizer. We
illustrate the technique with a simple example.

Problem Definition
The problem is formally defined in this section. For the pur-
pose of illustration, we have considered a simpler problem
definition, ignoring many real world constraints, which are
discussed in the later part of the paper.

Berth Allocation and Ship Scheduling
Given a set of ships arriving at the port with demand for dif-
ferent materials, the problem is to allocate ships to compat-
ible berths and schedule the loading of required materials.
We consider just one material per ship with a penalty for
failure to berth and load the material (loss of demand). An-
other penalty incurred is the delay in completion of loading
of ships beyond the agreed upon demurrage time (tardiness
cost) and a bonus (negative penalty) for early completion.
The objective is to minimize the total penalty.

Data The given input data regarding the berths and ships
are:
H Scheduling horizon with index h = 0, 1, . . . ,H;
N Set of ships with index i = 1, . . . , |N |;
M Set of berths with index j = 1, . . . , |M |;
K Set of materials with index k = 1, . . . , |K|;
SB = {(i, j)}, set of compatible ships and berths;
lj Loading rate at berth j;
ai Arrival time of ship i;
ei End lay time of ship i;
di Demurrage time ∈ (ai, ei) for ship i;
oi Material k ∈ K to be loaded in ship i;
qi Quantity of material Oi to be loaded in ship i;
ltij = qi/lj for (i, j) ∈ SB, (Loading time for

ship i at berth j);
pi Penalty incurred per unit time for ship i

sailing out later than the demurrage time di;
bi Bonus accrued per unit time for ship i

sailing out earlier than the demurrage time di;
ri Penalty for rejecting ship i;
The berths are of varying capacity and hence only accom-

modate ships of acceptable capacity. We capture this in the
tuple SB. As there is only one material per ship, the load-
ing time is equivalent to the berthing time, but can change
depending on the berth.
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Decisions Scheduling decisions are:
(SD1) Accept/reject for servicing each ship;
(SD2) Allocation of accepted ships to berths;
(SD3) Scheduling of accepted ships on relevant berths;

Constraints Following are the mandatory constraints to
be satisfied:
(SC1) Ship i can only be berthed during its interval of avail-
ability (ai, ei);
(SC2) Ship i can only berthed at exactly one compatible
berth j, such that (i, j) ∈ SB;
(SC3) Berthing/loading time for ship i at berth j is ltij ;
(SC4) A berth cannot service more than one ship at a time;

Objective The objective is to minimize the sum of the fol-
lowing costs:
(O1) Total demurrage penalty, DP ;
(O2) Negative of total demurrage bonus, DB;
(O3) Total penalty due to rejected ships, RP ;

Upstream Supply Planning
Data The input data for upstream supply planning consists
of the maximum flows per period between the stages and
inventory capacities.
P Duration of a planning period;
T = H/P , Planning horizon with index

t = 0, 1, . . . , T ;
skt Supply of material k at period t to the source;
rq Rake capacity;
sp Maximum number of rakes that can be supplied

from source per period;
dp Maximum number rakes that can be dumped to

the yard per period;
lp Maximum quanity of materials that can be loaded

from the yard to the ships;
tp Number of planning periods required to transport

the rakes from the source to the port;
yck Inventory capacity for material k at the yard;
rc Inventory capacity for loaded rakes at the port;

Decisions The decisions for the planning problem is to de-
termine the flow of materials between each stage and the in-
ventory at each for all the time periods in the planning hori-
zon.
(PD1) Rakes with material k supplied from source at period
t: xk

t ;
(PD2) Rakes with material k dumped to yard at period t:
ykt ;
(PD3) Quantity of material k loaded to ships from yard at
period t: zkt ;
(PD3) Inventory of material k in the source at period t: mskt ;
(PD3) Inventory of rakes loaded with material k at period t:
rkkt ;
(PD4) Inventory of material k in the yard at period t: ydkt ;

Constraints The constraints in the planning are related to
the flow and inventory at all the stages.
(PC1) The flow between the stages are capacitated:∑

k x
k
t ≤ sp ∀t (1)

∑
k y

k
t ≤ dp ∀t (2)∑

k z
k
t ≤ lp ∀t (3)

(PC2) Inventory balance constraints:

mskt = mskt−1 + skt − rq × xk
t ∀k, t (4)

rkkt = rkkt−1 + xk
t−tp − ykt ∀k, t (5)

ydkt = ydkt−1 + rq × ykt − zkt ∀k, t (6)

In the above inventory balance constraints, inventory param-
eters with index t = 0 denote the initial inventory. Parame-
ters and variables with t < 0 are by default defined as 0.

(PC3) Inventory capacity constraints:

mskt ≥ 0 ∀k, t (7)
rq × xk

t ≤ mskt−1 ∀k, t (8)∑
k rk

k
t ∈ [0, rc] ∀t (9)

ykt ≤ rkkt−1 ∀k, t (10)

ydkt ∈ [0, yck] ∀k, t (11)
zkt ≤ ydkt−1 ∀k, t (12)

There is no upper bound on inventory in the mine area as
given by (7). The constraints (8), (10), and (12) model the
constraint that the flow in period t is bounded by the inven-
tory in period t− 1, to ensure inventory capacity constraints
(by forbidding consumption and production in the same pe-
riod).

Linking Scheduling and Planning
As per the scheduling problem, the ship i at berth j, requires
ltij time units to load the qi quantity of material oi ∈ K
demanded by the ship. There is no restriction or information
on the availability of material in the yard to be loaded on to
the ships. In the planning problem, zkt quantity of material k
is being loaded from the yard to the ships at the planning pe-
riod t. To make the upstream planning and demand schedul-
ing consistent, the zkt should be equal to the total quantity of
material k loaded to the ships during the period t.

Constraint Planning - scheduling consistency constraint:
(PSC) Loading of material k from the yard at period t should
be equal to the total quantity of material k loaded on the
ships during the scheduling horizon [(t− 1)P, tP ).

Constraint based Formulation with ILOG CP
Optimizer

ILOG CP Optimizer
IBM ILOG CP Optimizer is a software library which pro-
vides a constraint programming engine targeting both con-
straint satisfaction problems and optimization problems. The
engine is designed to be used in a model and run develop-
ment process, which contains powerful methods for finding
feasible solutions and improving them. The strength of the
optimizer removes the need for the user to write and main-
tain a search strategy. CP Optimizer provides a library of
re-usable and maintainable classes that can be used just as
they are, or extended to meet special needs. The classes de-
fine objects in the problem domain in a natural and intuitive
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way, enabling the user to clearly distinguish the problem rep-
resentation from the problem resolution.

CP Optimizer provides integer decision variables with fi-
nite domain, along with a set of predefined constraint con-
structs, for modeling the problem. Arithmetic, relational,
logical, and reification expressions with real number coef-
ficients can be modeled as constraints. Other special con-
straints include the well known allDifferent, count, packing,
element, and allowedAssignments. They are useful for mod-
eling and solving a wide variety of combinatorial and con-
straint satisfaction problems. In addition, CP Optimizer pro-
vides a new scheduling language supported by a robust and
efficient automatic search. This new-generation scheduling
model is based on ILOGs experience in applying constraint-
based scheduling to industrial applications (Laborie 2009).
We use the ILOG CP Optimizer for modeling and solving
the integrated scheduling and planning problem.

CP Optimizer Model

We briefly outline the constraint based model for the prob-
lem using CP Optimizer. The scheduling model in CP Op-
timizer is primarily based on the interval formalism intro-
duced in (Laborie and Rogerie 2008; Laborie et al. 2009).
An interval variable a is a decision variable whose domain
dom(a) is a subset of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}, where
s and e are start and end of the activity, respectively. By de-
fault, the interval is present, which means that it is assigned
to {[s, e)} where e − s denotes its length. If the variable is
declared as optional, then it can also be absent (=⊥). When
an interval variable is absent, then it is not considered by
any constraint that involves the variable. The interval vari-
able aptly models a scheduling activity.

Berth Allocation We model the berth allocation
and ship scheduling using two interval variables.

dvar interval ship[i] optional in ai . . ei;
dvar interval shipLoad[< i, j >] optional size ltij ;
alternative (ship[i],

all (< i, j > in SB) shipLoad[< i, j >]);
The above sample code in OPL shows the declaration of

the two interval decision variables ship and shipLoad with a
special constraint alternative. Declaration of ship[i] as op-
tional allows to model the decision (SD1). The in option
models constraint (SC1) by restricting the scheduling to be
within the range of ship’s arrival and end lay time. Note that
as the variable is optional, the above constraint is valid only
if it is present. In other words, if the ship is accepted for
servicing, then it has to be scheduled within its arrival - de-
parture time range.

In order to choose a berth to schedule the ship, the interval
variable shipLoad[< i, j >] is declared for all (i, j) ∈ SB.
The option size declares that the activity requires ltij of
time. The alternative constraint between ship[i] and the set
of shipLoad[< i, j >] variables states that ship[i] is exe-
cuted if and only if exactly one of the interval variables in the
set shipLoad is executed, where both the activities are syn-
chronized (modeling constraints (SC2) and (SC3)). In order
to ensure (SC4), we use the cumulative function expression.

