
	
 	

Proceedings of the 1st Workshop on
Planning and Robotics

Edited By:

Alberto Finzi, Felix Ingrand, Andrea Orlandini

Rome, Italy - June 10, 2013

Organizing Commitee

Alberto Finzi
“Federico II” University, Naples, Italy

Felix Ingrand
LAAS-CNRS, Toulouse, France

AndreA Orlandini
ISTC-CNR, Rome, Italy

Program committee

Rachid Alami, LAAS-CNRS, France
Amedeo Cesta, ISTC-CNR, Italy
Tara Estlin, NASA JPL, USA
Alberto Finzi, Federico II University, Italy
Maria Fox, King’s College, UK
Malik Ghallab, LAAS-CNRS, France
Joachim Hertzberg, University of Osnabrueck, Germany
Felix Ingrand, LAAS-CNRS, France
Leslie Kaebling, MIT, USA
Sven Koenig, University of Southern California, USA
Maria Dolores Moreno, Universidad de Alcala, Spain
Karen Myers, SRI, USA
Andrea Orlandini, ISTC-CNR, Italy
Thierry Peynot, University of Sydney, Australia
Fiora Pirri, Sapienza University, Italy
Frederic Py, MBARI, USA
Alessandro Saffiotti, Orebro University, Sweden
Reid Simmons, Carnegie Mellon University, USA
David Smith, NASA Ames, USA
Siddharth Srivastava, UC Berkeley, USA
Florent Teichteil-Königsbuch, ONERA, France
Manuela Veloso, Carnegie Mellon University, USA

Additional Reviewer

Daniele Magazzeni, King’s College, UK

	
 	

Foreword

Robotics	
 is	
 one	
 of	
 the	
 most	
 appealing	
 and	
 natural	
 applicative	
 areas	
 for	
 the	
 Planning	
 and	
 Scheduling	

(P&S)	
 research	
 activity,	
 however,	
 this	
 potential	
 interest	
 seems	
 not	
 reflected	
 in	
 an	
 equally	
 important	

research	
 production	
 for	
 the	
 Robotics	
 and	
 Planning	
 communities.	
 On	
 the	
 other	
 hand,	
 the	
 fast	

development	
 of	
 field	
 and	
 social	
 robotics	
 applications	
 poses	
 planning	
 as	
 a	
 central	
 issue	
 in	
 the	
 robotic	

research	
 with	
 several	
 real-­‐world	
 challenges	
 for	
 the	
 planning	
 community	
 (e.g.	
 continuous	
 planning	

and	
 execution	
 with	
 real-­‐time	
 constraints,	
 deliberative	
 and	
 dynamic	
 planning	
 integrated	
 with	
 motion	

planning	
 and	
 reactive	
 control,	
 human-­‐aware	
 planning	
 and	
 execution,	
 formal	
 methods	
 for	
 plan-­‐based	

autonomy,	
 etc.).	

In	
 this	
 perspective,	
 the	
 goal	
 of	
 this	
 workshop	
 is	
 twofold.	
 From	
 one	
 side,	
 it	
 aims	
 at	
 providing	
 a	
 fresh	

impulse	
 for	
 the	
 ICAPS	
 community	
 to	
 recast	
 its	
 interests	
 towards	
 robotics	
 problems	
 and	
 applications.	

On	
 the	
 other	
 side,	
 it	
 would	
 attract	
 representatives	
 from	
 the	
 Robotics	
 community	
 to	
 discuss	
 their	

challenges	
 related	
 to	
 planning	
 for	
 autonomous	
 robots	
 as	
 well	
 as	
 their	
 expectations	
 from	
 the	
 P&S	

community.	
 More	
 in	
 general,	
 the	
 PlanRob	
 workshop	
 would	
 constitute	
 a	
 stable,	
 long-­‐term	

establishment	
 of	
 a	
 forum	
 on	
 relevant	
 topics	
 concerned	
 with	
 the	
 interactions	
 between	
 Robotics	
 and	

P&S	
 communities.	
 The	
 workshop	
 would	
 present	
 a	
 stimulating	
 environment	
 where	
 researchers	
 could	

discuss	
 about	
 the	
 opportunities	
 and	
 challenges	
 for	
 P&S	
 when	
 applied	
 in	
 Robotics.	

The	
 first	
 edition	
 of	
 the	
 workshop	
 has	
 attracted	
 a	
 positive	
 response	
 from	
 the	
 research	
 community	
 as	

16	
 papers	
 has	
 been	
 accepted	
 for	
 oral	
 presentation	
 covering	
 many	
 relevant	
 topics,	
 such	
 as	
 high-­‐level	

task	
 planning,	
 CSP/Timeline-­‐based	
 approach,	
 task	
 and	
 motion	
 planning,	
 multi-­‐robot	

coverage/exploration,	
 traveling	
 problems	
 and	
 reasoning	
 with	
 uncertainty.	
 This	
 seems	
 to	
 us	
 as	
 a	
 very	

good	
 result	
 for	
 the	
 PlanRob	
 Workshop	
 and,	
 overall,	
 it	
 shows	
 a	
 good	
 feedback	
 from	
 the	
 ICAPS	

community	
 (but	
 not	
 only)	
 on	
 the	
 PlanRob	
 topics.	

Finally,	
 two	
 notable	
 researchers	
 have	
 accepted	
 our	
 invitation	
 to	
 complete	
 an	
 already	
 rich	
 and	

interesting	
 program	
 providing	
 an	
 invited	
 keynote:	

-­‐	
 Malik	
 Ghallab,	
 LAAS-­‐CNR,	
 France,	
 "Acting	
 is	
 the	
 Purpose	
 of	
 Planning:	
 the	
 Actor’s	
 view	
 of	

Deliberation"	

-­‐	
 Stuart	
 Russell,	
 UC	
 Berckley,	
 USA,	
 "Life:	
 Play	
 and	
 Win	
 in	
 20	
 Trillion	
 Moves"	

	

Alberto	
 Finzi,	
 Felix	
 Ingrand	
 and	
 AndreA	
 Orlandini	

The	
 PlanRob	
 2013	
 Chairs	

	

PlanRob 2013 Table of Contents

Table of Contents

Affordance-Based Reasoning in Robot Task Planning . 2

Iman Awaad, Gerhard K. Kraetzschmar and Joachim Hertzberg

A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task
Descriptions . 12

Daniel Di Marco, Rob Janssen, Alexander Perzylo, Marinus J.G. Van de Molengraft
and Paul Levi

Open World Planning for Robots via Hindsight Optimization . 20

Scott Kiesel, Ethan Burns, Wheeler Ruml, J. Benton and Frank Kreimendahl

Using Classical Planners for Tasks with Continuous Operators in Robotics. 27

Siddharth Srivastava, Lorenzo Riano, Stuart Russell and Pieter Abbeel

Closed Loop Configuration Planning with Time and Resources . 36

Maurizio Di Rocco, Federico Pecora and Alessandro Saffiotti

Deliberative Systems for Autonomous Robotics: A Brief Comparison Between
Action-oriented and Timelines-based Approaches . 45

Pablo Muñoz and Maria D. R-Moreno

Delegating Geometric Reasoning to the Task Planner . 54

Fabien Lagriffoul

RealTime GPU-based Motion Planning for Task Execution in Dynamic Environments 60

Chonhyon Park, Jia Pan, Ming Lin and Dinesh Manocha

Integrated Planning and Execution for an Aerial Service Vehicle . 65

Jonathan Cacace, Alberto Finzi, Vincenzo Lippiello, Giuseppe Loianno and Dario
Sanzone

Optimization of Aerial Surveys using an Algorithm Inspired in Musicians Improvisation . . 72

João Valente, Antonio Barrientos and Jaime Del Cerro

Multi-Robot Exploration in the Polygonal Domain . 79

Tomáš Juchelka, Miroslav Kulich and Libor Přeučil

Path Planning in Dynamic Environments with the Partially Observable Canadian
Traveller’s Problem . 89

Mikko Lauri and Risto Ritala

On the Traveling Salesman Problem with Temploral Constraints. 96

Satish Kumar, Marcello Cirillo and Sven Koenig

On the Many Interacting Flavors of Planning for Robotics . 103

Kartik Talamadupula, Matthias Scheutz, Gordon Briggs and Subbarao Kambhampati

Planning Surface Cleaning Tasks by Learning Uncertain Drag Actions Outcomes 106

David Mart́ınez, Guillem Alenya and Carme Torras

Robot Location Estimation in the Situation Calculus . 112

Vaishak Belle and Hector Levesque

1

Affordance-Based Reasoning in Robot Task Planning

Iman Awaad and Gerhard K. Kraetzschmar
Bonn-Rhein-Sieg University

and B-IT Center
Grantham-Allee 20

53757 Sankt Augustin, Germany

Joachim Hertzberg
Osnabrück University

and DFKI RIC Osnabrück Branch
Albrechtstrasse 28

49076 Osnabrück, Germany

Abstract

Humans are able to come up with plans to achieve their goals,
and to adapt these plans to changes in their environment, find-
ing fixes, alternatives and taking advantages of opportunities
without much deliberation. For example, they may use a tea
kettle instead of a watering can to water the plants, or a mug
instead of a glass to serve water. Despite decades of research,
artificial agents are not as robust or as flexible. In this work,
we introduce three reasoning phases that use affordances to
enable such robustness and flexibility in robot task planning.
The first phase generates a focused planning problem. The
second phase expands the domain where necessary while the
third and final reasoning phase uses affordances during plan
execution and monitoring. This is accomplished by combin-
ing Hierarchical Task Network planning, description logics,
and a robust execution/monitoring system.

Introduction
A paradigm shift has been taking place among researchers
in various fields of AI, such as perception and manipula-
tion in robotics. In recent years, an increasing number of ap-
proaches are task-oriented. For example, object grasping is
no longer solely dependent on the physical properties of the
object to be grasped and those of the manipulator, but now
takes into account the purpose of the grasping taking place.
For example, grasping an object to pour from it may require
a different grasp than transporting it.

In the planning field, the task-based perspective predates
the current change in other robotics fields. The Hierarchi-
cal Task Network (HTN) approach (Erol, Hendler, and Nau
1994a) has enabled researchers to reduce the search space
by allowing them to encode the ‘best way’ of carrying out
tasks; thereby improving the quality of the plans along the
way. Complexity is at a minimum when there are no choices
to be made – when there is exactly one way to decompose a
non-primitive task into primitive tasks. This may, however,
limit the ability to generate a plan: if we have no applica-
ble way to decompose a non-primitive task at a given state.
We would like to make use of another behavior that humans
often exhibit: finding alternative ways to accomplish a task.
Quite often, not so much by changing the plan per se (the
how), but by making the right substitutions (the with what).
For example, by using a mug instead of a glass for drinking
or by using a tea kettle instead of a watering can for watering

plants. The effect is equivalent to adding a new method to
decompose the task that uses the substituted object, and de-
pending on the result at execution, annotating it with a pref-
erence index. When using lifting, it would enable additional
objects as options to ground the methods and operators. In
mixed-initiative approaches, this could be seen as a resource
assignment (in our case, one that the agent should arrive at
autonomously). But, how would we determine which objects
to substitute?

We propose a modified HTN planning algorithm that
reuses the procedural knowledge of the methods and finds
object substitutes when necessary and appropriate, thereby
mimicking the resourcefulness of human planners and ac-
tors. We first answer the question of how the agent rec-
ognizes when it should make a substitution. Applying jus-
tification structures, borrowed from explanation-based ap-
proaches for annotating the derivation process of a plan
(Veloso 1994; Fernandez and Veloso 2006) accomplishes
this and enables us to understand why a planner made a
particular decision and why it may have failed to generate
a plan. In cases where planning fails due to a missing ob-
ject, the algorithm uses a reasoning process that employs the
concept of affordances to expand the domain so that effec-
tive alternative choices can be made. Such a choice may be
the most appropriate substitution, or the cheapest based on
spatial proximity, or some weighted combination of both of
these.

Affordances describe “opportunities for action” (Gibson
1979). This notion of affordances is retained in this work,
although Gibson’s action/perception coupling is not dealt
with directly. Gibson’s original definition has been refined
by many researchers, but a generally agreed upon interpre-
tation narrows the list of action choices to those that an actor
is aware of. Using the refined definition, affordances are nei-
ther solely a property of the object, nor of the actor, but of
their relationship. We adopt Norman’s definition (Norman
2002), and the subsequent extensions of this definition by
others, such as (Gaver 1991) and (Hartson 2003)) of per-
ceived affordances which allude to “how an object may be
interacted with based on the actors’s goals, plans, values,
beliefs and past experience” (Norman 2002). We propose to
include affordances within the domain model and to repre-
sent this in Description Logics (DL) so that we may use the
reasoning powers of existing tools to enable the robust and

2

flexible behavior described above.
To this end, we attempt to answer the following specific

questions: How does the agent recognize when it should
make a substitution? How does it acquire the functional af-
fordance (Hartson 2003) of an object? How is this functional
affordance represented? When should it attempt to make a
precondition true (for example, wash the dirty glass) as op-
posed to making a substitution (use a mug instead of the
glass)? When should an agent act on the affordance cues
(Fritz et al. 2006) and when should it stick with the execu-
tion of a generated plan? The solution we propose incorpo-
rates ideas from each of these domains:

• Planning in highly dynamic domains, where we need to
consider actions which may or may not be applicable due
to changes in the state of the world. In our case, alterna-
tive actions and alternative objects also need to be con-
sidered in order to enable successful plan generation and
execution. Here, the choice is based on affordances, spa-
tial proximity, and preferences.

• Explanation-based approaches, where information deal-
ing with the decisions made by the planner are recorded
to help diagnose the planning process. Some information,
e.g. on the absence of objects with which variables can
be grounded, can provide us with the necessary cue to ex-
pand the domain to include other objects. Unsatisfied pre-
conditions and the affordance that a method or operator
was meant to enable would provide us with the informa-
tion needed to make appropriate substitutions.

• Case-based planning, where previous plans, or subplans,
are used instead of new ones being generated. In any do-
main with tasks that are often repeated, such as making
coffee every morning, it makes sense to avoid deriving a
plan each time. In our case, it is desirable to keep track of
both the plans that turned out to be good solutions as well
as the ones that were not (and possibly why).

• Closely related is planning by analogy, where a similar-
ity in problem descriptions identifies and enables a previ-
ous plan’s structure to be adapted to the new case. To-
gether with case-based planning and explanation-based
planning, this approach provides the means to adapt ex-
isting plans according to given guidelines.

• Opportunistic planning and reasoning approaches, which
use opportunities to achieve goals that at a previous time
were unachievable. This approach seems well-suited to
planning with affordances, as these affordances could
serve as the cues that trigger opportunistic behavior.

• In mixed-initiative planning, a human user steers a plan
generation process by modifying, rearranging or adding
goals; assigning resources or even by simply approving
the plan. The latter is desirable in order to ensure, that any
resulting substitutions are indeed acceptable to the user,
and safe to perform. Our approach also adheres to prior-
ities set by the user when making substitutions, resulting
in varying levels of obedience versus flexibility.

The goal of this work is to demonstrate the utility of using
the powerful concept of affordances in the planning process

to reduce complexity and increase flexibility – two tasks that
may appear to be impossible to achieve simultaneously.

Application Scenarios
The scenarios presented below demonstrate how an
affordance-based agent within the area of domestic service
robotics would benefit from enhanced performance and in-
creased robustness.

Object substitution Common household tasks involve
fetching objects, for example, a glass of water. If during
execution a glass cannot be found, the agent would fail
to achieve its goal. A planner using affordance-based rea-
soning, however, would use its knowledge about the af-
fordances of a glass and substitute another item, such as a
mug for it. The agent may use the functional affordances
and/or physical properties of the objects to arrive at viable
substitutions.

Object substitution as tool usage Taking Norman’s defi-
nition, the use of an actor’s goals to pick up affordance
cues can result in interesting uses of everyday objects.
For example, the use of a magazine instead of a coaster
for placing a bottle on a table is an affordance of a mag-
azine that a human might take advantage of in order to
achieve his/her goal of placing a cup on something other
than the table. This use case illustrates such emergent be-
havior. Knowing the functional affordances of the original
object and using the conceptual similarity of the substi-
tuted object would enable this use case.

Object substitution or use as performance enhancement
Another common task involves fetching a cup of coffee.
If one uses affordances for planning, an agent could
reason that a more appropriate object would be a mug for
the coffee as opposed to the cup. The agent might use the
functional affordances and/or physical properties of the
objects to arrive at the most appropriate object.

Action substitution The existence of an affordance de-
pends as much on the morphology of the actor as it does
on a particular set of features of the object. An object
may be graspable for one embodiment but not for another.
Even with the necessary morphology to allow grasping, a
fault (be it temporary or not) with the system may pro-
hibit the use of the manipulator. The object could also be
too heavy to pick up. A human faced with a similar sit-
uation might attempt to push an object to its destination
(assuming that its current and final positions allow this).
Here, it is the similarity of the effects of the original action
with its possible substitutes that has the greatest impact.
The clustering of agent behavior instances (e.g. pick and
place, push, pull) which have the same effect on the ob-
jects they act upon to form abstract affordances (in this
example: move) could enable this.

Approach
From the use cases presented in the scenarios above, it is
clear that modeling functional affordances is required. These
functional affordances can be seen as a subcategory of what
Norman called “perceived affordances” which are based on

3

an agent’s experience and goals, and should not be confused
with affordances which are perceived from the environment
directly by an agent’s senses.

Functional affordances are extremely important for a
number of reasons. First, they enable intelligent behavior by
using objects for carrying out tasks that they were meant
to. Second, the concept of affordances could very easily
lead to an explosion in computational complexity as the ac-
tion possibilities of objects are numerous: a chair can be
sat on, but also thrown, stood on, etc. By using functional
affordances, the action space can be successfully reduced
when the substitution of objects is called for. In addition,
the functional affordances also enable us to specify more
general tasks. For example, when asked to “serve a drink”
any object ‘for drinking’ could be served without the need
to explicitly specify a particular drink. This is more impor-
tant than it seems at first glance since much of our interac-
tion with each other involves a great deal of underspecifi-
cation. Finally, they are especially important given the diffi-
culty researchers usually face in representing such a priori
or experience-based knowledge. Functional affordances can
be compactly represented in DL and can be reasoned about
efficiently. Objects may have more than one functional affor-
dance. A bottle for example, may have a primary functional
affordance of storing liquids and a secondary functional af-
fordance of drinking from.

In addition to functional affordances, affordance cues
(Fritz et al. 2006), which may be picked up from the environ-
ment through the perception process, are also needed. They
would serve as triggers of action behaviors. In addition, a
means to measure the similarity between objects would en-
able the synergistic use of these affordances for the object
substitution, and object substitution as tool usage scenarios.
For action substitution, the affordances are mainly related to
the effects of the actions and a similarity measure between
these would then robustly enable the scenario.

In the following sections, we demonstrate how our
affordance-based approach minimizes modeling, enables
flexibility and versatility, makes the representations more
compact, and reduces search at planning time.

Generating the Planning Problem
The task of generating a problem description for planners is
key. Part of this description is the domain (including meth-
ods, operators, and objects). Modeling the domain is diffi-
cult and time consuming. The choices of what to include
and what to exclude pose a dilemma for domain developers.
While it is desirable to limit the size of these models to keep
problems tractable, this may also result in failures to gener-
ate plans. The increasing complexity due to the size of the
search space (caused by both the number of operators and
the sheer number of objects in real world domains) remains
a challenge - so much so that much of the benchmarking
problems that are often used for planners can still be consid-
ered “toy problems” (Mastrogiovanni et al. 2010) .

Domain knowledge has long been used to help constrain
the size of the planning problems. Hartanto takes this further
by coupling DL reasoning with task planning. In (Hartanto
2009), he represents the domain in DL by transforming the

HTN syntax to DL and vice versa. This enables the infer-
ence of a constrained planning domain by selecting only rel-
evant elements, for example, only considering rooms whose
doors are open in a navigation domain. The modeling of the
domain in DL is thus a crucial element in handling com-
putational complexity. By linking affordances to tasks and
representing them in DL the use of domain knowledge is
increased and the robustness of the system is improved.

As mentioned before, complexity increases when a choice
is required; when there is more than one way to accomplish
a task or to achieve a goal, or, put differently, when we have
more flexibility. The cost of generating plans may differ by
orders of magnitude. The HTN planning approach improves
the situation by providing an expert’s way of carrying out the
task, and thus improving the quality of the plans. Moreover,
in an environment shared by humans and artificial agents,
this approach is beneficial as it is more human-readable and
a good agent should be able to communicate their plan at all
times (Bradshaw, Feltovich, and Johnson 2011). In addition,
it enables the human user to specify the way he/she wishes
to have a task accomplished in an intuitive way.

Let us take the task of watering plants as an example. The
domain modeler would specify methods which provide both
procedural knowledge (how the task is to be accomplished)
and domain knowledge (specifying that a watering can in
particular should be used) resulting in a task network such
as the one shown in Figure 1. If there is no watering can in
our domain, or, despite all of our methods and operators no
decomposition is found to accomplish the task, the plan gen-
eration process will fail. For example, when the watering can
exists but is inaccessible and we have no means by which to
make it accessible. The following section details this process
of expanding the domain to enable substitutions.

Expanding the Domain
In (Magnenat, Chappelier, and Mondada 2012), the authors
use the HTN domain to constrain the search space and then
learn the probabilities of success in order to enable more
robust plans. The lifting process is done over categories of
objects rather than instances, thus reducing the complexity.
The proposed use of this lifting over categories of objects
and/or their functional affordances in our approach provides
us with the chance to increase the number of possible ob-
jects to be ground and at the same time remain focused on
achieving the task by choosing a more general category or a
functional affordance.

The question is, how does the robot decide which substi-
tutions are admissible and how do we represent this knowl-
edge? We argue that the most appropriate substitutions are
the ones that are meant to be used for the same task. For
example, glasses and mugs are both used to drink from.
This is knowledge that humans learn and that may be found
in the dictionary for example, or possibly through projects
that aim to make common sense knowledge available to
artificial agents (such as OpenCyc (Cycorp httpwwwopen-
cycorg), RoboEarth (Hubel et al. 2010), ConceptNet and
WordNet). These knowledge sources may be used to provide
Norman’s “values, beliefs” and even “past experience” (Nor-
man 2002). Objects that are used for the same task (i.e. share

4

m_WaterPlant(?Plant)
precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

Figure 1: Task network for the WaterPlant method

the same ‘functional affordance’) would provide the most
‘appropriate’ substitutions. In addition, they can of course
also come from the humans co-inhabiting the environment
(for example, they might ask the robot to only clean the
bathrooms with the blue cleaning cloths (restricting it to the
subcategory), or to only serve them tea in their favorite cup
(a single instance)). This answers the question of where the
functional affordances of objects come from.

Some objects, such as watering cans, are used for a very
specific task. In this example, for watering plants. The only
other object which is used for the same task would be a
‘hose’, and this is only for watering plants outdoors. In this
case, both share the same functional affordance of watering
plants, but whereas it may be desirable to substitute the wa-
tering can for the hose, the opposite is not true, and so a sub-
stitution using only functional affordances may fail. Here,
the agent would need to look for objects which are concep-
tually similar to the watering can. The similarity measures
which are often used may not yield the results we have in
mind (we may not care about the color of an object, but
rather the presence of a handle for example).

Using Conceptual Spaces to Measure Similarity
For describing similarity, we propose the use of Con-
ceptual Spaces (Gärdenfors 2004). They provide a multi-
dimensional feature space where each axis is represents a
quality dimension, for example brightness, intensity, and
hue. Points in a conceptual space represent objects, while
regions represent concepts.

Let’s take the example given in (Gärdenfors 2004) (see
Figure 2): the three quality dimensions in our example above
can together be used to describe the ‘color’ domain. A re-
gion on the red axis could be described as having the prop-
erty ‘red’. A point in this region could represent the concept
‘apple’ in conjunction with other domains such as ‘taste’ or
‘shape’. We could even relate the property ‘red’, when talk-
ing about apples, to the taste ‘sweet’.

As conceptual spaces are built up by the various quality
dimensions (some or all of which may be sensed by the
agent, depending on its sensing capabilities), the idea is to
see if we can determine a relation between these quality di-
mensions and given tasks. For example, for the task of lift-
ing an object, the most important quality dimension would
be its weight — its color would be irrelevant. These rela-
tions could then be used as weighting factors to determine
how well an object would substitute for another in achieving
a given task (similarity would be measured as the weighted
Euclidean distance).

Conceptual spaces can also be used to represent shape,
such as handles, or spouts. The detection of these quality
dimensions obviously requires more processing by the per-
ception components than e.g. the simple detection of hue.
This would serve as a more robust and ‘focused’ similarity
measure for achieving a given task. In the case of finding a
substitute for the watering can, and given that for such a task
the capacity to hold water is perhaps the most important af-
fordance, followed by the presence of a handle and a spout,
conceptual spaces could find that the most similar item for
this task would be the tea kettle.

If we are to make use of the reasoning power of DL,
it would be beneficial to represent Conceptual Spaces in
DL. The use of the Conceptual Spaces Markup Language
(Adams and Raubal 2009) standard and its suitability for
reasoning about it will be investigated.

Using functional affordances and conceptual similarity,
an artificial agent can start by attempting to satisfy the con-
straints which are at the bottom of Figure 3, i.e. only using
a unique instance – if this was specified in the goal – or an
instance of a given object. If it fails to ground the suitable ob-
ject, the domain would be expanded: it would attempt to find
objects which satisfy the constraints which are in the level
above until it reaches the final level (minimal constraints,
maximum flexibility). Objects with the same functional af-
fordance as that of the originally called-for object are pre-

5

Figure 2: The color spindle formed by the quality dimensions brightness, intensity and hue (based on the diagram in (Gärdenfors
and Warglien 2012) p. 4).

ferred. This seems to be inline with our own preferences.
The first level above that of using an instance of a given ob-
ject is to use any object with the same functional affordance
and high conceptual similarity. The next higher level would
remove the constraint that the substitute should be conceptu-
ally similar, relying only on a shared functional affordance.
Should the agent not find such objects and given the old
adage that “form follows function” (the form of objects is
based on their function), conceptual similarity is then used
to identify those objects which do not share the same func-
tional affordance and yet are conceptually similar. The top
level attempts to infer the function-relevant attributes and
identify objects matching these properties.

The importance of spatial proximity can be altered to
make it either easier to move from one level of constraints
to another by increasing its importance (prefer objects which
are close, even if they are in a less constrained category of
objects), or more difficult to move up by decreasing its im-
portance. This steering of the domain expansion process can
be used both at planning time and at execution time as de-
scribed in the following section. This answers the questions
of when the system should attempt to make a pre-condition
true (for example, wash the dirty glass) as opposed to mak-
ing a substitution (use a mug instead of the glass), when it
should act on the affordance cues and when it should stick
with the execution of a generated plan.

If the agent uses a tea pot to water plants, it still needs to
fill it, and the procedural knowledge of how to do this for a
tea pot may differ from that of filling a watering can. This
brings us to how actions are dealt with.

We propose to map the execution of the actions in con-
ceptual spaces as in (Gärdenfors and Warglien 2012). ‘Be-
haviors’ are clustered by their effect on the objects they act
upon to obtain various abstract affordances, one per cluster;
for example ‘fill’. To reduce complexity during planning, a
method for each of these clusters can then be created. The
planning process then generates a plan that uses these meth-
ods. These could then be matched with the closest matching
‘behavior’ instance.

For example, the behaviors ‘pick and place’, ‘push’, and
‘pull’ all have a similar effect on the objects they act on; and

can be clustered together to form an abstract affordance that
we can call ‘move’. New affordances can appear as a result
of a behavior, for example, an object becomes stackable as a
result of being turned where the turning behavior may result
from carrying out any number of other behaviors: (pick and
place, push, pull), and stacking by executing the‘pick and
place’ behavior (Lörken and Hertzberg 2008).

Plan Execution and Monitoring
Having successfully provided a compact planning problem
to the planner and generated a plan, its execution and care-
ful monitoring is necessary. During this phase, a number of
issues need to be addressed. We would like the system to ro-
bustly handle unexpected situations and to take advantage of
opportunities.

Unexpected situations could occur due to partial observ-
ability of the environment or as a result of an environment’s
dynamic nature. For example, a door which was previously
known to be open may be closed at the time of execution,
or the watering can which was known to be in a given loca-
tion can no longer be found. In this case, the system behaves
much as it might during the plan generation phase, with a
slight difference.

Just as humans prefer to take advantage of objects within
their immediate spatial surroundings in such situations, the
agent might do the same. In the example of the coaster
and the cup presented in the ‘application scenarios’ section
above, humans would no doubt consider the use of objects
which are already on the table in the absence of the coast-
ers (such as magazines). Similarly, through the use of affor-
dances, we hope to accomplish the same.

In order to truly take advantage of opportunities within the
environment, which by definition are unexpected opportuni-
ties, we need to combine both the execution of plans which
have been generated through the deliberation process and re-
active behaviors which may be triggered by affordance cues.

We propose a simple blackboard architecture where affor-
dance cues (in the form of conceptual space quality dimen-
sions) are being posted as the agent moves through its envi-
ronment as part of executing a plan. These might be of vary-
ing complexity (from simple color hues which would cost

6

Unique Instance
E.g. Only "my_teacup"

Common Instance
E.g. closest instance of a "teacup"

Same Functional Affordance & Conceptually Similar
E.g. closest object "for drinking from", that matches "small, bowl-shaped, container, handle" (e.g. "mug")

Conceptually Similar
E.g. "small, bowl-shaped, container, handle" (e.g. "measuring cup")

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
&

 D
ec

re
as

in
g

C
on

st
ra

in
ts

Inferred Conceptual Similarity
E.g. objects used "for drinking from" are usually "small, cylindrical, container, glass" (e.g. "jar")

Same Functional Affordance
E.g. the closest object "for drinking from" (e.g. "bottle")

Figure 3: Decreasing constraints to increase flexibility in substituting objects

very little in terms of perceptual processing to more complex
concepts such as shape which might have been picked up as
part of the plan’s execution) and would be kept in the system
for a given duration. Upon plan failure, the cues which are
in close proximity can be used to identify viable candidates
for substitutions.

Of course, the same behavior can be used to guide plan
execution even when things are going as planned, and to
take advantage of opportunities before failures occur. For
example, cues that are associated with a drink bottle may
have been picked up on the way to the location specified in a
plan. This ‘short cut’ could be taken advantage of, again de-
pending on the flexibility that the human user has allowed.
A cupboard full of glasses would guide the agent to grasp
any of them, if there are no additional constraints like using
a specific glass. In the case of plan failure, an agent might
take the more ‘resourceful route’ of making a substitution or
attempt to use the same object by finding other instances, or
of using objects with the same functional affordance.

In fact, it makes sense to take the same task-based per-
spective mentioned in the introduction and to apply it to per-
ception: the combination of active perception at execution
time and task-oriented perception would enable the agent to
actively search for features which are relevant to the task
at hand, as opposed to passively picking up any and all
cues mentioned above. (Arkin 1998) has shown that the time
complexity for such a search is far better when compared to
a data-driven search.

Discussion
Over a decade ago, (Wilkins and desJardins 2001) stated that

An ideal system would be able to behave like humans
do in these sorts of [complex, dynamic] environments;
in particular, it would have to exhibit creativity, devis-
ing new actions that can solve a problem or shorten

a plan; use analogy to transfer solutions from other
problems; effectively interact with humans to use their
knowledge in decisions; and behave intelligently in the
face of conflicting or incomplete information.

This is precisely what we have aimed to accomplish. One
could argue that the scenarios described here can be solved
without a distinct theory of affordances by, for example, in-
troducing a more general model of constraints on objects
in the procedures themselves. This would have a number of
disadvantages however. The domain modeler would need to
decide on the necessary constraints for achieving a task and
model them. Both are non-trivial tasks. If the constraints are
too general, then the number of objects which may be used
may increase drastically, resulting not only in an increase
in complexity, but also in the use of objects which are sub-
optimal for the task when compared with the object which
should be used to start with. On the other hand, if they are
too specific, then we are left with our initial problem of not
finding any object to carry out our task with.

For example, we could specify that any object used for
watering a plant should have a handle, a long spout and hold
a given amount of water (perhaps within a given range). The
procedural knowledge could then be formulated in terms of
these constraints. Such a specification could be too limiting,
while a more general set of constraints (e.g. any container)
might allow too many objects to be substituted, some of
which may be quite inefficient (e.g. a mug could be used to
water plants). One could of course annotate all possibilities
with preferences, but this would again involve more model-
ing and increase the compactness of the representation.

Our approach can also be seen as being based on a set
of constraints. In our work, these are based on the synergis-
tic use of functional affordances and conceptual similarity.
Contrary to the approach described above, which would in-
clude these constraints with the procedural knowledge, the

7

domain modelers in our approach only design the methods
and operators as they would normally do, without explic-
itly modeling these constraints. Instead, only the functional
affordances are modeled. The representation is much more
compact and the system enables a versatility in steering the
possible solutions that would simply not be possible using
the approach described above. These constraints are itera-
tively decreased in a structured way to provide the flexibility
with which to choose substitutions.

Related Work
The noun planning is often appended to a variety of adjec-
tives that describe the underlying mechanism or the type of
domain an approach addresses. For example, we talk about
continuous planning in open-ended domains, planning under
uncertainty in highly dynamic and/or partially observable
domains, mixed-initiative planning when there is a human
somewhere in the loop, cooperative planning when we talk
about humans and robots working together to achieve a task
and multiagent planning when the planning is carried out for
execution by multiple agents. Then, we have a host of other
terms to describe what we do with plans once we have them:
plan management, case-based planning, explanation-based
planning, analogical derivation, goal transformation and so
on. In one way or another, the system we describe here is
related to the majority of these approaches.

In (Off and Zhang 2012), the authors address the prob-
lem of planning with incomplete information by modify-
ing the HTN algorithm to consider all possibly relevant and
“possibly-aquirable extensions of a domain model” (as op-
posed to using a conditional planning approach). Our system
adopts an open world assumption (through the use of De-
scription Logics which by default assumes incomplete infor-
mation), so unless our knowledge base contains a statement
(or can infer one) to the effect that something is true or that
it is false, our query would return ‘don’t know’. The tight
integration between the planning and execution components
is also shared.

Like the work presented here, (Cox and Zhang 2007) ad-
dress the case where planners fail due to insufficient re-
sources or because of changes in the environment, although,
their work focuses on improving the performance of novice
users in mixed-initiative approaches. The authors provide a
user interface where a human user can transform the goals
directly, thereby steering the planning process. Interestingly,
they identify two hierarchies (Cox and Veloso 1998) along
which the goals may be steered. The first is a type hierar-
chy for instances and the second a predicate abstraction hi-
erarchy; both of which can be seen as essentially provid-
ing abstract information for objects and actions, akin to our
functional affordances and conceptual similarity for objects
and our abstract affordances for actions. In our approach too,
the human user plays a vital role in the overall system. First
by providing the priority weighting for the process (which
varies the obedience/flexibility of the system), and second
by providing feedback on whether a substitution is accept-
able or not (and possibly the reason why it is not), thus en-
abling the system to improve its performance over time.

(Hayes-Roth and Perrault 1979; Birnbaum 1986; Simina
and Kolodner 1995; Mohan 2008) are examples of work
on opportunistic planning approaches which generally deal
with recognizing when a previously suspended goal can be
pursued. This is slightly different than our use of the term.
By opportunistic, we refer to acting on cues that deal with
current (and near-future) goals to enable the ‘shortcuts’ we
describe above.

The case-based approach (Cox, Muñoz-Avila, and
Bergmann 2005; Aha 2002) does describe what we attempt
to achieve here by maintaining a library of plans and anno-
tating them with their outcome (successful or not). Adapting
existing plans by using explanation-based approaches (to-
gether with analogy-based plan derivation) is also of interest.
It could be that the ‘critic’ (Erol, Hendler, and Nau 1994b)
functionality built into HTN planners is sufficient to create
the necessary queries for the knowledge base to enable the
expansion of the domain. This is still being investigated.

The representation of domain knowledge (as in (Tenorth
and Beetz 2009) and (Tenorth et al. 2012)) is of great inter-
est. In the latter, the researchers have built upon the knowl-
edge base which was created in the former, and created a
formal language to model the environment, actions, objects
and the robots themselves (including capabilities) with the
aim to enable knowledge exchange between agents. This is
of course extremely appealing and it will be interesting to
see if our system can interface with such a system and use
the knowledge available (and possibly contribute to it).

The use of the affordances concept in robotics is by
no means new. Early attempts to represent affordances for
computation purposes in artificial agents were made by
(Steedman 2002a) as well as (Chemero and Turvey 2007),
and were quickly followed by many others. A great deal
of research has recently been invested in the use of af-
fordances for manipulation tasks (see (Ridge et al. 2009;
Kraft et al. 2009; Moldovan et al. 2011)), and as such,
the means by which affordances can be perceived and
learned is also being addressed (see (Fritz et al. 2006;
Stoytchev 2005; Hermans, Rehg, and Bobick 2011; Ridge
et al. 2009; Stark et al. 2008; Montesano et al. 2007;
Varadarajan and Vincze 2011)). Researchers in the field of
human-robot-interaction (HRI) have also used affordances
for their processes (for example (Moratz and Tenbrink 2008;
Mason and Lopes 2011)).

Some researchers have focused on planning with affor-
dances in mind. Of note here is the work by (Lörken and
Hertzberg 2008), (Ugur, Sahin, and Oztop 2011), (St. Amant
1999) and (Steedman 2002b), while task execution in partic-
ular was addressed by (Lörken 2006). (Raubal and Moratz
2008) as well as (Lörken and Hertzberg 2008) went on to
integrate affordances into traditional, layered cognitive ar-
chitectures.

The work presented in (Janowicz and Raubal 2007) and
(Raubal and Moratz 2008), while addressing a different fo-
cus, is perhaps the closest to ours in that they also use func-
tional affordance and conceptual spaces to measure similar-
ity. Their work is based on an adapted version of the HIPE
theory of action and so they have included additional types
of affordances based on both physical and socio-institutional

8

Mobile Manipulator
(Hi-level capabilities through low level control of sensors and actuators)

Hybrid Deliberative Layer

Plan Management

User & Environment

Affordance-based Control

Perception Manipulation ...DriveHuman Robot
Interaction

Planner
(JSHOP2)

Knowledge Base
(OWL-DL Ontology Model,

and Plan Library)

Inference Module
(Pellet)

Ontology to Planning Domain/
Problem Generator

Action Execution/Monitoring
(SMACH)

Plan Execution/Monitoring

Figure 4: Software architecture of the system extending the hybrid deliberative layer (Hartanto 2009) to use affordance-based
reasoning in a domestic environment

constraints.
A survey on the use of DL in planning approaches is pro-

vided in (Gil 2005).

Current Status and Planned Developments
The tools and libraries which will be used in the system have
been identified, tested and chosen. The software architecture
of the system (see Figure 4) has been developed and it has
been integrated into the current framework of our b-it-bots
RoboCup@Home team’s domestic service robot (a Care-O-
bot 3 named Jenny). We are currently working on the coor-
dination and optimization of the knowledge representations
used by the various components of the system.

Two of the monolithic SMACH scenario scripts (state
machine-like execution scripts) for the robot have been con-
verted into modular states that can be called dynamically
as a result of the planning process. The procedural knowl-
edge encoded in such scripts was used to model the planning
domain for two RoboCup scenarios. A component, the task
dispatcher, which iterates through a generated plan and calls
the appropriate SMACH states has been implemented. Indi-
vidual monitoring actions have been designed and included
in the SMACH scripts to enable the robot to monitor the
execution of its actions, thereby providing additional robust-
ness. The concepts have been proven and the foundations for
the planning, execution, and monitoring systems have been
built.

The design and implementation of the first use case for
affordances (object substitution) is underway. This requires
the modeling of the functional affordances in DL. The pos-

sibility of autonomously acquiring these functional affor-
dances from online sources is currently being investigated.
The object substitution use case will be used to validate
the designed model of the functional affordances. Extend-
ing JSHOP2 (Ilghami and Nau 2003) to use lifting over cat-
egories and the justification structures is also a current task.
Designing the plan library (including preferences, etc.) is
the next major task. Once these steps are successfully com-
pleted, we will look into the integration of the other affor-
dance use cases.

Acknowledgements
The author I. Awaad would like to acknowledge the finan-
cial support provided by a PhD project scholarship of the
Department of Computer Science of Bonn-Rhein-Sieg Uni-
versity. The work of J. Hertzberg reported here is supported
by the RACE project, grant agreement no. 287752, funded
by the EC Seventh Framework Programme theme FP7-ICT-
2011-7. The authors would like to thank Elizaveta Shpieva
and Daniel Höller for their help in implementing some of
the ideas presented here. The authors also thank the review-
ers for their valuable feedback which has helped to improve
this manuscript.

References
Adams, B., and Raubal, M. 2009. Conceptual Space Markup
Language (CSML): Towards the Cognitive Semantic Web.
In 2009 IEEE International Conference on Semantic Com-
puting, volume 0, 253–260. Los Alamitos, CA, USA: IEEE.

9

Aha, D. E. 2002. Mixed-initiative case-based reasoning:
Papers from the ECCBR’02 workshop. Technical report,
Robert Gordon University, Aberdeen, Scotland.
Arkin, R. C. 1998. Behavior-Based Robotics. Intelligent
Robots and Autonomous Agents. Cambridge, MA, USA:
MIT-Press.
Birnbaum, L. A. 1986. Integrated processing in planning
and understanding. Ph.D. Dissertation, Yale University,
New Haven, CT, USA. AAI8728109.
Bradshaw, J. M.; Feltovich, P. J.; and Johnson, M. 2011. The
handbook of human-machine interaction: a human-centered
design approach. Farnham, Surrey, England; Burlington,
VT: Ashgate. chapter 13, 283–300.
Chemero, A., and Turvey, M. T. 2007. Gibsonian
affordances for roboticists. Adaptive Behavior - Ani-
mals, Animats, Software Agents, Robots, Adaptive Systems
15(4):473–480.
Cox, M. T., and Veloso, M. M. 1998. Goal transforma-
tions in continuous planning. In 1998 AAAI Fall Symposium
on Distributed Continual Planning, 23–3. Menlo Park, CA:
AAAI Press.
Cox, M. T., and Zhang, C. 2007. Mixed-initiative goal ma-
nipulation. AI Magazine 28(2):62–74.
Cox, M. T.; Muñoz-Avila, H.; and Bergmann, R. 2005.
Case-based planning. Knowl. Eng. Rev. 20(3):283–287.
Cycorp. http://www.opencyc.org/. Opencyc. Online at
http://www.opencyc.org/.
Erol, K.; Hendler, J.; and Nau, D. S. 1994a. HTN plan-
ning: Complexity and expressivity. In In Proceedings of
the Twelfth National Conference on Artificial Intelligence
(AAAI-94), 1123–1128. AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994b. Semantics for
hierarchical task-network planning. Technical report, Uni-
versity of Maryland.
Fernandez, F., and Veloso, M. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In Proceedings
of the Fifth International Joint Conference on Autonomous
Agents and Multi-Agent Systems.
Fritz; Paletta; Breithaupt; and Rome. 2006. Learning predic-
tive features in affordance based robotic perception systems.
In Intelligent Robots and Systems, 2006 IEEE/RSJ Interna-
tional Conference on, 3642–3647.
Gärdenfors, P., and Warglien, M. 2012. Using Conceptual
Spaces to Model Actions and Events. Journal of Semantics.
Gärdenfors, P. 2004. How to Make the Semantic Web More
Semantic. In Proceedings of the Third International Confer-
ence (FOIS 2004), 17–34.
Gaver, W. W. 1991. Technology affordances. In Proceed-
ings of the SIGCHI conference on Human factors in comput-
ing systems: Reaching through technology, CHI ’91, 79–84.
New York, NY, USA: ACM.
Gibson, J. J. 1979. The ecological approach to visual per-
ception. Houghton Mifflin (Boston).
Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.

Hartanto, R. 2009. Fusing DL Reasoning with HTN Plan-
ning as a Deliberative Layer in Mobile Robots. Ph.D. Dis-
sertation, University of Osnabrück.
Hartson, H. R. 2003. Cognitive, physical, sensory, and func-
tional affordances in interaction design. Behaviour & IT
22(5):315–338.
Hayes-Roth, B., and Perrault, F. H.-R. 1979. A cognitive
model of planning. Cognitive Science 3(4):275–310.
Hermans, T.; Rehg, J. M.; and Bobick, A. 2011. Affor-
dance prediction via learned object attributes. In IEEE Inter-
national Conference on Robotics and Automation (ICRA):
Workshop on Semantic Perception, Mapping, and Explo-
ration.
Hubel, N.; Mohanarajah, G.; van de Molengraft, R.; Waibel,
M.; and D’Andrea, R. 2010. RoboEarth Project. Online at
http://www.RoboEarth.org.
Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, UMIACS-TR-2004-40, University of Mary-
land.
Janowicz, K., and Raubal, M. 2007. Affordance-based simi-
larity measurement for entity types. In COSIT’07: Proceed-
ings of the 8th international conference on Spatial informa-
tion theory, 133–151. Berlin, Heidelberg: Springer-Verlag.
Kraft, D.; Detry, R.; Pugeault, N.; Baseski, E.; Piater, J. H.;
and Krüger, N. 2009. Learning objects and grasp af-
fordances through autonomous exploration. In Fritz, M.;
Schiele, B.; and Piater, J. H., eds., Computer Vision Systems,
7th International Conference on Computer Vision Systems,
ICVS 2009, Liège, Belgium, October 13-15, 2009, Proceed-
ings, volume 5815 of Lecture Notes in Computer Science,
235–244. Springer.
Lörken, C., and Hertzberg, J. 2008. Grounding planning
operators by affordances. In Proc. Intl. Conf. Cognitive Sys-
tems, 79–84. (CogSys 2008).
Lörken, C. 2006. Introducing affordances into robot task
execution. Master’s thesis, Institute of Cognitive Science,
University of Osnabrück.
Magnenat, S.; Chappelier, J.-C.; and Mondada, F. 2012. In-
tegration of Online Learning into HTN Planning for Robotic
Tasks. In Proceedings of the AAAI Spring Symposium 2012:
Designing Intelligent Robots, Reintegrating AI.
Mason, M., and Lopes, M. C. 2011. Robot self-initiative and
personalization by learning through repeated interactions. In
Proceedings of the 6th international conference on Human-
robot interaction, HRI ’11, 433–440. New York, NY, USA:
ACM.
Mastrogiovanni, F.; Scalmato, A.; Sgorbissa, A.; and Zac-
caria, R. 2010. Affordance-based planning for assisting hu-
mans in daily activities. In Proceedings of the 2010 Sixth In-
ternational Conference on Intelligent Environments, IE ’10,
19–24. Washington, DC, USA: IEEE Computer Society.
Mohan, V. 2008. Cognitive Robots From Affordance to Ac-
tion and Back. Ph.D. Dissertation, Italian Institute of Tech-
nology University of Genoa Doctoral School on Humanoid
Technologies, Genova, Italy.

10

Moldovan, B.; Otterlo, M. V.; Lopez, P. M.; Santos-Victor,
J.; and Raedt, L. D. 2011. Statistical relational learning of
object affordances for robotic manipulation. In ILP.
Montesano, L.; Lopes, M.; Bernardino, A.; and Santos-
victor, J. 2007. Modeling affordances using bayesian net-
works. In IEEE/RSJ - International Conference on Intelli-
gent Robots and Systems (IROS’07).
Moratz, R., and Tenbrink, T. 2008. Affordance-based
human-robot interaction. In Proceedings of the 2006 in-
ternational conference on Towards affordance-based robot
control, 63–76. Berlin, Heidelberg: Springer-Verlag.
Norman, D. 2002. The psychology of everyday things. Basic
Books (New York).
Off, D., and Zhang, J. 2012. Continual HTN planning and
acting in open-ended domains - considering knowledge ac-
quisition opportunities. In ICAART, 16–25.
Raubal, M., and Moratz, R. 2008. A functional model for
affordance-based agents. In Proceedings of the 2006 in-
ternational conference on Towards affordance-based robot
control, 91–105. Berlin, Heidelberg: Springer-Verlag.
Ridge, B.; Skocaj, D.; ; and Leonardis, A. 2009. Unsuper-
vised learning of basic object affordances from object prop-
erties. In Ion, A., and Kropatsch, W. G., eds., Computer
Vision Winter Workshop.
Simina, M. D., and Kolodner, J. L. 1995. Opportunistic rea-
soning: A design perspective. In Proceedings of the Seven-
teenth Annual Conference of the Cognitive Science Society,
78–83.
St. Amant, R. 1999. Planning and user interface affordances.
In IUI ’99: Proceedings of the 4th international conference
on Intelligent user interfaces, 135–142. New York, NY,
USA: ACM.
Stark, M.; Lies, P.; Zillich, M.; Wyatt, J.; and Schiele, B.
2008. Functional object class detection based on learned af-
fordance cues. In 6th International Conference on Computer
Vision Systems (ICVS), volume 5008, 435–444. Santorini,
Greece: Springer Berlin / Heidelberg. Oral presentation.
Steedman, M. 2002a. Formalizing affordance. In Pro-
ceedings of the 24th Annual Meeting of. Washington D.C.:
Lawrence Erlbaum.
Steedman, M. 2002b. Plans, affordances, and combinatory
grammar. Linguistics and Philosophy 25.
Stoytchev, A. 2005. Toward learning the binding affor-
dances of objects: A behavior-grounded approach. In Pro-
ceedings of AAAI Symposium on Developmental Robotics,
17–22. AAAI.
Tenorth, M., and Beetz, M. 2009. Knowrob - knowledge
processing for autonomous personal robots. In IROS, 4261–
4266.
Tenorth, M.; Perzylo, A.; Lafrenz, R.; and Beetz, M. 2012.
The RoboEarth language: Representing and exchanging
knowledge about actions, objects, and environments. In
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 1284–1289.
Ugur, E.; Sahin, E.; and Oztop, E. 2011. Unsupervised

learning of object affordances for planning in a mobile ma-
nipulation platform. In ICRA, 4312–4317. IEEE.
Varadarajan, K., and Vincze, M. 2011. Knowledge repre-
sentation and inference for grasp affordances. In Crowley,
J.; Draper, B.; and Thonnat, M., eds., Computer Vision Sys-
tems, volume 6962 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg. 173–182.
Veloso, M. M. 1994. Flexible strategy learning: Analogi-
cal replay of problem solving episodes. In Proceedings of
AAAI-94, the Twelfth National Conference on Artificial In-
telligence, 595–600. Seattle, WA: AAAI Press.
Wilkins, D. E., and desJardins, M. 2001. A call for
knowledge-based planning. AI Magazine 22(1):99–115.

11

A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task
Descriptions

Daniel Di Marco and Paul Levi
Department of Image Understanding

Universität Stuttgart, Germany
dimarco@ipvs.uni-stuttgart.de

Rob Janssen and René van de Molengraft
Department of Mechanical Engineering

Eindhoven University of Technology, The Netherlands

Alexander Perzylo
Department of Informatics

Technische Universität München, Germany

Abstract

We present an application of Hierarchical Task Network
(HTN) planning to create robot execution plans, that are
adapted to the environment and the robot hardware from ab-
stract task descriptions. Our main intention is to show that
different robotic platforms can make use of the same high
level symbolic task description.
As an off-the-shelf planning component, the SHOP2 HTN
planner is adopted. All the domain knowledge is encoded in
the Web Ontology Language (OWL) and stored in a world
wide accessible database, which allows multiple systems to
reuse and improve upon this knowledge. For task execution,
the execution plan is generated using the CRAM plan lan-
guage (CPL).
We demonstrate the functionality of the system in executing
a pick-and-place task in a simulated environment with two
different service robots, the TU/e Amigo robot prototype and
the Fraunhofer IPA Care-O-Bot 3. The experiment shows that
although the robots differ in hardware capabilities, the use of
HTN planning adds information that is crucial for success-
ful task execution and enables both systems to successfully
execute the instructed task.

Introduction
Autonomous task execution in unstructured environments is
an critical problem for service robotics. A lot of background
knowledge is required to solve this problem, not only about
the task to execute, but also on the robot itself and its en-
vironment. As there exists a wide range of different types
of service robots today, finding a way of exchanging this
knowledge is an interesting problem to solve.

In (Di Marco et al. 2012), we proposed a task execu-
tion system for abstract task descriptions. In the following
work, we describe an extension on the system described
there. To recap briefly, the previously proposed system is
built upon several open-source software packages and trans-
lates abstract task descriptions, represented in a high level
and stored on a global database into executable robot plans
for different robot platforms. To handle significant differ-
ences in robot hardware gracefully, the task descriptions are
annotated with capability requirements and matched with a

robot’s specific hardware. This way, only task descriptions
that are executable on a given robot platform at plan con-
struction time, are considered.

These abstract task descriptions are encoded as a se-
quence of hardware-agnostic actions and are represented as
concepts from a common ontology with semantic annota-
tions (Tenorth et al. 2012). The vision behind this approach
is that knowledge of how a robot can execute a specific
task, that is encoded on a high enough level can be used
by other robots (i.e. robots with different sensing or manip-
ulation hardware). A problem of this representation when
considered from the perspective of task execution is that the
high-level concepts need to be grounded in actual actions the
robot can execute. In the previous system, this was expected
to be done on the robot hardware layer. For example, in-
stances of the OWL concept “Translation-LocationChange“
are used to describe an agent’s intentional movement in the
environment. When elements of this type are encountered in
an abstract task description, they are translated into calls to
the robot’s respective base movement implementation.

Another consequence of this form of representation is that
certain low-level details required for task execution are ab-
stracted away. Therefore executing the task descriptions ne-
cessitates some form of reasoning. Consider for example the
task of picking up an object by a service robot with two
arms. The information on which manipulator to use is not
stored in the task description, because it should remain pos-
sible to execute the task on a robot with an arbitrary number
of arms, but which arm to use has to be inferred for each
specific situation again.

Finally, although there exists the possibility to provide
multiple task descriptions for a specific task, the system is
limited in the selection of the appropriate one by filtering
them according to the required robot capabilities. For in-
stance, while there might be task descriptions for passing
an open door and a closed door, the system has no means
of inferring on its own which task is appropriate for a given
situation.

Therefore our proposal is to try to improve on this static
grounding by using a state aware AI planning approach for
robot plan composition. In analogy with the described hier-

12

BringSomethingSomewhere

PickupSomething

NavigateToHandover

HandoverSomething

RetractArmToParking

already there?

door between?

default case

NAVIGATE-TASK ?robot ?goal

No Operation

NavInReachOfDoorHandle

PushDoorButton

NavigateToTarget

OpenDoor

MoveToPrimitive

Figure 1: Augmenting abstract task description elements
(left of the dashed line) with conditional decompositions
(right)

archical representation of action descriptions, it is reason-
able to try exploiting existing Hierarchical Task Network
(HTN) planners for this objective. We use the SHOP2 plan-
ner (Nau et al. 2003) as an off-the-shelf planning component
for this purpose. To encode the planning domain knowledge
in a semantically expressive and widely used representation,
the OWL web ontology language is employed. Fig. 1 shows
an example for a task description along with the new anno-
tations.

Related work
The problem of adding information for task execution of un-
derspecified task descriptions has been tackled by several
researchers before. The authors of (Beetz et al. 2011) de-
scribe the execution of a task for preparing pancakes, which
is described in natural language retrieved from an Internet
page. They extract an approximate task description using
natural language text processing and match the respective
action steps and the objects used to an ontology. By reason-
ing on the extracted structure along with semantic descrip-
tions, a rough execution plan is generated. During plan exe-
cution, the information missing in the plan is inferred using
different reasoning methods, using the CRAM framework
described in (Beetz, Mösenlechner, and Tenorth 2010). This
related work is especially interesting to this paper, as we rely
on some of the tools provided by Beetz et al.. However, our
goals differ: our interest is targeted on ways to instantiate
and execute reactive robot plans that are adapted to the envi-
ronment and on different hardware platforms, from abstract
representations encoded in a machine-readable way.

Another interesting approach to the problem is to run a
task execution in a simulated environment first. This allows a
realistic projection of the possible outcomes and side-effects
of task execution in a real environment, which is useful for
improving the execution plan in advance. It also helps avoid-
ing failures in task planning that occur through imperfect
symbolic modeling of the robot’s actions, like placing ob-
jects in a physically unstable way. The work described in
(Mösenlechner and Beetz 2009) aims at optimizing execu-
tion plans using a rigid body physics simulation to project

the behavior of a robot interacting with its environment.
They apply transformational planning to improve the ex-
ecution plans performance and robustness. A considerable
drawback of this approach in practice is that while physics
simulations provide good prospects on how a robot plan will
perform in a specific environment, they also assume a very
detailed description of the actors, and high computational
effort to be accurate.

A different approach that is using HTN planning meth-
ods as a layer above task execution is presented in (Har-
tanto 2011). This work describes a hybrid system that com-
bines OWL description logic reasoning techniques with
HTN planning in order to have the system automatically
omit superfluous information and keep the planning prob-
lem as small as possible. However, although they applied
their work on a real robot during the RoboCup@Home chal-
lenges, they do not explicitly address the possibility to con-
struct similar plans for systems with different hardware ca-
pabilities. Further, one goal of our work is the extension of
our previously published task execution system, which re-
quires the task descriptions to be formulated in the OWL
variant OWL Full as opposed to OWL DL, which is used in
the cited work.

In general terms of integrating knowledge represented in
OWL with the HTN planning approach, (Sirin 2006) pro-
vides some interesting insights. In this work, a HTN plan-
ning method that uses OWL-DL for its planning domain rep-
resentation is described. Its intended application is the auto-
mated composition of web services as opposed to creating
robot plans. In their earlier work (Sirin et al. 2004) the au-
thors describe a translation algorithm to create SHOP2 plan-
ning problems for web service composition using knowl-
edge encoded in the vocabulary of the OWL-S process on-
tology.

Another highly interesting approach in the context of our
work is presented in (Kaelbling and Lozano-Pérez 2011).
The paper proposes a hierarchical planning approach com-
bining symbolic and geometric planning as well as planning
and plan execution. Their planner decides early on one pos-
sible decomposition and selects suitable decompositions for
the sub-actions during execution time and is thus able to sig-
nificantly decrease the search space. Our system uses the
planning process to infer necessary actions from static in-
formation, like the robot hardware and environment descrip-
tion, and would thus not profit a direct application of this
approach. However, we consider this approach to be a very
promising direction for us to go in the future, when we adapt
our system for more dynamic environments.

The work published in (Joshi et al. 2012) describes a sys-
tem integrating stochastic planning with a reactive robot ar-
chitecture. Due to long planning times, the planner is run
off-line. It creates abstract policies that can be applied to op-
erate in a highly reactive way in different environments. In
contrast, our system creates one instantiation of a reactive
plan, but is faster in common cases, due to the simpler, non-
probabilistic HTN planning method employed.

13

Process Modules

RoboEarth
Cloud

Framework

SHOP2 Planner

Domain

Web Interface

KnowRob

Local Know-
ledge Base

Local
World Model

Comm

Query Response

CRAM executive
CPL

Execution Plans

Simulated
Perception

User Command

Detections

Actionlib
Calls

ROS component
layer

Problem

Planning Domain
Extraction

Query

Response

CPL Plan
Generation

SHOP2 Plan
Query Response

Semantic
Maps

SRDL
Robot Descr.

Action
Recipes

Recipe HTN
Annotations

Figure 2: System overview

Contributions
The core idea presented in this work is to make use of HTN
planning to help instantiating task execution plans from ab-
stract task descriptions and tailor them to a given environ-
ment and robot. For the actual task execution, we build upon
the work on reactive plan execution provided by (Beetz,
Mösenlechner, and Tenorth 2010).

System Overview
The overall system architecture is shown in Fig. 2. The plan-
ning domain knowledge is formulated in OWL and stored
on the RoboEarth platform (Waibel et al. 2011), a database
globally accessible via the world wide web.

An useful property of the system is that it separates the
knowledge used. For instance, it makes use of four different
sources of information, which are all stored on the database
in OWL-based formats:

• Semantic maps encode a description of the environment.

• The robot hardware for different platforms is specified
in terms of the Semantic Robot Description Language
(SRDL) as proposed by (Kunze, Roehm, and Beetz 2011).

• Action recipes are abstract task descriptions, as men-
tioned in the previous section.

• Recipe HTN annotations are descriptions of task decom-
positions, i.e. preconditions for specific decompositions,
and effects for basic operators. The right side of Fig. 1
provides an example.

The OWL descriptions are downloaded from the database
and parsed by the KnowRob knowledge processing engine
(Tenorth and Beetz 2009). KnowRob is based on a Prolog in-
terpreter and can answer queries in Prolog syntax. It is used
to read the information from OWL files and to do symbolic
reasoning on the knowledge stored within. It can be eas-
ily connected to an object detection algorithm and a world
model for object tracking, as described in (Di Marco et al.
2012) and (Elfring et al. 2012).

The module implementing the ideas presented in this pa-
per communicates with the knowledge processing engine via
Prolog queries. Fig. 3 shows its basic plan creation process.

Symbolic Plan

CPL Execution
Plan

HTN Planner

Semantic
Map

Recipe HTN
Annotations

HTN world state
description

HTN Planning
Domain

SRDL Robot
Description

Action
Recipes

Figure 3: Plan generation process

The semantic map for the respective environment is used
together with the SRDL robot description to create the ini-
tial world state. It extracts a planning domain and problem
in SHOP2 planner syntax as described in the following sec-
tions and tries to find at least one feasible plan. If there are
multiple plans, the shortest plan (where the length is mea-
sured in terms of symbolic actions) is selected. The result-
ing plan is converted into an executable plan described in the
CRAM plan language (Beetz, Mösenlechner, and Tenorth
2010), which finally gets executed on the robot using the
ROS (Robot Operating System) framework1.

Abstract Task Knowledge Representation
The RoboEarth language (Tenorth et al. 2012) is designed to
describe task specifications for service robots from a high
level view (i.e. without considering hardware or environ-
ment details which are not of interest for the task at hand). In
this context, recipes are composed of a set of parametrized
action primitives or other recipes. The structure is similar
to Hierarchical Task Networks in the sense that sub-tasks
might be decomposed recursively into other recipes. Recipes
are represented as OWL classes that have sub-actions and
parametrizations:

Class: PuttingSomethingSomewhere
SubClassOf:

Movement-TranslationEvent
TransportationEvent
subAction some PickingUpAnObject
subAction some CarryingWhileMoving
subAction some PuttingDownAnObject
orderingConstraints value ActionOrdering1
orderingConstraints value ActionOrdering2

...
Individual: ActionOrdering1

Types:
PartialOrdering-Strict

Facts:
occursBeforeInOrdering PickingUpAnObject
occursAfterInOrdering CarryingWhileMoving

1http://www.ros.org

14

We consider basic actions that are implemented in the
robot’s hardware abstraction layer in terms of structured re-
active controllers and thus are directly executable by the
robot to be called “skills”. Note that therefore the difference
on which OWL classes represent skills depends on the robot
platform used.

One advantage of having task descriptions represented
this way is that they can be used by a wide range of robot
platforms, provided that the basic action concepts refer-
enced are grounded in executable actions for the given robot.
While the task specifications are annotated with the require-
ments a robot needs to fulfill in order to be able to execute
the task, it is not explicitly stated which actions have to be
implemented by a robot platform as primitive skills. As a
consequence, a robot might provide all required low-level
primitive skills or it could replace a set of those skills with
a single, more complex implementation. Making this deci-
sion is up to the developer of the robot’s skill. This approach
adds flexibility and eases the adaption of robot platforms to
the system.

In this work, our intention is to continue the use of recipes
from the previous system (Di Marco et al. 2012) and to adopt
them as task decompositions for tasks in the HTN sense2.
A simplified visualization is shown in Fig. 1. The abstract
task description (depicted here without parameters) is on the
left of the dashed line. It is basically a sequence of OWL
concepts that refer to robot actions. The concepts can rep-
resent either basic actions like base navigation or grasping,
or they can refer to other task descriptions. In this way, they
can have different decompositions. However, the question
of when these decompositions can be applied is not repre-
sented. This is what the task description annotations provide.

We created a custom ontology to represent a large subset
of the functionality defined by the SHOP2 planning domain
description language (see (Nau et al. 2003)) as OWL con-
cepts. Currently supported are variables, predicates, axioms,
operators and methods. The HTN method definitions link to
the corresponding action recipe OWL identifier via an OWL
property.

The representation stays close to the SHOP2 planning
domain syntax. The basic building blocks are instances of
the PlannerPredicate class, which represent logical atoms
in the planning domain syntax, e.g. (robot-at ?robot
?place). Logical expressions (i.e. Or-, And- or Not-
Expressions) conjoin PlannerPredicate instances via the
hasOperand property.

Neither OWL nor the RoboEarth language have a concept
for variables that can have different values. In the task de-
scriptions, objects that are to be manipulated are described
as instances of OWL classes. They can be annotated with
properties to help identify them further.

The sub-task parametrizations in the action recipes are
implemented using OWL object properties which link to in-
stances of objects in the assertional box. Thus, we require
an explicit binding of the object properties in the recipes to

2To help distinguishing between HTN-style tasks and the more
generic word “task”, we will call the former “HTN-task” in the
remainder of this paper.

each of the variables referenced in the preconditions and ef-
fects in operators or HTN-tasks. These are implemented as
instances of the VariableMapping class, linking object prop-
erties to variable names in operator, method, or axiom de-
scriptions.
Individual: NavigateVarMapping

Types:
plan:VariableMapping

Facts:
plan:mappedFrom knowrob:toLocation
plan:mappedTo targetLocVar1

As robot hardware and thus robot capabilities can differ
significantly, we expect that not every robot can use the same
decompositions for the hierarchical task network. It there-
fore must be possible to define operators and HTN-tasks in
multiple ways, depending on the robot platform used. The
system allows for this by decoupling the ontology describ-
ing the operators and decompositions of HTN-tasks from
the action recipe definitions. To ensure a common vocab-
ulary, an ontology describing core concepts based on the
KnowRob ontology is used. Operators and HTN-Tasks are
mapped onto concepts from the common ontology.

Environment and Hardware Information
To generate a useful execution plan for a specific environ-
ment, information on the environment is necessary. E.g. the
types or the expected initial positions of objects to interact
with, a semantic map as defined in (Tenorth et al. 2012) is
used.

Our simulation example in the next section considers a
task of navigation. More specifically, the task is to infer that
a command to navigate between rooms might also mean to
traverse a door. For this purpose, we extended the semantic
map to incorporate a simple kind of topological map by de-
scribing regions in space that are adjacent and are thus con-
nected to each other. For example the semantic map contains
the information that the region in front of the first cabinet is
adjacent to the region where the door button is located. Note
that this information could as well be generated automati-
cally.

In order to generate plans for manipulation actions, the
system also needs to take the robot’s hardware setup into ac-
count, e.g. a description of the available manipulators and
their initial configurations. The system thus requires a se-
mantic description of the robot platform, which is available
in the previously described system (Tenorth et al. 2012). The
robot’s physical and cognitive capabilities are being rep-
resented using the Semantic Robot Description Language
(SRDL) (Kunze, Roehm, and Beetz 2011) and stored on the
web database. In order to get rid of the tedious work of man-
ually editing the SRDL description, we developed a conver-
sion tool that automatically converts robot descriptions cre-
ated with the help of the Uniform Robot Description Frame-
work (URDF) into SRDL. In addition to the mere kinematic
structure present in the URDF description, the SRDL docu-
ment subsumes the structural parts under component groups,
e.g. arms (this is done automatically by reading in configu-
ration files for the manipulation planner, which defines plan-
ning groups for each arm). Furthermore, the capabilities of

15

the robot can be explicitly advertised. This knowledge is
used to check whether a robot provides the prerequisites for
executing a given task with its specific requirements for sen-
sors, actuators or software algorithms.

For our experiment described in section Simulation Ex-
periment we generate SRDL descriptions for the Amigo
(Lunenburg et al. 2012) and the Care-O-Bot 3-4 (Parlitz
et al. 2008) robots. Fig. 4 depicts an example for the
Amigo robot. The capabilities needed to run the exper-
iment are GraspingCapability, gripper action, move arm
and move base, which notify the system that the robot is
able to control a gripper, move its arm and its base and to
grasp something. The OWL individual AmigoLeftArm de-
scribes the links and joints, which form the left arm of the
robot, by defining the base link and the tip links of the kine-
matic chain of the arm.

Executable Robot Plan Instantiation
The task plan generated by SHOP2 is a sequence of opera-
tor calls parametrized by the symbols described in the initial
world state. It is not immediately possible to execute this
kind of plan on a robot. We use the CRAM plan language
(CPL) to specify the generated robot execution plans. The
plans consist of calls to reactive execution plans provided
in a manually crafted plan library specific to the respective
robot platform, also written using CPL. CPL builds on the
Common Lisp programming language and provides several
interesting features to facilitate the problem of writing reac-
tive robot execution plans.

CPL allows the definition of process modules that allows
grouping different robot functionality (e.g. for navigating
the robot base) and provide a common interface to differ-
ent underlying hardware drivers. In our system, we manu-
ally aligned the calls of process modules with the defined
operators.

Also, CPL supplies the concept of designators. These are
symbolic descriptions that specify more detailed informa-
tion about actions, describing e.g. objects and locations. As
was proposed by (Beetz, Mösenlechner, and Tenorth 2010),
we use them to encode information that is to be resolved
during plan execution time. Our system generates a desig-
nator for each object and location for each symbol that was
created for describing the initial world state while omitting
symbols that are not used in the actual, generated SHOP2
plan. E.g. the statement (in-center-of coke1-pose
coke1) in the initial world state gets converted into the lo-
cation designator

(coke1-pose
(location ‘((in-center-of ,coke1))))

using the knowledge defined in the semantic map that
“coke1” is an object and “coke1-pose” is a location. The
designator definition is added before the plan definition, as
can be seen in Fig. 8. Robot parts to be used in the task, like
manipulators or actuated sensors, are also added as object
designators. They are used for e.g. specifying which arm to
use. Designators representing robot hardware are resolved in
the process module for the corresponding platform.

Figure 5: Simulated world used in the experiment.

As designators are basically Common Lisp variables that
can depend on each other, we need to make sure that they are
defined in the right order. We extract the corresponding de-
pendency graph and apply a topological sorting algorithm to
ensure a proper definition order. Object designators that de-
scribe robot parts or general concepts are currently resolved
in the process modules. E.g. object-state-closed
is used for stating that the gripper should be closed and
cobarm refers to the KUKA manipulator of the Care-O-
Bot robot. Object designators get resolved by querying the
knowledge processing system. In the current implementa-
tion, objects and their poses are resolved by their type only.
Note that this can lead to problems in environments with
several instances of the same object type. However, the sys-
tem can be extended to use a globally unique identifier for
objects provided an object tracking system capable of iden-
tifying objects consistently.

The integration of perception is a highly important and
challenging problem in generating robust executable robot
plans. For this work, we simulated a simple passive percep-
tion which steadily publishes object detection results into the
KnowRob system, as long as the object is approximately in
line of sight of the robot. Thus, the robot execution plan is
limited to actuation commands.

Simulation Experiment
To demonstrate our system a simplified simulation environ-
ment has been created, in which both the TU/e Amigo and
the Fraunhofer Care-O-Bot will perform the task of trans-
porting a drink from one area to another, see Fig. 5. The
simulation experiment is run in the Gazebo simulator3.

The main goal of the experiment is to demonstrate that al-
though the two systems differ in hardware topology (i.e. two
arms for the Amigo robot versus one arm for the Care-O-
Bot), they are both capable of performing the same task by
allowing different task decompositions. The main challenge

3http://gazebosim.org

16

Class: Amigo
SubClassOf:

knowrob:Robot,
(srdl2-cap:hasCapability some srdl2-cap:GraspingCapability)
and (srdl2-cap:hasCapability some srdl2-cap:gripper_action)
and (srdl2-cap:hasCapability some srdl2-cap:move_arm)
and (srdl2-cap:hasCapability some srdl2-cap:move_base)

...
Individual: AmigoArmLeft

Annotations:
srdl2-comp:endLinkOfComposition amigo:amigo_finger1_left,
srdl2-comp:endLinkOfComposition amigo:amigo_finger2_left,
srdl2-comp:baseLinkOfComposition amigo:amigo_shoulder_yaw_joint_left

Types:
srdl2-comp:ComponentComposition,
PhilippsArm

Figure 4: Excerpt of the semantic description of the Amigo robot used in the experiment

both robots will have to overcome is to open the door that
separates the two areas. This can be achieved by touching
one of the buttons next to it. The door will then stay open
for 45 seconds.

To start the process, a human operator has to specify the
task to be executed, its parameters (i.e. the object to operate
on), the robot and the environment in terms of OWL identi-
fiers. Note that the latter two could in theory inferred auto-
matically.

Amigo
The “opening the door” action is implemented as a HTN
task and part of one possible decomposition of the “navi-
gate” HTN task (so it could be more accurately named “pass
a closed door”). Other decompositions for the latter are “no
operation” (NOP) (in case the robot’s current pose matches
the goal pose), moving the base to the goal via an corre-
sponding operator if the current base pose and the target
pose are adjacent in the topology of the environment and
a recursion step for chaining multiple navigation steps.

For the task of transporting a drink the task for Amigo
decomposes into

• navigating to an approach pose in front of the drink,

• picking up the drink with one arm,

• navigating to the door,

• operating the door button with another arm,

• navigating to the drop-off location,

• dropping off the drink.

These steps are visually depicted in Fig. 6. The system
provided two similar plans, that only differed in the manip-
ulators used. E.g. in the first plan the robot used the right
manipulator to pick up the target object and the left to oper-
ate the door button, while in the second plan the order was
reversed. In cases like this, where there is no apparent ad-
vantage of multiple plans, the system arbitrarily selects the
first one.

Figure 6: Plan execution steps performed by Amigo.

Care-O-Bot 3-4
The Care-O-Bot differs from the Amigo robot in that it has
only one arm. To solve the scenario described above, we
chose the solution of having the Care-O-Bot use its mov-
able tray to temporarily place the drink upon, while it is ma-
nipulating the door button with its manipulator. It is note-
worthy that the button could in theory be operated with the
object in the gripper. However, our intention is to simulate
opening a real door, so the experiment setting assumes that
the arm has to be free. This is implemented in the plan-
ning domain by two additional HTN tasks. The first is called
FreeArmForGrasping, which decomposes into NOP if

17

Figure 7: Plan execution steps performed by Care-O-Bot.

at least one arm is free (i.e. not attached to any object), and
into an operator to put an object from the gripper on the tray
if a tray is available and no arm is free. The other HTN task
is called PrepareNavigation, which clears the carry-
ing tray and puts the arms in parking position if necessary.
PrepareNavigation is defined recursively, as it can be neces-
sary to execute more than one of the mentioned actions.

A visual overview of the steps involved for the Care-O-
Bot is shown in Fig. 7.

Conclusion
We presented a system to create robot execution plans for
heterogeneous robot platforms by HTN planning on knowl-
edge encoded in OWL. The system makes use and extends
former work that was geared towards encoding task descrip-
tions in an abstract, hardware-agnostic way. We showed its
functionality by having two distinct robots execute the same
task description and coping with their difference in hardware
setup.

An useful feature that was inherited and extended from
the former, static task execution component, is that different
kinds of knowledge are kept separate. For instance, knowl-
edge about the robot hardware is kept separate from knowl-
edge on HTN task decompositions or the environment. This
allows for easy replacement of parts and greater applicabil-
ity in new environments or for new robots. Also, symbols
and concepts from the underlying OWL knowledge repre-
sentation are aligned in the whole chain from planning to
execution; and this can be used for further reasoning during
execution time.

On the other hand, the additional overhead necessary for
fully describing the planning domain in OWL is signifi-

(def-cram-function generated-plan nil
(with-designators

((bed1
(object
’((name bed1)

(type bed--piece-of-furniture))))
(cobtray
(object
’((name cobtray)

(type component-composition))))
(object-state-closed
(object ’((name object-state-closed))))

(door1
(object
’((name door1) (type door))))

(bed1-reachable-space
(location
‘((in-reach-of ,bed1)

(connected-to ,door1))))
...
(object-state-open
(object ’((name object-state-open)))))

(achieve-operator
‘(!move-to-operator ,cob3-4-robot1

,icetea1-reachable-space))
(achieve-operator
‘(!change-gripper-state-operator ,cobarm

,object-state-open))
(achieve-operator
‘(!move-arm-to-operator ,cobarm

,icetea1-pose))
...))

Figure 8: Excerpt from the generated plan for the Care-O-
Bot robot

cant compared to the previous approach of only represent-
ing high level actions; the given example domain encoded in
RDF/XML required for instance around 4000 lines of XML.

In the future, we will try to apply the approach in more
difficult environments and on more diverse robots. Another
interesting further direction would be to use or even learn
additional information in the environment, like how long the
door will stay open after the button has been triggered. In
the scenario described the robot has no knowledge about
how long the door will stay open after the button has been
pressed.

Finally, we realize that the separation of plan generation
and execution reduces the robustness of the system. Future
work will focus on integrating the plan generation more
deeply into plan execution. To achieve that, we also will
need to adapt the representation of the planning domain to
be less dependent on the SHOP2 planner.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. The research leading to these results has received
funding from the European Union Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement no 248942
RoboEarth.

18

References
Beetz, M.; Klank, U.; Kresse, I.; Maldonado, A.;
Mösenlechner, L.; Pangercic, D.; Rühr, T.; and Tenorth, M.
2011. Robotic Roommates Making Pancakes. In 11th IEEE-
RAS International Conference on Humanoid Robots.
Beetz, M.; Mösenlechner, L.; and Tenorth, M. 2010. CRAM
- a cognitive robot abstract machine for everyday manipula-
tion in human environments. In Intelligent Robots and Sys-
tems (IROS), 2010 IEEE/RSJ International Conference on,
1012–1017. IEEE.
Di Marco, D.; Tenorth, M.; Häussermann, K.; Zweigle, O.;
and Levi, P. 2012. Roboearth action recipe execution. In
12th International Conference on Intelligent Autonomous
Systems.
Elfring, J.; van den Dries, S.; Molengraft, M.; and Steinbuch,
M. 2012. Semantic World Modeling Using Probabilistic
Multiple Hypothesis Anchoring. Robotics and Autonomous
Systems. accepted / in press.
Hartanto, R. 2011. A hybrid deliberative layer for robotic
agents: fusing DL reasoning with HTN planning in au-
tonomous robots, volume 6798. Springer.
Joshi, S.; Schermerhorn, P.; Khardon, R.; and Scheutz, M.
2012. Abstract planning for reactive robots. In Robotics
and Automation (ICRA), 2012 IEEE International Confer-
ence on, 4379–4384. IEEE.
Kaelbling, L., and Lozano-Pérez, T. 2011. Hierarchical task
and motion planning in the now. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, 1470–
1477. IEEE.
Kunze, L.; Roehm, T.; and Beetz, M. 2011. Towards se-
mantic robot description languages. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
5589–5595. IEEE.
Lunenburg, J.; van den Dries, S.; Elfring, J.; Janssen, R.;
Sandee, J.; and van de Molengraft, M. 2012. Tech United
Eindhoven Team Description 2012. In RoboCup Team De-
scription Papers 2012.
Mösenlechner, L., and Beetz, M. 2009. Using physics- and
sensor-based simulation for high-fidelity temporal projec-
tion of realistic robot behavior. In 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS’09).
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu, D.;
and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research (JAIR) 20:379–
404.
Parlitz, C.; Hägele, M.; Klein, P.; Seifert, J.; and Dauten-
hahn, K. 2008. Care-obot 3 - rationale for human-robot in-
teraction design. In Proceedings of 39th International Sym-
posium on Robotics (ISR), Seoul, Korea.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
HTN planning for web service composition using SHOP2.
Web Semantics: Science, Services and Agents on the World
Wide Web 1(4):377–396.
Sirin, E. 2006. Combining description logic reasoning with
AI planning for composition of web services. Ph.D. Disser-
tation, University of Maryland.

Tenorth, M., and Beetz, M. 2009. Knowrob—knowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, 4261–4266. IEEE.
Tenorth, M.; Perzylo, A.; Lafrenz, R.; and Beetz, M. 2012.
The RoboEarth language: Representing and Exchanging
Knowledge about Actions, Objects, and Environments. In
Robotics and Automatic (ICRA), 2012, IEEE International
Conference on.
Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, J.;
Galvez-Lopez, D.; Häussermann, K.; Janssen, R.; Montiel,
J.; Perzylo, A.; et al. 2011. Roboearth. Robotics & Automa-
tion Magazine, IEEE 18(2):69–82.

19

Open World Planning for Robots via Hindsight Optimization

Scott Kiesel1 and Ethan Burns1 and Wheeler Ruml1 and J. Benton2 and Frank Kreimendahl1

1Department of Computer Science 2Smart Information Flow Technologies (SIFT), LLC
University of New Hampshire Minneapolis, MN USA

skiesel, eaburns, ruml, fri2 atcs.unh.edu jbenton@sift.net

Abstract

Classical planning makes the closed world assumption in
which all relevant aspects of the world are known at plan-
ning time. While this assumption holds in some domains, in
many practical robotics domains the existence of relevant ob-
jects or the states of relevant fluents are initially unknown and
must be actively discovered. Previous proposals for open-
world planning either employ complex and expensive knowl-
edge representations or depend on ad hoc assumptions. In this
paper, we show how hindsight optimization provides a sim-
ple and general approach to planning in open and partially
observable worlds. Hindsight optimization samples multi-
ple possible worlds that are consistent with the agent’s cur-
rent knowledge, generates a plan in each respective world,
and then selects the action that maximizes expected reward
over these samples. While this approach is approximate, we
demonstrate both in simulation and on a physical robot that
this simple technique performs well and is more scalable than
previous methods on standard benchmarks.

Introduction
Imagine a rescue robot entering a partially-destroyed build-
ing to search for survivors of an earthquake. The agent does
not know the initial layout of the building, what new ob-
structions may exist, the locations of potential victims, or
even how many victims there are. In open-world planning
problems like this, the agent is not given a complete de-
scription of the initial state of the world, but it can perform
sensing actions to determine the existence of relevant objects
and the values of important fluents. To be useful, the plan-
ner must be fast enough to not materially delay the actions
of the robot. It must be able to plan to discover and take
into account newly sensed information, and ideally it would
be expressive enough to handle soft goals, durative actions,
temporal constraints, and actions with uncertain outcomes.

In this paper, we propose a simple on-line planning ap-
proach that handles the requirements of open-world do-
mains. We call this new approachOptimization in Hindsight
with Open Worlds (OH-WOW). Rather than using tradi-
tional techniques that compute a policy or contingent plan
in advance, we estimate on-line at each step which action is
best in light of our current knowledge of the world. The OH-
WOW approach is domain agnostic and does not commit
to a particular representation for open-world knowledge or

goals. Instead, it can leverage any closed-world planner ap-
propriate for the underlying domain. Our central assumption
is that the agent possesses some knowledge, likely proba-
bilistic, about the domain. In our view, performing well in
an open-world depends on having expectations about that
world, e.g., building dimensions are typically tens or hun-
dreds of meters rather than centimeters or kilometers, or that
people are usually found in certain densities per square me-
ter, or are more often found in certain areas, such as offices.
This type of default or prior information can be overridden
by direct experience, but ought to play a role in planning
until it is discovered to be inaccurate. We use these expecta-
tions to generate possible states of the world consistent with
the agent’s current knowledge, use a closed-world planner to
estimate the future reward achievable in those worlds after
taking each currently-applicable action, and then select the
action with the highest expected reward.

After describing OH-WOW in detail, we contrast it with
previous work. We then report on the method’s empiri-
cal performance, both in simulated domains and when de-
ployed on a physical mobile robot fully integrated with the
Robot Operating System (ROS), Simultaneous Localization
And Mapping (SLAM) and standard navigation. Our expe-
rience indicates that the method is surprisingly general and
practical, achieving results as good as those of previous sys-
tems but with lower planning times and fewer ad hoc as-
sumptions. This work showcases the power of Monte Carlo
techniques and adds open-world planning to the list of non-
classical planning settings in which simple planners can be
leveraged to provide state-of-the-art performance.

A Hindsight Optimization Approach
Optimization in hindsight was originally developed for
scheduling and networking problems (Chong, Givan, and
Chang 2000; Mercier and van Hentenryck 2007; Wu,
Chong, and Givan 2002) and has recently been applied to
probabilistic planning (Yoon et al. 2008; 2010). In these
previous settings, sampling is used to resolve uncertainty in
the outcome of actions. In our context of open-world plan-
ning, each sample forms a concrete hypothesis about the
world—which objects might exist and which fluents might
hold. While these will likely be revealed to the agent as it
performs actions that have, a priori, uncertain outcomes, the
sampling process for open-world planning is more involved

20

than choosing an outcome in a PPDDL (Younes and Littman
2004) action or RDDL (Sanner 2011) description. For ex-
ample, a rescue robot will generate possible world states
with conceivable floor plans for the building, each with sets
of victims distributed in various plausible locations. Each
of these sampled worlds may potentially determine the out-
come of multiple sensing actions during the course of the
corresponding planning episode. Demonstrating the prac-
ticality of this approach is the central contribution of this
paper.

While these samples of possible worlds are intentionally
not exhaustive, they are intended to provide useful relative
judgements on the expected value of actions. In order to es-
timate the value of an action, we apply that action in each of
the sampled possible worlds, find closed-world plans from
the resulting states, and average over the resulting plan costs.
The action with the lowest average plan cost over the sam-
pled worlds is chosen to be executed.

More formally, we define the value of being in a states1
as the minimum expected cost over plans that extend from
s1. That is, the minimum cost over all possible future action
sequences of the total cost over all expected future states:

V ∗(s1) = min
A=〈a1,...,a|A|〉

E
〈s2,...,s|A|〉





|A|
∑

i=1

C(si, ai)





whereC(s, a) represents the cost of performing actiona in
states. In open-world planning, these future states incorpo-
rate the sensed knowledge of the agent and the expectation is
over the distribution of sensing outcomes. The agent will ex-
pect different outcomes based on its beliefs about the world.
Given our expectations about sensing outcomes, we would
like to find the action sequenceA = 〈a1, ..., a|A|〉 that min-
imizes the expected sum of action costs. To computeV ∗

exactly, we would need to compute the expectation for each
of exponentially many plans.

In optimization in hindsight, we approximate the value
function by exchanging expectation and minimization, so
that we are taking the expected value of minimum-cost plans
instead of the minimum over expected-cost plans:

V̂ (s1) = E
〈s2,s3,...〉



 min
A=〈a1,...,a|A|〉

|A|
∑

i=1

C(si, ai)





This approximation ofV ∗(s) uses fixed sensing outcomes in
each minimization. As in other applications of optimization
in hindsight, the stochastic elements have been reduced to
known outcomes by sampling. For each possible outcome
in the expectation, the problem is to minimize cost given a
known world, i.e., standard, closed-world, cost-minimizing,
deterministic planning. In OH-WOW, fixed sensing out-
comes are generated using concrete hypotheses about the
state of the world. For each fully-known, deterministic
world hypothesis, the agent can compute the result of dif-
ferent sensing outcomes when solving the minimization in
the equation forV ∗. For example, the result of querying
a vision system to look for an injured person depends on
whether or not there is an injured person in the sensed por-
tion of the world—this is fully-known for each hypothesis.

OH-WOW(s = 〈agent ,world〉, N)
1. for i from 1 toN do
2. wi ← sample world(world)
3. foreach actiona applicable ins
4. s′ ← a(s)

5. c← (
∑N

i=1
solve(s′, wi))/N

6. Q(s, a)← C(s, a) + c
7. Returnargmina Q(s, a)

Figure 1: The OH-WOW algorithm.