The cumulative function expression is a specialized con-
straint that allows to model cumulative resources and in-
ventories. The usage of a cumulative resource and the
level of a inventory are functions of time. A cumu-
lative resource like a berth is used by ships, where
its usage is increased at the start of ship berthing
and and is decreased at the end of ship berthing.

cumulFunction berthUsage[j] =
sum(< i, j >∈ SB) pulse(shipLoad[< i, j >], 1);
berthUsage[j] ≤ 1;
The pulse(shipLoad[< i, j >], 1) is a elementary cumula-

tive function that contributes a pulse function with height 1,
during the start and end of the interval variable shipLoad[<
i, j >]. Note that as interval variable is optional, if it is ab-
sent, then there is no contribution. The berthUsage[j] is the
sum of the elementary functions. If two ships overlap in their
berthing schedule on berth j, then the value of the above ex-
pression is two during the period of overlap. By restricting
the berthUsage[j] ≤ 1, only one ship can be berthed at a
time in a berth (constraint (SC4)).

Upstream Supply Planning The upstream planning prob-
lem is modeled in CP Optimizer directly as linear equations
given by (1) - (12). The decision variables xk

t , ykt , and zkt are
declared as integer decision variables.

Linking Scheduling and Planning The key aspect of the
model is to be able to link the planning and scheduling seam-
lessly such that both parts fit together to form a single model.
Also the scheduling problem is solved using the special in-
terval constructs of CP Optimizer, whereas the multi-period,
multi-stage planning problem is solved using integer deci-
sion variables and linear constraints.

The point of linking planning and scheduling is de-
cision variables shipLoad[< i, j >] in scheduling and
zkt in planning, since both represent loading of mate-
rial from stockyard to ship. We use the special schedul-
ing constraint, overlapLength to achieve this linking.
ztk == sum(< i, j >∈ SB : oi == k)
overlapLength(shipLoad[< i, j >], (t− 1)×P , t× P )

×lj ;
The overlapLength expression finds the length of interval

ship[< i, j >] overlapping with the time interval [(t−1)×P ,
t × P ], where P is the duration of planning period. This
overlap length when multiplied with the loading rate lj gives
the material loaded to ship in the tth planning period. The
expression sum(< i, j >∈ SB : oi == k) then sums up
this quantity for all ships having demand for material k to
give ztk, and handles the constraint (PSC).

Objectives The objectives of the model are written as
decision expressions. The three decision expressions are:

(O1) dexpr float DP =
sum(i ∈ N )maxl(0, endOf(ship[i],0) - di)) * pi ;
(O2) dexpr float DB =
sum(i ∈ N )maxl(0, di-endOf(�ship[i],0)) * bi;
(O3) dexpr float RP =
sum(i ∈ N ) (1 - presenceOf(ship[i])) * ri;
The demurrage penalty or bonus is a function of end of

the ship scheduling activity. The function endOf(ship[i],0)
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returns the end time of the interval ship[i], if present, or re-
turns 0 otherwise. The penalty for rejecting a ship is modeled
using the presenceOf logical function, which returns 1 if the
interval is present in the solution, 0 otherwise. The objective
function is modeled as:

minimize DP −DB +RP ;

Illustrative Example
In this section, we show the applicability of the constraint
based approach proposed above with a simple illustrative
example. It is worth noting that the primary goal of con-
straint based solvers is to quickly come up with feasible so-
lutions and improve them progressively. Proving optimality
is a computationally intensive procedure and in practice, the
algorithm is terminated with a time or memory limit. The
alternative to benchmark optimality is to use a mathemati-
cal programming model. As we currently do not have such
a model, we test the performance of the integrated planning
scheduling model against the scheduling model. Firstly we
solve only the berth allocation problem and compare it with
the integrated upstream supply planning version.

Berth Allocation Problem
The dataset considers a horizon of two weeks with 30 in-
coming ships to be serviced in four berths. The berths have
capacity constraints and not all ships can be berthed at all
berths. We set the granularity to one minute. The other rele-
vant data are shown below.

H h = 0, 1, . . . , 20160
(2 weeks, 1 min granularity);

|N | 30 Ships;
|M | 4 Berths;
|K| 3 Materials;
lj 10 kT/hr ∀j ∈M ;

Given this data, we do the berth scheduling only without
planning the supply, assuming that once a ship is berthed
the order can be always be loaded (the material is already
available). With this assumption we get the following best
solution in CP Optimizer for a 30 second time limit set on
the IBM ILOG CPLEX Optimization Studio 12.4, running
on a Windows 7 laptop, with Intel i7 and 4 GB RAM.

Number of Ships berthed 30
Objective fun. Value −953000∑

i∈N pi $0∑
i∈N bi $953000∑
i∈N ri $0

Berth Allocation with Upstream Supply Planning
We use the same dataset above to solve the integrated prob-
lem, with the following aggregate parameters for planning:

P 6 Hours;
T t = 0, 1, . . . , 56;
rq 16 kT;
sp 15 rakes;
dp 15 rakes;
lp 240 kT;
tp 2 periods;
yck 1000 kT ;
rc 40 rakes;

Figure 2: Material Inventory at Yard

The above data ensures that the maximum flow across
various stages has consistent throughput. The maxi-
mum material that can flow at the loading stage is
lp = 4berths∗10kT/hr∗6hrs= 240kT/period. This flow is
matched with supply from source and dumping as sp, dp =
15rakes/period∗16kT= 240kT/period. The travel time for
material to arrive at port is 2 periods, hence the initial in-
ventory required to support supply of rakes is rc = 40 ≥
2periods∗15rakes/period and material at yard is yck =
600 ≥ 2periods∗240kT. At the mine we have very high
initial inventory for all materials so that supply is uncon-
strained.

The goal is to check the quality of the solution of the in-
tegrated problem against that of the berth allocation prob-
lem. As both the problems share the same ship and berth
data, the best solution to the berth allocation problem can be
used the lower bound to the integrated problem. The above
dataset ensures that the upstream supply is indeed uncon-
strained. However, it does not make the upstream supply
stages redundant, as the port area has only materials to cater
to four to five days of demand. The model indeed has to
find a solution that moves the materials from the mine to
the port area. With the same set of computational resources
and a 30 seconds time limit, the same solution was found.
# Ships berthed 30
Objective fun. Value −953000∑

i∈N pi $0∑
i∈N bi $953000∑
i∈N ri $0

The material inventory at the yard over the planning pe-
riods is as shown in the fig. 2. It shows how the level of in-
ventory for various material changes over planning periods,
with incoming supply and loading. This simple example il-
lustrates the applicability of the model. However, extensive
set of computational experiments are required with varying
demand and supply conditions to study the model perfor-
mance and its sensitivity to different characteristics of the
problem.
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Extensions
The problem illustrated in this paper had only the basic con-
structs of the real world problem. We list here some of the
constraints that were not considered in the paper.

Berth Allocation Problem A) Channel capacity for sail-
ing in and out; B) Sail out can happen only during high tides;
C) Demand for multiple materials in a ship; and D) Directly
loading of materials from loaded rakes to ship in the port
area;

Upstream Supply Planning We considered aggregate pa-
rameters at each stage that constrain the flow between stages
in a planning period using (1) - (3). The parameters are in-
dependent of the materials. In practice, there will be restric-
tions for each material. For example, consider the dumping
activity. The number of rakes that can be dumped with the
same material will be restricted as it would require access
to same set of equipments that connect to same set of stock
piles containing the specific material. In particular, follow-
ing aggregate parameters per planning period are common:
A) Maximum number of rakes per material that can be sup-
plied from mine; B) Maximum number of rakes per material
that can be dumped; C) Maximum number of simultaneous
loading of same material.

Conclusions and Future Work
We modeled a new variant of the berth allocation prob-
lem in this paper, which integrates detailed scheduling of
ships with upstream supply planning. Motivated by a real
world mining supply chain, the problem essentially models
demand scheduling coupled with supply planning. The up-
stream supply planning is a generic multi-stage multi-period
aggregate planning problem, which is commonly observed
in many supply chains. Thus the proposed problem that inte-
grates aggregate planning problem with a detailed schedul-
ing problem across the vertical stages of the supply chain
could possibly have several applications in different supply
chains.

We proposed a constraint based modeling of the inte-
grated problem using IBM ILOG CP Optimizer. The next
step is a mathematical programming model that would help
in benchmarking the performance of the constraint based
model. As the problem has both the features of planning
and scheduling, we believe that neither the constraint based
model, nor the mathematical programming model would
perform well. Our goal is to build a hybrid optimization
model using Benders like decomposition that leverages both
the constraint programming (for berth allocation) and math-
ematical programming (for upstream supply planning).
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Abstract

The generation of high quality query plans is at the heart of
query processing in traditional database management systems
as well as in heterogeneous distributed data sources on corpo-
rate intranets and in the cloud. A diversity of techniques are
employed for query plan generation and optimization, many
of them proprietary. In this paper we revisit the problem of
generating a query plan using AI automated planning. Char-
acterizing query planning as AI planning enables us to lever-
age state-of-the-art planning techniques, as well as supporting
the longer-term endeavor of purposeful information gathering
as part of a larger data-intensive, task-driven system. While
our longterm view is broad, here our efforts focus on the spe-
cific problem of cost-based join-order optimization, a central
component of production-quality query optimizers. We char-
acterize the general query planning problem as a delete-free
planning problem, and query plan optimization as a context-
sensitive cost-optimal planning problem. We propose algo-
rithms that generate high quality query plans, guaranteeing
optimality under certain conditions. Our approach is general,
supporting the use of a broad suite of domain-independent
and domain-specific optimization criteria. Experimental re-
sults demonstrate the effectiveness of AI planning techniques
for query plan generation and optimization.