The agent is aware of what features are truly known and
which are merely hypothesized, as a result the deterministic
problem can require sensing actions before the agent inter-
acts with hypothesized portions of the world. In this way,
the system will still be required to plan to sense. A dummy
precondition is added to all actions that involve a hypoth-
esized variable. This precondition enforces that the value
of that variable is sensed before actions requiring the value
are executed. This ensures that the resulting plan executes
sensing actions appropriately. More concretely, if the agent
hypothesizes that there is an injured person in a room, then
the deterministic planner will require a sensing action be-
fore that person can be reported. When a sensing action is
carried out in the physical world, its result may differ from
the hypothesis. This new information will be reflected in the
samples taken at the next planning step.

We define theQ-value to be the cumulative expected cost
of taking an actiona1 in states1:

Q(s1, a1) = C(s1, a1)+ E
〈s2,s3,...〉

[

min
A=〈a2,...,a|A|+1〉

|A|+1
∑

i=2

C(si, ai)

]

From this, we estimate the best action choice ins1 as
mina Q(s1, a). Using this technique, we are said to be per-
forming optimization with the benefit of ‘hindsight’ knowl-
edge about how future uncertainty will be resolved.

The pseudocode in Figure 1 summarizes the algorithm.
At each time step, the algorithm is used to find the next ac-
tion to execute from the current states, which includes in-
formation about both the agent’s current configuration and
its current knowledge about the world. First, we generate a
set ofN possible worlds that are consistent with the agent’s
current knowledge (lines 1–2). Next, for each currently ap-
plicable actiona, we consider the resulting states′ = a(s)
(line 4). Then, each possible worldwi is initialized with
the states′, generating a fully-known closed-world deter-
ministic planning problem. Recall that, to incorporate sens-
ing, the determinized problem requires the agent to sense
before interacting with hypothesized features of a sampled
world. Solving this problem provides an optimistic estimate
of the cost froms′. The mean cost across the set of sam-
ples (line 5) along with the cost of the actionC(s, a) is used
as theQ-value for each applicable actiona in the original
states (line 6). Finally, we return the action with the min-
imumQ-value (line 7), the agent takes the action, possibly
observing new facts and objects in the world, yielding a new
current state, and the cycles begins anew.

21

Related Work
Open world planning is a broad problem that has been at-
tacked from many angles. One issue is how to represent
knowledge and goals related to open-ended sets; Etzioni
and Weld (1994) and Babaian and Schmolze (2006) have
addressed this. We do not address this issue in this paper,
except to point out that the underlying planners used in our
approach are closed-world and do not require a particularly
expressive (and expensive) representation language. We do
require that the agent tracks what is currently known about
the world and that the world generator respects this knowl-
edge when sampling possible worlds.

In conformant planning (Cimatti, Roveri, and Bertoli
2004, inter alia), one requires plans that are guaranteed to
work without sensing. For most robotics domains, this is
overly restrictive and renders problems unsolvable. Contin-
gent planning (Meuleau and Smith 2003, inter alia) allows
for sensing, but computes a plan before beginning execu-
tion. In addition to handling open-worlds, we aim to scale
to domains in which the number of contingencies may be
very large (e.g., the number of possible floor plans), making
synthesis of branching plans prohibitively expensive.

In the POMDP literature, computing actions on-line is
recognized to provide increased scalability (Ross et al.
2008). However, many POMDP algorithms attempt to com-
pute future belief states of the agent, which can be expen-
sive and cumbersome. Optimization in hindsight represents
an extreme approach, disregarding future belief uncertainty
and assuming that the agent can achieve the cost accrued by
the plans for the fully-observed sampled worlds. Our work is
perhaps most closely related to work on sampling techniques
for POMDPs, where a particle filter approximates the be-
lief space during sampling (Silver and Veness 2010). Open
world planning goes beyond traditional factored POMDP
representations (Boutilier, Dean, and Hanks 2011) because
the structure of the world state requires representing a log-
ically infinite domain of discourse; the universe of objects
that exist and the possible relationships between them re-
main unknown to the agent (Doshi 2009).

There has been sustained interest from roboticists in open-
world planning. One way of handling open-world planning
in practice is to force the robot to move in one direction sim-
ply to explore without a concept of cost or reward. Such
simple ad hoc approaches cannot exploit the agent’s expec-
tations about goals (e.g., people are likely in offices) or take
sensed information into account (e.g., a hallway implies new
rooms to explore). Talamadupula et al. (2010) present an
approach where the planner assumes objects exist in order
to instantiate goals and motivate a search and rescue robot
to collect reward by discovering and reporting victims. As
new information arrives about the environment, the planner
replans. This can be seen as a degenerate form of our hind-
sight approach, where the robot operates on a single opti-
mistic “sample”. While it is simpler, it cannot generalize to
domains where uncertainty is a major component.

Joshi et al. (2012) use offline symbolic dynamic program-
ming with known goals but unknown numbers or locations
of objects, which does allow for reusable policies on any
instance of the domain. However, in their experiments the

number of possible objects was severely limited to retain
feasible computation times (they require 4 hours for their
3 room example), which makes the resulting policies subop-
timal. They also do not handle temporal constraints, action
costs, or goal rewards.

Evaluation
We evaluate OH-WOW by applying it in two domains: the
classic omelette benchmark for planning under uncertainty,
and urban search-and-rescue, which we investigate both in
simulation and using a physical robot.

Omelettes
In the omelette benchmark, introduced by Levesque (1996),
the agent is attempting to make a three-egg omelette with
ingredients of unknown freshness. The agent has four avail-
able actions. The agent canbreakan egg into a bowl,pour
the contents of a bowl into another bowl or the trash,washa
bowl, or sniff whether the eggs in a bowl are good. All ac-
tions are deterministic except for the sniff action. The goal
is to have exactly three good eggs in a specific bowl with no
trace of bad eggs. To make the domain more challenging,
we extended it to have both regular white eggs, which are
bad with a probability of 0.5, and local brown eggs, which
are bad with a probability of 0.1. The agent is able to ob-
serve the color of the next available egg without requiring a
sensing action.

We compared OH-WOW to a perfectly omniscient oracle
and also to a hand-coded controller. The controller puts eggs
into the goal bowl, sniffing after each addition and clean-
ing out bad eggs until it finds a good one. Then it does the
same routine using an extra bowl, pouring good eggs into the
goal bowl from the extra bowl until the goal is reached. We
generated three sets of 100 random instances, each set with
a different probability of the next egg being brown. OH-
WOW used a domain-dependentdeterministic planner based
on uniform-cost search.

Figure 2 (left) shows the distribution of the resulting plan
costs using box and whisker plots. Each box surrounds the
middle 50% of the data, with a horizontal line indicating the
median and whiskers indicating the range (values beyond
1.5× the inter-quartile range are shown as circles). The gray
vertical stripes inside each box show 95% confidence inter-
vals on the mean. The plot shows the increase in cost over
the optimal solution found by the oracle, of the hindsight
planner with 32 and 256 samples, and the hand-coded con-
troller (ctlr). The boxes are grouped by the probability of an
egg being brown (0.0, 0.5, and 1.0). We can see that, when
all eggs were white, the hindsight planner with 256 samples
had a median cost that was less than the hand-coded con-
troller (significant withp < 0.05 via the Wilcoxon signed-
rank test). As the probability of a brown egg increased, the
hindsight planner performed better, nearly dominating the
controller when all eggs were brown. This is likely because
the hindsight planner could recognize that brown eggs tend
to be good, and put multiple into a bowl before bothering to
smell, saving redundant sniff actions.

The average total planning time on a 3.1 GHz Core2 PC
for OH-WOW to reach the goal using 256 samples on a

22

co
st

 o
v
er

 o
p
ti

m
al 60

30

0

32 256 ctlr
0.0

32 256 ctlr
0.5

32 256 ctlr
1.0

10

5

0

32 256 ctlr

unbiased

32 256 ctlr

south

32 256 ctlr

southwest

Figure 2: Plan cost in the three-egg omelette domain (left), and the search and rescue domain (right).

problem without brown eggs was 12.9 seconds (standard
deviation 8.0 seconds). Each plan was an average of 24.9
actions long (standard deviation 13.7 actions) and each ac-
tion in the plan took an average of 0.52 seconds to select
(standard deviation 0.31 seconds) before executing it. This
compares favorably with the 185 seconds of offline plan-
ning reported for approximate RTDP (CPU unspecified) by
Bonet and Geffner (2001). Levesque (2005) also generates
full plans offline to solve the three-egg omelette in 1.4 sec-
onds but requires 1,681 seconds if the omelette is scaled to
four eggs. When using four eggs, OH-WOW’s costs rela-
tive to optimal were similar to the three-egg case, and total
computation time averaged only 76.7 seconds (standard de-
viation 43.6). Each plan was an average of 49 actions long
(standard deviation 27.3 actions) and each action in the plan
took an average of 1.57 seconds to select (standard devia-
tion 0.99 seconds) before executing. The plans found by
Levesque’s planner also contain strictly more actions than
our hand-coded controller (which in turn finds more costly
plans than OH-WOW on the median), as Levesque’s solu-
tion always uses the auxiliary bowl for staging and requires
an additional pour action to move the first good egg into the
goal bowl.

Search and Rescue

Now, we return to the motivating example of search and res-
cue robotics. The robot’s objective is to maximize the num-
ber of injured people it reports while still returning to its
starting location by a given hard deadline.

To generate possible worlds for OH-WOW, we need to
generate building layouts consistent with the robot’s cur-
rent map and hypothesize the possible locations of injured
people. We represent building layouts as rough topologi-
cal maps. We assume that undiscovered nodes will lie on a
uniform four-connected grid, and that a known node can be
extended if it has an adjacent grid cell that can be reached
without going through an obstacle or crossing an existing
edge in the map. We iteratively choose an extendable node,
generate a valid neighbor and connect them. We use a bias
toward extending the most recently added node, and toward
generating the neighbor that forms a straight line from the

Topological graph

Occupancy grid

Planner

Navigation

Figure 3: Architecture diagram.

chosen node’s parent. This was sufficient to yield plausible
building layouts with hallways. Victims are generated in-
dependently with fixed probability per hypothesized node.
The upper right panel of Figure 3 shows a very small exam-
ple map with hypothesized extensions shown in gray.

The base planner used by OH-WOW precomputes all-
pairs shortest-paths among nodes containing people and the
start location. It then uses depth-first search, considering at
each step to visit each unreported person or return home.
The available actions depend on the remaining time. For ef-
ficiency, we avoid considering time as a separate state vari-
able by incorporating it into the cost function (Phillips and
Likhachev 2011).

Simulation To test the planner in simulation, we created
100 random worlds with 100 nodes each. We considered
three victim distributions:unbiased, uniform probability of
0.1 per node;south, nodes south of the start location con-
tains a person with probability 0.2 and nodes north of the
start location 0; andsouthwest, southwest of the start 0.4

23

victims found
deadline 0 1 2 3
1 minute 4 6 0 0
5 minutes 0 7 3 0
10 minutes 0 3 4 3

Figure 4: Number of injured victims found and reported over
10 runs using a physical robot.

and 0 elsewhere. These distributions are representative of
helpful domain knowledge that can be leveraged when gen-
erating possible worlds. Skewing the probability of a vic-
tim’s existence to one side of the building could be used to
to represent the knowledge of a closed wing of the build-
ing or a scheduled company-wide event. We limit the total
number of victims to 10. The cost of a plan is the num-
ber of unreported people remaining when the agent returns
home and performs a dummyfinish action. We compared
OH-WOW to two different algorithms. The first is an oracle
that knows the exact configuration of the building and loca-
tion of all victims. The second is a hand-coded controller
that performed a depth-first exploration of the building, re-
porting people that it encountered and returning to the start
location when it had no more time to explore.

To gauge the complexity of these instances, we must con-
sider the number of possible configurations of maps and vic-
tims. Considering onlyn × n grids, there are2(n − 1)n
possible places for edges; our generator is limited to trees,
so it must pickn2 − 1. Forn = 10, this is

(

180

99

)

≈ 1052

maps. For each possible map, we must choose locations
for victims; for 10 victims, there are

(

100

10

)

≈ 1013 possi-
ble configurations on the map. Maintaining a belief over so
many possible worlds would be challenging. Thankfully, it
also seems unnecessary if we merely wish to estimate the
expected value of actions.

Figure 2 (right) shows results, grouped by the victim dis-
tributions. For the unbiased case, the hand-coded controller
gave the best performance, but OH-WOW was quite com-
petitive. With a biased distribution, OH-WOW was superior
as it was easily able to leverage prior knowledge about possi-
ble worlds. The average maximum per-action planning time
for OH-WOW with 256 samples was 2.7 seconds (standard
deviation 0.85 seconds). In order to compare with Joshi et
al. (2012), we also ran smaller instances with at most three
victims. The average maximum per-action time for 256 sam-
ples was 0.18 seconds (standard deviation 0.035 seconds),
which is negligible compared to typical mobile robot laten-
cies.

Physical Robot We also integrated OH-WOW with the
Robot Operating System (ROS,www.ros.org) on a 3.7
GHz quad-core i7 laptop on-board a Pioneer 3dx equipped
with a SICK LIDAR shown in Figure 3. We use the ROS
Gmapping SLAM stack to generate a fine-grained occu-
pancy grid, from which we extract a topological map with
edge lengths of 1 meter to provide to OH-WOW. Figure 5
shows a final topological map overlayed on the correspond-
ing SLAM map created during an experiment run of the

search and rescue application. In the topological map, nodes
are marked as either black, green, or pink. Pink nodes indi-
cate an area of the building where a victim was found and
reported. Green nodes are points in the map that can be ex-
tended when creating possible building layouts. The black
nodes indicate that the layout of the building can not be ex-
tended from this area.

The ROS Navigation stack is used to execute movement
actions, which are specified as the topological node to visit
next. These topological nodes are then mapped to a two di-
mensional point in the map built by SLAM before issuing
the move action to the robot. In some cases, the rough topo-
logical graph places a node very near to an obstacle and the
planner can not find a safe way to achieve the requested ac-
tion. We supplemented the navigation component in these
instances by issuing a set of perturbed points around the ini-
tial point before returning failure to the planner. This set was
simply four points, one in each cardinal direction, one half
of a discretization away.

We performed experiments in a hallway of approximately
20 meters with between 2 and 5 open doors to offices and 3
victims. We simulated detection of a victim using the range
capability of the laser rangefinder. When the laser is able to
collect data and populate a portion of the map correspond-
ing to certain pre-selected locations (that were unknown to
the planner), we pass that detection information along to the
planner. In order to report a victim the robot must navigate
to the containing topological node.

We used three different deadlines, one minute, five min-
utes and ten minutes. As shown in Table 4, the performance
of the robot improves as it is given more time to search for
victims. In all experiments the robot returned within the hard
deadline we provided. At first, only given a short deadline of
one minute, the robot is able to find one out of the three vic-
tims in six of the ten trials before returning home. When the
deadline is increased to five minutes, the robot takes advan-
tage of this and performs more exploration and is able to find
two out of the three victims in two trials and one victim in
the remaining eight. When this deadline is further increased
to ten minutes, the robot is able to find all three victims in
two trials, two victims in four trials, and one victim in the
remaining four trials.

These results demonstrate that generating possible worlds
consistent with experience is feasible in practice, even as
the robot’s knowledge is being updated during exploration.
It also shows that under realistic conditions, OH-WOW
correctly trades off soft goals under temporal constraints,
but without the ad hoc goal handling of Talamadupula et
al. (2010) or the hours of preprocessing required by Joshi et
al. (2012).

Discussion
OH-WOW requires a generative model of plausible worlds.
We assume such expectations can be developed either man-
ually or through experience. When the world contradicts
the agent’s expectations, this can be interpreted as surprise,
which might naturally lead to increased learning. The fun-
damental vulnerability of sampling-based planners is when
unlikely worlds play a large role in determining action

24

Figure 5: Example SLAM and topological map.

value; importance sampling may help here. For exam-
ple, in the “Bombs in Toilets” domain (McDermott 1987;
Smith and Weld 1998), OH-WOW may never sample a
world in which a certain undunked package contains the
bomb. The probability of this, however, is small (7 · 10−11

for 6 packages and 128 samples). In any case, optimal be-
havior is unattainable if one insists on fast response times in
dynamic domains.

While faster than many POMDP algorithms, OH-WOW
is much slower than a classical planner, as it must solve
one classical planning problem for each sampled world. In
our implementation, during each step, all planning problems
were solved serially. These problems are entirely indepen-
dent though and could trivially be solved in parallel to take
advantage of multiple processor cores. OH-WOW is more
general than standard off-line techniques as it can be used
on-line, as shown in the experiments, and also off-line by
simulating the domain to construct a branching plan. It is
possible to improve the performance of OH-WOW by ap-
plying some of the enhancements of Yoon et al. (2010). One
such technique is calledprobabilistically helpful actions. To
find probabilistically helpful actions, the planner evaluates
all samples from the current state of the agent instead of the
one step lookahead states. Actions that lead to optimal plans
starting from the current state are considered to be helpful
while the others are not. The samples are solved as nor-
mal from the one step lookahead states, but the only actions
that are considered are the ones that were deemed helpful.
Another improvement presented by Yoon et al. (2010) is to
save samples and plan prefixes that remain consistent with
the outcome of a selected and then executed action. In do-
mains with large amounts of determinism, this enhancement
can greatly reduce the amount of planning required by sav-
ing work across deterministic transitions.

In this paper, we assume that the world remains static as
we explore it and that non-sensing actions are deterministic.
OH-WOW however, is very general and immediately ap-
plies to dynamic worlds, stochastic actions, and on-line goal

arrival; this remains an exciting area for future work.

Conclusion
Open world planning is essential for many real-world
agents. We have shown how optimization in hindsight yields
a simple and general approach to open-world planning with
temporal constraints, decision-theoretic reasoning, and soft
goals. While the technique is approximate, it is easy to im-
plement and our results suggest that it can be successful in
practice.

Acknowledgments
This work was supported in part by NSF (grant 0812141)
and the DARPA CSSG program (grant D11AP00242).

References
Babaian, T., and Schmolze, J. G. 2006. Efficient open world
reasoning for planning.Logical Methods in Computer Sci-
ence2(3).

Bonet, B., and Geffner, H. 2001. GPT: a tool for planning
with uncertainty and partial information. InProc. IJCAI-01
Workshop on Planning with Uncertainty and Partial Infor-
mation, 82–87.

Boutilier, C.; Dean, T. L.; and Hanks, S. 2011. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage.CoRRabs/1105.5460.

Chong, E.; Givan, R.; and Chang, H. 2000. A frame-
work for simulation-based network control via hindsight op-
timization. InIEEE Conference on Decision and Control.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant
planning via symbolic model checking and heuristic search.
Artificial Intelligence159(1–2):127–206.

Doshi, F. 2009. The infinite partially observable markov de-
cision process. InNeural Information Processing Systems,
volume 22, 477–485.

25

Etzioni, O., and Weld, D. S. 1994. A softbot-based interface
to the internet.Communications of the ACM37(7):72–76.
Joshi, S.; Schermerhorn, P. W.; Khardon, R.; and Scheutz,
M. 2012. Abstract planning for reactive robots. InProceed-
ings of IEEE ICRA, 4379–4384.
Levesque, H. 1996. What is planning in the presence of
sensing? InProceedings of AAAI.
Levesque, H. J. 2005. Planning with loops. InProceedings
of IJCAI.
McDermott, D. 1987. A critique of pure reason.Computa-
tional Intelligence3(1):151–160.
Mercier, L., and van Hentenryck, P. 2007. Performance
analysis of online anticipatory algorithms for large multi-
stage stochastic programs. InProceedings of IJCAI.
Meuleau, N., and Smith, D. E. 2003. Optimal limited con-
tingency planning. InProceedings of UAI.
Phillips, M., and Likhachev, M. 2011. Planning in domains
with cost function dependent actions. InProceedings of
the fourth international symposium on combinatorial search
(SoCS-11).
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online planning algorithms for POMDPs.Journal of Artifi-
cial Intelligence Research32:663–704.
Sanner, S. 2011. Relational dynamic influence diagram lan-
guage (rddl): Language description.NICTA, Australia.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large POMDPs. InIn Advances in Neural Information Pro-
cessing Systems 23, 2164–2172.
Smith, D. E., and Weld, D. S. 1998. Conformant graphplan.
In Proceedings of AAAI, 889–896.
Talamadupula, K.; Benton, J.; Schermerhorn, P.; Kambham-
pati, S.; and Scheutz, M. 2010. Integrating a closed world
planner with an open world robot: A case study. InProceed-
ings of AAAI.
Wu, G.; Chong, E.; and Givan, R. 2002. Burst-level con-
gestion control using hindsight optimization.IEEE Trans-
actions on Automatic Control.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of Conference on Artificial Intelligence (AAAI).
Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010. Im-
proving determinization in hindsight for on-line probabilis-
tic planning. InProceedings of the Tenth International Con-
ference on Automated Planning and Scheduling (ICAPS-10).
Younes, H. L., and Littman, M. L. 2004. Ppddl1. 0: The
language for the probabilistic part of ipc-4. InProceedings
of the international planning competition, 46.

26

Using Classical Planners for Tasks with Continuous Operators in Robotics

Siddharth Srivastava and Lorenzo Riano and Stuart Russell and Pieter Abbeel
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

Abstract

The need for high-level task planning in robotics is well un-
derstood. However, interfacing discrete planning with contin-
uous actions often requires extensive engineering of the solu-
tion. For instance, picking up an object may require removing
many others that obstruct it. Identifying the exact obstruc-
tions requires geometric reasoning which is prohibitively ex-
pensive to precompute, with results that are difficult to repre-
sent efficiently at the level of a discrete planner. We propose
a new approach that utilizes representation techniques from
first-order logic and provides a method for synchronizing be-
tween continuous and discrete planning layers. We evaluate
the approach and illustrate its robustness through a number
of experiments using a state-of-the-art robotics simulator, ac-
complishing a variety of challenging tasks like picking ob-
jects from cluttered environments, where the planner needs
to figure out which other objects need to be moved first to
be able to reach the target object, and laying out a table for
dinner, where the planner figures out effective tray-loading,
navigation and unloading strategies.

1 Introduction
A robot capable of achieving high-level goals was one of the
original motivations behind the automated planning prob-
lem (Fikes and Nilsson 1971). Since this early work, numer-
ous advances have been made in automated planning. Dis-
crete planners are able to automatically compute effective
problem-specific heuristics for solving planning problems
specified implicitly in terms of parameterized operators with
preconditions and effects (e.g.,(Hoffmann and Nebel 2001;
Helmert, Haslum, and Hoffmann 2007)). Continuous state
space planners have also been developed for solving the
lower level search problems in the configuration space of a
robot to achieve desired motion trajectories (LaValle 2006).
Techniques from both of these areas are required for a real-
world robot to solve a high-level problem like preparing a
table for dinner. However, using classical planners to solve
planning problems encountered by a robot presents several
fundamental challenges.

For instance, consider the task of picking up an object in
blocks-world, a domain that is widely regarded as trivial for
modern classical planners. If the table is cluttered, a contin-
uous planner will fail to find a solution because other objects
will have to be removed first (see Fig. 1). A classical planner
could compute the sequence of operations required to clear

Figure 1: Example scenario with the target object in blue (L) and
the desired solution after removing obstructing objects (R)

a path to the object, but only if it gets the set of obstructions.
Superficially, this seems to be easily resolved by adding a
high-level predicate, obstructs(c, b1, b2) where c ranges over
the robot configurations and bi over objects. However, any
such formulation leads to two major problems. First, the
robot configuration is usually a high dimensional real-valued
vector (11-dimensional for the PR2 using only one gripper).
Representing this problem for a discrete planner requires a
discretization of the possible configurations which in itself is
infeasible for the high dimensional spaces involved. More-
over, a pre-processing step will need to compute the graspa-
bility and obstruction facts specific to the given scenario, for
every combination of discretized configurations and objects
used as arguments to the corresponding predicates. This will
lead to planner input files with thousands of configuration
symbols at the least, making planning infeasible. Even if all
of these representational steps are carried out, it is difficult
to specify in a discrete problem definition how obstructions
change on the application of a pick and place operation, due
to the spatial reasoning involved. Finally, one of the prob-
lems with fixing a discretization a priori is that it may miss
the points required for a solution.

These issues go beyond pick and place tasks and stem
from the following fundamental problems: how to enable
classical planners to efficiently utilize information provided
by a continuous planner, and how to utilize them in situa-
tions where facts and operator effects over continuous vari-
ables are not available a priori. Our main contribution is a
new approach addressing these problems. We show that this
approach can solve number of challenging robot planning
tasks.

Overview of Our Approach We assume that every high-

27

level action corresponds to a continuous implementation.
The continuous implementation may use a variety of tech-
niques for accomplishing the post-conditions of the high-
level action. If the preconditions of the high-level action are
satisfied, a trajectory is guaranteed to be found by the con-
tinuous implementation. However, as discussed in the intro-
duction, the preconditions of high-level actions may involve
spatial reasoning and are generally not computable a priori.
Thus, the high-level planner may be wrong in selecting an
action for execution at a certain step. If a solution trajectory
cannot be found, the lower level returns the violated precon-
ditions to the high-level planning layer, which incorporates
the new facts and computes a new high-level solution plan.
Throughout this paper, we will use the terms “discrete plan-
ning” interchangeably with high-level planning and “lower
level” with continuous planning and execution.

While this overall approach is similar to re-planning (Ta-
lamadupula et al. 2010; Yoon, Fern, and Givan 2007), our
focus is on the problem of continuous operator representa-
tions for high-level, discrete planning and communication
between the continuous and discrete planning levels. The
discrete problem is specified by replacing the domains of
real-valued variables (required to express action precondi-
tions and effects, even at the high-level) with finite sets of
Skolem symbols. This translation is described in Sec. 2.1
The lower layer maintains an interpretation of these sym-
bols (e.g., specific robot configurations). Failure messages
from the lower level specify the failed preconditions of ac-
tions in the form of literals over such symbols. This interface
as well as the details of planning methods used is described
in Sec. 3. If the high-level planning layer finds the problem
to be unsolvable, the lower level computes a new interpreta-
tion and the planning process resumes. This way the high-
level planning process never has to deal with the continuous
variables and the lower level does not have to deal with dis-
crete task sequencing. The resulting approach allows easy
modeling of various tasks. We present many experimental
results in a simulated execution scenario developed using
OpenRave (Diankov 2010) for the PR2 robot in Sec. 4. A
summary of related work is presented in Sec. 5.

2 Problem Formulation
We assume that a propositional framework like typed
PDDL (Fox and Long 2003) is used for specifying high-
level planning domains and problems. We formalize the rep-
resentation briefly as follows. A planning domain 〈R,A〉
consists of a set of relation symbols R with their arities
and type signatures, and a set A of actions. Let the set of
literals and atoms constructed using a set of relations R
and a set of typed variables or constants V be lit(R, V)
and atoms(R, V) respectively. An action is defined as
〈Param, Pre, Eff〉, where Param is a sequence of typed pa-
rameter variables; Pre is a first-order logic formula and Eff
is a conjuction, both over lit(R, V) with only the variables
in Param being free. With some syntactic limitations, such
expressions can be represented in the PDDL input language
used by most classical planners.

Given a finite set U of typed constants (informally consti-
tuting the “objects” in a problem), a state is an assignment of

truth values to each atom in atoms(R, U); for compactness,
we use the closed world assumption to represent states as
sets of true atoms. We define ground actions as a(c̄), where
c̄ denotes a mapping from the parameters of a to appropri-
ately typed constants from U . The preconditions and effects
of a ground action a(c̄) are obtained using the variable as-
signments in c̄ in the usual way.

We consider full observability and deterministic action ef-
fects, so that a ground action ga is applicable in a state s iff
all of its preconditions are true in s.

Finally, a planning problem consists of a planning do-
main 〈R, A〉, a set U of typed constants, an initial state
s0 and a set g ⊆ atoms(R, U) denoting the goal condi-
tion. A solution to a planning problem is a sequence of
ground actions ga1, . . . gak such that gai is applicable in
gai−1(· · · ga1(so) · · ·) and gak(· · · ga1(s0) · · ·) satisfies g.

2.1 Domain Transformation
We introduce the central principle behind using Skolem
symbols with an example. Consider an action like grasp-
ing in a pick and place domain. Its preconditions include
real-valued vectors and preconditions require spatial rea-
soning. For clarity in this description, we consider a sit-
uation where objects are not stacked and assume that the
target location where an object has to be placed is clear.
The high-level grasp action can be specified as follows:

grasp(c, obj1)
precon graspable(c, obj1)∧ robotAt(c)

∧∀obj2¬ obstructs(c, obj2, obj1)
effect in-gripper(obj1)

In this specification, the variable c represents robot con-
figurations. In order to motivate our approach, consider
the effect of this action in a framework like situation calcu-
lus (Levesque, Pirri, and Reiter 1998) but using a timestep
rather than a situation to represent the fluents:
∀t, obj1∀c(graspable(c, obj1, t) ∧ robotAt(c, t) ∧
∀obj2¬obstructs(c, obj2, obj1, t) → inGripper(obj1, t +
1))

Note that this is not the complete successor state axiom
for in-gripper, which will also have to include other actions
that affect it and default conditions under which it doesn’t
change across timesteps. However, this implication is suf-
ficient to illustrate the main representational device we will
use. We first use the clearer, logically equivalent form:
∀t, obj1(∃c(graspable(c, obj1, t) ∧ robotAt(c, t) ∧
∀obj2¬obstructs(c, obj2, obj1, t))→ inGripper(obj1, t)

which asserts more clearly that any value of c that satis-
fies the preconditions allows us to achieve the postcondition.
We can now use the standard technique of Skolemization to
replace occurrences of c with a function of obj1, t:
∀t, obj1((graspable(gp(obj1, t), obj1, t)
∧ robotAt(gp(obj1), t)
∧ ∀obj2¬obstructs(gp(obj1), obj2, obj1, t))

→ inGripper(obj1, t+ 1)
where the Skolem function gp(x, t) is just a symbol of

type location to the discrete planner. Intuitively, it represents
a robot configuration corresponding to the grasping-pose of
x. This representation will allow the discrete planner to treat
the entire problem at a symbolic level, without the need for

28

creating a problem-specific discretization. A potential prob-
lem however, is that the Skolem functions will depend on
t, or the current step in the plan. In practice however, at
the discrete level, the time argument in a Skolem function
f(x̄, t) can be ignored as long as it is possible to recompute
(or reinterpret) f when an action’s precondition is violated
by its existing interpretation during the execution (as is the
case in our implementation). We therefore drop the t argu-
ment from the Skolem functions in the rest of this paper.

The equivalence with an existential form as described
above can be used for each action effect as long as the con-
tinuous variable being Skolemized is not free in the subfor-
mula on the right of the implication. For instance, we can
add the effect that grasping an object removes all obstruc-
tions that it had created, regardless of robot configurations.
Therefore, to represent the grasp operator for a discrete plan-
ning problem, rather than using a discretized space of con-
figurations, we only need to add symbols of the form f(ō) in
the planning problem specification, for each object argument
tuple ō consisting of the original objects, or constants in the
problem. Since many classical planners don’t support func-
tions, they can be reified as objects of the form f ō with an
associated set of always true relations, e.g. is f(f oi, oi).
The discrete description of grasp thus becomes:

grasp(`, obj1):
precon is gp(`, obj1)∧ graspable(`, obj1)

∧ robotAt(`)
∧∀obj2¬ obstructs(`, obj2, obj1)

effect in-gripper(obj1)
∧∀`2, obj3¬obstructs(`2, obj1, obj3)

Here ` ranges over the finite set of constant symbols of
the form gp obji where obji are the original constant sym-
bols in the problem. In this way, regardless of how many
samples are used in the lower level process for interpreting
these symbol, the discrete planner has a limited problem size
to work with while computing the high-level plan.

Finally, consider the only remaining case for an action ef-
fect, when a continuous variable occurs freely in the subfor-
mula on the right, e.g. ∀x, c(ϕprecon(x, c)→ ϕeffect(x, c)). In
this case we don’t perform Skolemization. The symbol used
for c in this case will be an action argument, and must range
over the original objects in the domain or those already in-
troduced via Skolemization.

Although this exhausts the set of actions commonly used
in PDDL benchmark problems, the accurate description of
an action may involve side-effects on symbols not used as
its arguments. E.g., the putDown(obj1, loc1) action may
deterministically introduce obstructions between a number
of robot configurations and other objects. We don’t encode
such side effects in the high-level planning problem specifi-
cation; these facts are discovered and reported by the lower
level when they become relevant.

The putDown action has a similar specification, with the
Skolem function pdp(targetloc) denoting the pose required
for putting down an object o at location `1 when the robot is
configuration `2.
putDown(o, `l, `2):

precon is pdp(`2, `1)∧ poseForPlacing(`2, o, `1)
InGripper(o) ∧ RobotAt(`2)

effect ¬ InGripper(o) ∧ At(o, `1)

The moveto(c1, c2) action changes the robot’s configura-
tion with the only precondition that it is at c1. We assume
that the environment is not partitioned and the robot can
move between any two collision-free areas. These three ac-
tions constitute the high-level pick and place domain.

To summarize, we transform the given planning domain
with actions using continuous arguments by replacing oc-
currences of continuous variables with symbols represent-
ing Skolem function application terms whenever the con-
tinuous variable occurs in the precondition but not in the
effects. Every continuous variable or the symbol replacing
one, of type τ gets the new type τsym. Planning problems
over the modified domains are defined by adding finite set
of constants for each such τsym in addition to the constants
representing problems in the original domain. The added
constants denote function application terms, e.g. gp obj17,
for each physical object and Skolem function application.
This increases the size of the input only linearly in the num-
ber of original objects if the Skolem functions are unary.
Note that the set of Skolem functions itself is fixed by the
domain and does not vary across problem instances. The
initial state of the problem is described using facts over the
set of declared objects, e.g. “is gp(gp obj17, obj17)” de-
noting that the location name gp obj17 is a grasping pose
for obj17 and “obstructs(gp obj17, obj10, obj17)”, denoting
that obj10 obstructs obj17 when the robot is at gp obj17.

In this formulation, the size of the input problem specifi-
cation is independent of the sampling-based discretization:
we do not need to represent sampled points from the do-
mains of continuous variables.

2.2 Discrete and Continuous States

A low-level state extends a discrete state by associating
actual values (interpretations) with each Skolem symbol.
Thus, every low-level state corresponds to a unique discrete
state representation. Conversely, each discrete state repre-
sents a set of possible low-level states.

Since the low-level has complete information about states,
it can compute (though not efficiently) the truth value of any
atom in the vocabulary at any step, given an interpretation of
every Skolem symbol used in the atom. E.g., the low-level
can compute the truth value of obstructs(cval, obj10,
obj17)where cval is a numeric vector representing a robot
pose. However, we wish to avoid the determining the value
of such predicates as far as possible; the discretization ap-
proach discussed in the introduction is undesirable primarily
due to its requirement that all such facts be precomputed.

If an action is not executable at a certain step in the low-
level, then the low-level execution layer computes and re-
ports a set of truth valuations of atoms showing that the ac-
tion’s preconditions do not hold.

Details of the low-level are presented in 3.3. In the next
section, we present our overall algorithm and its properties.

29

3 Discrete and Continuous Planning
As noted above, the initial state for a planning problem is
defined using the ground atoms which are true in the ini-
tial state. However, the truth values of ground atoms over
Skolem symbols like obstructs(gp obj17, obj10, obj17) are
not known initially. Domain specific default truth values are
assumed for such atoms. We discuss the relationship be-
tween the choice of defaults and completeness of the ap-
proach in Sec. 3.2.

3.1 Discrete Planning and the Interface
Our overall algorithm is shown in Alg. 1. In line 2, a clas-
sical planner is called with state s, which is initialized with
the input problem state. If no solution is found, the stored
values of Skolem symbols in the lower layer are cleared and
all facts using Skolem symbols are reset to their default val-
ues using clear cache(). The test in lines 3 and 5 ensure that
this is done only once per iteration. If the problem is un-
solvable even after clearing the cache, line 6 terminates the
algorithm.

In line 7, the computed plan π is passed to the low-level,
which uses sampling to estimate the values of Skolem sym-
bols and RRT-based techniques to implement movements
representing each action in the plan. Because the high ini-
tial state in line 2 used default values for facts over Skolem
symbols, π may not be fully executable in the low level. If
this is the case, the low-level reports the step/action of the
plan that failed and the reason for that failure, represented
by an assignment of atoms that violate the action precondi-
tion (a minimal violating assignment is sufficient). These
components of the low-level are described in detail Sec. 3.3.

As noted earlier, the execution of an operator may void
the interpretation of a symbol. E.g., moving an object in-
validates the cached grasping pose. If the operators that in-
validate a symbol’s cached value are known, they can be
provided to execute() within the cache voiding structure C.
The low-level then reinterprets all affected Skolem symbols
after executing an action.

In line 9, the UpdateState() subroutine uses the PDDL de-
scriptions of actions to propagate s forward using π until
errStep and adds violatedPrecons to the resulting state. The
entire iteration then repeats with the resulting state unless a
preset planning time/resource limit is reached.

3.2 Completeness
We now discuss the conditions under which our solution ap-
proach is complete. In doing so we show that under cer-
tain conditions, effective default assignments for atoms can
be ontained easily. We use the notion of probabilistically-
complete (LaValle 2006) to categorize sampling based algo-
rithms that are guaranteed to find a solution with sufficiently
many samples.

The following definition uses the concept of positive and
negative occurrences of atoms in formulas. Intuitively an
occurrence of an atom in a formula is negative (positive) if it
is negated (non-negated) in the negated-normal-form of the
formula. This notion of occurrence is sufficient for our pur-
poses as we deal only with problems with finite universes

Algorithm 1: Discrete-Continuous Interface
Input: PDDL state s & domain D; cache-voiding ops C
repeat1

π ← classicalPlanner(s,D)2
if plan not found & not cleared cache then3

clear cache(); continue4
else if plan not found then5

return “unsolvable”6
end
〈errStep, violatedPrecons〉 ← execute(π, s, C)7
if errStep is null then

return “success”8
else

s = UpdateState(s, π, errStep, violatedPrecons)9
end

until resource limit reached

and all quantifiers can be compiled into conjunctions or dis-
junctions. The following lemma follows from the definition
of positive and negative occurrences:
Lemma 1. Suppose an atom p(c) occurs only positively
(negatively) in a ground formula ϕ. If s is an assignment
under which ϕ is true then it must also be true under an as-
signment s′ that makes p(c) true (false) and is the same as s
for all other atoms.
Definition 1. A planning domain is uniform wrt a goal g
and a set of predicates R if for every r ∈ R,

1. Occurrences of r in action preconditions and goal are ei-
ther always positive, or always negative

2. Actions can only add atoms using r in the form (positive
or negative) used in preconditions and the goal g
Let PS be the set of predicates whose atoms may use

Skolem symbols as one of their arguments, and let D =
〈R,A〉 be a planning domain that is uniform wrt a goal g
and PS . In the following, consider atoms over a fixed set of
constants U . Let spart be an assignment of truth values to
atoms over R\PS . Let sdefault be an assignment of truth val-
ues to atoms over PS , assigning the atoms of each positively
(negatively) occurring predicate the truth value true (false).
Proposition 1. The state spart ∪ sdefault has a solution plan
for a goal g iff there is some assignment s0 of atoms over PS

such that spart ∪ s0 has a solution plan for reaching g.

Proof. Suppose there is an assignment s0 under which
spart ∪ s0 has a solution π and which assigns an atom p(c̄1)
true, while all occurrences of p in action preconditions and
g are negative. Consider the assignment s′0 which assigns
p(c̄1) false, but is otherwise the same as s0.

We show that π solves spart ∪ s′0 as well. Suppose not,
and that a(c̄2) is the first action in π whose preconditions
are not satisfied when π is applied on spart ∪ s′0. In this
failed execution, a(c̄2) must have been applied on a state s′k
that differs only on p(c̄1) from the corresponding state skin
the execution of π on s0. This is because all preceding ac-
tion applications succeded and have the same deterministic
effects in both executions. Let the ground formula represent-
ing the preconditions of this application of a(c̄2) be ϕ. By

30

Lemma 1, ϕ must be satisfied by s′k, and we get a contradic-
tion: a(c̄2) must be applicable on s′k. The case for positive
defaults is similar.

Thus, in planning problems that are uniform wrt to the
set of predicates which use Skolem symbols, it is easy to
obtain a default truth assignment for atoms over these pred-
icates, under which the problem is solvable if there is any
assignment to those atoms under which it is solvable. The
following result provides sufficient conditions under which
our approach is complete. Let D be a planning domain and
U a set of typed constants. A dead-end for 〈D,U〉 wrt g is a
state over atoms(R, U) which has no path to g.

We say that two low-level states are physically similar if
they differ only on the interpretation of Skolem symbols and
atoms using Skolem symbols. We use the symbol [s] to de-
note the discrete representation of a low-level state s, and
[s]default to represent the version of [s] obtained by using the
default assignment for atoms using Skolem symbols, and the
assignments in [s] for all other atoms.

The following result presents sufficient conditions under
which our approach solves any problem which is solvable
under some evaluation of Skolem symbols.

Theorem 1. Let D be a planning domain, U a set of typed
constants, g a goal, and PS the set of predicates in D that
use Skolem symbols, such that 〈D,U〉 does not have dead-
ends wrt g and D is uniform wrt g and PS .

If the low-level sampling routines for Skolem symbols are
probabilistically complete, then for any low-level state s, if
there exists a physically similar state s′ such that [s′] is solv-
able by the high-level planner then the execution of Alg. 1
with inputs [s]default and D reaches the goal.

Proof. The proof follows from the following two points:
1. For any given interpretation of Skolem symbols repre-
sented by a low-level state s′`, Alg. 1 will eventually either
discover the truth values of all atoms using Skolem symbols
or identify the interpretation as unsolvable.

This is because in every non-final iteration of Alg. 1, line
7 must be executed and will return a non-empty assignment
of atoms constituting a violated precondition. The entire set
of atoms that violated preconditions are generated from is
finite. Once they have been returned by the low level, they
will never be generated again for this interpretation. This is
because the atom is incorporated into the new discrete state
accurately. Subsequent actions can only make it true (false)
when it occurs positively (negatively) in preconditions. As
a result, the discrete planning layer will never consider an
atom that occurs positively to be true if its truth value was
returned as false (true) by the low-level—unless an action
set it to true in which case the low-level also considers it to
be true.

If at any stage a discrete state s with default values for
some atoms using Skolem symbols is unsolvable, then re-
placing them with any other truth values will not make the
problem solvable. Thus, if at any stage the classical planner
call in line 2 fails for a discrete state s with default values
that are inconsistent with the low-level state for some atoms

using Skolem symbols, the problem is indeed unsolvable un-
der that interpretation.
2. As a result of probabilistic completeness, the low-level
will discover all possible interpretations of Skolem symbols.

The uniform property used in this result plays a role sim-
ilar to simple domains defined by Bonet and Geffner (Bonet
and Geffner 2011). Neither categorization is more general
than the other. In contrast to simple domains, uniformity is
less restrictive in not requiring invariants over initially un-
known facts, while simple domains are less restrictive in not
enforcing all occurrences of unknown predicates to be of the
same polarity.

Extension of this result to more general situations is left
for future work.

3.3 Low-Level Execution and Interpretation of
Skolem Symbols

Arbitrary sampling techniques could be used for in-
terpreting Skolem functions. For efficiency, we used
methods that searched for interpretations satisfying re-
quired conditions which cannot be achieved by high-
level planning alone. For instance, the symbol gp(obj1)
needs to satisfy graspable(gp(obj1), obj1) and ∧∀obj2¬
obstructs(gp(obj1), obj2, obj1). Since obstructs facts can be
cleared by high-level actions but graspable is not achieved
by any, we used a sampling process that achieves graspable.

We drew upon the wealth of approaches developed in
the robotics literature for solving navigation, motion plan-
ning and obstacle avoidance problems. In this work we as-
sumed that the continuous planner has complete knowledge
of the state of the world. This can obtained using, for ex-
ample, 3D sensors (Hsiao et al. 2010) and map-making
techniques (Marder-Eppstein et al. 2010). Both arm mo-
tion planning and base movements between poses (i.e. the
moveto action) are performed using Rapidly Exploring Ran-
dom Trees (RRTs) (LaValle and Kuffner Jr 2000).
Interpreting Grasping Pose Symbols A robot pose from
which an object can be grasped (i.e, a grasping pose or
one that satisfies graspable) must satisfy two conditions:
the robot base should be at a collision free configuration
from where the object is reachable, and there must exist
a collision-free trajectory from this configuration to one
that brings the manipulator into the grasping configuration.
Grasping an object requires finding a manipulator config-
uration that allows the robot to robustly hold it. We pre-
calculated and stored the grasping configurations for each
object in OpenRave (these configurations can be computed
on-the-fly if necessary).

Our approach for finding a grasping pose is inspired by
Probabilistic Roadmaps (Kavraki et al. 1996), and summa-
rized in Algorithm 2. The first step in lines 2-3 is to gener-
ate a robot’s base configuration that is within a reachability
area around the object. The presence of obstacles, the non-
linearity of the robot actuators and the high-dimensionality
of the search space render this problem very challenging
(Stulp, Fedrizzi, and Beetz 2009; Berenson, Kuffner, and
Choset 2008). While pre-calculating poses using inverse

31

Algorithm 2: Find a Grasping Pose
Input: Object o
ikfound← False1
repeat2

p← sampleAround(o)3
t← sampleTorsoHeight()4
gps← generateGrasps(p, t, o)5
for gpi ∈ gps do6

if IKsolution(p, t, gpi) then7
ikfound← True; solnPose← p8
if obstaclesFreeArmPath(p, t, gpi) then9

return (p, t, gpi)10
end

end
end

until max number of attempts reached
/* No soln found, return obstructions */
if ikfound then11

objs← FindObstructingObjects(o, solnPose)12
return CreateObstructionAtoms(objs)13

end

kinematic (IK) caching could have been used, we found that
sampling from a sphere centered around the object yields the
same qualitative results. During sampling, poses outside the
environment’s boundaries or in collision with the environ-
ment are discarded.

Collisions can be efficiently calculated by approximating
the robot’s shape to be either a cube or a cylinder. At line 3
we generate candidate values for the PR2’s torso height and
retrieve the manipulator grasping configurations at line 4.

The conditions for satisfying a grasping pose are checked
in lines 6 & 7. Previously found grasping solutions are
cached and retained until an object is moved or when the dis-
crete planner calls clear cache(). If an IK solution exists but
no obstacle-free solution is found within a maximum num-
ber of iterations then the simulator is used to calculate all the
objects in collision with the robot’s arm for a computed IK
solution. Logical atoms are created using these objects and
returned in line 13. This last step requires a few additional
inputs like the predicate name and ordering of arguments,
but are omitted for readability.

Interpreting Symbols for putDown By substituting the
grasping manipulator poses at line 5 with a set of manipula-
tor poses that lay above a tabletop, Algorithm 2 can be gen-
eralized to find base poses to put down objects on free areas
of a surface. Our current implementation does not take into
account collisions between objects held by the robot and the
environment. Therefore only obstacle free manipulator con-
figurations are considered when looking for an empty area
above a tabletop. Although our simulator provides a real-
istic implementation of robots’ kinematics and collision de-
tection, to speed up the computations we did not simulate
physics. Therefore once the robot opens the gripper holding
an object we forced the object to fall down and rest on the
target surface in a horizontal position.

4 Empirical Evaluation
We tested our proposed approach in two different scenar-
ios, simulated using OpenRave1. The first scenario involves
grasping objects from a cluttered tabletop (see Figure 2).
This problem requires the robot to identify objects that pre-
vent a collision free trajectory to the target object, and mov-
ing them to a separate side table. The second scenario sees
the robot setting up a dining table with three pairs of kitchen
objects (see Figure 3). The robot can make use of a tray to
help carrying more than one object, but there are constraints
on how the objects can be stacked on the tray.

Our approach can be used with any classical planner. For
the first experiment we used a well-established satisficing
planner, FastForward (FF) (Hoffmann and Nebel 2001). The
second experiment required a cost-sensitive planner. We
used FastDownward (FD) (Helmert 2006) and always chose
the second plan that it produced in its anytime mode if it was
produced within 350s, and the first plan otherwise. When
reporting the execution time we did not calculate the time
required to actually perform an action, e.g. move the robot’s
base or the arms. In other words the robot instantaneously
moves all of its joints.

All the experiments discussed below were carried out on
an AMD Opteron dual-core 2GHz machine with 4GB RAM.
Pick and Place Scenario An instance of the pick-and-
place problem is illustrated in Figure 2. To guarantee that
objects in the middle of the table are not easily reachable we
approximated their shape with over-sized bounding boxes.
We modeled this problem as a realistic simulation of a sit-
uation the robot might face, where the robot can make free
use of the available empty space between objects to reach
its goal. Thus a highly cluttered table with 80 objects may
have obstructions from nearly every possible graspable pose,
but the number of obstructions from each may be small. If
grasping fails, the continuous planner returns a list of ob-
structions.

We performed 30 tests over 3 randomly generated envi-
ronments. Each environment has the same configuration of
static objects (tables and walls) but different configuration of
movable objects. Each random environment has between 50
and 80 objects randomly placed on the tabletop. In these
experiments we used 200 samples of base configurations
generated while searching for grasping poses (outer loop of
Alg. 2). Table 1 summarizes the results. Each row in the
table is an average of 10 runs. For each run we randomly
selected a target object with at least one obstruction to be
the grasping goal. As a baseline for comparison we used
the time a classical planner would take to solve a version of
the same problem with all obstructions precomputed and a
discretized set of sampled configurations. For each object in
the environment, we sampled 200 poses and kept only those
from where objects are graspable. This resulted in 80 to 130
configurations for our problems. The last column of Table 1
shows the time required to pre-calculate all these obstruc-
tions, which is significantly higher than the time required
for the computation and execution of the whole plan in our

1Source code is available at https://github.com/
lorenzoriano/OpenRaving

32

Figure 2: An example execution of a pick and place experiment. From left to right: 1) The initial disposition of the objects on
the table. The blue object is the target, while the green objects are the ones identified as obstructing the target. 2) The robot
selects the first object to remove. 3) The robot puts the object on a free area of an additional table. 4) The robot removes the
second obstruction. 5) The robot removes the third obstruction. 6) The target object is finally reachable.

Figure 3: An example scenario of a dining set-up experiment. From left to right: 1) The initial configuration of the environment.
2) The robot places a plate on the tray. 3) Another plate and a bowl are placed on the tray. 4) The robot carries the tray with four
objects to the dining table. 5) The first objects are removed from the top of the stack on the tray and placed on the appropriate
locations on the table. 6) The final goal configuration is achieved.

approach.
Dining Table Set-Up Scenario The second experiment
illustrates the general applicability of our approach to het-
erogeneous problems. The robot’s task is to move six ob-
jects from an initial location to a dining table, as shown
in Figure 3. The robot can only move objects between the
“kitchen” and “dining” areas by placing them on a tray, mov-
ing the tray to the target table and then placing the objects
from the tray to their desired configuration. Multiple round-
trips are allowed. For this experiment we considered two
sets of plates, bowls and mugs.

Placing objects on the tray is an action that can fail, thus
generating violated preconditions. This simulates dynami-
cal instability between pairs of objects which is difficult to
pre-compute without execution. The lower level enforced
this by not allowing a plate to be stacked over other objects,
and not allowing anything to be stacked over a mug. These
conditions are initially unknown to the high-level planner.
We also made the cost of moving across rooms 100 times
the cost of other actions.

As picking up the tray requires two-arm manipulation
we pre-calculated both manipulators poses for grasping it.
Grasping objects, placing them on the tray or on the table
uses the same primitives described in Sec. 3.3.

Solving the dining table scenario required 230s, including
execution. Given the violations induced by stacking objects
on the tray, the classical planner had been called 3 times.
The solution plans typically attempt to stack a few objects
on the tray and transport them in batches.

5 Related Work
This work is related to, and builds upon a vast history of
research in planning and robotics. The field of discrete

#Objs #Obstrns Time(s) #Replan Precomp(s)
80 2.6 602 2.3 4245
65 2.0 228 2.6 3667
50 1.8 139 2.1 1777

Table 1: Results for the cluttered table scenario. For comparison,
times for precomputing obstruction facts are shown in the last col-
umn. The central 3 columns are averages of 10 independent runs,
showing the number of obstructions, total time for planning and
execution and number of calls made to the classical planner.

planning has made several advances in scope and scalabil-
ity, mainly through the development of efficient methods
for computing heuristic functions automatically from a do-
main definition (Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Helmert, Haslum, and Hoffmann 2007). These
advances are among the main motivations in developing
our approach. An alternate representation of our high-level
problem would be a partially observable problem with non-
deterministic actions (Bonet and Geffner 2000). However,
this is a much harder problem in general (Rintanen 2004)
and an offline contingent planning process would be unfea-
sible in our setting.

Various researchers have investigated the problem of
combining discrete and continuous planning. Alami et
al. (1998) describe a system architecture that uses a trans-
lation module for converting high-level actions into contin-
uous trajectories. Volpe et al. (2001) also use a similar mod-
ule, referred to as “time-line” interaction. However, these
approaches do not discuss specific methods for compiling
away continuous parameters of operators in order to facil-
itate discrete planning. Plaku et al. (2010) propose a sam-
pling based approach for guiding the low-level search pro-
cess with information from a high-level planner. They also

33

allow non-deterministic actions. However, communication
is only one-way: only the first action in the high-level plan
is used, and only to bias low-level search process. In con-
trast, the low-level search process in our approach provides
information back to the high-level planner which uses it to
generate more relevant plans. Hauser (2010) observes al-
most the same problems in tasks like pick-and-place. His
approach uses a STRIPS like language for specifying ac-
tions, but does not use a classical planner for the high-level
search. Another approach that combines discrete and contin-
uous planning is described in (Choi and Amir 2009). These
authors propose including kinematics constraints among the
information provided to the discrete planner. Their approach
automatically generates logical actions from the output of
a geometric motion planning algorithm. However this ap-
proach also has only one-way communication between the
discrete and continuous planner. Moreover their approach is
difficult to adapt to non-motion planning problems. Wolfe et
al. (2010) use angelic hierarchical planning to define a hier-
archy of high-level actions over primitive actions. However
the high-level actions in their approach have continuous ac-
tion arguments and need to be sampled. In contrast, we de-
fine a whole discrete problem, the size of which is indepen-
dent of the discretization. They also do not model problems
with preconditions like obstructions which require geomet-
ric reasoning. Our approach also includes an angelic inter-
pretation: the skolemized functions in our discrete, high-
level operators are assumed to have a value that satisfies
the preconditions, and is selected by the agent. Kaelbling
et al. (2011) combine discrete and continuous planning by
relying upon a very specific regression-based planner with
task-specific components. Levihn et al. (2012) present an
approach for the problem of navigation among movable ob-
stacles, but unlike our approach, they assume that the effects
of discrete, high level actions on obstructions and geomet-
ric regions are known a-priori. They also do not address
the problem of utilizing general purpose classical planners
in conjunction with motion planning.

Approaches for planning modulo theories (Gregory et al.
2012) (PMT) and planning with semantic attachments (Her-
tle et al. 2012) address similar high level problems of plan-
ning in hybrid domains. However, these approaches use an
extended planning language and require appropriately ex-
tended planners. Both of these approaches require deter-
ministic functions for computing “external” predicates dur-
ing search, and do not address the representational problem
of using a classical planner to plan with actions and fluents
that use continuous arguments. In contrast, our approach
only requires information from the lower level when a high
level plan fails and works with arbitrary classical planners.
Our approach can also be used in situations where a model
of the effects of low level actions is not available, and the
action execution failures cannot be predicted accurately (as
in the stacking problem) and are only known when they oc-
cur. As a consequence of this generality, the completeness of
our approach depends on the problem domain (the presented
analysis provides a sufficient but not necessary condition).

Grasping objects in a cluttered environment is still an
open problem in robotics. In (Dogar and Srinivasa 2011)

an approach is proposed that replaces pick-and-place with
pushing objects away from the desired trajectory. This rep-
resents an interesting solution to the reachability problem
that we aim at exploring as an application of our framework.

6 Conclusions
In this paper we presented an approach for planning in
robotics that relies upon the synergy between a classical and
a continuous planner. One of the advantages of our proposed
approach is that not all the facts need to be pre-computed
before planning, but only the ones that are required by the
execution. The classical planner is also able to efficiently
represent these facts without having to deal with representa-
tions that grow with the sampling process used in the lower
layer. As our experiments show, this is significantly more
efficient than solving precomputed discrete problems with
sampling-based discretizations. Our solution also addressed
a broad underlying problem in robotics: that the truth value
of many predicates can only be found when the robot tries
to perform an action. Both of our test scenarios featured this
problem.

Although we simulated dynamical instability by us-
ing fixed rules, a different implementation could utilize a
physics simulator for predicting if an object is unstable when
placed over a stack. It could thus prune away actions that a
planner alone would not know were wrong. While we con-
ducted our main experiments in a pick-and-place scenario,
the second experiment shows that our proposed approach is
not limited to this particular application. Introducing costs,
handling constraints and plans with heterogeneous actions
are supported by our algorithm through its modularity.

Future work will include a more thorough analysis of op-
timality and termination guarantees on replanning. We also
plan to study situations where action costs, in addition to
facts, are made available during execution. Although our
simulation is extremely faithful in terms of the capabilities
and limitations of the robot and in terms of construction
of the problem scenarios, the most natural next step in this
work will be to test the plans with a real robot.

Acknowledgments
We thank Malte Helmert and Joerg Hoffmann for provid-
ing versions of their planners with verbose outputs that were
very helpful in our implementation. We also thank John
Schulman for helpful comments. This work was supported
by the NSF under Grant IIS-0904672.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. International Jour-
nal Of Robotics Research 17:315–337.
Berenson, D.; Kuffner, J.; and Choset, H. 2008. An op-
timization approach to planning for mobile manipulation.
2008 IEEE International Conference on Robotics and Au-
tomation 1187–1192.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. of

34

the 6th International Conference on Artificial Intelligence
Planning and Scheduling, 52–61.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2):5–33.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI, 1936–1941.
Choi, J., and Amir, E. 2009. Combining planning and mo-
tion planning. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 238–244. IEEE.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Dogar, M., and Srinivasa, S. 2011. A framework for push-
grasping in clutter. Robotics: Science and Systems VII.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Technical report, AI Center, SRI International. SRI Project
8259.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
pddl for expressing temporal planning domains. J. Artif. Int.
Res. 20(1):61–124.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
ICAPS.
Hauser, K. 2010. Task planning with continuous actions and
nondeterministic motion planning queries. In Proc. of AAAI
Workshop on Bridging the Gap between Task and Motion
Planning.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In Proc. of the 17th International Conference on Automated
Planning and Scheduling, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In ECAI, 402–407.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hsiao, K.; Chitta, S.; Ciocarlie, M.; and Jones, E. 2010.
Contact-reactive grasping of objects with partial shape in-
formation. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, 1228–1235. IEEE.
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In Proc. IEEE Interna-
tional Conference on Robotics and Automation, 1470–1477.
Kavraki, L.; Svestka, P.; Latombe, J.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automa-
tion, IEEE Transactions on 12(4):566–580.
LaValle, S., and Kuffner Jr, J. 2000. Rapidly-exploring ran-
dom trees: Progress and prospects.

LaValle, S. M. 2006. Planning algorithms. Cambridge
University Press.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Founda-
tions for the situation calculus. Electronic Transactions on
Artificial Intelligence 2:159–178.
Levihn, M.; Scholz, J.; and Stilman, M. 2012. Hierarchical
decision theoretic planning for navigation among movable
obstacles. In Workshop on the Algorithmic Foundations of
Robotics, 19–35.
Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B. P.;
and Konolige, K. 2010. The Office Marathon: Robust Nav-
igation in an Indoor Office Environment. In International
Conference on Robotics and Automation.
Plaku, E., and Hager, G. D. 2010. Sampling-based mo-
tion and symbolic action planning with geometric and dif-
ferential constraints. In IEEE International Conference on
Robotics and Automation, 5002–5008.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Proc. of the 14th International Conference on
Automated Planning and Scheduling, 345–354.
Stulp, F.; Fedrizzi, A.; and Beetz, M. 2009. Action-related
place-based mobile manipulation. 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems 3115–
3120.
Talamadupula, K.; Benton, J.; Schermerhorn, P. W.; Kamb-
hampati, S.; and Scheutz, M. 2010. Integrating a closed
world planner with an open world robot: A case study. In
Proc. of AAAI.
Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2001. The CLARAty architecture for robotic auton-
omy. In Proc. of IEEE Aerospace Conference, 121–132.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined
task and motion planning for mobile manipulation. In Proc.
of the International Conference on Automated Planning and
Scheduling, 254–258.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-replan: A
baseline for probabilistic planning. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling,
352–.

35

Closed Loop Configuration Planning with Time and Resources

Maurizio Di Rocco and Federico Pecora and Alessandro Saffiotti
Center for Applied Autonomous Sensor Systems, Örebro University, SE-70182 Sweden

{modo, fpa, asaffio}@aass.oru.se

Abstract

We propose an approach to configuration planning in
closed loop with sensing and actuation. Configuration
plans are fine-grained action plans for robotic systems
which specify the causal, temporal, resource and infor-
mation dependencies between individual sensing, com-
putation, and actuation components. The key feature
which enables closed loop performance is that config-
uration plans are represented as constraint networks,
which are shared between the planner and the executor
and are continuously updated during execution. We re-
port experiments run in a simulated multi-robot scenario
which show that our approach yields robust closed loop
performance in the face of four types of disturbances
during execution: delays, resource collapse, exogenous
events, and changing goals.

Introduction
Since its beginnings as an exploration of logical reasoning
for robots (Fikes and Nilsson, 1972), the field of AI plan-
ning has progressed enormously. Yet, if you look inside a
typical autonomous robot today you will see little evidence
of this progress, and you may suspect that planning in AI
has focused on issues which are not the main concerns of
robot builders. Indeed, if you ever tried to program a robot
to accomplish tasks in unstructured, everyday environments,
you would expect an AI planner to provide the ability to
act as a knowledge-based controller (Dean and Wellman,
1991) for the robot: given a goal, the planner continuously
synthesizes actions which bring about the achievement of
the goal as the state of the world changes during execution.
This entails (requirement 1) that the planner should possess
knowledge and reason about the physical aspects of the do-
main, like time, space, and resources. In the real world, plans
are subject to execution-time perturbations, such as actions
taking longer than expected, resources not being available,
or assumed causal requirements not being met. Therefore,
the planner should (requirement 2) generate plans that en-
able a sufficient degree of flexibility to accommodate these
contingencies during execution whenever possible. Further-
more, robots today are not monolithic entities, rather a col-
lection of sensors, drivers, actuators, and information pro-
cessing components. This entails that the planner should (re-
quirement 3) decide how to compose these enabling modules

while taking into account their physical and logical depen-
dencies.

Today’s planners exhibit some of the above features. For
instance, a considerable amount of work has been done to
integrate metric time into planning (Knight et al., 2001;
Do and Kambhampati, 2003; Gerevini, Saetti, and Serina,
2006; Doherty, Kvarnström, and Heintz, 2009; Barreiro et
al., 2012; Eyerich, Mattmüller, and Röger, 2009). Including
time has allowed some planning systems to perform con-
tinuous planning, i.e., continuously synthesize plans as new
goals and contingencies become known. Execution moni-
toring techniques have been developed which leverage the
explicit temporal representation of these plans (Finzi, In-
grand, and Muscettola, 2004; McGann et al., 2008b,a), thus
effectively providing a few examples of planning for real
robots. Although these constitute important steps towards
obtaining planners that are appropriate for robots, they ad-
dress only partially (i.e., in the temporal dimension) require-
ments 1 and 2. Some work has addressed the issue of includ-
ing further dimensions into the planning problem, e.g., re-
sources. In addition to addressing more fully requirement 1,
some of these approaches (Köckemann, Pecora, and Karls-
son, 2012; Fratini, Pecora, and Cesta, 2008; Ghallab and
Laruelle, 1994) would also be well suited for use in closed
loop with actuation and perception, as they maintain a cer-
tain level of least-commitment with respect to the timing of
plan execution. Nevertheless, they are not proposed nor eval-
uated as closed-loop planning systems. Lemai and Ingrand
(2004) propose an extension of the IxTeT planner (Ghallab
and Laruelle, 1994) for closed loop execution monitoring
with resources — however, the technique is exemplified on
single robot navigation tasks.

Much of the work in AI planning has focused on ac-
tion planning (Ghallab, Nau, and Traverso, 2004) — how-
ever, when planning for robots, actions are not the only
aspect upon which a planner should reason. We are in-
terested in configuration plans, namely fine-grained plans
for robotic ecologies (Saffiotti et al., 2008) which spec-
ify the causal, temporal, resource and information depen-
dencies between individual sensing, computation, and ac-
tuation components. Configuration planners have been pro-
posed before: the AsymTre architecture (Parker and Tang,
2006) considers a set of robots equipped with software mod-
ules, called schemas, able to sense and modify the envi-

36

ronment. Schemas are interconnected through information
channels which are decided by a planning process. Further
refinements of this idea are presented by Zhang and Parker
(2011); Parker and Zhang (2012): the former introduces met-
rics to estimate the information quality gathered by the cho-
sen configuration, while the latter provides more sophisti-
cated techniques to gather the needed information. This ap-
proach focuses on information exchange ignoring resource
and temporal requirements. Furthermore, relying on an auc-
tion procedure to incrementally build the plan, this architec-
ture doesn’t manage explicitly the presence of shared actions
in the planning process. In fact, as the authors point out,
the backtracking procedure involving these schemas could
lead to problems that are currently not addressed. Zhang and
Parker (2013) address a limited form of resource reasoning,
however the method does not provide closed-loop execution
monitoring; interestingly, dependencies are used to enforce
a basic form of temporal constraints, namely precedences.
An explicit representation of the world is instead consid-
ered by Lundh, Karlsson, and Saffiotti (2008): differently
from AsymTre, this system leverages a propositional logic
description of the world based on standard planning tech-
niques. Reasoning is performed by coupling an action plan-
ner together with a configuration planner: the former pro-
vides a sequence of actions that have to be further refined by
the latter; in turn, the configuration planner chooses software
modules to activate and decides the related communication
linkage. This system allows a detailed representation of the
evolution of the world — however, it is decoupled from ex-
ecution, and therefore suffers from many of the aforemen-
tioned problems. An improved version of this work (Lundh,
2009) takes into account multiple goals through a merging
sequence. Similarly to AsymTre, the approach lacks the abil-
ity to perform on-line plan monitoring and execution.

In this paper, we propose a configuration planner which
fulfills the above requirements by combining three enabling
factors: (1) representing a (configuration) plan as a con-
straint network; (2) defining the configuration planning pro-
cess as a search in the space of such networks; and (3) shar-
ing the constraint network between the planner and the ex-
ecutor.

Representation
Our approach is grounded on the notion of state variable,
which models elements of the domain whose state in time
is represented by a symbol. State variables, whose domains
are discrete sets, represent parts of the real world that are
relevant for the configuration planner’s decision processes.
These include the actuation and sensing capabilities of the
robotic system, and the various aspects of the environment
that are meaningful. E.g., a state variable can represent the
capabilities of a robot, whose meaningful states might be
“navigating” or “grasping”, or the interesting states of the
environment, e.g., a light which can be “on” or “off”. Let S
be the set of state variables in a given application scenario.

Some devices require resources when they are in given
states. A reusable resource has a limited capacity which is
fully available when not required by a device. An example
is power: a maximum wattage is available, and devices can

simultaneously require power so long as the sum of require-
ments is less than the maximum power. We denote with R
the set of all resource identifiers, and with Cap(R) ∈ N the
capacity of R ∈ R.

Devices in our domain may serve the purpose of providing
or requiring information contents. For instance, a software
component may require range data from a laser range finder,
and provide localization information. We denote IC the set
of all information contents.

Representing Configuration Plans and Goals
We employ activities to represent predicates on the possible
evolution of state variables:
Definition 1 An activity a is a tuple (x,v, I, u, In,Out),
where
• x ∈ S = {Scontr ∪Sobs ∪Sint} is a state variable, where

– Scontr is the set of controllable variables
– Sobs is the set of observable variables
– Sint is the set of internal variables

• v is a possible state of the state variable x;
• I = [Is, Ie] is a flexible temporal interval within

which the activity can occur, where Is = [ls, us], Ie =
[le, ue], ls/e, us/e ∈ N represent, respectively, an interval
of admissibility of its start and end times;

• u : R → N specifies the resources used by the activity;
• In ⊆ IC is a set of required information contents;
• Out ⊆ IC is a set of provided information contents.

The notation (·)(a) indicates an element of the five-tuple
pertaining to activity a. The pair (x(a),v(a)) asserts a partic-
ular state v of the state variable x; I(a) represents possible
temporal intervals of occurrence of the state v(a) of state
variable x(a). Note that a pair of activities (a, b) is possi-
bly concurrent if I(a) ∩ I(b) 6= ∅. A pair (a, b) of possibly
concurrent activities thus indicates that x(a) and x(b) can be,
respectively, in states v(a) and v(b) at the same time.

Unspecified parameters of an activity are indicated with
(·) — e.g., (x, ·, I, u, In,Out) indicates a predicate asserting
that state variable x can be in any state during interval I .

Activities can be bound by temporal constraints, which
restrict the occurrence in time of the predicates. Tempo-
ral constraints can be of two types. Binary temporal con-
straints in the form aC b prescribe the relative placement
in time of activities a, b — these constraints are relations in
Allen’s Interval Algebra (Allen, 1984), and restrict the possi-
ble bounds for the activities’ flexible temporal intervals I(a)

and I(b). Unary temporal constraints in the form C a pre-
scribe bounds on the start or end time of an activity a —
these constraints are commonly referred to as release time
constraints and deadlines.
Allen’s interval relations are the thirteen possible temporal
relations between intervals, namely “precedes” (p), “meets”
(m), “overlaps” (o), “during” (d), “starts” (s), “finishes” (f),
their inverses (e.g., p−1), and “equals” (≡).

When state variables are used to represent a system, the
overall temporal evolution of such system is described by a
constraint network:

37

Definition 2 A constraint network is a pair (A, C), where
A is a set of activities and C is a set of constraints among
activities in A.

A constraint network can be used to represent a config-
uration plan. Configuration plans are said to be feasible if
they are consistent with respect to the resource, state, and
temporal requirements. Specifically,

Definition 3 A configuration plan (A, C) is feasible iff:

• the constraint network is temporally consistent, i.e., there
exists at least one allocation of fixed bounds to intervals
such that all temporal constraints are satisfied;

• activities do not over-consume resources, i.e.,∑
a∈A u

(a)(R) ≤ Cap(R), ∀R ∈ R, where A ⊆ A is a
set of possibly concurrent activities;

• activities do not prescribe that state variables assume
different states in overlapping temporal intervals, i.e.,
v(a) 6= v(b),∀(a, b) ∈ A×A : x(a) = x(b), whereA ⊆ A
is a set of possibly concurrent activities.

A goal for a configuration planning problem is also repre-
sented as a constraint network, therefore expressing tempo-
ral, resource, state and information requirements. Typically,
a goal (Ag, Cg) is an under-specified configuration plan. Ini-
tial conditions are feasible sub-networks of a goal.

Domain Representation
Given a goal (Ag, Cg) and a configuration plan (A, C) which
contains the goal, the feasibility of the configuration plan
is not a sufficient condition for achieving the goal. This is
because feasibility does not enforce information and causal
requirements. The way these requirements are to be enforced
depends on a domain:

Definition 4 A configuration planning problem is a pair
((Ag, Cg),D), where (Ag, Cg) is a goal constraint network,
and D is a domain. The domain is a collection of operators,
which describe the information and causal dependencies be-
tween activities.

Definition 5 An operator is a pair (a, (A,C)) where

• a = (x,v, ·, ·, ·,Out) is the head of the operator;
• A = Ap ∪Ae ∪ {a} is a set of activities, where

– Ap is a set of preconditions, i.e., requirements, in terms
of state variable values, information input, and re-
source usage, needed to achieve the state v(a) of state
variable x(a) and to produce Out(a);

– Ae is a set of effects, i.e., state variable values entailed
by the achievement of state v(a) of state variable x(a);

• C is a set of temporal constraints among activities in A.

Computing a configuration plan consists in selecting and
instantiating operators form the domain into the goal con-
straint network. Unlike in classical planning, the relevance
of an operator (denoted γ−1 in Ghallab, Nau, and Traverso,
2004) is not determined by unifying effects with sub-goals,
rather by the unification of an operator’s head with a sub-
goal. The head of an operator is a non-ground activity which
describes the value of a state variable and the information

provided as a result of applying the operator. Preconditions
and effects are used during execution, the former to deter-
mine the control action(s) given to the system (input regu-
lation problem), the latter as a part of state estimation (see
next Section).

An operator can specify the information requirements
needed for achieving a particular functionality. For instance,
the MoveFromTo operator, which does not provide any in-
formation content, requires the current position of the robot:

a = (MoveFromTo,kitchen livingroom, ·, ·, ·, ∅)
Ap = {a1, a2}, Ae = {a3},where
a1 = (·, ·, ·, ·, ·, {position})
a2 = (RobotLocation,kitchen, ·, ·, ·, ·)
a3 = (RobotLocation, livingroom, ·, ·, ·, ·)

C = {a d a1, am−1 a2, am a3}

The head of the operator is a predicate on the func-
tionality MoveFromTo. The operator is considered rel-
evant when the constraint network contains an activity
(MoveFromTo,kitchen livingroom, ·, ·, ·, ·), i.e., when
a (sub-)goal stating that the robot must move from the
kitchen to the living room is present in the network. The op-
erator also prescribes the temporal relations that must exist
between the activities, namely that the MoveFromTo func-
tionality should occur during the availability of the position
data (a d a1), that it should be met by the precondition of the
robot being in the kitchen (am−1 a2), and that it meets the
effect of the robot being in the living room (am a3).

An operator can also represent a means to achieve infor-
mation requirements. For example, the operator

a = (VisualSLAM, running, ·, u(CPU) = 10, ·, {position})
Ap = {a1, a2}, Ae = ∅,where
a1 = (·, ·, ·, ·, ·, {range data})
a2 = (·, ·, ·, ·, ·, {ref frame})

C = {a d a1, am−1 a2}

specifies one way to achieve the necessary information re-
quirement (position) for the MoveFromTo operator, namely
through visual SLAM. This localization functionality re-
quires (1) a functionality which provides range data, (2) a
reference frame for the computation of the position estimate,
and (3) 10% of the CPU resource. Also, the operator states
that range data should be available during the entire dura-
tion of the localization process, and that the reference frame
is needed at the beginning of the process.

The above operator does not specify how to obtain needed
information inputs. For instance, range data might be pro-
vided through the following operator:

a = (StereoCamDriver,on, ·, u(Cam1) = 1, ·, {range data})
Ap = {a1}, Ae = ∅,where a1 = (Light,on, ·, ·, ·, ·)
C = {a d a1}

An operator may also specify that the reference frame is ob-
tainable by invoking a functionality of the stereo camera’s
pan-tilt unit:

38

a = (PanTilt, return ref frame, ·, ·, ·, {ref frame})
Ap = ∅, Ae = ∅, C = ∅

The above operators can be applied to obtain a configura-
tion plan from the following goal constraint network:

A = {a0 = (MoveFromTo,kitchen livingroom, I0, ·, ·, ·)},
C = ∅

A particular application of the above operators may refine
the given constraint network to the following:

A = {a0 = (MoveFromTo,kitchen livingroom, I0, ∅, ∅, ∅)
a1 = (VisualSLAM, running, I1, u(CPU) = 10,

{ref frame, range data}, {position})
a2 = (RobotLocation,kitchen, I2, ∅, ∅, ∅)
a3 = (RobotLocation, livingroom, I3, ∅, ∅, ∅)
a4 = (StereoCamDriver,on, I4,

u(Cam1) = 1, ∅, {range data})
a5 = (PanTilt, return ref frame, I5, ∅,

∅, {ref frame})
a6 = (Light,on, I6, ∅, ∅, ∅)},

C = {a0 d a1, a0 m−1 a2, a0 m a3, a1 d a4, a1 m a5, a4 d a6}

This network represents a temporally consistent configura-
tion plan in which resources are never used beyond their ca-
pacity, and state variables are never required to assume dif-
ferent values in overlapping temporal intervals. The plan is
therefore feasible. Furthermore, the plan contains activities
providing the required information contents as determined
by the operators in the domain. However, not all causal de-
pendencies are necessarily achieved by construction. If, e.g.,
the initial condition does not state that the light is on, the
configuration planner would regard the activity a6 as yet an-
other sub-goal to satisfy, and might do so through the fol-
lowing operator:

a = (Light,on, ·, ·, ·, ·)
Ap = ∅, Ae = {a1},where a1 = (LightController,on, ·, ∅, ·, ·)
C = {a p−1 a1}

This operator models an actuation process (Light rep-
resents an environment variable), and its application
would refine the configuration plan by adding an activ-
ity a7 = (LightController,on, I7, ∅, ∅, ∅) to the network,
along with the constraint a6 p−1 a7, prescribing that the
LightController be in state on before the light is required
to be on. Note that the light control functionality has no in-
formation requirements (In(a1) = ∅).

Planning in Closed Loop
Fig. 1 provides an overview of our approach. As a whole,
our architecture can be seen as a controller for a dynam-
ical system: the controlled system consists of the robot(s)
and the environment in which they operate; the controller is
composed of an observer and a regulator, and has the task

to dispatch actuation commands to the controlled system so
that its observed state S coincides with the desired state G.

Figure 1: Overview of the control architecture.

At the core of the controller is a shared constraint net-
work. The observer adds activities and temporal constraints
to this network, which represent the current state of the envi-
ronment as provided by sensors: if a sensor sensorX reports
a new reading v at time tnow, the observer inserts a new ac-
tivity (sensorX,v, I, ∅, ∅, ∅) and adds a temporal constraint
restricting the beginning of I to be tnow; if the reading of
sensorX changes, the previous activity is constrained to end
at tnow and another activity is started.

The regulator includes the configuration planner,
and a dispatcher that sends to the system the exe-
cutable actions in the constraint network. An action
(deviceY,v, [Is, Ie] , ·, ·, ·) is considered executable when
two conditions are met: (1) tnow ≤ min{Is}; and (2) its
observable preconditions are verified in the current state.
The latter condition is tested by attempting to unify each
activity representing such a precondition with a sensed
activity produced by the observer. If unification fails, the
precondition is delayed by inserting a temporal constraint,
and re-evaluated at the next iteration. If both conditions are
met, the command v is transmitted to deviceY.

The configuration planner, which implements the con-
trol logic of the regulator, is a search procedure which con-
tinuously modifies the constraint network so as to guaran-
tee the presence of a feasible plan given the goal G =
(Ag, Cg). The resulting constraint network represents one
or more temporal evolutions of the state variables that guar-
antee the achievement of G under nominal conditions. In
this sense, our planner follows a least commitment prin-
ciple. Feasible and goal-achieving configuration plans are
obtained by means of five interacting solvers. (1) a tem-
poral solver propagates temporal constraints to refine the
bounds [ls, us], [le, ue] of activities, and returns failure if
and only if temporally consistent bounds cannot be found;
(2) a resource scheduler, which chooses and posts to the net-
work temporal constraints so as to remove temporal over-
lap from sets of over-consuming, possibly concurrent ac-
tivities (Cesta, Oddi, and Smith, 2002); (3) a state vari-
able scheduler, which exploits the same constraint-posting
mechanism of the resource scheduler to ensure that activities
do not prescribe conflicting states in overlapping intervals;
(4) an information dependency reasoner, which instantiates
relevant operators (in the form of activities and temporal

39

constraints) so as to enforce the information dependencies
modeled in the domain; (5) and a causal planner, which in-
stantiates relevant operators so as to enforce the causal de-
pendencies modeled in the domain.

Temporal feasibility enforcement is not subject to multi-
ple choices, as the temporal constraints form a Simple Tem-
poral Problem (Dechter, Meiri, and Pearl, 1991), which is
tractable. Tractability also holds for information dependen-
cies, which in our approach constitute an acyclic propo-
sitional Horn theory. Conversely, all other reasoners must
search in the space of alternative choices for conflict resolu-
tion (e.g., alternative sequencing decisions, alternative oper-
ator selections). All of these choices are seen as decision
variables in a high-level Constraint Satisfaction Problem
(CSP). Given a decision variable d, its possible values con-
stitute a finite domain δd = {(Ad

r , C
d
r)1, . . . , (A

d
r , C

d
r)n},

whose values are alternative constraint networks, called
resolving constraint networks. The individual solvers are
used to determine resolving constraint networks (Ad

r , C
d
r)i,

which are iteratively added to the goal constraint network
(Ag, Cg).

Function Backtrack(Ag, Cg): success or failure

d← Choose((Ag, Cg), hvar)1
if d 6= ∅ then2

δd = {(Ad
r , C

d
r)1, . . . , (A

d
r , C

d
r)n}3

while δd 6= ∅ do4
(Ad

r , C
d
r)i ← Choose(d, hval)5

if (Ag ∪Ad
r , Cg ∪ Cd

r) is temporally consistent then6
return Backtrack(Ag ∪Ad

r , Cg ∪ Cd
r)7

δd ← δd \ {(Ad
r , C

d
r)i}8

return failure9

return success10

In order to search for resolving constraint networks, we
employ a systematic search (see Algorithm Backtrack),
which occurs through standard CSP-style backtracking. The
decision variables are chosen according to a variable order-
ing heuristic hvar (line 1); the alternative resolving constraint
networks are chosen according to a value ordering heuristic
hval (line 5). The former decides which (sub-)goals to at-
tempt to satisfy first, e.g., to support a functionality by ap-
plying another operator, or to resolve a scheduling conflict.
The latter decides which value to attempt first, e.g., whether
to prefer one operator over another (recall that there may be
more than one decomposition for a given activity.) Note that
adding resolving constraint networks may entail the pres-
ence of new decision variables to be considered.

The possible values for resource contention or unique
state decision variables are temporal constraints. In par-
ticular, our framework relies on the earliest time time-
lines to assess both resource over-consumption and multi-
ple overlapping states. Values for information decision vari-
ables are ground operators, as shown in the previous Sec-
tion. Lastly, values for causal decision variables are ei-
ther ground operators, or unifications with activities that al-
ready exist in the constraint network. Search uses unifica-
tion to build on previously added activities — e.g., lever-

aging that the light has already been turned on to sup-
port a previously branched-upon causal dependency. Uni-
fication also allows to accommodate on-going sensing and
execution monitoring processes during planning. For in-
stance, (Light,on, I(a), ∅, ∅, ∅) may be supported by unifi-
cation with (Light,on, [[0, 0][13, 13]], ∅, ∅, ∅) which models
the temporal interval within which a light source was sensed.

Since the configuration planner is in a closed loop with the
system (through the observer and dispatcher), modifications
of the constraint network necessary to achieve the goal can
occur whenever a disrupting renders the network an infeasi-
ble plan. Note that due to the presence of the above solvers in
this loop, the modifications made to the network in the face
of disturbances can take on the form of temporal propaga-
tion, resource or state variable scheduling, or operator appli-
cation, depending on the situation. If temporal reasoning and
scheduling fail, replanning is needed: the planner empties
the constraint network of all activities whose lower bound is
greater than the current time, and Algorithm Backtrack
is re-invoked. Note that all activities representing operators
currently under execution, as well as those already executed
remain in the network, as do all activities representing the
sensed state of the physical world. As shown below, this
mechanism also enables to deal with dynamically posted
goals.

Experiments
Methodology. Planners are typically evaluated in terms of
internal properties of the algorithm, such as completeness,
complexity or optimality. In this work, we are interested in
the closed loop behavior of the planner when coupled to the
controlled system. Intuitively, the question that we want to
answer is not “does the planner generate a correct plan to
the goal?” but rather “does the planner bring the system to
the goal — even in the face of discrepancies between its
model and the actual world?”. This question is similar to
the one typically considered in control theory: will the con-
troller bring the state of the controlled system to the desired
set point? Accordingly, our experimental methodology is in-
spired by the methods used for closed loop controllers.

Referring to Fig. 1, we call E (for error) the distance
d(S,G) between the current state S of the system, and its de-
sired stateG. We are interested in the ability of our controller
to keep E to zero, even in the face of disturbances. Distur-
bances include un-modeled factors, like exogenous events
and delays, and changes in the goal G. If S and G are val-
ues in a metric space, e.g., vectors of real numbers, d is a
standard distance function. In our case, S and G are con-
straint networks, so we define a distance in the space of such
networks with respect to a given domain D. We let d(S,G)
be the minimum number of network transformations needed
to solve the configuration planning problem (G,D) starting
from the initial state S. That d depends onD is natural, since
it depends on what actions the controlled system can per-
form. Operationally, we compute E by invoking our config-
uration planner on G from the initial state S and counting
the number of decision steps: this gives an upper bound of
the real d(S,G).

40

Experimental setup. We test the controller’s ability con-
verge on the desired goal networkG = (Ag, Cg) in four sce-
narios. In the first three, G is fixed and the system is subject
to (1) temporal perturbations (delays) of increasing magni-
tude, (2) resource collapse, and (3) exogenous events. These

Figure 2: Testing environment used in the evaluation.

are disturbances that affect real robotic systems, e.g., navi-
gation takes longer due to a crowded corridor, a room with
limited capacity is occupied, or a door assumed to be open is
found closed. In scenario (4), we measure the tracking per-
formance of the system by varying the goal according to a
fixed schedule and subjecting the system to temporal pertur-
bations.

In all tests, we employ a domain in which three robots
have to deliver goods within the indoor environment de-
picted in Fig 2. Rooms are connected through actuated
doors. Rooms Rs and Re are, respectively, the pick up and
drop-off locations. Rooms R1-R4 have a maximum capacity
of one robot, while rooms Rs and Re can accommodate up
to three robots. Robot navigation requires several resources:
motors, a localization device (either a laser or a camera) and
the availability of source and destination rooms. Each goal
has a deadline, whose violation implies plan failure.

Tolerance to disturbances. In the first test, each robot
must pick up an object in Rs, release it in Re, and navi-
gate back to its starting point. During execution, delays in
[0, Dmax] were applied to the start or end time or all activi-
ties. Dmax was set to 0, 5, 10, 20 and 50 units, and 100 runs
were performed for each value of Dmax.

With Dmax = 0, the system always managed to converge
to the goal. The longest execution was 57% of the overall
deadline, i.e., the system afforded a slack of 43%. When
delays are introduced the system may not achieve the goal
within the given deadline. This depends on the magnitude of
the delay compared to the available slack. At 33%, the sys-
tem diverged in 32% of the runs, while at 40% it diverged
in 60% of the runs. Fig. 3 (a) plots the value of E over time
for the cases where the system converged. This plot gives a
qualitative impression of the behavior of the system when
the deadline can be met: the distance to the goal monoton-
ically decreases until convergence, albeit more slowly for
increasing delays.

In the second test, we subject the system to resource col-
lapses by lowering the capacity of every resource during
an interval with random start and duration, where the dura-
tion is in [0, Dmax] with Dmax ∈ {5, 10, 20, 50}. In light of
Fig. 3 (a), we wish to assess the role of the heuristics used in

the planner’s search algorithm. Our planner follows a least
commitment principle, as it does not commit to a particular
fixed-time execution schedule during planning, rather it im-
poses constraints that prune out behaviors that do not com-
ply with the goal (Ag, Cg). For this reason, we compare the
controller’s performance with two alternative heuristics for
resource scheduling: hflex, which gives priority to scheduling
decisions that least impact the remaining temporal flexibility
of the network (Cesta, Oddi, and Smith, 2002); and hrndm,
which decides to resolve resource contention without tak-
ing into account temporal flexibility, thus potentially over-
committing with respect to the current distance to the dead-
line. As an illustration, the Root Mean Square (RMS) rigid-
ity of the constraint network (Hunsberger, 2002), which is
inversely related to the amount of temporal slack in the net-
work, is shown in Fig. 3 (b). Two runs were performed with
the same magnitude of perturbation (Dmax = 5), one using
using hflex, the other using hrndm. As shown, in the former
run the network retains much more flexibility, testifying to
the fact that least commitment affords more adjustments to
the plan until goal achievement. This enhanced flexibility is
reflected in the results shown in Table 1: injecting the same
disturbances, hflex performs significantly better than hrndm,
achieving convergence in a majority of scenarios with re-
source unavailability periods of up to Dmax = 20.