1. Introduction
Informally, a query plan or a query execution plan is an or-
dered set of physical operations used to access information.
Query optimization endeavors to find a query plan that max-
imizes the efficiency of execution, where efficiency may be
measured in terms of minimizing space, latency, or other
properties associated with the execution of the plan (e.g.,
(Ioannidis 1996; Chaudhuri 1998; Haas et al. 2009)). Tra-
ditionally the information being accessed by a query plan
has resided in a relational database management systems, but
as information management has evolved, query optimization
has broadened to address plans that are executed over net-
work accessible federated databases. Most recently, with
the preponderance of structured and unstructured data in dis-
tributed information sources, there has been increasing inter-
est in querying information sources that exist over the web
and in the cloud, and extending beyond relational databases
to linked data (e.g., (Ladwig and Tran 2010)).

In this paper we examine whether AI automated planning
has anything of substance to contribute to the generation and
optimization of plans for information gathering in general,
and specifically for relational queries. Indeed there is a body
of previous AI planning research related to query planning,
including (e.g., (Kambhampati and Gnanaprakasam 1999;
Nie and Kambhampati 2001; Kambhampati et al. 2004),
(Knoblock 1996; Ambite and Knoblock 1997; 2000; Barish

and Knoblock 2008), (Friedman and Weld 1997) ). Many of
these works use planning or plan rewriting to construct query
plans using simple physical operations, some relying on ex-
tensive processing outside the planner. Much of this (excel-
lent) work is older work, little of it benefiting from advances
in the state of the art in planning and plan optimization in
the last decade. We were originally interested in revisiting
this problem with the broadened perspective of advances in
delete-free, cost-optimizing, and preference-based planning,
and with a view to the integration of optimized information
gathering into decision-making.

We are motivated by the task of the generating optimized
information gathering plans in all of their guises, but for the
purposes of this paper, our algorithms and empirical evalu-
ation are tailored to the task of query optimization in rela-
tional database systems, and specifically to cost-based join-
order optimization – the optimization of the ordering of join
operations employed in conjunctive query evaluation.

The original 1979-published work on query optimization
was with respect to System R, and used dynamic program-
ming techniques (Selinger et al. 1979). Modern-day systems
are proprietary and embedded within commercial systems,
but reportedly some continue to use dynamic programming,
while others use time-limited branch and bound search. Here
we cast the general problem of information gathering as a
delete-free planning problem, and the problem of optimiz-
ing the quality of information gathering as a cost-optimizing
delete-free planning problem.

Unfortunately, the delete-free property of information
gathering is not universally applicable. In particular, when
we delve into the details of the particular relational database
query optimization task of cost-based join-order optimiza-
tion, we immediately observe two things. First, that the cost
models that are employed in join-order optimization are con-
text sensitive. The cost of an action is predicated on what
has preceded it. Further, we observe that while information
gathering is delete free, some of the physical operations em-
ployed to realize efficient query plans can have a component
that deletes a property of our plan state. (The sorting of a ta-
ble as part of some physical operations is one such example.)

We develop three somewhat diverse planning algorithms
to address our query optimization problem: a delete-free al-
gorithm, an optimal A* algorithm, and a greedy algorithm,
together with a suite of domain-specific heuristics. We an-
alyze their properties and assess their computational effec-
tiveness. Of particular note is our ability to generate query
plans that are guaranteed optimal on problems that are highly
competitive to those reputed to be solved to optimality by

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 84



commercial systems.
The work presented here is in its early stages, but is suffi-

ciently advanced that there are interesting results and lessons
to share. It introduces an interesting application to the AI
Planning community, and a challenging problem to those in-
terested in applications for cost-optimal (delete-free) plan-
ning and the more specific unaddressed problem of context-
sensitive cost-optmal (delete-free) planning.

2. Preliminaries
We begin with a review of necessary relational database
background and terminology. Conjunction queries (CQ) in
SQL take the following form
select x1, . . . , xk from R1 r1, . . . , Rn rn where C

where C is a conjunction of equalities of the form ri.a = xl
for a an attribute (column) of the relation (table)Ri. This can
be equivalently written as a predicate calculus-style compre-
hension of the form:

{x1 . . . , xk | ∃r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ∧ . . . ∧Rn(rn) ∧
∧

Riaj(ri, xl)}
where, conceptually, Ri(ri) atoms bind the variables ri to
record id’s of records in the instance of Ri and Riaj are
binary relations that represent attributes of Ri (attribute re-
lations). Note that the tuple variables (ri) are separate from
the value variables (xj). We allow some of the variables xi
in the select list to be designated as parameters.

A typical query compiler and optimizer in modern rela-
tional database systems performs several steps to produce a
query plan, that is instructions to the query execution phase
that is ultimately responsible for retrieving the data and an-
swering the user’s query. The query optimizer’s phases range
from parsing, type-checking, view expansion, etc., to rule-
based query rewriting and cost-based query optimization. In
the following we focus on cost-based optimization for con-
junctive queries, that roughly correspond to the most com-
mon queries in SQL, the so called SELECT-blocks. Indeed,
this part of optimizing queries is commonly considered the
corner stone of relational query optimization since the origi-
nal System R (Selinger et al. 1979).

2.1 Operators for CQ Query Plans
The query plans for conjunctive queries are responsible for
accessing the data relevant to the query answers that are
stored in (possibly disk-based) data structures, called the ac-
cess paths. The results of these primitive operations are then
combined using join operators to form the ultimate query
plan. Indeed, the crux of query optimization for conjunctive
queries lies in the appropriate choice of appropriate access
paths for the relations involved in the query and in the or-
dering of how the results of these operations are combined
using joins – hence this part of query optimization is often
dubbed join-order selection.

Additional relational operators, such as selections and
projections are commonly not considered at this time—
either they are fully subsumed by joins (such as in the case
of constant selections) or can be added in post-processing
(projections1).

1While we do not explicitly deal with duplicates in this presen-

Access Paths The primitive relational operations are the
access paths (APs), operators responsible for retrieving the
raw data from relational storage (typically, disks). Every
user relation (table) is typically associated with several ac-
cess paths that support efficient search for tuples based on
various conditions – e.g., find all Employee tuples in which
the name attribute is “John”. Note that the access paths used
for search expect some of their attributes (the inputs) to be
bound (i.e., associated with a constant value obtained earlier
in the course of execution of the query plan). Formally, we
can describe the access paths for a relationR as triples of the
form

name(r, x1, . . . , xk) : 〈R(r) ∧ C, {xi1 , . . . , xik}〉
where C is a conjunction of equalities (similar to those in
conjunctive queries) only using attributes of R and variables
r and x1, . . . , xk out of which xi1 , . . . , xik denote the input
parameters of this access method.

Base File (scan and record fetch): In the basic setting, for
each relation R we always have the following two access
paths:

RScan(r, x1, . . . , xk) :
〈R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {}〉

RFetch(r, x1, . . . , xk) :
〈R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {r}〉

where a1, . . . , ak are all the attributes of R; these two paths
are used to retrieve all tuples of a relation R and to retrieve
a particular tuple given its tuple id (note that the tuple id r
is the input to the access path and has to be bound before a
record can be fetched).
Indices: In addition to the basic access paths we typically
have additional access paths, called indices, that are used to
speed up lookups for tuples based on certain search condi-
tions (that are again captured by specifying inputs for the
access path). Note also that the indices typically store only
a few attributes of the indexed relation (the remaining ones
can be retrieved using the Fetch access path). We capture
this by declaring an access path

RxxxIndex(r, Y ) : 〈R(r) ∧ C,X〉
for each index on R (called generically xxx here) where C
is a conjunction of attribute relations (for attributes of R), is
X a set of names of variables that correspond to parameters
of the index, and Y is a set of variables that correspond to
the attributes actually stored in the index (typically X = Y ).
Example 1 Given a relation Emp(Id, Name, Boss)
we will have the following access paths:
EmpScan(r, x1, x2, x3) : 〈Emp(r) ∧
EmpId(r, x1) ∧ EmpName(r, x2) ∧ EmpBoss(r, x3), {}〉

EmpFetch(r, x1, x2, x3) : 〈Emp(r) ∧
EmpId(r, x1) ∧ EmpName(r, x2) ∧ EmpBoss(r, x3), {r}〉

EmpIdIndex(r, x1) : 〈Emp(r) ∧
EmpId(r, x1){x1}〉

EmpNameIndex(r, x1, x2) : 〈Emp(r) ∧
EmpName(r, x1) ∧ EmpId(r, x2), {x2}〉

that allow retrieving all employee records, finding a record
by record id, finding record ids using employee id, and find-
ing record ids using employee name, respectively. Note that
EmpNameIndex has an extra variable x2 for Id; we will
see later how this can be used for so-called index only query
plans.

tation, all the techniques are fully compatible with SQL’s duplicate
semantics for conjunctive queries.
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Join Operators To combine the results of access path in-
vocations into query results, the join operators (that essen-
tially implement conjunctions) are used. We consider the
following two implementations of these operators:

Nested Loops Join (NLJ): The most basic join operator is
based on the idea that for each tuple retrieved from its
left argument it probes its right argument to find matching
tuples. When the right argument is an access path with
an input parameter present in the above tuple, the value is
passed to the access path to facilitate search (in this case
the join is often called the IndexJoin).

Merge Sort Join (MSJ): Another approach to implement-
ing the join operator is to sort each of its arguments on the
join attribute and then merge the results. While algorith-
mically preferable, the overhead of sorting often makes
this method inferior to the plain NLJ. On the other hand,
knowledge of order properties of the underlying access
paths may allow the sorting step to be avoided.

Many other join implementations and algorithms have been
investigated, such as the Hash join (based on creating a tem-
porary hash-based index); for the purposes of this paper we
focus on the above two joins without loss of generality.