Dmax hflex hrndm

5 92% 60%
10 74% 58%
20 53% 37%
30 27% 19%

Table 1: Percentage of runs in which convergence was
achieved for varying magnitudes of resource collapse.

In the third experiment, we perturb the system by intro-
ducing exogenous events. Specifically, at regular intervals
Tdoor, each door can be closed with probability p. This im-
plies that each door will be closed at least once during the
whole plan with probability pclose, which can be computed
from p and the nominal duration of the plan. Once a door is
closed, re-planning may be necessary due to the discrepancy
between the planned and sensed activities. Table 2 shows the
rate of succeeded executions for different values of pclose
and for Tdoor = 10.

pclose 0% 20% 40% 60% 100%
Success rate 100% 76% 47% 30% 3%

Table 2: Success rate when doors are closed with pclose.

Tracking a dynamic goal. The last experiment is related
to a tracking problem: the controller receives on-line re-
quests to put a room under surveillance. A room is con-
sidered such if it contains two robots. A domain specific
heuristic is used to accomplish this task, namely assigning
robots to rooms based on distance. All rooms have capacity
two and doors have capacity one, as only one robot can pass
the threshold at a time. The sequence of rooms to be put
under surveillance is periodically posted to the controller,

41

(a) (b) (c)

Figure 3: (a) Distance to goal (E) over time for different amounts of delays (each curve is the average of 100 runs for a given value ofDmax;
vertical bars are standard deviation); (b) RMS rigidity of the constraint network over time for hflex and hrndm; (c) tracking a moving goal, with
f = 3T̄ and with or without delay (Dmax = 50).

f D = 5 D = 10 D = 20 D = 50

1/120 1 0.975 0.91 0.76
1/90 0.94 0.92 0.87 0.65
1/60 0.92 0.97 0.83 0.4
1/40 0.93 0.68 0.6 0.24

Table 3: Success rate for the tracking scenario — rows: goal post-
ing period, columns: success ratio compared to the zero delay case

and each posting supersedes the previous one. To assess the
tracking performance of the controller, we choose a more
fine-grained metric than convergence, namely the number of
surveillance tasks achieved. We vary the goal posting period
Tpost in the range [40, 120] time units, and perturb the sys-
tem with random delays between 0 and Dmax, with Dmax

up to 50 time units. The periodic sequence (Re, R1, R4) has
been chosen such that plan execution time in the absence of
another posted goal is, on average, a constant T̄ . Fig. 3 (c)
shows the controller’s behavior with a posting period of 3T̄
in two cases: when there are no delays, and when there are
delays with Dmax = 50. As can be seen, in the absence
of disturbances each goal is always achieved before another
goal is posted (i.e., the curve always reaches 0 before rising
back up in consequence of another goal being posted). Con-
versely, this is not the case when delays are introduced. The
complete results are shown in Table 3: as expected, failures
increase significantly when the posting period approaches
T̄ .

Discussion and Conclusions
Our work aims at building a planner that can be used with
real robotic systems. Experiments exploiting robotic plat-
forms have been shown in (Di Rocco et al., 2013), this pa-
per rather focuses on the performances achieved by the sys-
tem in presence of disturbances. We have introduced a new
formalism which provides sufficient expressiveness to cap-
ture the salient features of a multi-robot domain with re-
sources and information dependencies. However, the nov-
elty of this work is not in the formalism itself (which builds
heavily upon previous work in constraint-based temporal
planning (Cesta and Oddi, 1996; Do, 2012; Smith, Frank,
and Cushing, 2008)), rather in catering explicitly to the real
problems faced by roboticists: complexity of sensing and ac-

tuation may cause failed or delayed actions, incorrect local-
ization, interrupted data flows — all of which warrant con-
tinuous plan adaptation.

This work also leverages another key idea present in
architectures like EUROPA (Frank and Jónsson, 2003),
OMPS (Fratini, Pecora, and Cesta, 2008), IDEA (Finzi, In-
grand, and Muscettola, 2004) and T-REX (McGann et al.,
2008a), namely the use of a common constraint database
onto which flaw-resolving decisions are posted. However,
note that in our work the particular decisions posted to the
constraint network are subject to a meta-level CSP-style
search. This is the first system which truly adopts a meta-
CSP approach in exploring the combined search-space of
causal, information, resource and temporal reasoning. Us-
ing a principled algorithmic methodology as the backbone
for integrating different solvers forebodes the possibility to
include further domain features (e.g., spatial reasoning, ad-
hoc procedures) and to orchestrate them properly through
variable and value ordering heuristics with other decision
processes. The implementation of the approach is based on
the Meta-CSP Framework (Pecora et al., 2012), an open
source Java API which facilitates the development of meta-
CSP based problem solvers.

Through an experimental evaluation, we have shown how
plans are adapted on-line and at different levels depending
on the specific contingency (temporal adjustments, requiring
polynomial computation; scheduling, requiring to incremen-
tally solve an NP-hard problem; causal/information depen-
dency resolution, requiring exponential time). A limitation
of the current approach, which makes an interesting point
for future work, is the lack of support for uncertainty about
EVs; also, it may be interesting to support soft goals for
some robotic applications. Another particularly significant
direction of future work will be to explore issues related to
the controllability of the temporal constraint network (in our
present approach, all time points are assumed to be control-
lable from the point of view of temporal reasoning). In par-
ticular, it is worth investigating whether existing techniques
for ensuring its controllability (e.g., Cimatti, Micheli, and
Roveri, 2012) are suitable for configuration planning and
multi-robot contexts.

On-going work is addressing performance analysis and
deployment in physically instantiated scenarios, as well as
validation through more extensive tests. We will also focus
on re-planning strategies, address the issue of including pre-

42

dicted/perceived human plans dynamically, and taking into
account spatial constraints.

Acknowledgments
This work was funded by the EC Seventh Framework
Programme (FP7/2007-2013) grant agreement no. 288899
Robot-Era. The authors wish to thank the anonymous re-
viewers for their comments and suggestions.

References
Allen, J. 1984. Towards a general theory of action and time.

Artificial Intelligence 23(2):123–154.

Barreiro, J.; Boyce, M.; Frank, J.; Iatauro, M.; Kichkaylo,
T.; Morris, P.; Smith, T.; and Do, M. 2012. EUROPA: A
platform for AI planning. In Proc of ICAPS-ICKEPS.

Cesta, A., and Oddi, A. 1996. DDL.1: A formal descrip-
tion of a constraint representation language for physical
domains. In Ghallab, M., and Milani, A., eds., New Di-
rections in AI Planning. IOS Press: Amsterdam.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109–136.

Cimatti, A.; Micheli, A.; and Roveri, M. 2012. Solving tem-
poral problems using smt: Strong controllability. In Mi-
lano, M., ed., Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science. Springer
Berlin Heidelberg. 248–264.

Dean, T., and Wellman, M. 1991. Planning and control.
Morgan Kaufmann series in representation and reasoning.
M. Kaufmann Publishers.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.

Di Rocco, M.; Pecora, F.; Kumar, P.; and Saffiotti, A. 2013.
Configuration planning with multiple dynamic goals. In
Proc. of AAAI Spring Symposium on Designing Intelligent
Robots.

Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. J. Artif. Intell. Res.
(JAIR) 20:155–194.

Do, M. 2012. Nddl reference manual. Available at
https://code.google.com/p/europa-pso/
wiki/NDDLReference.

Doherty, P.; Kvarnström, J.; and Heintz, F. 2009. A tempo-
ral logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems 19(3):332–377.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and
numeric planning. In Proc. of the 19th Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS).

Fikes, R., and Nilsson, N. 1972. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.

Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-
based executive control through reactive planning for au-
tonomous rovers. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS).

Frank, J., and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Constraints 8(4):339–364.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based
perspective. Archives of Control Sciences 18(2):231–271.

Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. J. Artif. Int. Res. 25(1):187–
231.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In AIPS, 61–67.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In Eighteenth national
conference on Artificial intelligence, 468–475. Menlo
Park, CA, USA: American Association for Artificial In-
telligence.

Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through
continuous planning. Intelligent Systems 16(5):70–75.

Köckemann, U.; Pecora, F.; and Karlsson, L. 2012. Towards
planning with very expressive languages via problem de-
composition into multiple csps. In Proc. of the ICAPS
Workshop on Constraint Satisfaction Techniques for Plan-
ning and Scheduling Problems (COPLAS).

Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In Proceedings
of the 19th national conference on Artifical intelligence,
AAAI’04, 617–622. AAAI Press.

Lundh, R.; Karlsson, L.; and Saffiotti, A. 2008. Au-
tonomous functional configuration of a network robot sys-
tem. Robotics and Autonomous Systems 56(10):819–830.

Lundh, R. 2009. Robert lundh. robots that help each-other:
Self-configuration of distributed robot systems. In PhD
Thesis. rebro University, rebro, Sweden, May 2009.

McGann, C.; Py, F.; Rajan, K.; Ryan, J. P.; and Henthorn,
R. 2008a. Adaptive Control for Autonomous Underwa-
ter Vehicles. In Proc. of the 23rd AAAI Conference on
Artificial Intelligence.

McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008b. A Deliberative Architecture for
AUV Control. In Proc. of the Int. Conf. on Robotics and
Automation (ICRA).

Parker, L., and Tang, F. 2006. Building multirobot coalitions
through automated task solution synthesis. Proc of the
IEEE 94(7):1289–1305.

Parker, L., and Zhang, Y. 2012. Task allocation with ex-
ecutable coalitions in multirobot tasks. Proc of the Int.
Conf. on Robotics and Automation (ICRA).

43

Pecora, F.; Di Rocco, M.; Köckemann, U.; Mansouri,
M.; and Ullberg, J. 2012. The meta-csp frame-
work public repository. Available at http://
meta-csp-framework.googlecode.com.

Saffiotti, A.; Broxvall, M.; Gritti, M.; LeBlanc, K.; Lundh,
R.; Rashid, J.; Seo, B.; and Cho, Y. 2008. The PEIS-
ecology project: vision and results. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2329–2335.

Smith, D. E.; Frank, J.; and Cushing, W. 2008. The ANML
language. In ICAPS Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS).

Zhang, Y., and Parker, L. E. 2011. Solution space reason-
ing to improve iq-asymtre in tightly-coupled multirobot
tasks. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, 370 –377.

Zhang, Y., and Parker, L. E. 2013. Considering inter-task re-
source constraints in task allocation. Autonomous Agents
and Multi-Agent Systems 26(3):389–419.

44

Deliberative Systems for Autonomous Robotics: A Brief Comparison Between
Action-oriented and Timelines-based Approaches

Pablo Muñoz and Marı́a D. R-Moreno
Departamento de Automática, Universidad de Alcalá

Ctra. Madrid-Barcelona Km 33,600 E-28871
Alcalá de Henares, Madrid

Abstract

Autonomous robotics is a multidisciplinary and widely
research area. Several approaches have been followed
to make autonomous and reliable control architectures,
especially for applications in environments inaccessible
to humans. We are going to focus on two architectures
designed to automate the operation of an exploration
robot: on the one hand we have the Model-Based Ar-
chitecture and on the other hand the Goal-Oriented Au-
tonomous Controller.
On these architectures there is at least one delibera-
tive entity, which is the responsible of managing the
long term planning to accomplish the objectives of
the mission for which it has been designed for. The
first architecture implements an action-oriented plan-
ner that uses the Planning Domain Definition Language
(PDDL) to describe the environment, available actions
and goals. The second system employs a timelines ap-
proach, which reasons about temporal state variables
using the Domain Definition Language (DDL) to model
the physics interactions in the world. In this paper we
present the deliberative models that these architectures
require to perform a robotic exploration mission, and
then, we present a briefly and initial analysis about the
differences between the solutions given by both plan-
ners, focusing on the flexibility of the deliberative pro-
cess and the semantics and representative capabilities of
the languages employed.

Introduction
Since the birth of modern robotics, important efforts have
been made in designing and implementing architectures that
allow a robot to autonomously inter-operate with its envi-
ronment to perform specific tasks. The field in which more
research is conducted in autonomous control architectures is
exploration robots, whether underwater or space, due to the
extreme conditions that make them inaccessible to humans.

The long term planning and scheduling is a primary topic
in the design of these autonomous architectures for robotics
control. In this way, there are several approaches to solve
the deliberative necessities for new science missions such as
Curiosity or Mars Science Laboratory (MSL) from NASA
or the ESA ExoMars, intended to be launched in 2018. The
operation of these robots is a complex task, due to the hard
environment conditions, the communications problems (i.e.

delays between the ground operation team and the commu-
nication windows) and the hard constraints required to the
survival of the mission. So, these constraints will require of
increasingly capable systems to achieve the goals they are
designed for.

In this paper we present a small comparison between
the deliberative capabilities of two autonomous architec-
tures designed to automate the operation of a rover-like
robot: on the one hand the MOBAR (Model-Based Architec-
ture) (Muñoz, R-Moreno, and Martı́nez 2011) and, on the
other hand, the GOAC (Goal-Oriented Autonomous Con-
troller) system (Ceballos et al. 2011). These architectures
employ two distinct approaches to the planning problem as
R-Moreno et al. (2008) differentiate:

• Action-oriented: it uses predicates logic and the world is
seen as an entity that can be in different states. The do-
main specifies actions that can be performed to change
the state of the world and only applicable when some par-
ticular states are set. The objective is to find a sequence
of actions that, from an initial world state, through apply-
ing successive actions, the system achieves a desired goal
state. This approach is followed by the MOBAR architec-
ture deliberative layer.

• Timelines-based: this one is more recent than the action-
oriented and it is based on the first order logic. It rep-
resents the world in terms of functions that describes the
behavior of the system from a time perspective: a timeline
is a logical structure used to represent and reason about
the evolution of an attribute over a period of time. Rules
must be defined to specify how the timelines can change,
in order to obtain a sequence of decisions from the plan-
ner that bring the set of temporal functions to a final state
in which a set of constraints are satisfied. The GOAC de-
liberator uses this approach.

The paper is structured as follows: first, there is a brief
description of these two architectures, focused on the delib-
erative entity. Next section presents an example problem and
the deliberative models that each control architecture uses to
solve it. Then we present a brief analysis about the capabil-
ities and lacks of each model. Finally some conclusions are
outlined.

45

Model-Based Architecture
The MOBAR architecture initially developed for the Ptinto
robot ?? corresponds to a three layers (3T) system (Gat
1998), in which the top tier will be in charge of the delib-
erative process, long-term memory and learning process as
a function of events that occur in the environment. The mid-
dle level or execution system also has a short-term memory,
as well as a series of rules that trigger the reactive behavior
implemented, in order to response in a short time to even-
tual situations that may occur in both, the environment and
the internal state of the robot. Finally, the low level or func-
tional level, is responsible of providing the functionality of
the robot, and relay the information collected by the sensors.

Each layer is based on a model with different levels of
abstraction. A model defines the properties, capabilities and
constraints of the robot at each layer. Starting from the func-
tional layer, which represents the hardware abstraction level,
that is, the definition of the internal state of the robot plus
the abilities that it has, the upper layers have fewer detailed
models, and thus, less coupled with the underlying hard-
ware. In this way, the executor is in charge of taking high
level actions coming from the deliberator and decomposing
them into lower level commands supported by the functional
layer. So, we want that the executor model has little relation-
ship with the hardware, and the high level model only knows
the hardware in terms of goal oriented actions and high level
abstraction of constraints.

To implement the MOBAR architecture we have taken ad-
vantage of different general purpose technologies: for the
deliberative layer we have used the PDDL language (Mc-
Dermott 1998) and a PDDL-based planner. We have chosen
the Universal Executive and its language, PLEXIL (PLan
EXecution Interchange Language) (Verma et al. 2006) to
model and control the executor, and, finally the GenoM2
(Generator Of Modules) framework (Mallet, Fleury, and
Bruyninckx 2002) for the definition and implementation of
the functional layer. The first two layers, deliberator and ex-
ecutor, use models represented by a language that will be
interpreted by a program, and thus, are easily interchange-
able in order to adapt them to multiple robots. Instead, the
functional layer is strongly dependent on the hardware.

The architecture follows a sense-(re)plan-act cycle (see
fig. 1): at first time, the system takes the initial state of the
world (state from the functional layer and the PDDL prob-
lem), the goals to achieve and it obtains a feasible plan. This
plan is static: the executor takes each action, decompose it
in a set of commands and send it to the functional layer.
With the results of these commands execution, the executor
checks if there is an unexpected situation, and, if it cannot
handle that situation, it updates the information of the world,
that is goals currently achieved and the actual state of the
robot, and then the planner must obtain a new plan.

Focusing on the deliberative capabilities, PDDL-based
planners are systems that use two input files to represent
their knowledge base. One of the files contains a descrip-
tion of the actions that represent “what can/cannot be done”
and the other file includes the three elements which define
the problem: the known objects of the world, the initial state
and the goals we want to achieve. With this information, the

Figure 1: Execution cycle in MOBAR.

planner searches a sequence of actions that can reach the
goals from the initial state. The optimal solution of the prob-
lem is a conjunction of two factors: the metric used and the
resolution algorithm.

Currently we are using the SGplan6 (Hsu and Wah 2008)
PDDL-planner that accepts PDDL version 2.1 (Fox and
Long 2003) and common features of PDDL 3 (Gerevini and
Long 2005). With PDDL 2.1 we can determinate how long
each action will take and, using fluents, we can establish a
basic resource model for the energy consumption of the ac-
tions, and consistently decide whether a plan is feasible or
not in terms of the total amount of energy consumed. Also,
using version 3, we can employ goals as preferences, so if
there is an unreachable goal, we can obtain a plan that ig-
nores it.

Goal-Oriented Autonomous Controller
The GOAC system is the result of a multi-institutional1 ef-
fort within the on-going Autonomous Controller Research
and Development activity funded by ESA-ESTEC. GOAC is
an architecture that integrates four mature technologies: the
functional layer is implemented with the couple GenoM3
(Mallet et al. 2010) plus BIP (Basu, Bozga, and Sifakis
2006) to ensure generation of reliable, modular and veri-
fiable functional components for the hardware abstraction
layer; T-REX (McGann et al. 2007; Rajan et al. 2009) is the
responsible of the planning and execution dispatching using
a timeline-based representation and an interleaving schema
(which is similar to IDEA (Aschwanden et al. 2006)); and,
finally, the deliberation process resides in the APSI planner
(Fratini et al. 2011), a timeline-based, domain independent
planner. The deliberative layer of GOAC is composed by a
set of one or more deliberative reactors, that is, the couple
of a T-REX reactor and an APSI planner. This schema could
be seen in fig. 2.

Each deliberative reactor follows a sense-plan-act
paradigm for goal oriented autonomy. This set is not fixed,
for each robot or mission it could have a different design by
defining various reactors and their interactions, giving a scal-

1GOAC involves these partners: LAAS-CNRS (France), VER-
IMAG (France), MBARI (United States of America), CNR-ISTC
(Italy) and GMV (Spain).

46

Figure 2: A possible instance of the GOAC architecture.

able architecture. That allows a divide and conquer approach
in which the scope of each deliberative reactor (those ones
in charge of the planning process using the APSI planner)
could be refined by other more specific reactors. To do this,
reactors can interact with other sending goals and receiving
observations.

In order to ensure the correct execution of the required
commands to achieve the goals, it is possible to have one
or more reactors in charge of the command dispatching be-
tween the deliberative reactors and the functional layer. Con-
sidering the fig. 2, there is only one of this kind of reac-
tor, called “command dispatcher”. This reactor implements
a procedural executive that not only gives correctness in the
command execution, it also gives a better level of abstraction
and an interface between the functional layer and the higher
level reactors. In fact, this reactor is responsible of gathering
observation from the functional layer and to provide it in a
convenient way to the deliberative reactors.

The deliberative process resides in the APSI planner. For
each deliberative reactor there is one instance of an APSI
planner, and every one has its own look-ahead window over
which to deliberate. APSI uses a timelines representation,
which encapsulates an evolution of a particular state variable
over time. To define the world it implements the Domain
Definition Language (DDL) language (Cesta and Oddi 1996;
Fratini, Pecora, and Cesta 2008) that enables to specify the
allowed state transitions as well as the causal and tempo-
ral relationships between state variables, so, the problem is
modelled by identifying a set of relevant features whose tem-
poral evolution needs to be controlled to obtain a desired
behavior. Therefore, the result of a deliberative process is a
sequence of state transitions for each timeline that achieves
a specified condition as a planning goal.

Each deliberative reactor reasons about a specific part of
the whole domain, being one the high level reactor, which
has the more abstract states, and whenever we go down in
the reactor “hierarchy”, the reactors are more specific. In
this way, the high level reactor puts goals in the timelines of
other more specific reactors. Like that, a high level goal state
could be decomposed into lower level goals states that must
be reached by their respective timelines before the comple-

Figure 3: Problem representation.

tion of the goal state in the high level. To do this, the reactors
have two types of timelines: internal and external. The first
ones are the timelines that the deliberative reactor can con-
trol directly, the reactor can change its value, but usually the
value is dependent on one or more external timelines. These
are not controllable from the reactor, but it can produce goal
states in that timelines required to reach the goal state of its
internal timelines.

Rover example problem
To analyse the deliberative capabilities for the two previous
architectures, we define a basic scenario for an exploration
rover. The scenario, represented in fig. 3, consists of a rover
(such as the Dala2 robot) that must achieve the acquisition
of two pictures in different locations (and possibly with dif-
ferent pointing of the pan-tilt unit), and then, return to the
start point. Also, during the traverse it could exist visibility
windows in which the rover can transmit the data acquired
to a station. The objective is to send all the possible pictures
taken during these windows.

To safely operate the rover, there is a little set of con-
straints that must be included in the models:

• The rover is able to move between two points in space
given their coordinates (x, y).

• The rover has two navigation modes: one for flat terrain
(using a sick laser range finder) and other for rough terrain
(using the stereo-vision cameras). The navigation mode is
defined by this property of the terrain, which is contin-
uously updated by a functional module. A change in the
terrain triggers a signal that must be trapped by the upper
layers to ensure the use of the correct navigation mode.

• The pan-tilt unit can move to reach a desired point, given
by their angles (α, β).

• During the acquisition of a picture, the pant-tilt unit must
be pointing at the desired site and the rover must stay still.

• When the rover is moving, the pan-tilt unit must be point-
ing to the front, that is, (0, 0).

• It is possible to transmit pictures while the rover is
stopped and exist a visibility window.

2http://homepages.laas.fr/matthieu/robots/dala.shtml

47

(:durative-action MoveTo
:parameters (?r - rover ?p1 ?p2 - loc ?n - navmode)
:duration (= ?duration (/ (distance_to_move ?p1 ?p2) (speed ?r ?n)))
:condition (and (over all (has_locomotion ?r))

(over all (navigation_mode ?r ?n))
(over all (platine_pos NavCam plat0_0))
(at start (position ?r ?p1))
(at start (>= (energy ?r)(*(power_per_m ?r ?n)(distance_to_move ?p1 ?p2)))))

:effect (and (at start (not (position ?r ?p1)))
(at end (position ?r ?p2))
(at end (decrease (energy ?r)(*(power_per_m ?r ?n)(distance_to_move ?p1 ?p2)))))

)
(:durative-action MovePlatine
:parameters (?r - rover ?c - cam ?p1 ?p2 - platpos)
:duration (= ?duration (time_move_platine ?p1 ?p2))
:condition (and (at start (platine_pos ?c ?p1))

(at start (>= (energy ?r)(*(platine_energy)(time_move_platine ?p1 ?p2)))))
:effect (and (at start (not (platine_pos ?c ?p1)))

(at end (platine_pos ?c ?p2))
(at end (decrease (energy ?r)(*(platine_energy)(time_move_platine ?p1 ?p2)))))

)
(:durative-action TakePicture
:parameters (?r - rover ?p - loc ?c - cam ?a - platpos ?m - mode)
:duration (= ?duration (time_to_picture ?c ?m))
:condition (and (over all (camera_mode ?r ?c ?m))

(over all (position ?r ?p))
(over all (platine_pos ?c ?a))
(at start (>= (energy ?r) (camera_energy ?c ?m))))

:effect (and (at end (picture ?p ?m ?a))
(at end (decrease (energy ?r) (camera_energy ?c ?m))))

)

Figure 4: PDDL actions definition for the rover example.

We are interested in reviewing how both models designed
for this scenario, one modelled in PDDL and the other in
DDL, solve the problem. Taking into consideration real con-
straints in the scenario, such as partially known (and po-
tentially dynamical) environment, energy requirements and
possibility of failures; make that problem a good case of
study for a basic comparison between models. Next sections
briefly explain the high-level models for the MOBAR and the
GOAC architectures respectively.

PDDL model
The PDDL model here presented is an adaptation of the em-
ployed in the MOBAR architecture (Muñoz, R-Moreno, and
Martı́nez 2011). The problem and domain files contain the
knowledge of the rover and the actions that it can perform.
The domain, shown in fig. 4, specifies the actions that the
robot perform to change both, its internal state and the en-
vironment. The actions representation include the duration
and the energy consumption. The energy is treated as a flu-
ent, but it is not the best solution; the energy model can be
more effective if it were treated as a resource. The system
only maintains the value of the fluent, modifying it during
the planning, but the planner does not reason about how to
deal with it in a efficient manner. For each action, there is
a precondition that specifies the amount of energy required
to performing the action, and therefore, there is an effect to
decrease the energy level consequently.

The movement action (MoveTo) is based on the rover
navigation mode and the travel distance. The time to travel
is dependent on the speed of the rover in the current naviga-
tion mode. One relevant condition prior to move is to check
that the pan-tilt unit of the navigation cameras is pointing to
the front.

The other actions are related to the picture acquisition:
MovePlatine and TakePicture. First one moves the
pan-tilt unit associated to a specific camera from a start po-
sition to a desired position. The duration of this action de-
pends on the movement, and the energy required is a fixed
value multiply by the required time. To take a picture, we
need a camera with a determined mode, orientation of its
pan-tilt unit and the rover stopped in the desired location.
Time spent and energy consumption of the action is a func-
tion of the camera and mode employed.

For the previous domain we need to define the present
objects of the world, the initial state (including rover energy
consumption and time spent to move between locations) and
the goals to achieve. The problem presented in fig. 5 includes
all the necessary data to solve the rover example problem ex-
plained previously. First, we need to define the possible ob-
jects, that is, the relevant locations, cameras and modes, pan-
tilt positions and, finally, rover and its navigation modes.

For the initial state, the connections between locations
must be set, defined by the distance that separates both
points. If we want to define different times for each navi-

48

gation mode, we need to duplicate that info including the
navigation mode involved as a parameter. Next there is the
rover data. It contains the initial position, energy, navigation
mode and the energy consumption of each subsystem. As
specified in the domain model, the energy required for the
navigation and camera subsystems depend on the current op-
eration mode. Also, there are the functions that specify the
duration of the movement for the pan-tilt unit.

The last element of the problem is the goal(s) definition. It
defines the tasks that the rover must perform, such as, go to a
desired location, or take an image from a location and with a
particular orientation and mode. If the planner supports plan
preferences, one or more targets cannot be satisfied by the
planner, assuming a penalization for each unsatisfied goal.
The goals defined for the rover example are: take two pic-
tures and finish the plan in the initial location. The metric
defined specifies the goodness of the solution in terms of the
time spent and the unsatisfied goals.

DDL model
The domain and problem described here correspond to a
case study scenario for the Dala robot employed in a par-
ticular instance of the GOAC architecture. For this example
there are two deliberative reactors: one in charge of the mis-
sion control (the one that accepts the goals from the user),
and the other composed of different timelines to represent
the rover subsystems (navigation, camera, platine and ter-
rain to define the navigation mode) at which the other reactor
dumps lower level objective states necessary to reach high
level goals. The domain model represents the physical inter-
action between the different state variables, and the problem
defines the states at the start time, and a set of desired states
that must be accomplished at the end of the execution.

A small fragment of the domain is shown in fig. 6. There
are two transitions defined, one for the high level delibera-
tor and the other related to the timeline that represents the
evolution of the rover position. Both specify the relationship
between the current state of the timeline and the require-
ments to switch to another state. In the first case, there is the
definition for a picture acquisition controlled by the Mission-
Timeline timeline. As required by the problem defined previ-
ously, the rover must be in a particular location, determined
by its coordinate pair, (?x1, ?y1) and the pan-tilt unit
must be pointing with a desired pair of angles, (?pan1,
?tilt1) using the variables expressed in fig. 6. The pic-
ture acquired is stored using the ?file id1 identifier. To
express the relationship and the changes triggered when the
MissionTimeline starts the execution of this transition, there
is the definition of the state required in the other timelines:
cd1 implies that the timeline in charge of the camera must
change to acquire a picture in the desired position and point-
ing; and cd5 requires from the communication subsystem
to transmit that picture to the station. When these two sub-
goals are achieved by their respective timelines, the high
level timeline, MissionTimeline, go back to the idle state,
as expressed in cd2. Obviously, prior to transmit the pic-
ture, it must be taken; this relationship is declared using cd1
BEFORE [0,+INF] cd5: when cd1 is completed, in an
interval that starts immediately after the conclusion of cd1

(define (problem RoverDemoProb)
(:domain RoverDemo)
(:objects

C0_0 C6_0 C5_-5 - loc
NavCam - cam lowRes - mode
plat0_0 plat15_30 - platpos
laser stereo - navmode
dala - rover

)
(:init
;LOCATIONS INTERCONNECTION
(= (distance_to_move C0_0 C6_0) 10)
(= (distance_to_move C6_0 C0_0) 10)
(= (distance_to_move C0_0 C5_-5) 8)
(= (distance_to_move C5_-5 C0_0) 8)
(= (distance_to_move C5_-5 C6_0) 6.4)
(= (distance_to_move C6_0 C5_-5) 6.4)
;ROVER DATA AND CONFIG
(position dala C0_0)
(= (energy dala) 1.44)
(has_locomotion dala)
(navigation_mode dala laser)
(= (speed dala laser) 0.2)
(= (speed dala stereo) 0.1)
(= (power_per_m dala laser) 0.002)
(= (power_per_m dala stereo) 0.034)
(camera_mode dala NavCam lowRes)
(= (camera_energy NavCam lowRes) 0.008)
(= (time_to_picture NavCam lowRes) 15)
(platine_pos NavCam plat0_0)
(= (platine_energy) 0.003)
(= (time_move_plat plat0_0 plat15_30) 10)
(= (time_move_plat plat15_30 plat0_0) 7)

)
(:goal (and
(preference PIC1

(picture C6_0 lowRes plat15_30))
(preference PIC2

(picture C5_-5 lowRes plat15_30))
(preference POSF (position dala C0_0)))

)
(:metric minimize (+
(*(is-violated PIC1) 100)
(*(is-violated PIC2) 100)
(*(is-violated POSF) 900)
(total-time)))

)

Figure 5: PDDL problem for the rover example.

and infinity, cd5 can occur. The TakingPicture state in
the camera timeline implies also a decomposition of states
to other timelines prior to the picture acquisition: first, the
rover must be at the desired location, then the pan-tilt unit
needs to be pointed to a specific angle and, finally, the pic-
ture can be taken.

The other definition presented here is the one that controls
the behavior of the rover movement. In this case, is related
to the movement over flat surfaces using the laser naviga-
tion mode. So, there is a check condition (cd3) to ensure
that the terrain is flat prior to move using the laser naviga-
tion. Also, as specified in the domain definition, the pan-tilt

49

SYNCHRONIZE MissionTimeline.mission_timeline {
VALUE TakePicture(?file_id1, ?x1, ?y1, ?pan1, ?tilt1) {

cd1 Camera.camera.TakingPicture(?file_id2, ?x2, ?y2, ?pan2, ?tilt2);
cd5 Communication.communication.Communicating(?file_id3);
cd2 MissionTimeline.mission_timeline.Idle();
CONTAINS [0,+INF] [0,+INF] cd1;
CONTAINS [0,+INF] [2,2] cd5;
MEETS cd2;
cd1 BEFORE [0, +INF] cd5;
?x1 = ?x2;
?y1 = ?y2;
?pan1 = ?pan2;
?tilt1 = ?tilt2;
?file_id1 = ?file_id2;
?file_id1 = ?file_id3;

} }
SYNCHRONIZE RobotBase.robot_base {
VALUE GoingToLaser(?x1, ?y1) {

cd2 Platine.platine.PointingAt(?pan1 = 0, ?tilt1 = 0);
cd3 Terrain.terrain.FlatTerrain();
DURING [0, +INF] [0, +INF] cd2;
DURING [0, +INF] [0, +INF] cd3;

} }

Figure 6: Fragment of the DDL domain definition.

PROBLEM RoverDemoProb (DOMAIN RoverDemo) {
mtl0 <fact> MissionTimeline.mission_timeline.Idle() AT [0,0] [1,+INF][1,+INF];
comvw1 <fact> Communication.communication_windows.Visible() AT [70,70][90,90][20,20];
comvw2 <fact> Communication.communication_windows.Visible() AT [150,150][180,180][30,30];
pos0 <fact> RobotBase.robot_base.At(?x1=0, ?y1=0) AT [0,0] [1,+INF] [1,+INF];
or0 <fact> Platine.platine.PointingAt(?pan1=0, ?tilt1=0) AT [0,0][1,+INF][1,+INF];
cam0 <fact> Camera.camera.CamIdle() AT [0,0][1,+INF][1,+INF];
com0 <fact> Communication.communication.CommIdle() AT [0,0][1,+INF][1,+INF];
tp1 <goal> MissionTimeline.mission_timeline.TakePicture

(?gfile_id2=1, ?gx2=6, ?gy2=0, ?gpan2=15, ?gtilt2=30) AT [10,10][80,90][70,80];
tp2 <goal> MissionTimeline.mission_timeline.TakePicture

(?gfile_id1=2, ?gx1=5, ?gy1=-5, ?gpan1=15, ?gtilt1=30) AT [80,95][160,185][80,90];
gp <goal> MissionTimeline.mission_timeline.At(?gx3=0, ?gy3=0) AT[160,190][161,+INF][1,+INF];
}

Figure 7: Problem definition for the rover example coded in PDL.

unit must be pointing at (0, 0) in order to proceed to move.
This is expressed in the condition cd3, and if the observa-
tion from the timeline that manages the pan-tilt unit shows
that the orientation is not the required one, a transition is
injected in that timeline prior to the navigation transition.
These two conditions must be satisfied during all the time
that the GoingToLaser state is active.

The problem definition expressed in the Problem Defini-
tion Language (PDL) for the example case we are dealing
with is shown3 in fig. 7. This, as well as the PDDL model, es-
tablishes the initial state of the world and the goals. To define

3Although we present the initial facts of all timelines, these val-
ues are taken from the state of the functional modules in the GOAC
system, they are presented here only to provide an initial state of
the system. To work with GOAC there is only required the goal
specification and the evolution of uncontrollable timelines, that is,
the ones that the system cannot modify, such as the timeline which
specifies the visibility windows.

the initial state is required to set the state of all the timelines
employed. For the high level deliberator there are the Mis-
sionTimeline and Communication timelines. First one starts
in an idle state, and the other sets the temporal intervals in
which there is a communication window available to trans-
mit the pictures, for the example there are two windows,
comvw1 and comvw2. The rest of the time is assumed that
there is not visibility with the station. For the other rover
subsystems there are four timelines that control the rover
position, the camera, pan-tilt unit and the communication
module. Camera and communication timelines start in idle
state, position of the rover is set to the start location (0, 0)
and the pan-tilt unit is oriented to the front. For each initial
fact (and goal) there are three time intervals: start, end and
duration. Every interval is defined by the minimum and max-
imum time, that is, the transition must start after the mini-
mum time and before the maximum. This applies to the start
and end intervals. The duration specifies the minimal and

50

maximal time that the transition can take.
The goal state is declared as a set of states that must be

satisfied in a defined temporal interval and, if necessary, in
a particular order. Here are defined three objective states,
tp1 and tp2 and gp. First two define the state of acquiring
a picture using the same angles for the pan-tilt unit, but in
different locations. The constraints defined are that the pic-
ture 1, tp1, must be taken and transmitted before the second
one, tp2, and the goal position, gp, must be reached after
both pictures are taken. The precedence order is provided by
the start interval of each goal.

Brief analysis of deliberative models
We are not interested in discussing the optimality of the so-
lution or the time spent to get it, because both architectures
use different approaches, and the unique way to obtain a real
comparison is to make a hard test-bench and to monitor all
the relevant data: energy consumption, required time, etc.
Particularly, we are going to push the focus on the flexibil-
ity of the deliberation process, which not only resides in the
planning/scheduling algorithm, due to the restrictions added
by the language employed. In this way, a flexible deliberator
must manage system failures and unpredictable elements in
the environment such as obstacles in the path or opportunis-
tic science situations. Also, the possibility of including goals
during the plan execution is a desirable competence on those
systems.

Using the previous models for the action-oriented plan-
ning using PDDL and SGplan planner; and the timelines ap-
proach with DDL and T-REX/APSI deliberative reactors, we
have obtained the plans presented in figures 8 and 9 respec-
tively.

First, we need to analyze how both planners obtain a so-
lution: SGplan (and PDDL-based planners in general) takes
a domain and a problem and performs a planning process
that achieves all the goals, and then, it returns the sequence
of actions to reach the goal state. In the opposite side, APSI
timeline-based planner deliberates over a temporal horizon,
that is, it gives a partial plan that grows during its execution.
Reasoning about that, allows us to see what happens if there
is an unexpected situation, for example, if the rover detects
a change in the terrain while moving in laser mode and thus,
the navigation mode must change to stereo navigation mode
to continue:

• The plan obtained with the PDDL model is fixed, so, if the
movement action cannot continue in the nominal way, the
executor system must manage the situation. In that case,
the only way is updating the data of the problem and re-
questing the planner a new plan. This implies some mod-
ifications: first, the necessity of changing the rover data,
that is, the current position and energy. But the problem
defines only the relevant locations for the initial prob-
lem, so the new location needs to be added to the ob-
jects and the connections between locations, as well as
the destination of the unsuccessful move. Finally, if there
are goals already reached, they must be erased from the
problem. But, what happens with the navigation mode?
We can change the initial state of the navigation mode,

but then, the rest of the navigation is performed using the
stereo mode, so, when the functional layer triggers an-
other change in the terrain, this process must be repeated.

• The GOAC deliberative reactors contains a set of time-
lines that control the state of the different subsystems. The
current location is managed by a specific timeline (Robot-
Base in fig. 9) that checks another timeline which con-
tains the state of the terrain (Terrain in the figure). This
state could be flat or rough. When the rover detects the ter-
rain change, there is an observation that modifies the state
of that timeline to rough. Considering that RobotBase is
GoingToLaser, as previously explain, this transition
required that the Terrain is permanently in flat state. So,
the transition currently executing in the RobotBase time-
line cannot continue. But there is another transition de-
fined in that timeline, GoingToStereo, that employs
the stereo navigation mode. RobotBase changes its state
to that one, and continues moving to the desired location.
In that case, there is no problem to change between laser
and stereo navigation modes, the planner can change it
dynamically based on the observation of the state of the
timelines, which are continuously updated. Also, if the
change in the navigation mode does not exceed the time
to reach the destination, there is no necessity to perform
other changes in high level timelines.

We found that the plan obtained for the MOBAR archi-
tecture is a sequence of actions with a fixed duration. What
happens if an action takes more or less time to execute? Us-
ing a PDDL model, we cannot deal with a flexible model
of time, so the only possibility is to use the worst time case
for the actions and to delegate the control of the time to the
executor. As an example of this problem, we can mention
the visibility windows to transmit the pictures. In PDDL we
cannot define a specific time in which the rover can transmit
the data acquired because the language does not support this
type of constraints. It is possible to use a fluent to control the
time but it is not practical: it requires to include more com-
plexity to all actions, expressing the evolution of the time
manually (the planner does not manage it as it does with
the duration variable) and to define the communication
windows in the problem in terms of start time and end time.
However, our experience with this solution do not give good
results, if the communication intervals are smaller, the plan-
ner does not provide a solution, although it really exits. In
contrast, the timelines have a flexible time behavior, when a
state transition finishes another transition waiting for the last
one can begin. In the same way, we can define the interval
in which there are visibility windows, so the transmission of
the pictures can be performed in the correct time.

For the case of the goal injection during the execution, a
typical situation for exploration missions is to exploit unex-
pected science targets. We found the same problem as when
the rover gets stuck for the PDDL model: we need to modify
the initial state and the goals of the problem and perform a
replanning to obtain a new plan that includes the new goal.
For the timelines approach, a new goal implies the inclusion
of the new state and a dynamically replanning process, prop-
agating new subgoals to the different timelines to reach the

51

0.001: (MOVE_TO C0_0 C6_0 LASER) [50.0000]
50.002: (MOVEPLATINE NAVCAM PLAT0_0 PLAT15_30) [10.0000]
60.003: (TAKEPICTURE C6_0 NAVCAM PLAT15_30 LOWRES) [15.0000]
75.004: (MOVEPLATINE NAVCAM PLAT15_30 PLAT0_0) [7.0000]
82.005: (MOVE_TO C6_0 C5_-5 LASER) [32.0000]
114.006: (MOVEPLATINE NAVCAM PLAT0_0 PLAT15_30) [10.0000]
124.007: (TAKEPICTURE C5_-5 NAVCAM PLAT15_30 LOWRES) [15.0000]
139.008: (MOVEPLATINE NAVCAM PLAT15_30 PLAT0_0) [7.0000]
146.009: (MOVE_TO C5_-5 C0_0 LASER) [36.0000]

Figure 8: Solution obtained by SGplan for the rover PDDL model.

Figure 9: Part of the solution obtained by a particular instance of GOAC using the DDL model previously presented4.

new objective.
Another difference that appears is the semantic of these

approaches: in the case of the PDDL language we need to
define all the objects in the environment, what makes it hard
to work with continuous values, such as the position of the
rover or the orientation angles for the pan-tilt unit. However,
DDL is designed to work in continuous domains, defining
the interval in which the coordinates or the pan-tilt unit can
work, so there is no necessity of defining objects, only set the
initial value for the relevant variables. This is more natural
than the definition of objects in PDDL, in which we cannot
use numerical values.

Finally, an important question in these systems are the re-
sources. For the unitary reusable resources such as a cam-
era or a sample collection tool, both systems could man-
age the situation in a good manner. In PDDL is easy to de-
fine a predicate that indicates when a resource is busy and
for the timelines approach, the timeline in charge of the re-
source expresses when the resource is working or idle, be-
ing visible to other timelines that could require it. But for
cumulative resources the problem is a more complex ques-
tion and is not solved yet. Focusing on the rover energy,
for the DDL models there is no presence of it, but some
work is being carried out in this topic (Diaz et al. 2011;
2012). Meanwhile, the PDDL allows us to define the en-
ergy as a fluent, which is possible to consume or renew it
within the actions. Model it is not easy and, as is the case
of the time, the values are fixed and only allows to repre-
sent maximum energy consumption allowed for each action.
Also it is possible to maintain the instantaneous power be-
low a threshold using another fluent (here we have not done
it). With the PDDL model employed for the battery we can
ensure that the plan obtained does not spend more energy
than the available.

4The image is acquired using the Vitre reactor included in T-
REX. This reactor shows the timelines evolution for the delibera-
tive reactors.

Conclusions
This paper has presented the deliberator models for a rover
case study for two architectures focused on autonomy:
MOBAR and the GOAC architecture, result of the effort of
multiple institutions under the ESA supervision.

On the one hand, we have a PDDL-based planner and its
corresponding model. The propositional logic is easy to un-
derstand and allows us to model basic domains and problems
that are action-oriented. The inherent problems are both,
the fixed treatment of the time and the static solution pro-
vided by the planner. On the other hand, we have delibera-
tors that implement the first order logic in a timelines based
approach, which can use the DDL language to model the
world. Models are quite complex, but allows us to work with
time and continuous variables, giving us more realistic rep-
resentations of the physics interactions that occur in the en-
vironment. Also, dealing with time allows the planning algo-
rithm to deliberate over a dynamic temporal horizon, being
more robust to unexpected changes in the nominal condi-
tions of the environment.

So, we can conclude that the deliberative layer of the
GOAC system (the couple T-REX/APSI timeline-based
planner) give us a better way to model the complex behav-
ior of a robot and its interactions with the environment than
the MOBAR deliberator (SGplan a PDDL-based and action-
oriented planner) in terms of flexibility of the deliberation
process and the semantic employed by their respective mod-
eling languages.

Acknowledgments. Pablo Muñoz is supported by the Eu-
ropean Space Agency (ESA) under the Networking and Part-
nering Initiative (NPI) Cooperative systems for autonomous
exploration missions. This work was partially supported by
the Spanish CDTI project COLSUVH. Authors want to thank
Dr. Andrea Orlandini and Dr. Amedeo Cesta for their sup-
port with the GOAC architecture.

52

References
Aschwanden, P.; Baskaran, V.; Bernardini, S.; Fry, C.; R-
Moreno, M. D.; Muscettola, N.; Plaunt, C.; Rijsman, D.; and
Tompkins, P. 2006. Model-unified planning and execution
for distributed autonomous system control. In AAAI 2006
Fall Symposia.
Basu, A.; Bozga, M.; and Sifakis, J. 2006. Modeling htero-
geneous real-time components in BIP. In 4th IEEE Int. Con-
ference on Software Engineering and Formal Methods.
Ceballos, A.; Bensalem, S.; Cesta, A.; Silva, L. D.; Fratini,
S.; Ingrand, F.; Ocón, J.; Orlandini, A.; Rajan, F. P. K.; Ras-
coni, R.; and Winnendael, M. V. 2011. A goal-oriented
autonomous controller for space exploration. In ASTRA
2011 - 11th Symposium on Advanced Space Technologies
in Robotics and Automation.
Cesta, A., and Oddi, A. 1996. DDL.1: A Formal Descrip-
tion of a Constraint Representation Language for Physical
Domains. Amsterdam: IOS Press.
Diaz, D.; R-Moreno, M. D.; Cesta, A.; Oddi, A.; and Ras-
coni, R. 2011. Toward a csp-based approach for energy
management in rovers. In 4th IEEE International Confer-
ence on Space Mission Challenges for information technol-
ogy (SMC-IT 2011).
Diaz, D.; R-Moreno, M. D.; Cesta, A.; Oddi, A.; and Ras-
coni, R. 2012. An integrated constraint-based, power aware
control system for autonomous rover mission operations. In
i-SAIRAS 12 - International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. AI Re-
search 20:61–124.
Fratini, S.; Cesta, A.; Rasconi, R.; and Benedictis, R. D.
2011. APSI-based deliberation in goal oriented autonomous
controllers. In ASTRA 2011 - 11th Symposium on Advanced
Space Technologies in Robotics and Automation.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences 18(2):231–271.
Gat, E. 1998. Three-layer architectures. In Kortenkamp,
D.; Bonasso, R.; and Murphy, R., eds., Mobile Robots and
Artificial Intelligence, 195–210. AAAI Press.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. In The Language of the Fifth Interna-
tional Planning Competition.
Hsu, C., and Wah, B. 2008. The SGPlan planning system in
IPC-6. In Sixth International Planning Competition.
Mallet, A.; Pasteur, C.; Herrb, M.; Lemaignan, S.; and In-
grand, F. 2010. GenoM3: Building middleware-independent
robotic components. In 2010 IEEE International Confer-
ence on Robotics and Automation.
Mallet, A.; Fleury, S.; and Bruyninckx, H. 2002. A specifi-
cation of generic robotics software components: future evo-
lutions of GenoM in the orocos context. In International
Conference on Intelligent Robotics and Systems.
McDermott, D. 1998. The PDDL planning domain defini-
tion language. The AIPS-98 Planning Competition Comitee.

McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2007. T-REX: A model-based architecture
for auv control. In 3rd Workshop on Planning and Plan
Execution for Real-World Systems (ICAPS07).
Muñoz, P.; R-Moreno, M. D.; and Martı́nez, A. 2011. A
first approach for the autonomy of the exomars rover using
a 3-tier architecture. In ASTRA 2011 - 11th Symposium on
Advanced Space Technologies in Robotics and Automation.
R-Moreno, M. D.; Cesta, A.; and Kurien, J. 2008. Inno-
vative AI technologies for future esa missions. In ASTRA
2008 - 10th Symposium on Advanced Space Technologies in
Robotics and Automation.
Rajan, K.; Py, F.; McGann, C.; Ryan, J.; Reilly, T. O.;
Maughan, T.; and Roman, B. 2009. Onboard adaptive
control of AUVs using automated planning and execution.
In International Symposium on Unmanned Untethered Sub-
mersible Technology.
Verma, V.; Jnsson, A.; Pasareanu, C.; and Iatauro, M. 2006.
Universal Executive and PLEXIL: Engine and language for
robust spacecraft control and operations. In American Insti-
tute of Aeronautics and Astronautics Space Conference.

53

Delegating Geometric Reasoning to the Task Planner

Fabien Lagriffoul
AASS Cognitive Robotic Systems Lab

Örebro University, S-70182 Örebro, Sweden
fabien.lagriffoul@aass.oru.se

Abstract

Different architectures for combining task and motion plan-
ning (CTAMP) have been proposed. They differ in the way
the symbolic and geometric layers interact with each other,
but all of them use the symbolic layer to reason about causal
and/or temporal relationship between actions, while geomet-
ric reasoning is entirely delegated to the geometric layer. We
argue that the domain of humanoid robot manipulation has
specific features which allow to delegate a part of the geo-
metric reasoning to the task planer, by enriching the planning
domain with coarse geometric representations. With this ap-
proach, the task planner generates alternative sequences of
actions which lead to the same geometric result. A heuristic
is required to choose the right sequence of actions, because
some sequences are much more costly than others in terms
of motion planning. We report a failed attempt in designing
such a heuristic, and propose an alternative solution based
on local search.

Introduction
Specifying high-level goals for robotic systems has long
been a goal in robotic research. The first attempts in this
direction were based on hierarchical architectures, with typ-
ically three levels of abstraction: a deliberative layer on top,
a path planning layer, and a control layer for execution. As
the ability of robotic platforms to manipulate the environ-
ment increased, these architectures became obsolete, be-
cause the deliberative layer could not reason about the con-
sequences of abstract actions in the real world. As a result,
a plan which is logically sound may fail when the robot exe-
cutes it. To address this problem, a new paradigm emerged,
in which task and motion planning are not decoupled, but
combined. Recently, several approaches for CTAMP were
proposed. In SamplSGD (Plaku and Hager 2010), the plan-
ner mainly works on a path planning problem, but a sym-
bolic interpretation of the domain is used to structure the
path planning problem and determine where to direct the
search. Similarly in aSyMov (Cambon, Alami, and Gravot
2009), the planner alternates between symbolic search and
geometric search according to cost functions which deter-
mine if it is worth investing time in motion planning or ex-
ploring alternative symbolic actions. In another type of ap-
proaches, the task planner is steering the search, while dedi-
cated geometric reasoners are called to geometrically evalu-
ate the preconditions and effects of symbolic actions. These
approaches include (Guitton and Farges 2009), SAHTN
(Wolfe, Marthi, and Russell 2010), semantic attachments

Figure 1: The blocks-world domain implemented on a
“real” robot (a simulation of Justin ((Ott and al. 2006) was
used.

(Dornhege et al. 2009), and (Kaelbling and Lozano-Perez
2010).

However, the work cited above is based on so called mo-
bile manipulation scenarios, i.e. a mobile robot (often a
forklift robot) performs manipulation tasks in a static en-
vironment (except Asymov, which can deal with several
robots). Working with more complex platforms, like hu-
manoid robots (see Fig. 1) changes the nature of the prob-
lem. Essentially, geometric reasoning becomes non-trivial,
which makes its integration in the symbolic/geometric loop
problematic. For a mobile robot for instance, the sym-
bolic action place object1 kitchen results in a call
to a path planner which computes a path from the current
robot position to the kitchen. In the case of a humanoid
robot, the symbolic action place object1 table can-
not be directly mapped to a single motion planning query.
This was early pointed out in the pionner work done on
the robotic platform Handey (Lozano-Pérez et al. 1989).
Their work shows that picking and placing an object in a
desired pose often requires to decompose the problem into
several re-grasp operations. In order to deal with this, an
ad-hoc re-grasp planner (Tournassoud, Lozano-Perez, and
Mazer 1987) had to be called when the action could not
be achieved with a single movement. More recently, prob-
abilistic roadmaps(PRM)-based methods have been devel-
oped which can solve pick-and place problems for a single
object (Simeon et al. 2002). Dealing with several objects is
a more complex problem called navigation among movable
obstacles (NAMO), and requires specific techniques (Stil-

54

man and Kuffner 2006).
Another major difference between the two domains is

that a mobile robot performs its task within a workspace,
whereas the humanoid robot itself is part of the workspace.
Each arm of the robot is potentially an obstacle for the
movements of the other arm. Collisions between arms can
be avoided by using a motion planner which works in the
combined configuration space of both arms, but the com-
putational cost of such planner is higher, and the result-
ing motions often look unnatural. In addition to this, some
tasks may require dual-arm regrasping, which is also com-
putationally demanding, see for instance (Vahrenkamp et al.
2009), (Saut et al. 2010).

In summary, working with a humanoid robot raises two
additional difficulties compared to a mobile robot:

• some actions have to be decomposed into sequences of
re-grasping operations by a dedicated planner;

• motion planning with two manipulators is generally more
prohibitive.

This is problematic in CTAMP, because geometric reason-
ing is repeatedly invoked during the planning process. Next,
we describe our approach for combining task and motion
planning, which naturally works around these problems: the
task planner is used to plan for re-grasping operations, and
to split actions involving two arms into sequences of single-
arm motions. Then, we report on some failed attempts to
design heuristics for such a system, and sketch a possible
solution based on balancing the search effort between the
task level and the geometric level.

Our approach
We implemented a symbolic planning domain which, given
a high-level problem description, breaks down the task into
a sequence of pick and place operations. We used the hi-
erarchical task network (HTN) planner JShop2 (Nau et al.
2001) to generate these plans. HTN planning allows to
write methods to guide task decomposition. We imple-
mented methods which handle the cases where re-grasping
is required, hence no specialized re-grasp planner is needed.
Dual-arm re-grasping is also handled by dedicated methods,
hence no dual-arm re-grasp planner is needed. The task is
decomposed into actions where one manipulator is moved
at a time, hence only 7-degrees of freedom (DOF) motion
planner is needed (see (Zacharias et al. 2010), where the
authors show that with a simple strategy, using independent
motion planners for each arm (2×7 DOF) is more effective
than using a 14-DOF dual-arm motion planner).

In summary, we propose an approach to CTAMP in
which the task planner is also used to break down difficult
motion planning problems into simpler sub-problems. This
reduces the complexity of motion planning, but increases
the complexity at the task level, because these sub-problems
can be combined in multiple ways. Since the task plan-
ner does not take into account geometric constraints (robot
geometry, collisions), some action sequences found by the
task planner are not executable on the real robot, or lead to
complex motion planning problems, e.g., narrow passages,
or intricate arm positions. Hence, a heuristic is needed
to choose among the possible task decompositions, which
ones are the easiest to implement geometrically. Next, we

Figure 2: Example of action sequence, with the correspond-
ing coarse object orientations used by the task planner.

describe the planning domain used, and then report some
attempts in designing such a heuristic.

Description of the planning domain
As test bed for our approach, we chose a real world version
of the well known AI benchmark domain blocks-world with
three blocks (see Fig. 1). The problem is similar (build-
ing a pile with A on top of B, and B on top of C), but ad-
ditional geometric constraints have to be considered: the
blocks have to be in upright position and with the same ori-
entation. In this section, a glimpse of the planning domain
is given rather than an exhaustive description.

Operators
There exists different implementations for the blocks-world
domain. The point to stress is that in the original domain,
the pick and stack operators were only parametrized by
the object to be moved, and by the underlying object. In
order to reason about geometry, more parameters are used
in our domain. In particular, we use a parameter which we
call coarse object orientation, which represents the align-
ment of an object with a reference axis in the real world.
For instance, we use the symbols Ox1, Oy1, Oz1 to repre-
sent the fact that an object has its main axis aligned with re-
spectively the x, y, z axes of the world frame, and Ox2, Oy2,
Oz2 denote alignment with the opposite axes −x,−y,−z
(see Fig. 2). For instance, the predicate:
is oriented object1 z2

represents the fact that object1 in upside-down position.
We define the following parameters for the actions:

A pick-like action (pick, pick-regrasp) is
parametrized by:

• side: left, right;
• grasp: side, top, bottom ;
• current coarse object orientation: Ox1, Ox2, Oy1, ...
• object.

A place-like action (place, place-regrasp, stack) is
parametrized by:

• side: left, right;
• grasp: side, top, bottom ;
• target location;
• target coarse object orientation: Ox1, Ox2, Oy1, ...
• object.

55

To illustrate this with an example, consider the sequence
of actions depicted in Fig. 2, where the robot grasps a cup
with the left manipulator, re-grasps it with the right manipu-
lator, and places it on the tray. The corresponding symbolic
action sequence with our action parametrization scheme is:

(!pick left top Oz1 cup1)
(!place regrasp left top Oy1 cup1)
(!pick regrasp right bottom Oy1 cup1)
(!place right bottom tray Oz2 cup1).

The task planner is not aware of the exact orientation of
objects: it only knows if an object is aligned with the x, y, or
z axis, and in which direction. Similarly for grasps, the task
planner reasons about the type of grasp without knowing
the exact orientation of the tool center point (TCP) relative
to the object. The exact angular values are handled at the
geometric level.

Predicates
Using coarse object orientations together with specific pred-
icates in the preconditions of operators allows for basic ge-
ometric reasoning. For instance, the operator !pick has the
following preconditions (among others):
(graspable ?obj ?grasp)
(is oriented ?obj ?axis)
(allow pick ?axis ?grasp ?side) .
The predicate graspable indicate which types of grasp
can be performed on different objects, e.g., the blocks used
in our experiments can be grasped by top and bottom, but
a side-grasp is not feasible because the hand of the robot
is too large, so it would collide with the table for such
grasps. The predicate allow pick represents common-
sense knowledge about actions which are not feasible. For
instance, (allow pick z1 top left) means that when
an object is in upright position, it can be grasped with a
top-grasp with the left arm, which implicitly means that a
bottom grasp is not possible. Similarly, the !place action
has a predicate allow place in its preconditions.

For re-grasping operations, similar predicates are used
to determine which operations can be done or not. For
instance, the re-grasp operation depicted in Fig. 2 is al-
lowed because the operator !pick regrasp has the pre-
conditions:
(graspable ?obj ?grasp)
(is oriented ?obj ?axis)
(allow regrasp ?axis ?grasp ?side) ,
and because the following predicates are defined:
(allow regrasp y1 top left)
(allow regrasp y1 bottom right) .
Note that when the object is in this position, it may in princi-
ple be feasible to use a bottom-grasp with the left hand, and
a top-grasp with the right hand. However, this would re-
quire a very intricate position of the arms, which is likely to
be infeasible in practice. Hence, these predicates filter out
actions which could in any case not be geometrically feasi-
ble. The following predicates are also used for re-grasping
operations:
(opposite side right left)
(opposite side left right) .

HTN methods
The methods are used to decompose an abstract task into
a sequence of actions. In this domain, a common abstract
task is to move an object to a desired location. A simple
way of decomposing the abstract task move ?obj ?loc is
the sequence:
(!pick ?side ?grasp ?axis ?obj)
(!place ?side ?grasp ?loc ?axis ?obj) .
Note that the axis is preserved. We need alternative meth-
ods to decompose the move task, because this one may not
be feasible in all cases. Imagine for example that the loca-
tion and the object are not both reachable by the same arm.
Then the object has to be placed in a temporary location to
achieve the task:
(!pick ?side ?grasp1 ?axis ?obj)
(!place ?side ?grasp1 ?temp loc ?temp axis
?obj)
(!move arm away ?side)
(!pick ?o side ?grasp2 ?temp axis ?obj)
(!place ?o side ?grasp2 ?location
?final axis ?obj) .
The action !move arm away is used so that the second
!pick action is not hindered by the presence of the hand,
which remains above the object after the first !place ac-
tion. The method has a precondition (opposite side
?side ?o side) to ensure that both arms are used con-
sistently. Note that the type of grasp can be changed with
this method. However, if the object can only be grasped by
the bottom or the top, these two methods do not allow us
to flip an object. In order to do this, dual-arm re-grasping
is needed. We also defined a method that decomposes the
move task in this way:
(!pick ?side ?grasp1 ?axis1 ?obj)
(!place regrasp ?side ?grasp1 ?axis2 ?obj
(!pick regrasp ?o side ?grasp2 ?axis2 ?obj
(!place ?o side ?grasp2 ?location ?axis3
?obj) .
The actions !pick regrasp and !place regrasp are
similar to !pick and !place, but without a location. De-
pending on the current orientation ?axis1 of the object,
and according to the types of grasp allowed for this object,
different sequences can be produced which place the object
with orientation ?axis3.

System architecture
A simple architecture was developed, in which task and
motion planning are decoupled, i.e., a symbolic plan is
generated first, and geometrically evaluated afterward (see
Fig. 3). We decoupled task planning and geometric rea-
soning because we wanted to sort the symbolic plans before
evaluating them with the geometric reasoner. This approach
turned out to fail, we report on this at the end of the sec-
tion. Ignoring the sorting step, the system simply consists
in generating a list of symbolic plans, and evaluating them
one after another with the geometric reasoner until one of
them succeeds. The role of the filtering step is to reject the
plans that are not feasible, e.g., because an object is out of
reach by the robot. All the generated plans achieve the same
geometric goal, but they differ with respect to the choice of

56

Figure 3: The task planner generates symbolic plans which
are geometrically evaluated by the geometric reasoner.
Sorting the plans was abandoned.

arms, types of grasp, coarse orientations, and re-grasping
operations.

The geometric reasoner is a complex component that
takes in input a symbolic plan, and returns (if possible) a
sequence of motion paths. The details of this component
can be found in (Lagriffoul et al. 2012). In short, each
action needs to be converted into a motion path. The fi-
nal configuration for the motion path is found by sampling
different possibilities. For a !pick action, several orienta-
tions of the TCP are sampled, for a !place action, several
positions for the object are sampled. When an arm config-
uration achieving the action is found, the motion planner is
called. If no path is found, another sample position is tried.
If all the samples fail, previous actions have to be reconsid-
ered, because they may be the cause of the failure. We refer
to this procedure as geometric backtracking (see (Karlsson
et al. 2012)). Geometric backtracking is computationally
expensive compared to task planning, because the motion
planner is called at each backtrack. By comparison, finding
one hundred symbolic plans takes a few milliseconds, while
evaluating one single plan geometrically takes several sec-
onds.

A failed attempt for sorting plans
Since geometric reasoning takes time, and since several
symbolic plans need to be evaluated before one is found
that works, the first idea that comes to mind is to sort the
plans according to some criteria, so that the ones which are
more likely to fail are evaluated last. According to our ex-
perience, a plan is generally rejected by the geometric rea-
soner because a motion path cannot be found for one of the
actions. This occurs when the scene is cluttered, or if an
action requires an arm to be close to its joint limits. It can
also occur if the symbolic plan assigns the left arm to an ob-
ject situated on the right and vice versa, which causes one
of the arms to be “locked” by the other. We implemented a
simple procedure that computes a geometric configuration
for each symbolic action, ignoring motion planning. Then,
for each geometric configuration, we computed the follow-

ing criteria, which aimed at measuring the level of intricacy
between the objects and the robot:
• distances between the links of left and right arm;
• distance between left and right TCP;
• distances from the joint limits;
• distances between all objects and TCPs;
• “crossing” of the arms.
We ran hundreds of experiments with different symbolic
plans and different initial positions of the objects. For each
run, the list of geometric configurations was computed, and
the average value and minimum value of these criteria were
evaluated over the list. Then, the geometric reasoner was
called and the running time was measured. The statistical
analysis of the data showed that correlations between these
criteria and the time needed for geometric reasoning exist,
but the correlation is too weak for using these criteria as a
heuristic or predict which plans are most likely to fail.

This failed attempt demonstrates that it is not possible to
evaluate the difficulty of geometric reasoning based on the
simple geometric criteria we used. Geometric reasoning
is not trivial because of geometric dependencies between
actions. Motion planning is often counter-intuitive for hu-
mans: some actions which seem trivial are sometimes exe-
cuted in complicated ways by the robot, and some actions
which seem complicated sometimes require a short motion
planning time. This suggests a more complex procedure
for computing this heuristic, although fast enough so that
it does not take more time than geometric reasoning itself.
A common technique for designing heuristics is to solve a
relaxed version of the problem. We applied this idea to our
problem, by using a simplified version of the geometric rea-
soner, with limited backtracking capacity and lower cutoff
time for motion planning. When this simplified geometric
reasoner fails, it means that a solution may exist but that
more time is required to find it. Hence, this is not strictly
speaking a heuristic, because it prunes out symbolic plans
which may be feasible, but it can be used to jump over in-
feasible or geometrically difficult symbolic plans, and reach
the easy ones. Hence, we traded completeness against the
hope to have simpler motion planning problems to solve.
The results of our experiments are presented in the next sec-
tion.

Experiments
In order to test this approach, we defined two modes for
the geometric reasoner which correspond to two different
parametrization schemes. In the normal mode, the geo-
metric reasoner backtracks geometrically until a solution is
found, and the motion planner is set a cutoff time of 10 sec-
onds. These are the usual parameters to solve common ma-
nipulation tasks. In the simple mode, geometric backtrack-
ing is limited to one level, and the motion planner cutoff
time is set to 1 second, which is insufficient to solve com-
plex problems, but terminates in a reasonable time. Hence,
in the normal mode, more effort is spent on geometric rea-
soning, while in the simple mode, part of this effort is dele-
gated to the task planner.

Experimental setup
We used two scenarios for the experiments. In the first sce-
nario, only the blocks are on the table (see Fig. 1), while in

57

the second scenario the space was cluttered with additional
objects acting as obstacles (see Fig. 4). In both scenarios,
one hundred runs were conducted. The task is the same
(stacking the blocks), but the initial poses of objects and
obstacles were randomized.

Figure 4: An example of task decomposition which led to a
geometrically difficult motion planning problem.

Results
We compared the approach using the normal mode and the
approach using the simple mode for the geometric reasoner.
For all experiments, we have measured the total time in sec-
onds needed to reach a solution, i.e., the time spent on prun-
ing out symbolic plans, plus the time needed to compute the
actual geometric solution. Out of the 100 runs, 23 were not
solved in the first scenario, and 18 in the second scenario.
The results are shown in Fig. 5. The runs are ordered ac-
cording to the time spent using the normal mode.

Figure 5: Results (in seconds) for the first scenario (left)
and the second scenario (right).

The performance of both approaches is similar for most
problems, but in 20% of the cases, when using the normal
mode is demanding, it is faster to try alternative symbolic
plans for which a geometric solution is found more eas-
ily. Fig. 4 is a good illustration of a symbolic plan which
is difficult to achieve geometrically: after stacking block B
on block C, the symbolic plan says that block A should be
placed in upright position for a re-grasp with the left arm
by the top. This is difficult in terms of motion planning be-
cause the left arm and the bottle are in the way. In this case,
choosing at the symbolic level a different orientation for re-
grasping, or picking block A with the left arm would most
probably make the problem geometrically easier.

The simple mode evaluates more symbolic plans on av-
erage (12.5) than the normal mode (7.6), but this pays off
because this evaluation is fast. As a result, the average time
for solving a problem using the simple mode is 15 s, versus
35 s with the normal mode. Note also that in complicated
problem instances, the simple mode remains in its average
time, while the time used in normal mode reaches several
minutes. Regarding completeness, it is clear that the sim-
ple mode is not complete. It jumps over symbolic plans
after limited effort spent at the geometric level, which can
be seen as a kind of local search algorithm. However, in the
presented experiments, only 2 problems out of 159 were not
solved by the simple mode which the normal mode could
solve. Hence, an easy way to cope with this problem is to
run simple mode first, and normal mode in case of failure.

Conclusion
We proposed a way of delegating part of the geometric rea-
soning to the task planner in a framework combining task
and motion planning for a humanoid robot. This was done
by enriching the planning domain with coarse geometric
representations. With this approach, only simple motion
planners are needed, but choosing among symbolic plans
which one is the simplest to compute geometrically is not
straight-forward. We presented our initial experiments in
this direction, and the problems we encountered. We also
wanted to point out the differences between the domain of
mobile robotics, where heuristics based on distances can
be used for robot actions, compared to the domain of hu-
manoid robots, where the complexity of motion planning
and the geometric dependencies between actions make the
computation of heuristics more tedious.

Acknowledgments
This work was partially supported by EU FP7 project “Gen-
eralizing Robot Manipulation Tasks” (GeRT, contract num-
ber 248273). We would like to thank in particular Flo-
rian Schmidt from the Robotics and Mechatronics Center
of DLR, which developed for us functionalities in Justin’s
simulation environment that made this work possible.

References
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
Int. J. Rob. Res. 28(1):104–126.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Bren-
ner, M.; and Nebel, B. 2009. Semantic attachments for
domain-independent planning systems. In Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS09), 114–122.
Guitton, J., and Farges, J.-L. 2009. Taking into account
geometric constraints for task-oriented motion planning. In
Proc. Bridging the gap Between Task And Motion Planning,
BTAMP’09 (ICAPS Workshop).
Kaelbling, L. P., and Lozano-Perez, T. 2010. Hierarchical
planning in the now. In Proc. of Workshop on Bridging the
Gap between Task and Motion Planning (AAAI).
Karlsson, L.; Bidot, J.; Lagriffoul, F.; Saffiotti, A.; Hillen-
brand, U.; and Schmidt, F. 2012. Combining task and path

58

planning for a humanoid two-arm robotic system. In Pro-
ceedings of TAMPRA: Combining Task and Motion Plan-
ning for Real-World Applications (ICAPS workshop).
Lagriffoul, F.; Dimitrov, D.; Saffiotti, A.; and Karlsson, L.
2012. Constraint propagation on interval bounds for deal-
ing with geometric backtracking. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference
on, 957 –964.
Lozano-Pérez, T.; Jones, J.; Mazer, E.; and O’Donnell, P. A.
1989. Task-level planning of pick-and-place robot motions.
IEEE Computer 22:21–29.
Nau, D.; Muoz-avila, H.; Cao, Y.; Lotem, A.; and Mitchell,
S. 2001. Total-order planning with partially ordered sub-
tasks. In In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence, 425–430.
Ott, C., and al. 2006. A humanoid two-arm system for dex-
terous manipulation. In 2006 IEEE Int. Conf. on Humanoid
Robots, 276–283.
Plaku, E., and Hager, G. 2010. Sampling-based motion
planning with symbolic, geometric, and differential con-
straints. In Proceedings of ICRA10.
Saut, J.-P.; Gharbi, M.; Cortés, J.; Sidobre, D.; and Siméon,
T. 2010. Planning pick-and-place tasks with two-hand re-
grasping. In IROS, 4528–4533.
Simeon; Cortes; Sahbani; and Laumond. 2002. A manip-
ulation planner for pick and place operations under contin-
uous grasps and placements. In Robotics and Automation,
2002. Proceedings. ICRA ’02. IEEE International Confer-
ence on, volume 2, 2022 – 2027 vol.2.
Stilman, M., and Kuffner, J. 2006. Planning among mov-
able obstacles with artificial constraints. In In Workshop on
the Algorithmic Foundations of Robotics, 1–20.
Tournassoud, P.; Lozano-Perez, T.; and Mazer, E. 1987. Re-
grasping. In Robotics and Automation. Proceedings. 1987
IEEE International Conference on, volume 4, 1924 – 1928.
Vahrenkamp, N.; Berenson, D.; Asfour, T.; Kuffner, J.; and
Dillmann, R. 2009. Humanoid motion planning for dual-
arm manipulation and re-grasping tasks. In Proceedings of
the 2009 IEEE/RSJ international conference on Intelligent
robots and systems, IROS’09, 2464–2470. Piscataway, NJ,
USA: IEEE Press.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined
task and motion planning for mobile manipulation. In Braf-
man, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS10), 254–258.
Zacharias, F.; Leidner, D.; Schmidt, F.; Borst, C.; and
Hirzinger, G. 2010. Exploiting structure in two-armed ma-
nipulation tasks for humanoid robots. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Confer-
ence on, 5446 –5452.

59

RealTime GPU-based Motion Planning for Task Execution in Dynamic
Environments

Chonhyon Park and Jia Pan and Ming Lin and Dinesh Manocha

Abstract— We present a realtime GPU-based motion plan-
ning algorithm for robot task executions. Many task execution
strategies break down a high-level task planning problem
into multiple low-level motion planning problems, and it is
essential to solve those problems at interactive rates. In order to
achieve high performance for the planning, our method exploits
a high number of cores on commodity graphics processors
(GPUs). We describe a parallel formulation of a RRT-based
motion planning algorithm, which is highly suited for single
query motion planning. Our approach uses the properties of
Poisson-disk samples to achieve a high parallelism to exploit
the computational capabilities of GPUs. Our approach can
obtain 10-20X speedup over prior CPU-based motion planning
algorithms and we demonstrate the performance on a number
of benchmarks.

I. INTRODUCTION

Planning and scheduling techniques are widely used in
robotics. The underlying planning problems in robotics are
characterized by geometric constraints that affect specifica-
tion and how the goals are satisfied. For example, before
deciding to pick up any objects in an environment, we need
to figure out whether it is geometrically feasible for the
robot (or its arm) to move to an appropriate location in
the environment. At a high level, planning problems can be
decomposed into task planning and motion planning. Task
level planning refers to high level specification and execution
of tasks (e.g. pick up a can). On the other hand, motion
planning refers to computing a collision-free trajectory for a
real or virtual robot.

Over the last few few years, there is considerable research
effort on combined task and motion planning for different ap-
plications, including robot navigation, manipulation, search-
and-rescue, game design, air-traffic control, and surgical
procedures, etc. While some of them deal with discrete mo-
tions, others tend to compute a continuous motion trajectory.
Most of these planning problems reduce to searching for
a solution into the appropriate space. Furthermore, these
solutions needs to account for various complex geometries
of the obstacles. physical constraints, motion dynamics (e.g.
maximum velocity or acceleration that robot joints can take),
collision avoidance, and robot-environment interactions. It
is important to develop fast planning algorithms that can
satisfy these constraints and compute an appropriate solution
in realtime in new, uncertain environments.

It turns out that many high-level planning or complex
tasks involve repeated calls to motion planning algorithms

Chonhyon Park, Jia Pan, Ming Lin, and Dinesh Manocha are with the
Department of Computer Science, University of North Carolina at Chapel
Hill. E-mail: {chpark, panj, lin, dm}@cs.unc.edu.

Fig. 1: The task planning repeatedly performs sensing, motion planning and
execution steps in an interleaved manner.

to perform various subtasks. In many cases, motion planning
and subtask execution steps are performed in an interleaved
manner, and the result of previous planning steps may
be used in the later planning steps. [2]. In this regard, a
key challenge is task execution in dynamic or uncertain
environments, which boils down to repeated computation of
collision-free motion planning. A dynamic environment may
have moving obstacles [3] or sensors with uncertainty [4].
In this environment, the robot only has a partial observation
of the environment and it is hard to precisely predict the
location of all the obstacles in the environment in the
future. Therefore, interleaved planning is used to update
the environment representation and robot task execution. As
shown in Fig. 1, the algorithm repeatedly performs motion
planning with the latest sensor information and executes
the planning result as a subtask. Many previous works
use similar approaches [5], [6] to compute a collision-free
trajectory in dynamic environments.

Some task planning algorithms decompose complex tasks
into multiple subtasks to reduce the complexity of planning
problem. [1] The subtasks are arranged in appropriate order
by the algorithm and solved in order using motion planning
algorithms. A subtask graph is used to formalize the task
planner [7]. Complex tasks of humanoid robot can be de-
composed into simple motion planning problems of multiple
parts [8].

A key challenge in this high-level task planning is to
develop fast (almost real-time) techniques for motion plan-
ning algorithms, which are invoked multiple times during
task executions. Real-time planning makes it possible to
compute a collision-free trajectory for robots in a short time
and improves the safety of the task planning in dynamic
environments.

In this paper, we present a parallel motion planning
algorithm that exploits the computational capability of GPUs
for single-query motion planning. The real-time nature of our
algorithm also makes it possible to handle dynamic obstacles

60

or partial sensor data. We use Poisson-disk sampling for
node generation, which reduces the generation of redundant
nodes. This sampling allows the algorithm to expand a large
number of nodes in parallel and exploit the high number of
computational cores. Moreover, we describe efficient parallel
strategies for RRT planning, including sample generation
and tree expansion. We highlight the speedup of the parallel
algorithm on different benchmarks, which is a 10-20X im-
provement over prior CPU-based RRT planning algorithms;
we also demonstrate our algorithm’s scalability. Our real-
time planning algorithm can be used to accelerate high-level
task executions.

The remainder of the paper is organized as follows:
Section II provides an overview of our approach; we describe
the details of parallel algorithms in Section III; in section IV,
we highlight our performance on different motion planning
benchmarks.

II. OVERVIEW

In this section, we describe our GPU-based planning
algorithm’s underlying framework and how it derives from
sampling-based planning algorithms.

A. RRT Planning
The basis or our algorithm is rapidly-exploring random

trees (RRT) [9], one of the most widely used planning algo-
rithms used in solving motion-planning problems. Sampling-
based algorithms (including RRT) formulate the planning
problem as a search problem in the configuration space of
a robot. In the configuration space, a configuration of the
robot is represented as a point. The configuration space C
has the region C

free

, where the robot configurations in the
region has no collision, and the region C

obs

, where a collision
occurs between the robot and one of the obstacles. The
RRT algorithm grows the RRT tree to compute a continuous
collision-free path from an initial configuration x

init

to a
goal configuration x

goal

.
The RRT tree T is initialized with the root node of

x

init

, and the algorithm expands the tree incrementally. Each
iteration of RRT planning executes two main procedures,
sampling and expansion. The sampling procedure
generates a new random configuration x, which determines
the direction of the tree expansion. The expansion proce-
dure includes two steps, 1) nearest node search and 2) local
planning. With the configuration x, nearest node search finds
a node v in T, the closest node to x. The local planning
step checks whether the shortest path between v and x lies
in C

free

, (i.e., the configurations on the path do not collide
with the obstacles). If the path is collision-free, x is added
to T as a new node connected to the node v. If the path
has a collision, the collision-free configuration x

new

on the
path thiat is farthest from v, is added to T instead of x. In
many applications, the local planning procedure checks for
collisions from v to x

t

(which has a distance of � from x)
if the distance between v and x is longer than the problem-
specific length �. In this approach, the maximum distance
of the edge which connects the new node and T is limited

to �. The RRT algorithm repeats this iteration until x
goal

is
added to T, when the collision-free path from x

init

to x

goal

can be extracted from T.

B. Parallel RRT Planning using Poisson-disk Sampling

The RRT algorithm is efficient for single-query problems,
since the algorithm incrementally expands the RRT tree to
the unexplored regions and terminates when the solution is
found. However, this incremental expansion of the tree means
that it is difficult to make an efficient parallel algorithm for
planning.

Our algorithm is based on the AND parallel RRT algo-
rithm [10], which adds multiple nodes simultaneously. In
an AND parallelization, each thread independently executes
sampling and expansion procedures, and the new nodes
are added to a single RRT tree shared by all threads. The
AND parallelization can expand the tree faster than the
original RRT. However, as the number of threads increases,
the algorithm results in more redundant nodes in the RRT
tree, degenerating the performance of overall planning.

v

x

init

x1
x2

x3

x4

y1 y2

y3
e1

e2

e3

Fig. 2: Parallel tree expansion using 4 threads. The i-th thread expands the
tree toward sample xi, i = 1, 2, 3, 4. The vectors ei (in red) show the new
RRT edges added. Since x2 and x4 correspond to the identical Poisson-disk
sample (y2), both of them result in adding the edge e2 to the tree; only 3
nodes are added and no redundant node is generated.

In order to lessen the overhead caused by the redundant
nodes, our algorithm uses precomputed Poisson-disk samples
in the tree expansion. In this case, the samples satisfy the free
disk property:

8x
i

,x

j

2 X,x

i

6= x

j

: kx
i

� x

j

k � r, (1)

where X = {x
i

} is set of samples and r is a predefined
minimum distance between any of two samples. Unlike the
standard RRT, which does local planning between the nearest
node v and the configuration x

t

, our algorithm chooses a
Poisson-disk sample x

nbr

that is closest to x among v’s
neighboring Poisson-disk samples. The free disk property
ensures that the chosen sample is at least a minimum
distance, denoted here by r, from v. Our approach eliminates
the problem of multiple threads of the algorithm choosing the
same direction, which would generate redundant nodes that
would be too close to each other in the standard RRT tree
expansion. In our algorithm, the threads will instead choose
the same Poisson-disk sample and stop the redundancy

61

problem from developing. We add the sample only once to
the tree. An example of tree construction in our algorithm is
shown in Fig. 2.

(a) RRT (b) Parallel RRT (c) Our Algorithm

Fig. 3: Comparison of RRT trees generated using different planning ap-
proaches. (a) The tree corresponding to the original RRT algorithm is
generated according to the Voronoi bias of the sequential algorithm. (b)
The parallel RRT tree generated by AND parallelism tends to have many
redundant nodes that are close to other nodes in the tree (e.g., the new
nodes y2, y3, and y4 are close to y). (c) The tree generated with Poisson-
disk sampling has fewer redundant nodes due to the free disk property of
samples.

Fig. 3 shows the RRT trees generated by an original RRT,
an AND parallelization RRT, and our algorithm. The tree
generated by AND parallelization has many redundant nodes
that are close to other tree nodes, while the tree generated
using Poisson-disk sampling has efficiently spaced nodes.

The precomputed Poisson-disk samples may not corre-
spond to a large set of samples that can always find a
collision-free solution. As a result, the algorithm performs
adaptive Poisson subsampling at runtime to generate more
samples with reduced distance amongst the samples.

III. PARALLEL RRT PLANNING USING GPUS

In this section, we present our planning algorithm’s spe-
cific components, and explain how this setup efficiently
exploits the parallel computational resource of GPUs.

A. Hierarchy Computation
In order to accelerate collision checking, we compute

bounding volume hierarchies (BVH) for the robot and the
obstacles in the environment. We construct the oriented
bounding boxes (OBB) trees [11] for the triangle model
representations of the robot and obstacles using a GPU-based
construction algorithm [12]. The OBB trees improve the
performance of collision checking by using the high culling
efficiency of OBBs.

B. Precomputation of Poisson-disk Samples
We use precomputed Poisson-disk samples in tree ex-

pansion. Since the samples are generated on the entire
configuration space C, including C

obs

, the precomputation is
performed offline, and the generated sample set can be used
for all motion planning problems with the same configuration
space dimension. Recently, parallel algorithms that use GPUs
for fast computation of Poisson-disk sampling have been
suggested ([13] and [14]); these algorithms can be used to
compute samples for high-dimensional spaces.

C. Sampling
The algorithm first generates multiple uniform random

configurations so that it can decide the directions of the tree
expansion. Each dimension value of the generated configura-
tions is computed in a separated thread, and the high number
of threads utilize the massive parallel processors of the GPU.

D. Tree Expansion
After computing the random samples in the expansion

procedure, each thread needs to find the nearest tree node for
the random sample. From the tree node, we find the Poisson-
disk sample within the precomputed sample set, which is
in the direction given by the random set and is the closest
sample to a node. These two steps utilize the nearest neighbor
search. There has been extensive work done on the nearest
neighbor search using GPUs [15], [16], [17]. We use the
algorithm proposed by Pan et al. [17], which uses Locality-
Sensitive Hashing (LSH) for clustering nearby points in high-
dimensional spaces. The algorithm generates the same hash
value for points near one another; points with the same hash
value are stored in the same bucket of the hash table. Using
this data structure, the nearest neighbor search for a point
can be computed in nearly constant time by lookup only one
bucket in the hash table.

When the tree node and the nearest Poisson-disk sample
are computed, the algorithm performs local planning to check
for a feasible path between the two configurations. We use
discrete collision detection (DCD), which discretizes the
path between two configurations into multiple steps, and
then check collisions for each step. The collision checking
performed during local planning is regarded as the most
time-consuming part of the overall algorithm. In order to
accelerate the computations, we perform this multiple-step
collision checking in parallel, using multiple threads on
GPUs.

If a local planning finds a collision-free path, the Poisson-
disk sample is added to the RRT tree as a new node. The tree
expansion is repeated until the goal configuration is added
to the tree as a new node.

IV. RESULTS

In this section, we present our experimental results and
highlight the performance of our parallel planning algorithm
on different benchmarks. We implemented the algorithm
using OMPL [18] and NVIDIA CUDA libraries. All the tim-
ings described in this section were generated on a commodity
PC with a NVIDIA GTX 680 GPU.

We used four well-known benchmark scenarios from
OMPL (shown in Fig. 4). The planning problems used vary
in their level of difficulty; some include narrow passages,
which are notoriously hard to navigate using sample planning
methods.

For each benchmark, we evaluated the performance of our
GPU-based RRT with the following existing CPU-based RRT
variant algorithms available in OMPL:

• Standard RRT [9] : Sequential RRT that uses random
uniform sampling.

62

(a) Easy (b) Cubicle

(c) Apartment (d) Alpha Puzzle

Fig. 4: The planning problems used in our planner benchmark. Easy moves
a robot from the left room to the right room by passing a small window;
Apartment moves the piano to the hallway near the door entrance; Cubicles
moves the robot in a cluttered office environment; Alpha puzzle contains a
narrow passage.

0%

20%

40%

60%

80%

100%

120%

Pl
an

ni
ng

 T
im

e

Alpha Puzzle 1.5

Communication

CollisionCheck

Nearest

Sampling

Easy Apartments

Fig. 5: Timing breakdown among various components for RRT, pRRT, and
GPU-based RRT algorithms for different benchmarks.

• RRT-Connect [19] : Bidirectional algorithm which ex-
pands trees from both the initial and the goal configu-
rations.

• Lazy-RRT [20] : Algorithm which defers collision
checks until it finds a solution.

• pRRT [21] : CPU-based parallel RRT algorithm.
In general, our GPU-based RRT is faster than other CPU-

based algorithms, providing up to 20X speedup over the
original RRT.

Fig. 5 shows the timing breakdown of the planning for
original RRT, pRRT, and GPU-based RRT. The percentage
of time spent in nearest neighbor computation is reduced in
GPU-based RRT computation, because of its exploitation of
the disk free properties of Poisson-disk samples. On the other
hand, nearest neighbor computation takes a higher percentage
of the total time in pRRT; this nearestNode computation
is a major source of inefficiency for our method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new GPU-based mo-
tion planning algorithm. Our algorithm can improve the
performance of the executions of complex tasks, especially
when motion planning is used in an interleaved manner. Our

algorithm is based on RRT motion planning algorithm and
uses Poisson-disk sampling to to exploit the multiple cores on
GPUs. Furthermore, we describe efficient parallel strategies
to accelerate the RRT-based motion planning. Our approach
can be easily parallelized on GPUs, and it provides up to
20X speedup over previous CPU-based planning algorithms.

There are many avenues for future work. The performance
of our planning algorithm can be considerably improved by
various optimizations, including bidirectional search similar
to that of RRTConnect. We are also interested in extending
our planning algorithm to high-DOF articulated models. It
would be useful to apply our planning algorithm on robots
to solve complex task execution problems in challenging
scenarios with dynamic environments or having multiple
constraints.

REFERENCES

[1] J. Guitton and J.-L. Farges, “Taking into account geometric constraints
for task-oriented motion planning,” in ICAPS Workshop on Bridging
the Gap Between Task and Motion Planning, 2009, pp. 26–33.

[2] K. Talamadupula, J. Benton, and P. Schermerhorn, “Integrating a
closed world planner with an open world,” in ICAPS Workshop on
Bridging the Gap Between Task and Motion Planning, 2009.