To simplify the presentation we only consider left-deep
query plans in this paper (this is similar to System R and is
fully general for iterator-based plans that do not materialize
intermediate results).
Example 2 For a query:

select x1, x2 from Emp e
where e.Id = x1 and e.Name = x2

written as a comprehension as
{x1, x2 | Emp(r) ∧ EmpId(r, x1) ∧ EmpName(r, x2)}

we expect the following query plans, based on whether x1 or
x2 (or neither) is a query parameter:
• None: EmpScan(r, x1, x2, x3)

• x1: EmpIdIndex(r, x1) onNLJ EmpFetch(r, x1, x2, x3)

• x2: EmpNameIndex(r, x1, x2)

Note that the last plan is an index-only plan. Also note
that replacing EmpFetch access path that retrieves employee
records based on record id by three paths one for each
employee attribute would simulate how column stores ex-
ecute queries. This relies on our representation of queries
and access paths using tuple ids and attribute relations; in-
deed, this representation supports many advanced features
that go far beyond textbook approaches and often general-
izes hard-coded solutions present in production relational
systems (such as unclustered indexing, index-intersection
search, etc.).

2.2 Cost Model
The optimality of a query plan is judged with respect to a
cost model based on summary (statistical) information about
the relations and the access paths (that store the actual data);
we follow a simple System-R style cost model to illustrate
the approach (however, more advanced cost models can be
easily used as well). We collect the following:

• for every relation R (table): the number of tuples and, for
each attribute, the number of distinct values;

• for each access path (index): the cost (no. of disk pages
read) of retrieving all the tuples that match the access
path’s input parameters (reading the whole data set if
none);

These estimates are then combined, using arithmetic formu-
las associated with particular join algorithms, to estimate the
cost and cardinality of query plans (in disk page reads).

3. Mapping into PDDL Actions
We map join-order selection to an automated planning prob-
lem by combining the choice of the next access path with the
appropriate implementation of the join operation in a sin-
gle PDDL action (note that this is sufficient for our left-deep
plans). We use the fluents needs-R, has-R, and bound
to capture the fact that the query needs to access a certain
relation, that the current query plan has already accessed a
certain relation, and that a variable has been bound to a value
in the current plan, respectively.

3.1 Nested Loop Joins
First considering plans that use NLJ only (note that this also
covers index-join based plans in the cases where NLJ is cou-
pled with an index access path). For each AP
〈RAP, R(r) ∧Ra1(r, x1) ∧ . . . ∧Rak(r, xk), {xi1 , . . . , xil}〉

there is an action:

Action NLJ-RAP
pre: needs-R(?r),

bound(?xi1), . . . , bound(?xil)
post: has-R(?r) has-Ra1(?r, ?x1) . . . has-Rak(?r, ?xk)

bound(?x1) . . . bound(?xk)

Next, for the query:
{x1 . . . , xk | ∃r1, . . . , rk, xk+1, . . . , xm.

R1(r1) ∧ . . . ∧Rn(rn) ∧
∧

Rai(ri, xl)}
we have an initial state s0 such that:
needs-R1(r1), . . . ,needs-Rn(rn) ∈ s0
needs-Rai(ri, xl) ∈ s0 for all conjuncts in

∧
Rai(ri, xl), and

bound(xj) ∈ s0 for all parameters in the query.
and a goal G such that:

has-R1(r1), . . . , has-Rn(rn) ∈ G and
has-Rai(ri, xl) ∈ G for all conjuncts in

∧
Rai(ri, xl).

Example 3 For the query
{x1, x2 | Emp(r) ∧ EmpId(r, x1) ∧ EmpName(r, x2)}

with parameter x1 we have a possible plan:
〈NLJ-EmpIdIndex(r, x1),NLJ-EmpFetch(r, x1, x2, x3)〉

Note that the initial NLJ “joins” with a single tuple of pa-
rameters, in this example with the value for x1. In the plan-
ner this corresponds to exploring the following sequence of
states:
1. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2), bound(x1)

2. needs-Emp(r), needs-EmpId(r, x1) needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)

3. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), bound(r)
has-EmpName(r, x2), has-EmpBoss(r, x3), bound(x2), bound(x3)

Another plan is 〈EmpScan(r, x1, x2, x3)〉 . This produces the
following sequence of states:
1. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2), bound(x1)

2. needs-Emp(r), needs-EmpId(r, x1), needs-EmpName(r, x2),

bound(x1), has-Emp(r), has-EmpId(r, x1), has-EmpName(r, x2),

has-EmpBoss(r, x3), bound(x2), bound(x3)

This plan is however, less efficient given our cost model.
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3.2 Adding Merge Sort Joins
While we could naively add MSJ to the above approach,
we would miss opportunities arising from additional under-
standing of ordered properties of the access paths in order to
avoid sorting steps in the plan.

We use the fluent asc(x) to indicate that the values of the
variable x are sorted (ascending) in the output of the (cur-
rent) query plan (again we use only single-variable order-
ings, but extending to other interesting orders is a mechan-
ical exercise). Note, however, that unlike, e.g., the bound
fluent, the sorted properties of variables may disappear af-
ter executing the next join, causing the encoding to lose its
delete-free character.

To take advantage of order of access paths and results of
partial query plans we use the following three actions that
correspond to sorting the result of the current query plan,
to merge-joining with an appropriately ordered access path,
and to merge-joining with an access path that was sorted
prior to the join, respectively:
Action Sort-on-?x: (sort results of the current plan on x)

pre: bound(?x)
post: asc(?x) ¬asc(?y) for all other variables ?y

Action MJ-on-?x-AP : (add a merge-join on variable x
with the access path AP, assuming AP is also sorted on x)

pre: bound(?x) asc(?x)
post: effects of AP as for NLJ

¬asc(?y) for all other variables ?y

Action MSJ-on-?x-AP : (add a sort-merge-join on vari-
able x with the access path AP, assuming AP is not sorted on
x)

pre: bound(?x) asc(?x)
post: effects of AP as for NLJ

¬asc(?y) for all other variables ?y

We also add asc(x) to the initial state for each bound vari-
able x. (This is sound since there is only a single “tuple” of
parameters and constants.)

Finally, for a given query problem, we take an initial de-
scription of the problem instance, together with the schemas
described here, and generate an query-specific PDDL plan-
ning instance. In addition to the information in the schemas,
each individual action has an action cost that is a com-
putation that relies on the variable bindings in the current
state and as such is context specific. While PDDL supports
context-specific action costs, few planners actually accom-
modate them, we therefore solve the previously described
problems with the domain specific solvers presented in Sec-
tion 5.

In more detail, the cost of our actions (that represent join-
ing the next access path to the current query plan) depends
on the number of tuples so far, captured as size(s) for the
current state s, the size and structure of the relation to be
joined, and the particular join algorithm. These values are
used to estimate the cost and size in successor states. For
example, the cost of executing NLJ-RScan in state s is
pages(R)ceil(size(s)/buf-sz), that is we must join every
page of tuples in the current store with every page of tuples
in R (where buf-sz is the number of tuples we buffer be-
fore scanning R). For brevity, we omit a full description of
the cost functions we employ, noting instead that they are
closely based on those used in System R.

4. Query Planning as AI Planning
In the previous section, we saw how to encode the join-order
query optimization problem in terms of a PDDL initial state,
goal, and a set of PDDL action schemas that are translated,
together with their cost model, into a set of instance-specific
ground actions. We refer to the problem of generating a
query plan with the NLJ PDDL encoding as a J-O query
planning problem and when augmented with MSJ APs as
a J-O+ query planning problem. By inspection, we make the
following observations:
Obs 1 J-O query planning is a delete-free planning problem.
Obs 2 J-O query optimization is a context-sensitive cost-
optimizing delete-free planning problem.
Obs 3 J-O+ query planning is not a delete-free planning
problem and as such, J-O+ query optimization is simply a
context-sensitive cost-optimizing planning problem.

We highlight these seemingly straightforward observa-
tions because they suggest the potential for exploiting ad-
vances in delete-free cost-optimizing delete-free planning
techniques (e.g., (Gefen and Brafman 2012; Haslum, Slaney,
and Thiébaux 2012; Pommerening and Helmert 2012)). Per-
haps less encouraging is the observation that delete-free
planning owes much of its computational advantages to the
property that partial plans expand monotonically and a final
ordering of groupings of actions can be extracted quite eas-
ily. Unfortunately, with a context sensitive cost model, order
matters, and many of the gains afforded by cost-optimizing
delete-free planning are lost at least with respect to current
implementations. Nevertheless on the positive side, as we
move beyond relational cost-based join-order optimization
and consider other criteria for defining plan quality and other
physical operators for realizing a query/information gather-
ing plan, we see that the models of cost are often context
independent and thus, again by inspection, we make the fol-
lowing observation:
Obs 4 A number of query and information-gathering opti-
mization problems are context-independent cost-optimizing
delete-free planning problems.

This bodes well for the application of delete free planners
to the generation of some classes of optimized information-
gathering plans.

5. Generating Query Plans
Following from the observations in Section 4., we propose
three algorithms together with a suite of domain-dependent
heuristics for generating optimized query plans. The first al-
gorithm, DF, exploits the delete-free nature of our problem,
greedily generating cost-minimizing delete-free plans. The
second is a classical A* algorithm, which we ran with three
different admissible heuristics. The third, GR, is a greedy
best-first search that does not consider partial plan cost in its
evaluation function, but that uses an admissible heuristic, to-
gether with cost, in order to do sound pruning. The latter two
algorithms can be guaranteed to produce optimal plans un-
der certain conditions, which is notable relative to the state
of the art in query planning. Note that while the heuristics
have elements that are specific to the domain of join-order
optimization, the general structure of the algorithms can be
used for a diversity of information gathering/query plan opti-
mization tasks simply by changing the cost function and the
heuristic.
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5.1 Fast Delete-Free Plan Exploration
Algorithm DF computes plans that do not include sorting
actions. This prevents actions that merge on variables other
than input variables. For certain problems, this precludes DF
from finding optimal solutions, but the costs of the plans it
finds are guaranteed to be upper bounds on the optimal cost
allowing them to be used as initial bounds for the algorithms
A* and GR.