[3] L. Jaillet and T. Siméon, “A prm-based motion planner for dynamically
changing environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2004, pp. 1606–1611.

[4] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
belief space by factoring the covariance,” International Journal of
Robotics Research, vol. 28, no. 11-12, pp. 1448–1465, 2009.

[5] S. Petti and T. Fraichard, “Safe motion planning in dynamic envi-
ronments,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005, pp. 2210–2215.

[6] K. Hauser, “On responsiveness, safety, and completeness in real-time
motion planning,” Autonomous Robots, vol. 32, no. 1, pp. 35–48, 2012.

[7] K. Hauser and J.-C. Latombe, “Integrating task and prm motion
planning: Dealing with many infeasible motion planning queries,”
in ICAPS Workshop on Bridging the Gap Between Task and Motion
Planning, 2009, pp. 19–23.

[8] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-like
robots using constrained coordination,” in Humanoid Robots, 2009.
Humanoids 2009. 9th IEEE-RAS International Conference on. IEEE,
2009, pp. 188–195.

[9] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[10] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Italian Association for Artificial Intelligence, 2002, pp. 834–841.

[11] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: a hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
ACM, 1996, pp. 171–180.

[12] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH construction on GPUs,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 375–384.

[13] L. Wei, “Parallel poisson disk sampling,” Transactions on Graphics,
vol. 27, no. 3, p. 20, 2008.

[14] M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens,
“A simple algorithm for maximal poisson-disk sampling in high
dimensions,” Computer Graphics Forum, vol. 31, no. 2, pp. 785–794,
2012.

[15] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on.
IEEE, 2008, pp. 1–6.

[16] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion
planning and global navigation using GPUs,” in AAAI Conference on
Artificial Intelligence, 2010, pp. 1245–1251.

[17] ——, “Efficient nearest-neighbor computation for GPU-based motion
planning,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 2243–2248.

63

[18] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, http://ompl.kavrakilab.org.

[19] J. Kuffner Jr and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in International Conference on Robotics
and Automation, vol. 2, 2000, pp. 995–1001.

[20] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Inter-
national Conference on Robotics and Automation, vol. 1, 2000, pp.
521–528.

[21] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on
distributed-memory architectures,” in International Conference on
Robotics and automation, 2011, pp. 2261–2266.

64

Integrated Planning and Execution for an Aerial Service Vehicle

Jonathan Cacace and Alberto Finzi and Vincenzo Lippiello and Giuseppe Loianno and Dario Sanzone
DIETI, Universit̀a degli Studi di Napoli Federico II,

via Claudio 21, 80125, Naples, Italy

Abstract

We propose a high-level control system designed for an
Aerial Service Vehicle capable of performing tasks in
close interaction with the environment. We designed a
hybrid control architecture which integrates task, path,
motion planning/replanning, and execution monitoring.
The high-level system relies on a continuous monitor-
ing and planning cycle to suitably react to events, user
interventions, and failures. In this paper, we present the
applicative domain, the high-level control architecture,
along with preliminary empirical results.

Introduction
In this paper, we present a high-level control system de-
signed for an Aerial Service Vehicle (ASV) operating in
close interaction with the external environment. This work
is framed within the The AIRobots project (AIR ; Marconi
et al. 2012a) whose aim is to develop a new generation of
unmanned service helicopters, equipped with sensors and
end-effectors, and capable not only to fly, but also to achieve
robotic tasks in proximity and in contact with the surface
(e.g. site inspections, simple manipulations, etc.).

Figure 1:Robotic Platform: ducted-fan ASV

In our scenario, the autonomous control system should or-
chestrate a new set of operations like wall approach, dock-
ing, undocking, wall scanning etc.. These operations repre-
sent different operative modes, each associated with a differ-
ent controller with specific control laws and performance the
high-level control system should be aware of. Each switch
from one operative mode to the other should be suitably
prepared and planned to keep smooth control trajectories.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since the system flies close to the obstacles in cluttered
and unknown environments, fast planning and replanning
engines are required to generate (or to adjust) trajectories
in real-time. On the other hand, the system should be able
to regulate the trade off between fast planning and accu-
rateness of the generated trajectories depending on the op-
erative mode and the context. Moreover, since the system
operates with the man in the loop, the planning/executive
system should be able to manage sliding autonomy, from
autonomous to teleoperated mode, depending on the hu-
mans’ interventions. This applicative domain is challeng-
ing and novel and has not been investigated in depth in
the UAV literature which is mainly focused on free flight
tasks and simultaneous localization, mapping, and path plan-
ning problems (Bloesch et al. 2010; Hrabar 2006; Stentz
1995). High-level architectures for UAVs have been pro-
posed in literature (Doherty et al. 2000; Gancet et al. 2005;
Doherty, Kvarnstr̈om, and Fredrik 2009), none of these ad-
dresses the challenges of the ASV domain proposed in this
paper. The aim here is mainly to present this novel scenario
along with the solutions adopted in the AIRobots project.

System Requirements and Architecture
The applicative scenario described so far requires a high-
level control system with following features:

• The air vehicle operates in close interaction with the en-
vironment, hence reactive, adaptive, and flexible plan-
ning/replanning capabilities are needed;

• Both autonomous and human-in-the-loop control modali-
ties should be supported to allow human interventions and
teleoperation;

• High-level control strategies should be defined taking into
account the low-level operative modes and constraints.

In particular, the high-level system should orchestrate the ac-
tivations of a set of low-level controllers, modeled as hybrid
automata (Naldi, Marconi, and Gentili 2011), switching to
the appropriate controller according to the operative mode
and the task (see Figure 2) feeding the selected controller
with suitable data (e.g. state and references).
To match these requirements we proposed the layered ar-
chitecture depicted in Figure 2. Here, two layers are dis-
tinguished: the high-level supervisory system is responsible

65

Figure 3:High Level Architecture: high level, low level, and reactive level modules are respectively in blue, green, and gray

Figure 2:Interaction between the high level system and the low-
level controllers (left); the high level control system is composed
of high-level and low-level supervisory systems.

for user interaction, task planning, path planning, execution
monitoring, while the low-level supervisory system manages
the low-level execution of control primitives setting the con-
trollers and providing control references. This architecture
is detailed in Figure 3.

The robot activities are represented at different levels of
abstraction:mission-level tasksrepresenting mission goals;
macro-actionsrepresenting primitive tasks (e.g.TakeOff);
At a lower level of abstraction we introduce the set of com-
mands that can be sent to the low-level supervisory system
- specifically, to thePrimitive Supervisory(PR)- (micro-
actions). TheTask Planner(TP) provides a plan composed
of macro-actions. TheUsermodule (US) allows us to spec-
ify high-level goals (e.g.Inspect(p)) or lower level tasks
(e.g.TakeOff) or to directly teleoperate. That is, the user
can continuously interact with the system both by provid-
ing new high-level tasks/actions and by adjusting the low-
level execution in a mixed-initiative control modality. Each
task/goal is delivered to the TP which expands a task into
an abstract plan composed ofmacro-actions. This plan is

then sent to thePlan Supervisor(PS) for high-level exe-
cution. Each task or macro-action can be interrupted and
pre-empted by new tasks provided by the user, provoking
task replanning. That is, high-level mixed-initiative control
is managed trough mixed-initiative planning (Finzi and Or-
landini 2005). The PS generates, for each macro-action in
the high-level plan, a set ofmicro-actionsto be executed by
thePrimitive Supervisor(PR). Eachmacro-actionis further
decomposed into a sequence ofmicro-actionswhich are en-
dowed with detailed information about the associated geo-
metrical paths. The PR exploits theControl Manager(CM)
to select the low-level controller responsible for the micro-
action execution. This module is the main responsible for the
high-level/low-level control integration: given the operative
constraints provided by the high-level supervisor and given
the low-level controller features, the CM is to decide the
best controller for the execution. Finally, the PR generates
the control trajectory passing it to theTrajectory Supervisor
(TS) to generate control references at a suitable frequency.
The PR exploits concatenations of fifth-order polynomials to
provide smooth trajectories between waypoints (Macfarlane
and Croft 2003) while ensuring the velocity and tolerance
constraints. Depending on the required reactivity (first re-
quirement), the PS regulates the number of geometric way-
points to be processed by the PR. When a micro-action fails,
the PS can either call the PP to generate an alternative path
or call the TP to generate a different plan of macro-actions.
Furthermore, it can be interrupted by thePath Monitor(PM)
which checks for trajectory deviations and unexpected ob-
stacles. Finally, the operator can always switch to a manual
control mode, in this case the TS should monitor the trajec-
tory provided by theTeleman. Once the autonomous control
is restored, a replanning process is needed to recover the ex-
ecution of the current task.

Task Decomposition and Executive Control

The high-level executive system coordinates task decom-
position and plan monitoring (see Figure 4). In order to
meet the reactivity and flexibility needed in the SAV do-
main, the system relies on a PRS engine (Ingrand, Georgeff,

66

TakeOff(Pos) Take off from the current pose and hover in the posePos;
Land(Pos) Land from the current position toPos;
Hover(Pos) Keep the posePos;
MoveTo(Pos) Move from the current pose toPos;
MoveCircular(Pos, I) Circular movement aroundP with radius inI ;
Scan(Srf) Scan the surfaceSrf ;
Inspect(Obj, P) Observe the objectObj in positionP ;
Brake(C) Execute a hard brake from the current position;
Approach(P) Approach the target positionP ;
Dock(P) Dock to a target positionP ;
UnDock(C) Undock from the current position;
Manipulate(Obj, P) Manipulate an objectObj in positionP .

Table 1: Macro actions considered in the operative domain.

and Rao 1992) that manages a BDI-like execution cycle
(Rao and Georgeff 1991) and hierarchical task decompo-
sition. The high-level executive system responds to events
generated by the US, PS, or TP itself by committing to
handle one pending goal, selecting a method from a plan
library, managing the hierarchical decomposition to ex-
tract/update the macro-actions plan. Once a plan is gener-
ated, the PS should manage the actual execution of each
macro-actionproviding the action results to the TP mod-
ule. During this execution process, user interventions are
treated in a uniform way: at any time the user can inter-
rupt/suspend the current task, or the execution of alterna-
tive tasks can be invoked. In this case, the executive system
reacts by replanning from the current state: it selects alterna-
tive methods and generates an alternative plan. This enables
mixed initiative task planning (Allen and Ferguson 2002;
Finzi and Orlandini 2005).

Figure 4:The high-level executive control.

Path Planning and Replanning
The Path Plannerexpands eachmacro-actioninto a set of
micro-actionsrepresenting a path that respects geometric
and operative constraints. The path generation algorithm is
based on a Rapidly-exploring Random Tree (RRT) algo-
rithm (Lavalle 1998) which is particularly suitable in highly
unstructured and dynamic domains. In this work, the RRT
algorithm generates collision-free paths composed of se-
quences of waypoints(x, y, z, θ), where(x, y, z) is a point
andθ is the yaw. More specifically, it generates a path as a
sequence of(x, y, z) points in a 3D search space (3D grid
map), while the yawθ is obtained as the direction point-
ing towards the next waypoint. The generated path should
satisfy a set of additional control, safety, and temporal con-
straints:

• Maximum anglefor pitch and yaw;

• Minimal distancefrom the obstacles (this parameter is
also associated with the operative mode and the accuracy
of the selected controller);

• Maximum Timefor the path generation processes, if the
algorithm cannot find a feasible path before the timeout, it
should provide the best partial path. Moreover, that RRT
path planner can generate several solutions to refine the
path, until one of the following conditions are satisfied:

• timeout, i.e. the available time for path planning expires;

• interrupt, i.e. a replanning request or an exogenous event
interrupts plan generation;

• cost threshold, i.e. as soon as the current path cost is be-
low a suitable threshold, the generated plan is considered
as satisfactory.

In order to refine the generated path, the RRT algorithm is
iterated until the current generated path is not satisfactory
as illustrated in the Algorithm1. This refinement process
can be interrupted at any time. Usually the RRT is reac-
tive enough to produce at least one solution, however, if the
timeout occurs before the generation of the first solution, the
solveRTT function generates thepath that arrives closer to
the target. In this case, the PS will start the execution of this
incomplete path providing the path planner with additional
time to complete and refined it.

Algorithm 1 RefineRRT(qinit,qgoal,threshold,timeout)

initialize(path,time);
while ((time < timeout) ∧ (preempted = false) ∧
(pathCost ≥ threshold)) do

newPath← solveRRT(qinit,qgoal,timeout);
if C(newPath) < path then
path← newPath;
pathCost← C(newPath);

end if
end while
return path

The path cost is defined as follows:

c(path) =clng(path) · plng + cang(path) · pang+

cway(path) · pway + cobs(path) · pobs+

cunk(path) · punk

(1)

where thepi are suitable weights andci are defined as fol-
lows. clng(path) is a cost associated with the path length;
cang(path) represents the cost associated with angular (yaw
and pitch) variations, by minimizing this cost a straight path
should be preferred to a path with angular turns;cway(path)
counts the generated waypoints and allows us to minimize
the segments in the path;cobs(path) is associated with
obstacle proximity and penalizes paths close to obstacles;
cunk(path) penalizes paths through -or close to- unexplored
cells. Once a path is generated, the path planner defines a set

67

of constraintscst = (ms,md, et) associated with each gen-
erated segment. Roughly, for each segment, we set the max-
imum speedms directly proportional to the obstacle min-
imal distancemo along the corresponding segment;ms is
also associated with a proportional erroret, therefore we set
md asmo-et (if this value is not positive, the speed limit
is lowered). These constraintscst are also accessible to the
human operator which can manually reset them. Note, that
cst are just rough limits used by the CM and the PR to select
the right controller and to generate the trajectory associated
with the path. Once the controller is selected, the generated
path is incrementally expanded into a motion trajectory by
the PR (using fifth-order polynomials concatenations (Mac-
farlane and Croft 2003)) under the supervision of the PS that
regulates the number of waypoints to be processed depend-
ing on the control mode (and the associated requested reac-
tivity).

Figure 5:(left) Brake to avoid collision; (center)Escapepath to
avoid the obstacle; (right)Replana new path generated to reach the
target.

Path replanning is managed with different strategies de-
pending on the time available for path generation. The ur-
gency associated with the replanning activity depends on the
position of the collision pointpobs and the estimated time to
collisiontttc. This one is estimated by considering the obsta-
cle distancedobs along the trajectory and the mean velocity
vmean along the path. Given the time to collisiontttc, we
introduce two thresholdsTb < Te used to distinguish the fol-
lowing three cases:

• Brake. If tttc ≤ Tb then the obstacle is too close for re-
planning, hence the PS directly sends aBrake command
to the PR to stop the robot inhovering (Figure 5 up-left).

• Escape.If Tb < tttc ≤ Te, the PP is invoked by the PS
to find an escape path that allows the robot to avoid the
obstacle; the escape trajectory represents a fictituos detour
that provides the planner with additional time to generate
the new path on-the-fly (Figure 5 up-right).

• Replan.If tttc > Te then the time is sufficient for safe
replanning, hence the PS calls the PP to replan, on-the-
fly, a trajectory from a suitable deviation point along the
previous path (Figure 5 down).

The PP is called in the case ofEscapeandReplan. In the
case ofEscape, the path planning task is simple: it is to se-
lect a close and safe target pointqtarget in the free space, far
enought to enable safe on-the-fly replanning, and to gener-
ate a path to reach it (Figure 5 right). That is,Escapepro-
vides a path that not only permits to avoid the obstacle, but
also provides the time for replanning a new path to the goal.

The interesting case is the third one, where the path planning
process should find an alternative path that connects the old
trajectory with a new one while the robot is flying. The re-
planning algorithm is illustrated in Algorithm2. Given the
targetqgoal, the old pathpathold, the collision pointqobs, and
the tttc time, the replanning process first estimates the time
needed to replantrp (estimatedRepTime); then it selects a way-
pointwprp, along the old pathpathold, from which it is pos-
sible to safely calculate the deviationpathnew from pathold

(selectDeviationWP); finally, upon setting a suitable thresh-
old (setThreshold), the replanning process callsRRT refineto
generate the new pathpathnew from the deviation waypoint
wprp to the targetqgoal. pathnew should allow the PR to gen-
erate a new trajectory connecting the old one with a smooth
deviation fromwprp.

Algorithm 2 Replan(qgoal, pathold, qobs, tttc)

qc ← getPosition();
trp ← estimatedRepTime(qc, qgoal, pathold, qobs);
wprp ← selectDeviationWP(qc, qobs, pathold, trp);
threshold← setThreshold(wprp, qgoal, trp, tttc);
pathnew ← RefineRRT(wprp , qgoal, threshold, trp);
return pathnew

To select the deviation waypointwprp we defined the fol-
lowing strategy. Given the estimated time needed to replan
trp, we estimate the robot positionqpr at time trp (assum-
ing that it keeps following the old pathpathold during re-
planning), if there exists a waypointwp in pathold that fol-
lows prp and precedesqobs (keeping a suitable range the we
assume asmaxRange), then we selectwp as the deviation
waypointwprp, otherwise,qrp is on the path segment that
intersects the obstacle, hence we selectwprp as the pointqm
in the middle of the segment that connectsqrp and a point
q′obs which is atmaxRange distance fromqobst. In Figure 5
(center), we find an example of replanning from a waypoint
after the collision detection (left).

3D Mapping
The environment for mapping and path planning is a3D
grid-map of cells which is run-time generated given the
robot pose and the3D point clouds extracted from the cam-
eras. We deploy the well known pin-hole camera model
(Hartley and Zisserman 2004). Our pose is either obtained
by using libviso2 (Geiger, Ziegler, and Stiller 2011) coupled
with a Kalman filter or, alternalively, by directly deploying
an optitrack motion capture system. Given the pose, the as-
sociated point cloud map should be suitably processed into a
3D occupancy grid. This is obtained by discretizing the vehi-
cle’s workspace with elementary cubes of equal size. In our
case, we employed a vehicle of50× 50× 20 cm hence, we
used cubes of10 cm. For each cube we stored: the number of
inliers (3D triangulated points) fell into the cube volume, the
last camera position which an inlier had been collected, and
the state of the cube. The number of inliers represents the
number of different points from which the same obstacle has
been detected. Each cell can be associated with one of the
following values:free, occupied, obstacle, target, ignored

68

or unknown. Initially each cube is set tofree. When a3D
point is detected to belong to a given cube, the value of the
corresponding cube is set tooccupied. When the number of
points inside a cube reaches a given treshold, the state is
set toobstacle. On the other hand, when a target is identi-
fied, the corresponding cube is set totarget. Moreover, from
each position that had generated a valid target view point,
all the cubes laying along the optical rays are set toignored.
For wide environments, a sparse representation of the occu-
pancy grid map is associated with a spatial/temporal vanish-
ing criterion. This determines whether an occupancy cube
is sill reliable or if it has to be discarded (depending on the
distance traveled by the vehicle or on the time last after its
previous update). In fact, due to the drift of the vehicle pose
estimation, obstacles which have been observed a long time
before or far from the current position cannot be considered
reliable anymore in the current map representation, therefore
they should be refreshed. With these solutions the reliabil-
ity and scalability of the map representation can be suitably
tuned.

Experimental Results
In this section, we present preliminary experimental results
on planning, replanning, and obstacle avoidance, both in
real-world scenarios and in simulated environments.

Real-world planning and execution.
Our architecture has been tested in a real scenario of dimen-
sion400× 400× 300 cm3 considering the two environments
depicted in Figure 7 (up and down). In the two testing sce-
narios, the task was the following: inspect a target point in
pose(380, 350, 50, 90) from the pose(40, 40, 50, 0) with max-
imum and minimum speed set at0.3m/s and0.1m/s re-
spectively. The obstacles are detected on the fly and this can
provoke task/path replanning, escape, or brake. For each sce-
nario, we executed each test10 times collecting mean, max,
min, and standard deviation (STD) of: time spent during
planning (Tp), time spent in replanning (Tr), number of re-
planning episodes (Nr), length of the executed path (Lp), and
total time for execution (including replanning time) (Te).
For computation and simulation we used an Intel Core Duo,
1.40GHz, 3GB ram, Ubuntu 10.04. The high-level architec-
ture was developed in ROS. As for 3D mapping, we used
cameras ueye with hardware synchronized images, com-
pressed on-board using atom1.6 GHz, and sent to a ground
station. The stereo images are streamed at around15 Hz at
the ground station. The vision algorithm can track around
120 image features correspondences on4 images working at
the streaming frequency. Each camera provides images with
resolution of752× 480 and an angle of view of around50◦.

Table 2 reports the results for the two scenarios (Test 1
and Test 2 in Figure 7). For both these settings, initially, the
obstacles are not visible, hence the generated plan is simple
and planning time is low (Figure 7 (left)). Once the obsta-
cles are discovered on the fly, replanning is needed to adjust
on-line the trajectory (i.e. without hovering during the re-
planning phase). Replanning and execution time are slightly

Figure 6:Replanning: generated and executed path (left) real plat-
form during plan execution (right).

higher in the first scenario which is more complex. Instead,
Tr seems negligible when compared with Te. The final tra-
jectory length (Te) is similar in both the settings and compa-
rable with the distance between the starting and target point,
hence the final trajectory seems not affected by the continu-
ous replanning process. In these tests, Tp and Tr are mainly
due to path and trajectory planning (task planning is negligi-
ble). We never experienced brake or escape episodes. Over-
all, the system task/path planning performance seems com-
patible with the operative scenario requirements.

Simulated planning and execution.
We tested our planning and execution system in simulated
environments. To test continuous replanning, we considered
a larger space of dimension100× 100× 50 m3 with 4 and9
obstacles (see Figure 7). To decouple replanning from map
bulding, we assumed a know map associated with a visi-
bility horizon (not visible obstacles are detected on the fly
causing replanning). For each test, the task was to inspect a
target point in pose(90, 90, 5, 90) starting fromhovering in
the pose(5, 5, 5, 0) (in meters); the robot maximum and min-
imum velocity was set at0.5m/s and0.1m/s respectively.
By changing the visibility horizon (green cells in Figure 7)
of the planner (15or 25 m) and the complexity of the envi-
ronment (4or 9 obstacles) we obtained4 scenarios. Table

Figure 7:Replanning: generated (left) and executed path (right).

2 collects means and STD of10 tests for each entry (time
and length are insec. andm, LL, HL, etc. are for Low com-
plexity and Low visibility, High complexity and Low visi-
bility). Here, we can see that Tp increases with the obstacles
(HL,HH) and decreases with short visibility (LL,HL). In-
deed, in these cases the planning problem is simpler. How-
ever, short visibility is associated with additional replanning
time which, in turn, decreases with the number of obstacles.
The lower the replanning time, the lower is the execution

69

Test 1 Test 2
Mean STD Max Min Mean STD Max Min

Tp 0.075 0.014 0.08 0.04 0.017 0.002 0.03 0.01
Tr 0.614 0.41 1.20 0.01 0.067 0.04 0.11 0.005
Te 60.5 10.12 75 42 49.9 8.18 60 40
Lp 14.4 1.54 18 12 13.18 1.11 15 11

Table 2:Planning and execution results (in seconds) in the real scenario.

Res/Env LL LH HL HH
Mean STD Mean STD Mean STD Mean STD

Tp 0.21 0.11 0.39 0.03 0.25 0.10 0.31 0.14
Tr 0.12 0.03 0.07 0.01 0.20 0.04 0.23 0.03
Te 308.39 3.1 211.88 2.4 718.57 5.2 720.45 7.6
Lp 79.09 13.76 78.04 9.63 86.79 12.65 85.24 13.12
Nr 0.9 0.21 0.3 0.12 3.4 1.71 2.5 1.10

Table 3:Planning and execution results(time in seconds, length in meters)

time and the shorter the executed path. A similar effect is
due to visibility: short visibility causes frequent replanning
events (Nr) and longer paths (Lp) and execution times (Te).
Furthermore, the variance is enhanced with short visibility
that enhances the uncertainty. In these tests, the task plan-
ning time is usually negligible (Tp and Tr mainly due to
path and trajectory). Also in this case, we never experienced
brakes or escapes.

Simulated and real inspection.
As for operations closer to the surface, we considered two
typical inspection scenarios: physical (Pi) and visual inspec-
tion (Vi). In both these cases the system has to move in a
pose which faces a vertical surface hovering at a close and
fixed distance (approach), in this case50 cm. As for Pi (see
Figure 8, left), the robot executes a docking maneuver (dock-
ing) and slides (keeping the contact) along a linear trajectory
(p-inspect) of225 cm. In the case of Vi, an inspection trajec-
tory (v-inspect) should be planned and executed. Here, the
goal is to scan a150 × 100 cm2 surface with step50 cm
distant50 cm from the wall (see Figure 8, right). In Tab. ,
we collect the results of10 tests in a simulated environment,
for each scenario considering planning time (Tp) divided in
trajectory (Tm) and path planning (Tpp) time (task planning
is negligible). For each test and scenario, both path and task
planning times are compatible with the operative scenario
requirements.

Figure 8:Physical inspection (left) and visual inspection (right)

We performed physical manipulation and visual inspec-
tion tasks also in a real environments (see Figure 9) obtain-

ing similar results for path and task planning. Currently, we
are carrying on additional experiments to better analyze the
overall system performance with the real platform (e.g. fail-
ures, recoveries, replanning time, execution time, etc.).

Figure 9:Physical inspection (up) and visual inspection (down)

Conclusions
Aerial Service Robotics is a challenging and novel applica-
tion for autonomous systems. The close and physical inter-
action with the environment and the frequent user interven-
tions requires a high-level control system which integrates
fast and reactive planning engines working at different lev-
els of abstraction and sensitive to low-level operative mode
constraints. The aim of this paper was to present the chal-
lenges of the ASV domain along with the solutions provided
within the AIRobot project. The proposed high-level system
combines hierarchical task decomposition, mixed-initiative
control, BDI execution, RRT path planning/replanning to
allow reactivity, flexibility, and sliding autonomy. We de-
scribed the system at work both in real and simulated en-
vironments providing preliminary results. Future work will
focus on additional real-world experiments and on the ex-
tension to multi-aerial vehicles (Marconi et al. 2012b).

Acknowledgments
The research leading to these results has been supported by
the AIRobots and SHERPA FP7 projects under grant agree-

70

Physical Inspection Visual Inspection
Mean STD Max Min Mean STD Max Min

Tp 0.798 0.012 0.019 0.009 0.734 0.47 1.25 0.42
Tm 0.324 0.17 1.07 0.12 0.329 0.22 0.57 0.3
Tpp 0.473 0.27 0.71 0.14 0.405 0.07 0.49 0.39

Table 4:Physical inspection and visual inspection

ments ICT-248669 and ICT-600958 respectively.

References
Eu collaborative project ict-248669, “airobots”,
www.airobots.eu.
Allen, J., and Ferguson, G. 2002. Human-machine col-
laborative planning. InNASA Workshop on Planning and
Scheduling for Space.
Bloesch, M.; Weiss, S.; Scaramuzza, D.; and Siegwart, R.
2010. Vision based mav navigation in unknown and unstruc-
tured environments. InICRA 2010, 21–28.
Doherty, P.; Granlund, G.; Kuchcinski, K.; S, E.; Nordberg,
K.; Skarman, E.; and Wiklund, J. 2000. The witas unmanned
aerial vehicle project. InIn Proceedings of the 14th Euro-
pean Conference on Artificial Intelligence, 747–755.
Doherty, P.; Kvarnstr̈om, J.; and Fredrik, H. 2009. A tem-
poral logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. InAAMAS, 332–377.
Finzi, A., and Orlandini, A. 2005. Human-robot interac-
tion through mixed-initiative planning for rescue and search
rovers. InAI*IA-05, 483–494.
Gancet, J.; Hattenberger, G.; Alami, R.; and Lacroix, S.
2005. Task planning and control for a multi-uav system:
architecture and algorithms. InIROS, 1017–1022.
Geiger, A.; Ziegler, J.; and Stiller, C. 2011. Stereoscan:
Dense 3d reconstruction in real-time. InIEEE Intelligent
Vehicles Symposium, 963–968.
Hartley, R., and Zisserman, A. 2004.Multiple View Geom-
etry in Computer Vision. 2nd ed. Cambridge U.K.: Cam-
bridge Univ. Press.
Hrabar, S. 2006. Vision-based 3d navigation for an au-
tonomous helicopter.
Ingrand, F.; Georgeff, M. P.; and Rao, A. S. 1992. An ar-
chitecture for real-time reasoning and system control.IEEE
Expert: Intelligent Systems and Their Applications34–44.
Lavalle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning.Computer Science Dept., Iowa
State University, Tech. Rep.
Macfarlane, S. E., and Croft, E. A. 2003. Jerk-bounded
manipulator trajectory planning: design for real-time appli-
cations.IEEE Transactions on Robotics19:42–52.
Marconi, L.; Basile, L.; Caprari, G.; Carloni, R.; Chiacchio,
P.; Huerzeler, C.; LIPPIELLO, V.; Naldi, R.; Janosch, N.;
Siciliano, B.; Stramigioli, S.; and Zwicker, E. 2012a. Aerial
service robotics: The airobots perspective. In2nd Interna-
tional Conference on Applied Robotics for the Power Indus-
try, Zurich, Switzerland.

Marconi, L.; Melchiorri, C.; Beetz, M.; Pangercic, D.;
Siegwart, R.; Leutenegger, S.; Carloni, R.; Stramigioli, S.;
Bruyninckx, H.; Doherty, P.; Kleiner, A.; Lippiello, V.;
Finzi, A.; Siciliano, B.; Sala, A.; and Tomatis, N. 2012b.
The sherpa project: Smart collaboration between humans
and ground-aerial robots for improving rescuing activities
in alpine environments. InProc. of the IEEE Int. Workshop
on Safety, Security and Rescue Robotics (SSRR).
Naldi, R.; Marconi, M.; and Gentili, L. 2011. Modelling and
control of a flying robot interacting with the environment.
Journal of IFAC4(12):2571–2583.
Rao, A. S., and Georgeff, M. P. 1991. Deliberation and its
role in the formation of intentions. InUAI, 300–307.
Stentz, A. 1995. Optimal and efficient path planning for
unknown and dynamic environments.Int. J. of Robotics and
Automation10(3):89–100.

71

Optimization of Aerial Surveys using an Algorithm Inspired in Musicians

Improvisation

João Valente, Antonio Barrientos and Jaime Del Cerro
Robotics & Cybernetics Research Group (CAR UPM-CSIC)

joao.valente@upm.es

Abstract
This paper tackles the problem of computing safe coverage
trajectories for a fleet of unmanned aerial vehicles (UAVs)
on large areas. The solution proposed is based on a
evolutionary optimization algorithm denoted as Harmony
Search (HS). The resulting algorithm has been entitled as m-
CPP (Meta-heuristic Coverage Path Planning) algorithm.
Results obtained by applying this approach have been
compared with former heuristic-based methods. Finally,
safety restrictions have been applied to allow near optimal
and safe coverage flights cooperatively. Complete safe
coverage missions have been planned in order to be
performed by teams of quad-rotors by applying the
proposed approach.

 Introduction

Currently, small Unmanned Aerial Vehicles (UAV) play
an important role both in military and civil missions. Due
to the limited autonomy of these small vehicles, when the
area to cover is large, several robots can be used working
as teams, performing their mission in a collaborative way.

These teams of UAV’s have become emerging
technologies for multipurpose remote sensing, i.e. remote
imagery, where high-resolution images of the overall area
are required. Some real applications of these techniques are
Precision Agriculture (PA) and Critical Infrastructure
Protection (CIP).

Therefore, the problem addressed in this paper can be
summarized as the problem of finding a set of trajectories
for flying robots that completely survey an area in order to
build high-resolution mosaics with the minimum cost in a
safe way.

Previous work shows that mission completion time
decreases if the number of heading movements during area
survey is reduced [1]. In addition to this, a reusable aerial
planner has to deal with pre-defined mission setup
positions, forbidden or avoidable areas and different robot
capabilities. Taking into account these considerations,
aerial coverage path-planning problem (ACPP) applied to a

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

team of quad-rotors endowed with digital cameras can be
literally defined as: To compute a complete aerial coverage
trajectory for each quad-rotor with the minimum number of
heading movements (i.e. changes of direction).

The planner has to generate trajectories in order to fly
over all the required points in the workspace just once as
well as deal with additional restrictions such as predefined
initial and goal positions. Additionally, some details have
to be taken in consideration for solving the problem.
Firstly, each point in the environment corresponds to a
way-point (WP) where a picture has to be taken by using
the on-board camera.

In order to solve this problem, a CPP algorithm based on
evolutionary strategies is proposed. The algorithm named
m-CPP is based on a quite novel technique known as
Harmony Search (HS). The motivations behind this choice
are the simplicity of the technique and the rapid replication
of the findings.

Next section enhances the problem background and
reviews some methodologies previously applied. Next the
HS algorithm is explained. After that the m-CPP algorithm
is introduced. In section Results a comparison between
previous results and obtained by applying the m-CPP
algorithm is summarized. Finally conclusion is presented.

Background

Covering task for mobile robots has many different
meanings. Nevertheless, it usually refers to a task in which
a robot endowed with a specific sensor is able to cover
(sense) partially or completely an area in an optimal way.
General coverage approaches can be found in [2, 3].

Coverage Path Planning (CPP) is a sub-field of motion
planning that addresses the problem of finding a robot path
within the workspace that allows performing full
environment coverage by using an end-effector that can be
a sensor, an actuator or even both.

CPP algorithms have been developed mostly for ground
vehicles [4, 5]. On the other hand, regarding UAVs, fewer

72

approaches have been presented so far. However, this type
of planning has been recently considered in [6, 7, 8].

In [6] an area decomposition and coverage approach
with fixed-wing aerial vehicles is presented. The problem
presented in this work is different from previous one
mainly due to the following reasons: 1) It is applied to be
used with a team of vehicles instead of only one; 2) It takes
more common restrictions into consideration; and 3) It also
considers forbidden or undesirable areas in order to avoid
them.

This problem was already addressed by Valente et al. [7]
where a solution based on heuristic and non heuristic
approaches was proposed by using computer graphic
techniques and a wave-front planner algorithm with a
backtracking procedure.

Although the coverage strategies previously mentioned
were reliable and admissible, safety has to be taken into
consideration during the mission generation. Thus, it is
required to reach complete area coverage and, at the same
time, to ensure the vehicle’s safety prevails. Risk analysis
study reported in [9] shown that security borders
between robots would dismiss if the workspace agree
with some conditions (e.g. enough distance between
way-points). The aforementioned report is focus on
providing a solution for the full simultaneous coverage
problem taking into account the safety operation of the
drones.

Following the same research line, a novel ACPP

algorithm is proposed in the following sections in order to
improve the results previously obtained.

Harmony Search Algorithm

The HS algorithm is a meta-heuristic algorithm based on
musician’s improvisation proposed in [10]. It is also
considered as a member of the evolutionary algorithms
family. This technique has already been applied to solve
many optimizations problems in different fields, e.g.,
telecommunications [11, 12], economy [13], computer
vision [14], etc.

Let us imagine a group of Jazz musicians, each one
playing a different instrument. They start to pitch some
notes in order to compose a new song. As they search for a
sequence of musical notes that provides a good musical
harmony, the harmonies achieved up to the moment are
kept in mind. If a new harmony sounds better than a
previously one, the new harmony will replace it. From an
optimization point of view, each player represents a
variable and each pitch, a candidate value.

The main body of the algorithm is the Harmony
Memory (HM) matrix, defined in (1), where rows are
candidate solutions vectors, and columns decision

variables. The last column of the HM matrix is the cost
function value. The main parameters of the HS algorithm
are: Harmony Memory Size (HMS), Harmony Memory
Considering Rate (HMCR), and Pitch Adjustment Rate
(PAR). HMS is the number of rows or candidate solutions
considered. HMCR is the probability of choosing a
variable value from the HM. Finally; a variable value is
adjusted (switched by a neighboring value) with
probability PAR where uniform distribution U(0,1) is
commonly used.

HM = � X1
1 � XN

1� � �
X1

{HMS} � XN
{HMS}

J(X1)�

J(X{HMS})

� (1)

The algorithm can be structured in four steps: Step 1,
HM initialization; Step 2, improvisation of new harmony
vector X'={X'

1,…, X'
N} from the HM (with or without

PAR) or by randomness; Step 3, Harmony replacement if
the new harmony turns out to be better than the worst; Step
4, Checking if stop criterion has been reached (e.g. number
of iterations, cost function); if not, to go to Step 2, else
return the best solution.

The m-CPP algorithm

A step-by-step procedure of the algorithm as well as some
definitions is described in this section.

Definitions
Let’s consider �	
2, a sub-area from the global area � to
be covered. It can be written as, � �
 ���� .

Let � be an admissible coverage path that exists for each
sub-area, expressed as �� 	 �, � �. If � is a set of points,
herein denoted as way-points �, it can be written that � �
 ���� . Considering a typical coverage mission, a
specific task has to be performed (e.g. taking a picture or
taking some data from onboard sensors) in each single
way-point.

The scope of the action (e.g. photograph) is defined by a
cell �. A set of cells is defined by � �
 ���� . In this way, it
can be said that, � is an admissible coverage trajectory, if:

1. The number of elements of set � is equal to the
number of elements of set �

2. There are no duplicated elements in the set,
therefore: �� � �, �� 	 �

3. � is subject to a certain � order
The set of coverage trajectories � that cover � is denoted
by �, such that, � �
 ���� , and the set of regular
adjacent cells that map the overall area � is given by � �
 ���� .

As previously mentioned, the variable of interest to
minimize is the number of heading movements. A heading

73

movement, is referred to a displacement from the UAV
around it center of mass (also known by heading
movement). Considering regular cells and bearing in mind
do not visit a waypoint twice, these rotations have a lower
and an upper bound of 45º and 135º respectively (absolute
value). The cost function that specifies this constraint can
be written as:

 �� � �� ∑ "#$%& '%(�) �*, + 	 $135°, 90°, 45°, 0°&

Where "# are weights defined for angles + as follow,
 "3�45° 6 "378° 6 "395° 6 "38°

and �: are weights,
 �* 6 ��, ��,* 	

On the other hand, as a primary requirement, the
coverage mission has to be accomplished in a safe way.
Therefore, an effort was made to introduce another
restriction in order to avoid simultaneous adjacent
positions during the mission. This means that two or more
UAVs are not allowed to stay in adjacent positions at any
time (considering homogenous systems, with the same
features and capabilities). Fig. 1 illustrates this situation.

Figure 1. Three quad-rotors flying over a decomposed area. Red
and green trajectories are in conflict, due to adjacency. A safe

trajectory is shown in blue.

The cost function has been defined by using a Boolean-
type function and a real number, and is given by,
 J2 � J2' K3,

where K4 is a weighting parameter,

 K4 66 K�, K*, K4 	

and,
 J*? � @� A @* … @:C� A @: = D @%:%(�

where @ denotes a conflict alarm. If two or more UAVs
are nearby each other (in adjacent cells), this alarm is
activated. Finally, the final cost function can be written as,
 � � ��) �* (2)

Since the new cost function considers the position of the
all drones at any time, some important changes in the
computational procedure have been required. It should be
highlighted that previous approach do not required
considering time as a variable. Thus, simple serial
computation was enough to execute the algorithm. By the
other hand, the requirement of considering the position of
all drones before performing the improvisation step, make
parallel computation necessary.

From HS to m-CPP
As referred in Section 3, HM is the main body of the HS
algorithm. Candidate solutions are herein stored,
represented by a vector of dimension N, made up of
decision variables from the optimization problem. Each
decision variable addresses a cell to be visited by the aerial
robot, corresponding to a way-point coordinate E%, such
that E% 	 � with i = 1, .., n, where n = dim(�).

Fig. 2 shows how the variables are managed in the
problem by considering HM with HMS=2. The dotted lines
are the path transverse by the quad-rotors, which start from
the cell with index 1 to the cell with index 4 in both cases.

 X$�& � G1, 2, 6, 5, 9, 10, 7, 3, 8, 4K X$*& � G1, 2, 3, 6, 5, 9, 10, 7, 8, 4K
Figure 2. HM vectors represented over a sample field.

Initialization
The first step of the HS algorithm is the initialization. In
the first iteration, the Harmony vectors (i.e. solutions) are
usually generated through a random process. As can be
observed from the aerial CPP problem, the flight time
represents the main constraint of the problem, which
causes other constraints to arise, such as the number of
revisited places in the environment. It is obvious that by
reducing the number of revisited cells in the environment,
the path will also shorten, and consequently, the coverage
time.

As a result, a HM matrix with HMS permutation vectors
with N elements without repetitions is initially generated
randomly.

74

Improvisation
An iterative process called improvisation starts after
generating the initial HM by using the method previously
described. In order to ensure the Harmony vectors
permutation, the new vector must be carefully obtained by
slightly changing the conventional HS algorithm
mechanism.

Herein, each element of the new vector X� is either
selected from the HM or the entire possible range of
values. According to the previously mentioned probability
HMCR. The mechanism for selecting each probability will
be explained in detailed in following sections.

In the conventional HS algorithm, a new X�L value is
randomly chosen with 1-HMCR probability from the
possible range of values. On the other hand, an X�L value is
typically chosen from the ith column of the HM with
HMCR probability. In the present approach, the same
reasoning is applied. However, the trajectory continuity
must be ensured, which means that jumps over the cells are
not allowed.

The problem can be solved by introducing some
changes: a new X�L value is randomly chosen with 1-
HCMR probability from the set of the nearest neighbors of
that decision variable (i.e. all free cells adjacent to the cell
addressed by the decision variable). If the new value is
chosen from the entire possible range of values, the
trajectory continuity in not ensured. Moreover, a random
value from the ith column is selected according to the
unvisited neighbor cells with HMCR probability. If there
are not unvisited neighbor cells to choose from, a random
neighbor in the HM is chosen (see Eq. 3). It should be
notice that each node can or cannot have neighboring, the
set that contains all siblings is denoted by S, such that,
 M � N OP	Q

X?L R S X�L 	 TSL 	 XL �s 	 XLSL 	 XL Ws 	 XL X , Y. � Z[\]
X�L 	 SL, Y. � 1 ^ HMCRX (3)

In addition, each time the probability falls on HMCR, a

new pitch adjusted rate (PAR) is applied to the decision
variable. Else the decision variable remains unchanged (1-
PAR). Usually, the adjustment is based on the
displacement of K neighboring values in the candidate set
of values. In such case, the pitch adjustment is the
displacement of one neighbor within the neighborhood, by
adding or subtracting a unit in the admissible neighbors set
(see Eq. 4).

 c??% R Tc�% 3 1, Y. � de] c�% , Y. � 1 ^ de]X (4)

Update
Every time that a new c′% vector is created, the Harmony
vector cost is computed by using the cost function defined
in Equation 1. If the cost computed is better than the worst
Harmony vector cost in the HM, the new vector will be
added to the HM, and consequently, the Harmony vector
with the worst cost will be discarded from the HM matrix.
If not, the HM will remain unchanged.

Finalization Criterion
As in other optimization algorithms, the role of the
finalization criterion is to stop the optimization process
when a determinate condition is achieved.

Since the goal is to improve the results obtained by
applying the wave-front planner with backtracking
approach, stop criterion can be set when reaching a
reasonable number of turns, or even a determinate number
of iterations.

The stop criterion was initially set in order to stop when
the numbers of turns were lower than resulting previous
work. After that, the number of iterations was set to 1000.
This iteration upper-bound was obtained by trial, and it
was high enough to optimize all the aerial trajectories
presented in the next Section.

Results

The new algorithm described in the previous Section has
been validated by comparison with the results obtained in
[7]. Since the problem deals with the same constraints,
variables and workspace, this is the best case study to
quantify the improvements in comparison to the method
previously presented.

The workspace was based on a rectangular agricultural
field with an irrigation system in the middle that is
considered as no interest area. An understandable real
scenario is shown in Fig. 3.

However, the same methodology could be applied to the
surveillance of a CIP area. A feasible example is a nuclear
plant. Where the cooling tower area might be understand as
an area not to cover.

75

Figure 3. Agricultural field locate in Madrid, Spain.

Moreover, since the mission has to be performed by 3
drones, each color stroked corresponds to a sub-area from
the previous decomposed workspace [7]. The thin red lines
map the previous covered trajectories.