The decision not to allow sorting actions means that in any
state s, a subset of all actions can be efficiently determined
that will move the planner towards the goal. We call such
actions useful and denote the set of useful and applicable ac-
tions in state s as Au(s). The algorithm proceeds by heuris-
tically generating sequences of useful actions which achieve
a goal state. Throughout its fixed runtime, it remembers the
best such plan generated. Details of the algorithm follow.

Algorithm 1 DF
π∗ ← 〈〉; c∗ ← inf
while not time out do

s← s0; c← 0; π ← 〈〉
while G 6⊆ s do

if random fraction of 1 ≤ 0.9 then
a← a′ ∈ Au(s) with minimal resulting size,

breaking ties with action cost
else

a← a′ ∈ Au(s) randomly selected with a
likelihood inversely proportional to the
resulting size and then action cost

c← c+ cost(a); π ← π + a
if c ≥ c∗ then break
s← s ∪ add(a)

if c < c∗ then c∗ ← c; π∗ ← π
return π∗ and c∗

Clearly DF does not guarantee to compute an optimal
query plan, but it has the capacity to generate a multitude
of plans very quickly. In practice, our Python implementa-
tion of DF can generate hundreds to thousands of candidate
plans per second. In Section 6 we examine how effective
this approach is empirically, at finding a high-quality plan.
As noted below, this algorithm is also useful in providing
a quality pruning bound for pruning of partial plans in our
algorithms A* and GR.

5.2 A*
This algorithm A* is an eager A* search that uses a num-
ber of domain-dependent admissible heuristics. The code
for A* is based on the eager search algorithm in Fast Down-
ward (Helmert 2006). The primary difference from exist-
ing heuristic-search planning algorithms is that, as our action
costs are context-dependent, we compute them lazily when
expanding a state. While this increases the cost of expanding
each state, it eliminates the need to pre-compute actions with
all possible costs, which is prohibitively expensive.

We now examine the three heuristics that were used with
this algorithm and show their admissibility and consistency
and therefore the optimality of the solutions returned by A*.
The first heuristic, hblind evaluates a state s as follows:
• h(s) = 0, if G ⊆ s; and

• h(s) = 1, otherwise.

Proposition 1 The heuristic hblind is admissible and con-
sistent for the query-planning problems we consider.

The consistency and admissibility of the heuristic hblind
follow from the fact that 1 is a lowed-bound on the cost of
any action and that the heuristic is clearly monotone.

The next heuristic, hadmiss evaluates a state s by count-
ing the number of unsatisfied relations and assuming that
size(s) and all subsequent states is 1 to get a lower bound
on the cost of achieving the goal.

In a given state s let R(s) be the unsatisfied relations and
RI(s) be the (partially) unsatisfied relations for which, we
have a bound tuple id – i.e. those relations for which a partial
index action has been executed, which can be satisfied with
a fetch action.
hadmiss evaluates a state s as follows:

• h(s) = 0, if G ⊆ s, and

• h(s) = |RI(s)|+∑
r∈R(s)\RI(s)

max(1, ceil(log200(pages(R))))

Proposition 2 The heuristic hadmiss is admissible and con-
sistent for for the query-planning problems we consider.

To prove Proposition 2, we require to show that hadmiss

is guaranteed to not over-estimate the cost of reaching the
goal from s and is monotone. The former point can be
seen by noting that the minimum cost of satisfying any re-
lation R is 1 when we can currently execute a fetch action
on R, that is when R ∈ RI(s) and otherwise the cost is
at-least max(1, ceil(log200R.pages)), from the System R-
based cost model. hadmiss is monotone because whenever
we execute an action a we either reduce the size of the
sets R(s′) and R(s′) by 1 or leave them unchanged and if
|RI(s

′)| < |RI(s)| then |R(s′)| < |R(s)|.
The final heuristic that we used, hadmissLA builds upon

the hadmiss heuristic by performing one step of look ahead to
take into account the size of the current state s. LetAu(s) be
the set of applicable and useful actions in state s, including
sort actions. hadmissLA evaluates a state s as follows:

• h(s) = 0, if G ⊆ s, and

• h(s) = mina∈Au(s)c(a) + hadmiss(s ∪ add(a))

Proposition 3 The heuristic hadmissLA is admissible and
consistent for the query-planning problems we consider.
To see that Proposition 3 holds, see that hadmissLA has a
value for non-goal states that is the minimum over all succes-
sors of the cost to reach that successor s′ and the admissible
and monotone estimate given by hadmiss from s′.
Theorem 1 If A* terminates on a query planning problem
of the type we consider, then it returns an optimal solution.
We observe that our dynamic cost can be seen just as a proxy
for a large number of ground actions with fixed-costs, hence
the Theorem follows as the heuristics are consistent. Note
that all of our heuristics are admissible. We explored the
development of more informative inadmissible heuristics,
which could be used with admissible heuristics for sound
pruning. Unfortunately, as of this writing, we have found no
superior inadmissible heuristic.
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5.3 Greedy Best-First Search
This algorithm GR is an eager greedy best-first search that
uses the same heuristics and code-base as A*. The sole dif-
ference between GR and A* is that GRorders the states on its
open list solely on the basis of their heuristic values, that is
by the function f(s) = h(s). Expanded states s are pruned
when g(s) + h(s) exceeds the current bound.
Theorem 2 An expanded state s can be safely pruned when
g(s) + h(s) exceeds the current bound without sacrificing
optimality.
The proof idea is based on observing that the bounds are
sound and heuristics admissible. The next Theorem follows
as either we consider successors of a node or the node is
pruned; lack of further nodes implies that an optimal solution
was found (or none exists).
Theorem 3 If GR terminates on a query planning problem
of the type we consider, then it returns an optimal solution.

6. Evaluation
The question we’d like to address with our experimental
evaluation is how AI planning techniques perform relative to
the state of the art in relational database query planning. In
particular, we’d like to know whether AI planning techniques
have the potential to compute higher quality query plans
faster than the state of the art. Unfortunately, the state of the
art in relational database technology is embedded within pro-
prietary systems, precluding systematic comparison. Simi-
larly there are no suitable benchmarks for objective compar-
ison of underlying algorithms. Instead what we do know and
can leverage is that typical relational database systems em-
ploy time-limited planning algorithms and commonly trade
plan optimality for reducing the time to find a reasonable
query plan. For example, the classical System R query op-
timizer only considers plans that utilize Cartesian products
as a last resort despite the fact that there are well-known ex-
amples where this heuristic leads to suboptimal query plans
(this happens, e.g., when two relations with small cardinality
are joined with a large relation indexed on attributes retrieved
from both of these small relations). Other commercial sys-
tems utilize variants of time-constrained branch-and-bound
algorithm in which the system attempts to allocate approx-
imately the same time quota to exploring the “upper part”
of the tree of possible plans as to the “lower part” (that is
commonly much larger). Also, commercial query optimiz-
ers commonly take advantage of additional schema informa-
tion, such as the key and foreign key constraints, that can be
used to improve the cost estimation (this, however, makes
the optimization problem easier as the additional informa-
tion tends to make the cost difference between varying query
plans more pronounced).

As the time to optimize queries is quite constrained in ex-
isting database systems the size of join-order problems that
relational database optimizers currently solve (to optimal-
ity), in terms of the number of relations in a query, and the
ratio of the number of variables to number of relations is
rather small (again, in the absence of additional schema in-
formation). The actual algorithms and their performance in
most commercial optimizers is a closely guarded business

secret and only anecdotal evidence—that optimality is only
guaranteed for about up to 10 way joins—is available.

With this information in hand, the purpose of our experi-
ments was 1) to evaluate the relative effectiveness of the dif-
ferent approaches to query plan search and plan optimization
that we examined, with the general objective of determin-
ing the relative merits and shortcomings of the algorithms
and heuristics, and 2) to get some sense of whether AI auto-
mated planning techniques held some longer-term promise
for cost-based join order optimization, in particular, rela-
tional database query optimization and more generally, and
beyond that to the general problem of optimizing the quality
of information gathering from disparate sources.

We evaluated 3 different algorithms: DF, our delete-free
planning algorithm, A*, our A* search algorithm, and GR,
our greedy search algorithm. The latter two algorithms
were each evaluated with three different heuristics: hblind,
hadmiss, and hadmissLA. Our specific purpose was twofold.
First, we aimed to determine how many problems each of A*
and GR could solve optimally. Second, and more pragmati-
cally, we aimed to determine the quality of the plans found
by DF and A* as a function of time. Proprietary database
systems usually allocate a short period of time for query
planning (on the order of seconds) and for our algorithms
to be practically useful they must find high-quality plans in
this time frame.

In the absence of existing query planning benchmarks, we
tested our planning systems on randomly generated database
schemata and queries. Each generated schema consists of
tables with between 2 and 10 attributes (not greater than half
of the number of variables in the associated query). Each
table has a random size of between 10k and 500k tuples and
200 tuples are assumed to fit into a page of memory. The
first attribute of every table is assumed to be the primary key
and has a number of distinct values equal to the table size.
Every other attribute has a random number of distinct values
up to 10% of the table size.

Every query has a given number of relations R =
5, 10, ..., 60 and a given number of variables V = 1.2, 1.5, or
2 times R. Every query has 3 variables set as constants and
10 other variables selected (less if there is not enough vari-
ables). For each relation in the query there is a 10% chance
of reusing an existing table, otherwise a new table is used.
Variables are randomly assigned to relations and we ensure
that queries are connected.

Ten problem instances were generated for each R and
V . All experiments were run on a 2.6GHz Six-Core AMD
Opteron(tm) Processor with 2GB of memory per experiment.
We performed the following experiments.

6.1 Experiment 1: Optimal Plans
An upper bound B on plan cost was produced by running
DF for 5 seconds and then A* and GR were run with the
initial bound B with a time limit of 30 minutes. Running
DF for longer than 5 seconds, to get tighter initial bounds,
did not allow more problems to be solved optimally.

The results of this experiment can be seen in Figure 1.
The number of problems that can be solved to optimality
quickly drops off for both planners when the number of re-
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Figure 1: Fraction of problems solved optimally by A* and
GR with different heuristics (2GB, 30 min time out).

lations is 15 or higher with A* and heuristic hadmissLA per-
forming the best. Problems with a higher V/R ratio are
somewhat easier than those with a low ratio. As expected,
the different heuristics all give significantly different perfor-
mance. hblind heuristic, due to its lack of guidance leads to
the planners running out of memory on all but the smallest
problems. hadmiss leads to considerably better performance
than hblind, as it returns a value proportional to the num-
ber of relations left to satisfy and directs the planner towards
the goal. However, as it ignores the size of the current and
all intermediate states, it fails to distinguish between many
plans. hadmissLA provides improved performance by at least
considering the size of the state that results from executing
each action, even though it ignores the sizes of all subse-
quent states. An important remaining challenge is to develop
an admissible heuristic that can take into account the sizes of
states beyond one step ahead without doing full k step looka-
head, which was found to be too costly to be an effective
heuristic.

In general, the planners solved those problems for which
they could quickly find a sequence of cheap actions that bind
a large portion of the variables while keeping the size small.
Experiments show that those problems that can be solved op-
timally can be solved quickly, usually within a few seconds.
On many of the remaining problems, the algorithms run out
of memory exploring plateaus close to the goal.

6.2 Experiment 2: Fast High-Quality Plans
Given that our optimal algorithms do not scale acceptably
for real world use, where an acceptable plan must be found
within a few seconds, we also explored the use of several
sub-optimal, any time algorithms.

In these experiments we ran DF and GR with no initial
bounds and also GR with an initial bound generated by run-
ning DF for 5 seconds. Each of these algorithms was run
for a total time of 2 minutes and plans were recorded as they
were produced.

An important question to answer about these algorithms
is how the quality of the plans that they find compares to
the optimal. We only have optimal solutions for the smaller
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Figure 2: Ratio of the best plan cost found by a given time to
the known optimal cost for problem instances with R = 10
and V = 20 for DF, GR, and DF run for 5 seconds, followed
by GR with the resulting bound. GR used the hadmissLA
heuristic and all approaches had 2GB, 2 min time out.

problems instances that could be optimally solved by DF and
GR. Figure 2 shows a representative sample of these results
using the hadmissLA heuristic. It shows that for most prob-
lems, the sub-optimal algorithms find solutions that closely
approach the optimal quality within a second. On the smaller
problems, for which we could generate optimal solutions,
DF more quickly approached high-quality solutions.

There was a small subset of problems for which these ap-
proaches are unable to find solutions within 10 times the cost
of the optimal, even after 2 minutes. From the available ev-
idence, this issue increases at larger problem sizes. Further
analysis of the structure of these difficult problems is needed
to determine what prevents the greedy approaches from find-
ing high-quality solutions.

The approach of using DF to produce an initial bound for
GR did not lead to a significantly better solution quality (af-
ter similar or longer run-times) and, due to the time required
to find the initial bound, is impractical. This is not partic-
ularly surprising as GR very quickly finds upper bounds on
plan cost anyway. We therefore omit this approach from fur-
ther discussion here.

As well as comparing DF and GR to the optimal solu-
tions, we performed extensive experiments to compare them
to each other. Figure 3 shows the costs of the best plans
found by DFand GR with all three heuristics after 0.5 and
5 seconds for all problem instances in our experiment set.
Problems that could not be solved by an algorithm were as-
signed a cost of 105 in that case.

From looking at the plots, it is clear that when the runtime
is short, GR generally finds plans that are better than those
found by DF, often by several orders of magnitude. As the
experiment time increases, the quality of best plans found
by DF improve relative to those found by GR. As can be
expected, GR with the hblind heuristic fails almost all prob-
lems, usually running out of memory before any solutions
are found. Over all run times there is a significant group of
problems for which GR fails to compete with DF.
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Figure 3: The costs of the best plans found by GR and DF af-
ter 0.5 and 5 seconds for all problem instances in our experi-
ment set. Problems that could not be solved by an algorithm
were assigned a cost of 105 in that case.

This pattern of performance is not particularly surprising.
GR initially performs better than DF because the hadmissLA

heuristic is considerably more informative than the action
selection heuristic employed by DF when generating delete-
free plans. This allows GR to very quickly find reasonably
good plans. However, the greedy nature of GR means that
expansions made early in the search can commit the algo-
rithm to low quality parts of the search space. This behaviour
can explain the cluster of problems on which GR consistently
performs worse than DF.

7. Summary
This paper reports on preliminary findings relating to the ap-
plicability of AI automated planning techniques to the opti-
mization of information gathering in general and to the gen-
eration of high quality cost-based join-order optimized query
plans in particular. We observed that join-order query plan-
ning is a delete-free planning problem, and that query opti-
mization is a context-sensitive cost-optimal delete-free plan-
ning problem. However, when we considered the broader
problem that includes merge-joins, the delete free nature
is lost. We developed delete-free, A*, and greedy plan-
ning algorithms which we combined with domain-dependent
heuristics for generating optimized query plans. The latter
two algorithms were guaranteed to produce optimal plans
under certain conditions. Note that while the heuristics have
elements that are specific to join-order optimization, the gen-
eral structure of the algorithms can be used for a diversity of
information gathering/query plan optimization tasks simply
by changing the cost function and the heuristic. Experimen-
tal results are promising. Perhaps most notably, our planners
could generate optimal query plans of a size that is highly

competitive with those reputed to be solved by commercial
systems. This work presents an interesting and challeng-
ing application domain for AI planning technology and a
promising approach to solving a diversity of problems re-
lated to optimized information gathering.
Acknowledgements: The authors gratefully acknowledge
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Abstract

This paper presents what has been done at the French
Aerospace Lab (ONERA) to deal with a scenario of
space mission defined by the French Space Agency
(CNES). This space mission is dedicated to the surveil-
lance from space of ground electromagnetic sources. It
involves two satellites: one for source detection and an-
other one for data acquisition and download. It presents
two sources of uncertainty: the presence or not of elec-
tromagnetic sources and, in case of presence, the vol-
ume of data generated by acquisition. Due to these un-
certainties and to limited communication windows with
ground control stations, online planning and schedul-
ing (P&S) is necessary on board the second satellite
to make consistent and optimal decisions in terms of
data acquisition and download. In this paper we show
how a generic constraint-based local search library can
be used to build the onboard planning and scheduling
component. This library, called InCELL, has been de-
veloped at ONERA. It allows temporal constraints, re-
source constraints, arithmetic and logical constraints,
and optimization criterion to be quickly and incremen-
tally evaluated at each step of a local search algorithm.
Already experimented to deal with simpler scenarios,
this is the first time it is experimented on a complex
scenario involving agile satellites. We show also how
the generic simulation tool Ptolemy can be used to sim-
ulate the space system and evaluate its P&S component.

Introduction
In the context of the CNES-ONERA Agata project about
spacecraft autonomy (Charmeau and Bensana 2005), after
working on a first mission scenario involving only one non
agile Earth optical detection and observation satellite (Dami-
ani, Verfaillie, and Charmeau 2004; Pralet and Verfaillie
2008), ONERA dealt with a more complex mission scenario
defined by CNES and called Agata-One. The main objective
was to assess whether or not the tools that were defined to
deal with the first scenario can be easily adapted to deal with
a more complex one.

The Agata-One scenario involves two agile Earth satel-
lites placed on low altitude, circular orbits, on the same or-
bital plane. Agile satellites are able to perform very quick
attitude movements along the three axes around their grav-
ity center (roll, pitch, and yaw) generally thanks to gyro-

satellites

ground

acquisition data

detectionsS2 S1

reception station

Figure 1: Exchanges between satellites and ground reception
stations.

scopic actuators which are more efficient than usual reac-
tion wheels. Thanks to regular roll attitude movements, the
first satellite (S1) scans a wide strip around its ground track.
Thanks to its instruments, it is able to detect the presence
of electromagnetic sources at the Earth surface and to lo-
calize them. In case of detection, it sends instantaneously
information to the second satellite (S2, which follows it at a
small distance) via a permanent inter-satellite low-rate com-
munication link. Satellite S2 maintains a set of ground ar-
eas on which electromagnetic sources have been detected.
Each time it overflies one of these areas, it can acquire data
from it. To do that, it must perform a roll and pitch attitude
movement to direct its acquisition instrument (a reception
antenna) towards this area (the reception antenna is body-
mounted on the satellite). When too many close areas must
be handled, it must decide on those it will effectively han-
dle and on the acquisition order. Once data from an area
has been acquired, it is memorized in a mass memory and
downloaded to ground reception and processing stations via
a non permanent satellite-ground high-rate communication
link. Downloading data to a ground station is only possible
within one of the station visibility windows. Moreover, it is
only possible when the satellite attitude is compatible with
data download (as the reception antenna, the emission an-
tenna is body-mounted on the satellite and, during the whole
download period, the station must remain inside the satellite
emission antenna cone). As for data acquisition, when too
much data must be downloaded, satellite S2 must decide on
those it will download and on the download order. Fig. 1
summarizes the exchanges between satellites and ground re-
ception stations.

It must be stressed that the attitude of satellite S2 allow-
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Figure 2: How the attitude movement to be performed by
satellite S2 to transit from a data acquisition to another one
depends on the time at which the transition is triggered. In
the second case (right), the angular movement to be per-
formed is greater than in the first case (left).

ing it to direct its reception antenna towards a given area
depends on the position of the satellite on its orbit and thus
on time. In such conditions, the attitude movement neces-
sary to transit from a data acquisition from a given area to a
data acquisition from another area, and thus the time taken
by this transition, depends not only on both areas, but also on
the time at which the transition is triggered (time-dependent
transition duration). See Fig. 2 for an illustration.

This mission scenario involves two main sources of uncer-
tainty: the presence or not of electromagnetic sources and, in
case of presence, the volume of data generated by acquisi-
tion (this volume is highly variable and can typically range
from 1 to 1000). Due to these uncertainties and to the non
permanent visibility of satellites by ground control stations,
online decision-making on data acquisition and download is
necessary on board satellite S2. To make such decisions, it
would be possible to use manually defined decision rules.
However, decisions would be better informed if they could
use the result of P&S: planning and scheduling regularly
performed over a given horizon ahead, using the most up
to date information about detections and data volumes; deci-
sions made according to the first steps of the plans produced.

Due to the limited computing time available for P&S
and due to the limited computing resources available on
board (CPU and RAM), heuristic search (greedy and/or local
search) seems to be the right option to build an anytime com-
binatorial search procedure, able to produce quickly good
quality plans and to improve on them as long as time is avail-
able before making decisions. It is widely used in space mis-
sions that require online onboard P&S (Chien et al. 2000;
2005b; 2005a). We already used it in the context of Earth
observation and surveillance missions (Lemaı̂tre et al. 2002;
Beaumet, Verfaillie, and Charmeau 2011; Pralet and Verfail-
lie 2008; Pralet et al. 2011; Verfaillie et al. 2011). How-
ever, each time, we built specific heuristic search proce-
dures, dedicated to the specific mission at hand and not di-
rectly reusable to handle other missions. To deal with the
Agata-One scenario, we decided to change our approach and
to use generic tools developed at ONERA in the context of
the Agata project and, more specifically, the Invariant-based
Constraint EvaLuation Library (InCELL (Pralet and Verfail-
lie 2013)).

InCELL draws its inspiration from the ideas of
Constraint-based local search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its prob-
lem in terms of decision variables, constraints, and optimiza-

tion criterion. She/he defines also its local search procedure
over the set of complete variable assignments (where every
variable is assigned). Because the speed of each local move
is one of the keys to local search success, the software uses
so-called invariants which allow expressions and constraints
to be quickly and incrementally evaluated after each move.
In InCELL, multiple-input multiple-output invariants allow
expressions, arithmetic and logical constraints, temporal and
resource constraints to be expressed and efficiently handled.
InCELL calls for Simple Temporal Network (STN (Dechter,
Meiry, and Pearl 1991)) techniques which allow temporally
flexible plans to be produced, and for Time-dependent STN
(TSTN (Pralet and Verfailllie 2012)) techniques which allow
time-dependent transition durations to be taken into account.

To deal with the Agata-One scenario, an InCELL model
of the associated P&S problem (decisions about data acqui-
sition and download by satellite S2) was built, a simple non
chronological greedy search procedure was designed, and
the events that trigger a new call to P&S over a given hori-
zon ahead were defined.

To simulate the space system and to evaluate its P&S com-
ponent, an event-based model of the system, based on the
notions of state, event preconditions and effects, and event
activations, was built and implemented using the generic
simulation tool Ptolemy (Eker et al. 2003). Whereas P&S al-
lows only the utility of decisions over the planning horizon
to be evaluated, this simulation allows the global utility of
successive decisions over the simulation horizon to be eval-
uated.

Sect. 1 describes problem data and Sect. 2 presents the
structure of possible decisions. In Sect. 3, a constraint-based
model of the P&S problem is introduced. The main ingre-
dients of the InCELL library, as well as its main reasoning
mechanisms, are presented in Sect. 4. Sect. 5 describes the
search procedure and Sect. 6 defines when P&S is called.
Sect. 7 shows how the space system and its P&S component
can be simulated and evaluated, using the Ptolemy tool.

1 Problem data
Permanent (static) problem data is the following:

• a finite set of ground areas that must be kept under surveil-
lance;

• a finite sequence of priority levels;

• for each ground area, its priority level, its weight (to give
more or less weight to areas of the same priority level),
an acquisition duration, an expected, a minimum, and a
maximum volume of data resulting from acquisition;

• a finite set of ground reception stations;

• a data download rate from satellite S2 to any ground re-
ception station.

Moreover, it is assumed that a function associates with
each ground area a and each time t the attitude of satellite S2

necessary to acquire data from a at time t, when acquisition
is possible, and that another function associates with each
pair of attitudes of satellite S2 the minimum time necessary
to reach the second one, starting from the first one.

ICAPS 2013

06/11/2013 Proceedings of SPARK 2013 - Scheduling and Planning Applications woRKshop 93



Mvt Mvt

Acquisition sequence for S2

Mvt Acq Acq Geo Mvt Acq AcqMvt Mvt Geo

AcqTask AcqTask AcqTask AcqTask End GeoTask

Download sequence for S2

download
windows Dl Dl DlDlDl Dl

Figure 3: The two concurrent sequences of action on board satellite S2. AcqTask = acquisition task; Geo Task = geocentric
task; Mvt = attitude movement; Acq = data acquisition; Geo = geocentric pointing; Dl = data download.

Each time P&S is called, its complementary (dynamic)
data is the following:
• a planning horizon ahead;
• an attitude of satellite S2 at the beginning of the planning

horizon;
• a set of ground areas from which electromagnetic sources

have been detected by satellite S1, but no acquisition by
satellite S2 has been performed yet;

• for each of these ground areas, its detection time and a fi-
nite sequence of acquisition windows by satellite S2 over
the planning horizon;

• a finite set of acquisitions that have been already per-
formed, but whose data has not been downloaded yet (still
present in memory);

• for each of these acquisitions, its detection and acquisition
times and its actual volume in memory;

• a finite sequence of download windows by satellite S2

over the planning horizon.
Acquisition windows are reduced in case of intersection

with a download window, when acquisition is incompatible
with download, in order to give priority to data download.

2 Possible decisions
On board satellite S2, it is necessary to decide on two con-
current sequences of action:
• the sequence of data acquisitions;
• the sequence of data downloads.

The first sequence is made of acquisition tasks, each one
following immediately the previous one. An acquisition task
is, according to an HTN-like decomposition of tasks into
sub-tasks (Hierarchical Task Networks (Nau et al. 2003)),
itself made of:
• either an attitude movement immediately followed by a

data acquisition;
• or an attitude movement immediately followed by a geo-

centric pointing, immediately followed by another atti-
tude movement, immediately followed by a data acqui-
sition (satellite geocentric pointing maintained towards
Earth center is a waiting action, favourable to communica-
tion with Earth, data downloads, and energy recharging).

This sequence, possibly completed by an attitude move-
ment followed by a geocentric pointing at the end of the
planning horizon, entirely defines the attitude trajectory of
satellite S2.

The second sequence is made of data downloads, each
one being performed within a download window. In this se-
quence, a download may not immediately follow the previ-
ous one. This is the case when it is necessary to wait for
the end of an acquisition before downloading resulting data
within a download window.

Fig. 3 illustrates the two concurrent sequences of action.
Both sequences are not independent from each other because
data download requires preceding acquisition.

3 A constraint-based model
P&S problem is a kind of over-constrained scheduling prob-
lem (over-constrained because it may be impossible to
schedule all the candidate tasks (Kramer and Smith 2003))
which can be modeled using only constraints over intervals.
An interval is defined by its presence, its starting date, its
ending date, and its duration. Its presence is a boolean, equal
to 1 if and only if the interval is effectively present in the
schedule.

The model associates:

• with each ground area from which electromagnetic
sources have been detected by satellite S1, but no acquisi-
tion by satellite S2 has been performed yet, an acquisition
interval, a geocentric pointing interval, and a download
interval;

• with each acquisition that has been already performed by
satellite S2, but whose data has not been downloaded yet,
a download interval.

These intervals may be present or absent. Constraints to
be satisfied are the following:

• each acquisition interval must be, when present, included
in one of the acquisition windows of the associated
ground area; its duration is the acquisition duration of the
associated ground area, defined in the problem data;

• each download interval must be, when present, included
in one of the download windows; if the acquisition has
been already performed at the P&S time, download dura-
tion is equal to the actual volume in memory divided by
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the download rate; if it has not been performed yet, it is
equal to the maximum volume resulting from acquisition
divided by the download rate (pessimistic assumption al-
lowing the produced schedule to be surely executed);

• for each ground area from which electromagnetic sources
have been detected, absence of the acquisition interval
implies absence of the geocentric pointing and down-
load intervals; presence of the geocentric pointing inter-
val implies that it must precede the acquisition interval
and follow the previous acquisition interval; presence of
the download interval implies that it must follow the ac-
quisition interval;

• there must be no overlapping between present acquisition
and geocentric pointing intervals and enough time be-
tween successive intervals to allow attitude movements;
moreover movements to or from geocentric pointings
must be performed in minimum time in order to give geo-
centric pointing as much time as possible;

• there must be no overlapping between present download
intervals.

The criterion to be optimized is a vector of global utili-
ties, one per priority level. The global utility associated with
a priority level p is equal to the sum of the local utilities as-
sociated with each of the ground areas of priority p. The lo-
cal utility associated with a ground area is equal to its weight
multiplied by two functions which both take a value between
0 and 1: a decreasing function of the time between detection
and acquisition and another decreasing function of the time
between acquisition and download. These functions tend to
encourage quick acquisition and quick delivery of informa-
tion on the ground. Two vectors of global utilities, resulting
from two schedules, are lexicographically compared from
the highest priority level to the lowest one.

4 The InCELL library
InCELL (Invariant-based Constraint EvaLuation Library) is
a software library, dedicated to the quick incremental evalu-
ation of expressions and constraints.

InCELL draws its inspiration from the ideas of
Constraint-based local search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its prob-
lem in terms of decision variables, constraints, and optimiza-
tion criterion. She/he defines also its local search procedure
over the set of complete variable assignments (every vari-
able assigned). Because the speed of each local move is one
of the keys to local search success, the software uses so-
called invariants which allow expressions and constraints
to be quickly and incrementally evaluated after each move.
An invariant is a one-way constraint of the form x ← exp,
where x is a variable and exp a function of other variables,
such as for example x ←

∑N
i=1 yi. On this example, when

the value of yj for some j is modified, it is not necessary
to recompute

∑N
i=1 yi from scratch. It suffices to add to the

previous value of x the new value of yj , minus its old value.
The only condition is the absence of cycles in the definition
of invariants (no variable directly or indirectly function of
itself).

InCELL extends the definition of invariants by allowing
multiple-input multiple-output invariants. Invariants allow
expressions, but also constraints, to be represented. Con-
straints, such as for example

∑N
i=1 yi ≤ K, are specific in-

variants whose evaluation stops when they are violated. In
InCELL, a constraint optimization problem (variables, con-
straints, and criterion) takes the form of a DAG (Directed
Acyclic Graph) of invariants. Each time the value of some
atomic variables (variables that are not functions of other
variables and are roots of the DAG) is modified, the DAG of
invariants is lazily reevaluated according to a DAG topolog-
ical order: any invariant is reevaluated only when necessary
and at most once.

On top of these basic concepts and mechanisms, InCELL
offers some constructs dedicated to scheduling: time point
variables, interval variables (defined by two time point vari-
ables and a distance constraint between them), unary and bi-
nary distance constraints (of the form x ≤ K or x−y ≤ K).
All temporal constraints are managed using a special STN
invariant (Simple Temporal network (Dechter, Meiry, and
Pearl 1991)) which has as inputs a set of unary and binary
distance constraints and as outputs the earliest dates of all
the time point variables involved in the constraints. Classi-
cal STN techniques are used to handle the STN: constraint
propagation, maintenance of propagation chains, decompo-
sition of the distance graph into strongly connected compo-
nents. Moreover, STN concepts and techniques are extended
in InCELL to deal with so-called time-dependent schedul-
ing (Gawiejnowicz 2008), that is with time-dependent dis-
tance constraints (Pralet and Verfailllie 2012) where the
minimum distance is not a constant, but a function of the
involved time points (of the form x − y ≤ F (x, y) with
some assumptions about Function F ). All the constraints
over intervals, defined in the previous section, can be man-
aged by InCELL, including the minimum transition times
between successive acquisition and geocentric pointing in-
tervals, thanks to time-dependent distance constraints.

InCELL allows also resource constraints to be defined and
profiles of resources (with piecewise constant or linear evo-
lutions) to be quickly and incrementally maintained, taking
into account the earliest dates produced by the STN. This
would allow memory (piecewise constant evolution) and en-
ergy (piecewise linear evolution) constraints to be managed.
However, these constraints are ignored in our problem: en-
ergy because it is not limiting and memory because of the
uncertainty about the volume of data generated by acquisi-
tion. When planning acquisitions, we prefer not to limit ac-
quisitions because of possible large volumes of data. How-
ever, when executing the acquisition plan, before triggering
an acquisition, in case of possible memory overflow, we re-
move from memory lower priority data and, when it is not
sufficient, we cancel the acquisition.

One of the key features of InCELL is its ability to work
on dynamic models (a new model each time P&S is called)
using a unique static model which is recycled to build dy-
namic models. This allows any dynamic memory allocation
to be avoided on board: a key requirement when building
embedded reactive control software.

See (Pralet and Verfaillie 2013) for more details about the
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Figure 4: Exchanges between the environment, the reactive executive, and the deliberative P&S component.
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Figure 5: Horizon over which an acquisition plan is built at a given time t on board satellite S2.

InCELL library.

5 A non chronological greedy search
To build online acquisition and download plans on board
satellite S2, we defined a very simple greedy search pro-
cedure, although more sophisticated local search procedures
could be considered (Aarts and Lenstra 1997).

At each step of this procedure, an acquisition (resp. down-
load) of highest priority level and of highest utility at this
priority level is selected and added to the acquisition (resp.
download) plan, when addition is possible. It is added in the
best acquisition (resp. download) window and at the best po-
sition in the acquisition (resp. download) sequence in terms
of utility. Once the acquisition sequence is defined, geocen-
tric pointings are added between acquisitions, when possi-
ble.

6 Calls to planning and scheduling
In case of online P&S, it is not only necessary to define the
P&S model and the reasoning and search mechanisms. It is
necessary to define when the executive calls to P&S, in order
to get a plan over some planning horizon ahead and to follow
it until a new call to P&S. See Fig. 4 for a global view of the
exchanges between the environment, the reactive executive,
and the deliberative P&S component.

In our problem, as far as acquisitions are concerned, we
define the length PHL of the planning horizon (horizon
over which P&S is called; typically some hours) and the
maximum planning time MPT (maximum time taken by
P&S; typically some seconds). The planning horizon of
length PHL is regularly shifted (typically every half an
hour). P&S is called again when a new acquisition oppor-
tunity appears over the planning horizon. This happens ei-
ther when electromagnetic sources are detected by satellite
S1 on some ground area, or when the planning horizon is
shifted and a new acquisition window for some ground area
appears over the new planning horizon. In such a case, we

consider the current time t, the time t′ = t+MPT at which
a plan will be surely available, the time t′′ from which deci-
sions can be made, taking into account acquisition or attitude
movement possibly in progress at t′ (acquisitions and atti-
tude movements are not interruptible, but geocentric point-
ings are), and we call to P&S over the planning horizon from
t′′. See Fig. 5 for an illustration.

As far as downloads are concerned, P&S is called MPT
before each download window (or group of windows that
overlap or are very close to each other) over the whole win-
dow (or group of windows).

7 Simulation
We used the simulation tool Ptolemy to simulate
the space system. Ptolemy (Eker et al. 2003) (see
http://ptolemy.eecs.berkeley.edu/) is a generic tool dedicated
to the simulation of dynamic systems, with an emphasis
on hybrid simulation. Among many other possibilities, it
is possible within Ptolemy to simulate a system whose
dynamics involves both discrete events and continuous
evolutions of resources. To express in Ptolemy the dynamics
of the space system, we particularly relied on the Ptera
framework (Feng, Lee, and Schruben 2010) which is based
on the notions of state, events, event preconditions and
effects, and conditional activations by events of other events
(possibly with some delay and some probability). See Fig. 6
for an illustration of the several temporal horizons that
are handled in the simulation (simulation, commitment,
planning, and decision horizons).

This simulation was run on scenarios built by CNES.
Fig. 7 shows a screenshot of the simulation tool at the end
of a five day simulation horizon, where one can see:
• at the top left, the current acquisition requests over the

whole world (small circles) and the visibility circle of the
unique ground reception station (in blue);

• at the top right, an artist view of satellites S2 (in front) and
S1 (behind) with the pointing direction of the former;
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Figure 6: Illustration of the several temporal horizons that are handled in the simulation.

Figure 7: Screenshot of the Agata-One simulator at the end of a five day simulation horizon.
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Prio 1 2 3
NAcq 132 147 82
NDl 119 123 42

NRm 0 13 24

Table 1: Global results over the five day simulation horizon:
Prio = priority level, NAcq = number of performed acqui-
sitions; NDl = number of downloaded acquisitions, NRm =
number of performed acquisitions that have been removed
from memory to free space.

• at the bottom right, the sequence of acquisitions, the se-
quence of downloads, and the evolution of memory on
board.

Over this simulation horizon, acquisition planning is
called 680 times, each time over a four hour horizon ahead.
Download planning is called 16 times, each time over the
next download window. Each time it is called, acquisition
(resp. download) planning must manage some tens of ac-
quisitions to be performed (resp. downloaded). Acquisition
(resp. download) planning takes on average 432 ms (resp.
2258 ms) on an i5-520 Intel processor with 1.2 GHz and 4
GBRAM.

The global results per priority level are shown on Tab. 1
The mean utilization percentage of the downloads windows
is of 85.39%.

A demonstration of the space system simulation is pre-
sented in the ICAPS 2013 Application Showcase.

Conclusion
The first result of this study is the demonstration that the
generic InCell library allows the planning problem associ-
ated with a new complex space mission to be easily mod-
eled and efficiently solved. Beyond the necessary improve-
ments of the library in terms of modeling power and algo-
rithm efficiency, the next steps should be the management of
other missions, the implementation of the executive and of
the P&S component on actual space processors, and the ef-
fective use on board an autonomous spacecraft, for example
to manage data downloads in presence of uncertainty about
volumes.
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