Figure 4. Results previously obtained in [7]. Area 1 (green); Area
2 (blue); Area 3 (yellow).

The new coverage trajectories were computed
considering the same restrictions, mainly the assigned
discretized sub-area and the predefined starting and ending
positions. The m-CPP problem has made possible to
reduce the number of heading movements for each single
coverage trajectory above the same principles shown in
shown in Fig. 5.

Figure 5. Results obtained with m-cpp method. The areas
numeration the same of Fig. 3.

Table I compares both methods regarding to the number
of heading movements to carry out the complete coverage
trajectory. It should be highlighted that the improvement
with respect to the previous method is significant. This is
mainly due to the results obtained in Area 2. In this
particular case, the number of times that the quad-rotor has
to change its direction during a flight was reduced by half.

 Area 1 Area 2 Area 3

Approach in [5] 15 17 16

m-CPP 14 7 14

OR (%) 6.7 59 12.5

Table I. Number of turns (i.e. heading movements) obtained after
computing the coverage trajectories in each sub-area with both
methods. The optimization rate (OR) enhances the improvement

relative to the previous method.

The m-CPP algorithm not only allows optimizing the
solution but also shows a rapid evolution during the
optimization process. This outstanding point could be
better appreciated in Fig. 6.

Finally, the main goal was to achieve a complete
(considering no borders) and safe coverage. Therefore, the
safety borders were removed, as proposed in [9].

Under these conditions, a complete coverage trajectory
was computed with m-cpp in a safe mode, as shown in Fig.
7.

Figure 6. Number iterations versus cost, regarding to results shown in Fig. 5.

76

Figure 7. Complete safe coverage with m-cpp.

The last results obtained are summarized in Table II.
The three complete coverage trajectories were computed in
a Intel's Core 2 Duo at 2.26GHz, and 4GB of memory.

Although computing time is not a hard priority in offline
mission planner, the maximum computing time achieved
was 2 min approximately, which can be considered as
negligible according to the problem complexity, number of
nodes, etc.

Concerning to the number of turns - and this is the main
cost during the flight - it should be notice that in Areas 1
and 3, this cost was minimized. On the other hand, in Area
2 the number of turn was increased. These coverage cost
not depend from the algorithm at all, but from the sub-
area/area configuration, shape, etc.

Withal, the total number of turns that the fleet has to
perform is 35, with or without safety borders. Thus, the
flying cost remains constant. As expected, in this last
coverage mission, a full coverage - no cells are left to
cover - was obtained in a safe way, which makes the
mission optimal in terms of coverage.

 Area 1 Area 2 Area 3

Minimum Turns 13 9 13

Nodes 31 29 32

Time (s) 117 109 51

Table II. Results obtained from the complete coverage with three
UAVs.

Conclusions

A novel algorithm based on a computational technique
known as Harmony Search has been presented. Results
have shown that it is adequate for solving Coverage Path
planning problem with aerial vehicles obtaining better
result that previous approaches.

The enhancements introduced in the algorithm allows
considering time-sealed restrictions such as the position of
all the drones with a very reasonable performance.

In opposite to previous approach, the solution of the
algorithm can be considered as a safe flight plan for
UAV’s, a basic requirement in any application is.

A weakness of the algorithm is that the computation
time highly grows with the workspace dimension; some
improvements in parallel computing should be introduced
to minimize this effect.

Acknowledgments

This work have been supported by the Robotics and
Cybernetics Research Group at Technique University of
Madrid (Spain), and funded under the projects 'ROTOS:
Multi-Robot system for outdoor infrastructures protection',
sponsored by Spain Ministry of Education and Science
(DPI2010-17998), and 'Robot Fleets for Highly Effective
Agriculture and Forestry Management', sponsored by the
European Commission's Seventh Framework Programme
(NMP-CP-IP 245986-2 RHEA). The authors want to thank
all the project partners as well.

References
[1] João Valente, Antonio Barrientos, and Jaime Del Cerro.
Coverage path planning to survey a large outdoor areas with
aerial robots: A comprehensive analysis. In Daisuke Chugo and
Sho Yokota (eds.), Introduction to Modern Robotics II, chapter
12. iConcept Press, Annerley, Australia, 2011.

[2] L. Jiao and Z. Tang, A Visibility-based Algorithm for
Multi-robot Boundary Coverage, International Journal of
Advanced Robotic Systems, Vol. 5, No. 1, pp. 63-68, 2008.

[3] M. Ozkan, G. Kirlik, O. Parlaktuna, A. Yufka and A.
Yazici, A Multi-Robot Control Architecture for Fault-Tolerant
Sensor-Based Coverage, International Journal of Advanced
Robotic Systems, Vol. 7, No. 1, pp. 67-74, 2010.

[4] Choset, H. Coverage for robotics - a survey of recent
results, Annals of Mathematics and Artificial Intelligence, Vol.
31, No.1-4, pp. 113-126, 2001.

[5] Marija Ðakulovic, Ivan Petrovic, Complete coverage path
planning of mobile robots for humanitarian demining, Industrial
Robot: An International Journal, Vol. 39, Issue 5, 2012.

[6] Y. Li, H. Chen, M. Joo Er, X. Wang, Coverage path
planning for UAVs based on enhanced exact cellular
decomposition method, Mechatronics, Vol. 21, Issue 5, pp. 876-
885, 2011.

[7] J. Valente, A. Barrientos, J. Del Cerro, C. Rossi, J.
Colorado, D. Sanz, M. Garzon, Multi-robot visual coverage path
planning: Geometrical metamorphosis of the workspace through
raster graphics based approaches, in: B. Murgante, O. Gervasi, A.
Iglesias, D. Taniar, B. Apduhan (Eds.), Computational Science
and Its Applications – ICCS 2011, Vol. 6784 of Lecture Notes in
Computer Science, Springer Berlin/Heidelberg, pp. 58-73, 2011.

77

[8] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C.
Rossi, D. Sanz, J. Valente, Aerial remote sensing in agriculture:
A practical approach to area coverage and path planning for fleets
of mini aerial robots, Journal of Field Robotics, Vol. 28, issue 5,
pp. 667-689, 2011.

[9] J. Valente, A. Barrientos, J. del Cerro, C. Rossi, D. Sanz,
and M. Garzón, C. Rossi, Practical issues and improvements in
farmland coverage with aerial vehicles, First Workshop on
Research, Development and Education on Unmanned Aerial
Systems (RED-UAS 2011), Seville, Spain, November 2011.

[10] Z. W. Geem, J. H. Kim, G. Loganathan, A new heuristic
optimization algorithm: Harmony search, Simulation, Vol. 76,
no.2, pp. 60–68, 2001.

[11] I. Landa-Torres, S. Gil-Lopez, S. Salcedo-Sanz, J. Del Ser,
J. A. Portilla-Figueras, A Novel Grouping Harmony Search
Algorithm for the Multiple-Type Access Node Location Problem,
Expert Systems with Applications, vol. 39, no. 5, pp. 5262–5270,
2012.

[12] J. Del Ser, M. Matinmikko, S. Gil-Lopez and M. Mustonen,
Centralized and Distributed Spectrum Channel Assignment in
Cognitive Wireless Networks: A Harmony Search Approach,
Applied Soft Computing, vol. 12, no. 2, pp. 921-930, 2012.

[13] I. Landa-Torres, E. G. Ortiz-Garcia, S. Salcedo-Sanz, M. J.
Segovia, S. Gil-Lopez, M. Miranda, J. M. Leiva-Murillo, J. Del
Ser, Evaluating the Internationalization Success of Companies
using a Hybrid Grouping Harmony Search – Extreme Learning
Machine Approach, IEEE Journal on Selected Topics in Signal
Processing, Vol. PP., N. 99 (early access), 2012.

[14] J. Fourie, S. Mills, R. Green, Harmony filter: A robust
visual tracking system using the improved harmony search
algorithm, Image and Vision Computing, Vol. 28, Issue 12, 2010.

78

Multi-Robot Exploration in the Polygonal Domain

Tomáš Juchelka, Miroslav Kulich, and Libor Přeučil
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

Technicka 2, 166 27 Prague
Czech Republic

Abstract

This paper addresses the problem of multi-robot explo-
ration, where the particular robots are equipped with
range sensors (e.g. laser range finders). Contrary to the
majority of current methods, the presented approach
uses a polygonal representation of the explored envi-
ronment since it is memory effective and planning al-
gorithms are fast on it. The approach is based on the
Vatti algorithm for polygon clipping which is modified
in order to store and manage information relevant to the
exploration process. Moreover, several state-of-the-art
exploration strategies were implemented for the polyg-
onal representation and the developed framework was
used to quantitatively compare and to evaluate the im-
plemented strategies in various environments.

1 Introduction
Exploration of an unknown environment by a team of mo-
bile robots is a fundamental problem in mobile robotics as
it consists of standard tasks being studied by the robotic
community – from localization and mapping, motion and
path planning to high-level planing, cooperation, coordina-
tion, and communication. In this task, mobile robots are au-
tonomously driven according to acquired sensory informa-
tion in order to build a map of the environment. The ex-
ploration algorithm can be defined as an iterative procedure
consisting of model updating with newly measured sensory
data, selection of a new goal for each robot based on the
current knowledge of the environment, and subsequent nav-
igation to this goal. A natural condition is to perform the ex-
ploration with a minimal usage of resources, e.g. trajectory
length, time of exploration, or energy consumption.

In this paper, several assumption are made in order to sim-
plify the problem and to focus on representation of the actual
knowledge about the environment in which the robots oper-
ate. We particularly assume that positions of the robots are
known with enough precision, the robots are equipped with
laser range finders, operate in 2D, and the system is central-
ized, i.e. the robots share a common map and there is a cen-
tral element assigning goals to the particular robots. More-
over, we do not solve communication problems. Instead, we
suppose that communication between the robots and the cen-
tral element is always established and faultless.

The most popular approach to both single-robot and

multi-robot exploration is frontier-based exploration intro-
duced by Yamauchi (Yamauchi 1998) and further extended
by many researchers (Wurm, Stachniss, and Burgard 2008;
Burgard et al. 2005; Amigoni 2008; Holz et al. 2010). The
approach is based on occupancy grids where the working
space is divided into small cells and each cell stores infor-
mation about the corresponding piece of the environment in
the form of a probabilistic estimate of its state.

Several authors do not build an exact metric map. Instead,
they incrementally create topological information about the
space in the form of a graph. Frontier-based modification of
Sensor-based Random Tree, a probabilistic strategy, which
represents a roadmap of the explored area with an associ-
ated safe region is presented in (Freda and Oriolo April).
The approach has been generalized in (Franchi et al. April),
where Sensor-based Random Graph is constructed. Feature-
based map is used in (Newman, Bosse, and Leonard Sept).
Moreover, a free space is represented by a set of so-called
markers, which are connected based on visibility constrain.

Combination of metric (in the form of occupancy grid)
and topological maps is presented in (Poncela et al. 2002).
The metric map is built first, while a hierarchical structure
is created over it leading to topological map construction.
The opposite approach (Spatial Semantic Hierarchy) defines
distinctive places and paths in order to build a topological
description, while geometric knowledge is assimilated onto
the elements of this description (Kuipers and Byun 1991).

(Shen, Michael, and Kumar May) propose a stochastic
differential equation-based algorithm. They use a system of
particles with Newtonian dynamics to determine regions for
further exploration in 3D for unmanned aerial vehicle.

Also, exploration based on a polygonal representation
is not new, although it is used for a single robot only.
(González-Baños and Latombe 2002) introduce a concept of
a Safe Region, the largest region guaranteed to be obstacle-
free given the history of sensor readings. A map is iteratively
built by executing union operations over successive safe re-
gions. (Dakulović, Ileš, and Petrović 2011) extends Ekman’s
approach (Ekman, Torne, and Stromberg Apr). For each
scan, a polygon is created using line-fitting on scan points,
then Vatti’s algorithm (Vatti 1992) is used to compose partic-
ular polygons. However, quantitative evaluation and perfor-
mance comparison are missing in these papers, they present
only few pictures with obtained polygonal maps.

79

The presented general framework for multi-robot explo-
ration based on a polygonal representation of the operating
environment brings the following contributions:
• To the best of authors’ knowledge, there is no other ex-

ploration system that builds and uses a polygonal repre-
sentation for multiple robots.

• Several multi-robot exploration strategies have been im-
plemented within the presented framework. This shows
that existing strategies designed for occupancy grids can
be adopted for a polygonal representation in a straightfor-
ward way.

• The implementation of several strategies within an uni-
fying framework allowed us to perform a comprehensive
evaluation and comparison of the strategies in various en-
vironments and present quantitative results of this com-
parison.
The rest of the paper is organized as follows. The prob-

lem definition is presented in Section 2, while the approach
itself is introduced in Section 3. The implemented strate-
gies are described in Section 4. Evaluation of the results and
discussions are presented in Section 5. Finally, Section 6 is
dedicated to concluding remarks.

2 Problem definition
Exploration is the process in which robots autonomously op-
erate in an unknown environment with the aim to built a
map of it. The map is built incrementally as actual sensor
measurements are gathered and it serves as a model of the
environment for further exploration steps.

The exploration algorithm consists of several steps that
are repeated until some unexplored area remain. The pro-
cess starts with reading actual sensor information by indi-
vidual robots. After some data processing, the existing map
is updated with this information. New goal candidates are
then determined and goals for particular robots are assigned
using a defined cost function. This assignment is called ex-
ploration strategy and can be formalized as follows.

Let the current n goals be located at positions G =
{g1, . . . , gn} and the current robot poses be R =
{r1, . . . , rm}. The problem is to determine a goal g ∈ G
for each robot r ∈ R that will minimize the total time spent
(or the maximal traveled distance) by individual robots to
explore the whole environment.

Having assigned the goals to the robots, the shortest path
from the robots to the goals are found. Finally, the robots are
navigated along the paths. The whole exploration process is
summarized in Algorithm 1.

while unexplored areas exist do
read current sensor information;
update map with the obtained data;
determine new goal candidates;
assign the goals to the robots;
plan paths for the robots;
move the robots towards the goals;

Algorithm 1: The exploration algorithm

In this paper, we follow Yamauchi’s frontier based ap-

proach (Yamauchi 1998), which assumes that the next best
view (goal) lies on the border between free and unexplored
areas (this border is called frontier).

3 Polygonal domain
In the presented approach, the information about the envi-
ronment is approximated by a polygon with holes (i.e., the
outer polygon representing a border of the working area and
containing obstacles – holes). This polygon P is, similarly
to (Dakulović, Ileš, and Petrović 2011), incrementally cre-
ated as a union of polygons Pi representing sensor measure-
ments (scans) taken during the mission: P = ∪ti=0Pi, where
t is the actual time.

The particular polygon Pi is created from a range dataRi

that are typically represented as a vector of points. This is
a standard task and many approaches for polygon building
from sensory data have been developed. The combination of
three algorithms is used:
• Successive Edge Following (Siadat et al. 1997) splits scan

data into clusters representing particular objects,
• Ramer–Douglas–Peucker algorithm (Hershberger and

Snoeyink 1992) smooths objects’ boundaries into piece-
wise linear curves (polylines),

• Least Squares Fit finds parameters of lines to best fit the
scan data.

Finally, the position of the sensor is added between the first
and the last point and successive polylines are connected.
The resulting polygon represents a free space as detected
by the measurement. We distinguish between two types of
edges: those representing an obstacle and those that were
added in the last step, which represent frontiers.

A

B

C

D

E

F

G

H

I

scan beam

Figure 1: Vatti’s representation of a polygon. The vertices
A,B,C,D form the right bound and the vertices A,I,H,G form
the left bound. The vertex A is the local minimum and the
vertex D is the local maximum.

The union of polygons obtained from different mea-
surement poses can be computed by Vatti clipping algo-
rithm (Vatti 1992)1. The algorithm can handle large sets of

1In our implementation, we use the Clipper library (Johnson
2012), which is an open-source polygon clipping library based on
Vatti clipping algorithm. The library performs the boolean clipping
operations - intersection, union, difference, and XOR. Moreover, it
performs polygon offsetting.

80

polygons, polygons with holes, and self-intersecting poly-
gons. On the other hand, adding information about edge type
is not straightforward since this information has to be pre-
served by clipping operations.

The Vatti algorithm processes both involved polygons by
a sweep line starting at the lowermost vertex and going up-
wards passing through all vertices of the polygons. Bounds
— sequences of consecutive edges starting at a local mini-
mum and ending at a local maximum — are formed during
this process. Left and right bounds are distinguished with re-
spect to their positions to the polygon’s interior. A polygon
described with this notation is shown in Fig. 1

Modifications of clipping
The straightforward approach how to add and preserve infor-
mation about the edge type lies in modifications of specific
parts of the Vatti algorithm. In this case, information about
the edge type is stored in vertices adjacent to it. Unfortu-
nately, this approach fails. One of the main reasons is that a
relation between output vertices and the input edges can not
be determined easily. For example, if two different bounds
share their local minimum, a new vertex is added into the
output polygon. There is no guarantee which bound the al-
gorithm takes first. When the second bound is processed, its
vertex is skipped, because it was already added. The exam-
ple situation is illustrated in Fig. 2, where vmin is the local
minimum which is added to the output either in processing
edges e1 and e2 or e3 and e4. Because the first pair of edges
is a frontier, while the second one is not, the parameters of
the added vertex may be different.

vmin

e1

e2
e3

e4

Figure 2: Problem in a local minimum.
Our approach post-processes edges of the output polygon,

compares them with edges of the input polygons and assigns
them the correct type. The comparison of each output edge
is made by computing a penalty function for all edges in the
input polygons. The penalty value can be expressed as the
sum of all the distances depicted in Fig. 3.

P = p1 + p2 + |d1|+ |d2| (1)

The distances p1,p2 are the perpendicular distances from
vertices of eorig to eout and d1,d2 are differences in y-axis.
Notice that the distance d1 is considered only if the bottom
vertex of eout has lower y-coordinate than the bottom ver-
tex of eorig and the distance d2 is considered only if the top
vertex of eout has higher y-coordinate than the top vertex
of eorig. The best input edge, i.e., the edge with the lowest

d1

d2

p1

p2

eorig

eout

Figure 3: Comparison of edges.

penalty, is considered as correct and the information from
the found input edge is copied into the output edge.

This process is much more computationally complex than
the clipping algorithm itself. From the knowledge about the
clipping algorithm it is possible to do some simplifications
that speed up the matching. The clipping algorithm creates
the bounds with the edges in a bottom-up fashion starting at
the local minimum. The most important fact is that the edges
are ordered by y-coordinate. The bounds are also ordered by
y-coordinate of their local minimum. These internal struc-
tures can be used instead of the original polygons. The edges
of the input polygons are processed based on their order in
bounds while the following rules are applied:
• The bounds with y-coordinate of its local minimum

higher than y-coordinate of the top vertex of the output
edge can be completely skipped.

• If y-coordinate of the bottom vertex of the edge from the
bound is higher than the top vertex of the output edge then
the rest of one bound can be skipped.

• If the penalty value is zero then skip further comparison
of the output edge.

These criteria improve the speed of the algorithm signifi-
cantly. Fig. 4 shows how the simplifications affect the al-
gorithm performance. Although the modifications even with
simplifications slow-down the clipping, the approach can be
applied on real problems. For example, the biggest map used
in the experiments (Hospital section map) contains approxi-
mately 1300 vertices and although the clipping with the ac-
celerated modifications is approximately two times slower
than the original clipping algorithm, it takes few millisec-
onds.

Polygon offsetting
The map created by the clipping algorithm is useful for
path planning for a point-robot only. If a robot is approx-
imated by a disk, the map (i.e., each obstacle) has to be
enlarged by constructing the Minkowski sum of the map
with this disk. This can be done by polygon offsetting op-
eration. Management of the edge type is similar to the clip-
ping process. Notice that enlarging can lead to intersecting
or self-intersecting polygons and therefore the same post-
processing as for polygon clipping is used.

Map representation
It is possible to maintain the knowledge about the environ-
ment as the all-in-one map, but this is not robust. Both data

81

 0

 50

 100

 150

 200

 250

 300

 350

 400

1,
00

0

2,
00

0

3,
00

0

4,
00

0

5,
00

0

E
x

ec
u

ti
o

n
 t

im
e

(m
il

is
ec

o
n

d
s)

Vertex count

Algorithm performance

Clipping
Clipping with the modifications
Clipping with the modifications and acceleration

Figure 4: Performance of the modified algorithm.

from a laser range finder and odometry can be noisy, which
causes that some frontiers may be generated nearby or in-
side obstacles. The more robust approach is to represent the
maps of a free-space and obstacles separately. Whenever a
new scan is added into the map it is added into the free-space
map as it is. The scan is next checked whether it contains ob-
stacles. If so, the obstacles are offset (proportionally to the
map size and noise) and added into the obstacle map.

Before the map is used for planning, both maps are tem-
porarily combined together into a single map. The modified
clipping is performed here and the resulting map contains
the information about frontiers. If the resulting edge comes
from the free-space map it is considered as a frontier and it
is marked as an obstacle otherwise.

The created map contains a large number of vertices.
Ramer–Douglas–Peucker algorithm is thus used after each
clipping or offsetting in order to reduce this number.

The map is used for goal candidates selection, planning,
and evaluation of the candidates in each exploration step.
The selection process determines the candidates so that they
lie on frontiers, the distance of a candidate to its neighbors
is twice a sensor range, and all frontiers are inside the union
of circles with centers in the candidates and radius equal to
the sensor range. This guaranties that all frontiers will be
explored (i.e., it will be detected whether a frontier lies in a
free space or in any obstacle) after visiting all candidates.

Planning consists of two steps: a visibility graph is com-
puted first, followed by several runs of Dijkstra algorithm,
which computes shortest distances among each robot and
a goal candidate2. The cost function for evaluation of goal
candidates is then simply this distance.

4 Exploration strategies
Several exploration strategies have been implemented within
the presented exploration framework. The following para-
graphs give an overview of these methods and discuss nec-
essary modifications for the polygonal domain.

2Usage of all-pairs shortest path algorithm (e.g. Floyd-Warshall
or Johnson’s algorithm) is not effective in this case since we don’t
need to compute distances among the goal candidates.

(a) (b)

Figure 5: Greedy assignment, (a) two robots exploring the
same goal (b) an inefficient assignment of goals.

Greedy approach
A simply and easily implementable strategy is described
in (Yamauchi 1998) – each robot greedily heads towards
the best (according to a cost function) goal without any co-
ordination between robots. The strategy is not much opti-
mal since one goal can be selected and explored by many
robots as depicted in Fig. 5(a). To avoid this inefficiency it
is possible to discard already selected goals from the fur-
ther selection. This is used in the Broadcast of Local Eligi-
bility (BLE) assignment algorithm developed by Werger &
Mataric (Werger and Mataric 2001), see Algorithm 2.

while any robot remains unassigned do
find the robot-goal pair (i, j) with the highest
utility;
assign the goal j to the robot i and remove them
from the consideration;

Algorithm 2: BLE assignment algorithm.

Nevertheless, it is still a greedy algorithm, which not nec-
essarily produces the optimal solution. The solution depends
on the order of the robot-goal assignments. Fig. 5(b) depicts
an example of an inefficient targets assignment.

Hungarian method
The Hungarian method firstly introduced in (Kuhn 1955) is
more sophisticated. It is an optimization algorithm which
solves the worker-task assignment. The assignment can be
written in a form of the n × n matrix C, where the element
ci,j represents the cost that the j-th task has been assigned
to the i-th worker. The Hungarian method finds the optimal
assignment for the given cost matrix C in O(n3).

The algorithm requires the number of robots to be the
same as the number of goals which can not be guaranteed
throughout the exploration. If the number of robots or goals
is lower it is possible to add imaginary robots or goals to sat-
isfy the assumption. They have assigned a fixed cost, so they
don’t affect the real robots/goals. In the selection, the imag-
inary robots and targets are skipped. This strategy doesn’t
assign the same goal to different robots and it doesn’t de-
pend on the order of selection.

82

K-means clustering
In the majority of multi-robot tasks, robots start from the
same area, e.g., from the building entrance. It leads to an ex-
haustive exploration of the starting area during the first phase
of exploration. In search and rescue it is preferable that the
robots quickly create an outline of the map and then they
focus on the individual parts of the environment. (Solanas
and Garcia 2004) present a strategy based onK-means clus-
tering that divides an unknown space into K regions, where
K is the number of robots. The particular regions are then
assigned to the closest robots. After the assignment, each
robot chooses a frontier according to a predefined cost func-
tion. The cost of the frontier Fj for the robot Ri assigned to
the region ζi is defined as:

ci,j =

{
∆ + e(Fj , Ci) + oi,j Fj /∈ ζi

d(Fj , Ri) + oi,j Fj ∈ ζi

where ∆ is a constant penalization representing the diagonal
length of the map, e is the euclidean distance, Ci is the cen-
troid of the region, d is the real path cost defined by any path
planning algorithm and oi,j is the accumulated penalization
increasing the cost when the frontier has been already se-
lected.

The frontier that does not belong to the assigned region re-
ceives a high penalization ∆, so it can happen that there is no
frontier in the assigned region, in that case robots select the
closest frontier to their region. As the result, robots tend to
work separately in their assigned regions. If the assigned re-
gion is not directly accessible, other regions are explored on
the way to the assigned one. Robots explore all these sepa-
rated regions simultaneously because each robot heads to its
own region. This leads to a dispersion of robots in the envi-
ronment and different parts of the environment are explored
at similar speeds.

In general, the K-means algorithm consists of the follow-
ing steps.

1. Randomly choose K centroids Ci where 1 ≤ i ≤ K.
2. Classify each cell to the class ζi of its closest centroid Ci.
3. Determine a new centroid for each class.
4. If all the centroids didn’t change, finish. Otherwise, con-

tinue with step 2.
The algorithm works with a set of points, which is not di-

rectly available for the polygonal representation. The idea is
therefore to sample the polygons with points using a trian-
gular mesh generator3

Fig. 6(a) shows an example of a generated triangle mesh
on a polygon with hole, while Fig. 6(b) visualizes a triangle
mesh with applied K-means clustering.

5 Results
The proposed framework together with the aforementioned
strategies has been implemented using ROS (Quigley et al.
2009) as a communication middleware and the strategies
have been evaluated. The experiments have been performed
in simulation using maps with various sizes and structures,
see Figure 7.

3We use the Triangle library (Shewchuk 1996).

(a) (b)

Figure 6: Triangular meshes: (a) an example of triangle
mesh; (b) a triangle mesh with applied K-means clustering
algorithm at the beginning of an exploration with 8 robots
using the K-means strategy;

The Empty map 7(a) has been created to simulate a trivial
case of a big room without obstacles. The Arena map 7(b)
represents a slightly structured environment with large cor-
ridors and rooms. The Jari-huge map 7(c) represents the
real administrative building with many separated rooms. The
hospital small map 7(d) is a part of the hospital-section map
from the Stage simulator representing another building.

All the experiments were examined on the same hard-
ware with a quad-core processor on 3.30 GHz, 8 GB RAM
running x86 64 GNU/Linux kubuntu 3.0.0-20, ROS version
electric and gcc version 4.6.1.

The considered numbers of robots are m = {4, 6, 8},
while the sensor range is set to ρ = 5 meters with 270◦

field of view. The robots are controlled using the SND
driver (Durham and Bullo 2008). The planning period has
been set to 1 second. Each experiment was repeated 30
times, which means that the number of experimental runs
is 1440 in total.

As the computations are not time consuming, the exper-
iments are speeded up 3 times in the Stage’s configuration
file. This acceleration has no effect on the quality of the ex-
ploration but it has its limits in the computational complex-
ity. The chosen acceleration is therefore a trade-off between
the run time and the system load.

The strategies were evaluated from several points of
views. The first criterion is the number of planning steps
texp which corresponds to the exploration time (i.e., the time
needed to explore the whole environment) assuming that
the planning period is constant. The maximal distance dmax

travelled by a robot is the second criterion. The results are
depicted in Tables 1–5 and on Figs. 8–12 .

Comparison of the strategies
Empty map There is not big difference in the exploration
time of the Hungarian and the K-means strategy. A surprise
is a good performance of the Greedy strategy. Because there
is no obstacle in the map the robots naturally disperse in
the environment as they head directly towards goals with no
need of coordination.

The maximal distance dmax apparently indicates the ef-

83

(a) (b) (c) (d)

Figure 7: Maps used in the experiments. The starting positions are marked with the green circles. (a) Empty map with dimen-
sions 50x50 m; (b) Arena map with dimensions 50x50 m. (c) Jari-huge map with dimensions 52.5x60 m; (d) Hospital-small
map with dimensions 138x110.75 m.

fect of the map segmentation in the K-means strategy. The
robots focus their regions which reduces the maximal trav-
elled distance by any robot that is smaller by 7% than in
Hungarian strategy but it has longer exploration time by
5.4% for 6 robots. For 8 robots, the K-means strategy is bet-
ter in both of the parameters. It has also the lowest standard
deviation so the solution has not a big variance.

Arena map The results are similar to the results on Empty
map with one difference. Although for 4 and 6 robots the
best results are achieved by the K-means strategy, an in-
teresting effect can be seen for 8 robots where the results
are worse. The map partitioning forces the robots to explore
small regions partially spread over several rooms, which
slows down the exploration while for the lower number of
robots the regions are bigger and contain the whole rooms.

Jari-huge map The K-means strategy behaves poorly on
this map. Small rooms generate regions split over several
separated rooms, so each robot must explore the assigned
rooms in the region. The behavior that each robot visits a sin-
gle room is in fact desired, but it requires correctly generated
regions including the whole rooms, not only their parts. The
Hungarian strategy significantly outperforms other strate-
gies, e.g. for 8 robots it is faster by 28% than the Greedy
strategy, by 16% than the Greedy-ble strategy, and also by
12% than the K-means strategy.

Hospital-small map The results are quite balanced except
the Greedy strategy. The exploration time and the maximal
traveled distance is slightly better for the K-means strategy
and 4 robots. The K-means strategy is better in the mean
effort parameter. This experiment confirms that there exists
a combination of the map size and the number of robots in
which the K-means strategy yields bad results (6 robots in
this case) because the number of robots corresponds to sizes
of regions that may be inappropriate for the given map. The
Hungarian strategy again seems to be the best strategy.

”Extreme” case The Hospital-section map is used to sim-
ulate an extreme case with many robots on a huge map. The
exploration is performed by 10 robots with no other change
against the previous experiments. This experiment can not

be speeded up because of the computational complexity, so
the number of repetitions is lower, i.e., 10 trials.

Fig. 12(a) shows an example of the created map at the end
of the exploration.

The results are in accordance with the results of the pre-
vious experiments. The worst and the most varying strat-
egy is the Greedy strategy. The Greedy-ble strategy is better
but still not optimal. The best results are achieved by the
Hungarian strategy which has also the shortest dmax. With
this number of robots and the K-means strategy it is possible
that a robot visits a lot of goals from different regions until
it reaches its region because its assigned region lies on the
other side of the map. Such a robot travels a long distance
especially when new shorter paths are frequently found.

Complexity

Several experiments were performed to compare memory
consumption and time complexity of a polygonal representa-
tion with a grid approach. Assume the Hospital-section map,
which occupies an area of 14253 m2 and its polygonal rep-
resentation contains 1226 vertices (see also Fig. 12(b)). If
a grid with a cell size equal to 5 cm is used to represent
the same environment, 12076800 cells is needed. This leads
to much higher computational complexity of the exploration
process as shown in Table 6. This table depicts times for en-
vironments of various sizes.

Polygonal Grid
S tplan ttotal tplan ttotal

[m2] [ms] [ms] [ms] [ms]
1000 10 35 274 471
3000 22 50 985 1224
5000 14 70 2141 2410

10000 45 116 3369 3854
13000 36 132 4902 5611

Table 6: Comparison of polygonal and grid representations.

84

6 Conclusion
The paper introduces a polygonal approach for multi-robot
exploration. The mapping process is based on a standard li-
brary for polygon clipping, so it is robust and fast. This en-
ables to perform exploration with higher number of robots,
in larger experiments and make re-planning faster than pos-
sible in a grid-based approach. The most challenging task
was to modify the clipping library in order to work with the
frontiers. After several unsuccessful attempts to change the
clipping algorithm a compromise solution was found in the
edge matching.

Several goal-selection strategies were implemented and
compared according to various criteria. The best results were
achieved by the Hungarian strategy. The K-means strategy
was expected to dominate among the other strategies espe-
cially in the mean effort parameter. Unfortunately, this crite-
rion does not distinguish locations in the map in which the
exploration happens and therefore the difference against the
other strategies is not so significant.

7 Acknowledgments
This work has been supported by the Technology Agency
of the Czech Republic under the project no. TE01020197
”Centre for Applied Cybernetics 3”.

References
Amigoni, F. 2008. Experimental evaluation of some explo-
ration strategies for mobile robots. In ICRA, 2818–2823.
Burgard, W.; Moors, M.; Stachniss, C.; and Schneider, F.
2005. Coordinated multi-robot exploration. IEEE Transac-
tions on Robotics 21(3):376–378.
Dakulović, M.; Ileš, Š.; and Petrović, I. 2011. Exploration
and mapping of unknown polygonal environments based
on uncertain range data. Automatika–Journal for Control,
Measurement, Electronics, Computing and Communications
52(2).
Durham, J. W., and Bullo, F. 2008. Smooth nearness-
diagram navigation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 690–695.
Ekman, A.; Torne, A.; and Stromberg, D. Apr. Exploration
of polygonal environments using range data. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on
27(2):250–255.
Franchi, A.; Freda, L.; Oriolo, G.; and Vendittelli, M. April.
The sensor-based random graph method for cooperative
robot exploration. Mechatronics, IEEE/ASME Transactions
on 14(2):163–175.
Freda, L., and Oriolo, G. April. Frontier-based probabilistic
strategies for sensor-based exploration. In Robotics and Au-
tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, 3881–3887.
González-Baños, H. H., and Latombe, J.-C. 2002. Naviga-
tion strategies for exploring indoor environments. Interna-
tional Journal of Robotic Research 21(10-11):829–848.
Hershberger, J., and Snoeyink, J. 1992. Speeding up
the douglas-peucker line-simplification algorithm. Techni-

cal report, University of British Columbia, Vancouver, BC,
Canada, Canada.
Holz, D.; Basilico, N.; Amigoni, F.; and Behnke, S.
2010. Evaluating the efficiency of frontier-based exploration
strategies. In ISR/ROBOTIK, 1–8.
Johnson, A. 2012. Clipper - an open source freeware
polygon clipping library. http://www.angusj.com/
delphi/clipper.php.
Kuhn, H. W. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly 2:83–97.
Kuipers, B., and Byun, Y.-T. 1991. A robot exploration
and mapping strategy based on a semantic hierarchy of spa-
tial representations. Robotics and Autonomous Systems 8(1-
2):47–63.
Newman, P.; Bosse, M.; and Leonard, J. Sept. Autonomous
feature-based exploration. In Robotics and Automation,
2003. Proceedings. ICRA ’03. IEEE International Confer-
ence on, volume 1, 1234–1240 vol.1.
Poncela, A.; Pérez, E. J.; Bandera, A.; Urdiales, C.; and
Hernández, F. S. 2002. Efficient integration of metric and
topological maps for directed exploration of unknown envi-
ronments. Robotics and Autonomous Systems 41(1):21–39.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. Ros: an open-
source robot operating system. In ICRA Workshop on Open
Source Software.
Shen, S.; Michael, N.; and Kumar, V. May. Autonomous in-
door 3D exploration with a micro-aerial vehicle. In Robotics
and Automation (ICRA), 2012 IEEE International Confer-
ence on, 9–15.
Shewchuk, J. R. 1996. Triangle: Engineering a 2D Qual-
ity Mesh Generator and Delaunay Triangulator. In Ap-
plied Computational Geometry: Towards Geometric Engi-
neering, volume 1148 of Lecture Notes in Computer Sci-
ence. Springer-Verlag. 203–222.
Siadat, A.; Kaske, A.; Klausmann, S.; Dufault, M.; and Hus-
son, R. 1997. An optimized segmentation method for
a 2d laser-scanner applied to mobilerobot navigation. In
3rd IFAC Symposium on Intelligent Components and Instru-
ments for Control Aapplications, 153–158.
Solanas, A., and Garcia, M. A. 2004. Coordinated multi-
robot exploration through unsupervised clustering of un-
known space. In International Conference on Intelligent
Robots and Systems.
Vatti, B. R. 1992. A generic solution to polygon clipping.
Communications of the ACM 35:56–63.
Werger, B. B., and Mataric, M. J. 2001. Broadcast of local
eligibility for multi-target observation. In Distributed Au-
tonomous Robotic Systems 4, 347–356. Springer-Verlag.
Wurm, K.; Stachniss, C.; and Burgard, W. 2008. Coordi-
nated multi-robot exploration using a segmentation of the
environment.
Yamauchi, B. 1998. Frontier-based exploration using multi-
ple robots. In Proc. of the Second International Conference
on Autonomous Agents, 47–53.

85

Robots Strategy texp tmin tmax σtexp
dmax σdmax

4

greedy 960.2 790 1186 93.39 567.99 55.904
greedy-ble 909.8 824 1042 52.65 538.32 39.45
hungarian 893.0 804 1001 51.06 526.85 33.50
kmeans 903.5 783 998 44.37 484.84 30.12

6

greedy 744.7 595 923 89.02 458.50 54.94
greedy-ble 682.6 607 838 49.54 422.43 32.12
hungarian 667.7 561 921 63.20 412.40 30.15
kmeans 705.6 665 779 25.96 383.51 21.32

8

greedy 693.6 564 839 74.54 429.67 49.41
greedy-ble 629.4 517 846 75.36 377.19 45.07
hungarian 579.2 512 641 34.91 357.16 29.63
kmeans 575.3 517 618 22.50 310.19 17.03

Table 1: Empty map: Comparison

Robots Strategy texp tmin tmax σtexp dmax σdmax

4

greedy 1278.4 1046 1567 138.76 588.33 65.39
greedy-ble 1197.5 994 1708 143.63 572.64 58.33
hungarian 1155.5 988 1305 81.86 556.12 50.08
kmeans 1139.2 1053 1394 84.95 546.10 50.27

6

greedy 1023.0 741 1382 143.27 473.39 55.86
greedy-ble 900.4 761 1014 66.75 435.57 36.44
hungarian 867.1 783 1050 65.23 429.18 31.700
kmeans 848.4 748 1112 74.34 427.65 37.85

8

greedy 987.5 791 1378 150.74 439.90 57.56
greedy-ble 807.3 677 977 82.61 395.00 47.62
hungarian 748.3 627 985 77.04 374.67 44.65
kmeans 788.0 681 925 72.37 403.98 31.93

Table 2: Arena map: Comparison

Robots Strategy texp tmin tmax σtexp
dmax σdmax

4

greedy 558.4 459 750 78.75 247.85 34.89
greedy-ble 489.2 433 568 36.75 218.17 19.55
hungarian 473.4 406 553 39.80 210.93 19.68
kmeans 524.0 470 573 31.10 235.21 15.68

6

greedy 488.8 365 848 138.15 208.14 52.23
greedy-ble 369.9 311 439 31.62 165.14 17.27
hungarian 336.2 301 402 26.84 150.98 13.34
kmeans 365.7 334 453 26.59 163.22 12.77

8

greedy 400.9 285 573 79.82 176.38 30.51
greedy-ble 345.6 281 471 42.30 159.77 20.61
hungarian 289.8 258 331 19.70 133.43 9.58
kmeans 328.5 285 371 21.96 149.48 12.66

Table 3: Jari-huge map: Comparison

86

Robots Strategy texp tmin tmax σtexp dmax σdmax

4

greedy 798.5 704 901 62.97 455.31 39.09
greedy-ble 736.2 658 876 64.56 425.88 40.18
hungarian 726.1 648 861 55.39 430.05 30.26
kmeans 728.1 686 781 28.88 423.44 19.47

6

greedy 644.4 538 779 77.01 374.48 53.31
greedy-ble 605.9 543 672 45.99 364.79 25.34
hungarian 576.1 532 611 29.13 350.71 14.66
kmeans 637.2 605 667 19.04 384.39 13.18

8

greedy 568.9 500 653 49.18 343.54 31.74
greedy-ble 567.7 519 628 35.23 345.94 25.43
hungarian 533.9 458 613 44.92 331.44 23.53
kmeans 560.7 519 606 26.92 346.78 18.69

Table 4: Hospital-small map: Comparison

Robots Strategy texp tmin tmax σtexp
dmax σdmax

10

greedy 1365.7 1195 1507 158.05 710.13 81.54
greedy-ble 1221.7 1148 1294 40.17 697.28 35.22
hungarian 1098.8 1051 1168 33.27 625.72 24.71
kmeans 1222.7 1142 1325 48.95 691.16 26.91

Table 5: Hospital-section map: Comparison

 0

 200

 400

 600

 800

 1,000

 1,200

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(a)

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800
 0

 100

 200

 300

 400

 500

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(c)

Figure 8: Empty map (a) - planning steps comparison. (b) - maximal distance comparison. (c) - average map built time and the
number of vertices.

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(a)

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800 900
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(c)

Figure 9: Arena map (a) - planning steps comparison. (b) - maximal distance comparison. (c) - average map built time and the
number of vertices.

87

 0

 100

 200

 300

 400

 500

 600

 700

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(a)

 0

 50

 100

 150

 200

 250

 300

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(b)

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350
 0

 100

 200

 300

 400

 500

 600

 700

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(c)

Figure 10: Jari-huge map (a) - planning steps comparison. (b) - maximal distance comparison. (c) - average map built time and
the number of vertices.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 6 8

N
u

m
b

er
 o

f
p

la
n

n
in

g
 s

te
p

s

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

4 6 8

M
ax

im
al

 d
is

ta
n

ce
 [

m
]

Number of robots

Greedy
Greedy−ble
Hungarian
Kmeans

(b)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(c)

Figure 11: Hospital-small map (a) - planning steps comparison. (b) - maximal distance comparison. (c) - average map built time
and the number of vertices.

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

M
ap

 b
u

il
t

ti
m

e
[m

s]

N
u

m
b

er
 o

f
v

er
ti

ce
s

Step

time
vertices

(b)

Figure 12: Hospital section map: (a) traversed trajectories for 10 robots and Hungarian strategy; (b) the average map built time
with the number of vertices.

88

Path Planning in Dynamic Environments with the Partially Observable Canadian
Traveller’s Problem

Mikko Lauri and Risto Ritala
Department of Automation Science and Engineering

Tampere University of Technology
P.O. Box 692

33101 Tampere, Finland
mikko.lauri@tut.fi, risto.ritala@tut.fi

Abstract

We formulate a path planning problem in a dynamic en-
vironment as a Canadian traveller’s problem (CTP) with
partial observability. The partially observable CTP is a
shortest path problem on a directed graph where edge
traversal costs depend on partially observable environ-
mental variables. The environment variables evolve ac-
cording to two-state Markov chains, and information on
them is obtained via noisy measurements. We derive an
online planning scheme as a combination of finite-step
lookahead and a set of cost-to-go problems, for which
the underlying graph structure is exploited to find ef-
ficient approximate solutions. Empirical evaluation of
the planning scheme via simulation studies is presented,
and a proposed real-world implementation is discussed.

Introduction
Consider the problem of an agent seeking a shortest path be-
tween a start and goal vertex in a graph, where each edge
has a cost of traversal. The task is to find a path which
reaches the goal while minimizing the sum of edge traver-
sal costs. In case the costs are static and known, the shortest
path problem may be solved by static graph search meth-
ods such as Dijkstra’s algorithm or heuristic-guided search
methods such as the A* algorithm. If edge costs vary with
time, but are still fully deterministic for any time instant, the
problem may be solved with static graph search by expand-
ing it into a time-expanded network (Ahuja et al. 2003). In
case the changes in edge costs are not known in advance
but incrementally revealed e.g. for one time step ahead, the
problem may be solved by repeatedly applying static graph
search. A more efficient solution can be reached by noting
that the new shortest path problem on the modified graph
is typically similar to the one previously solved, and apply-
ing incremental search techniques that take advantage of this
property. Such methods include e.g. the D* (Stentz 1994) or
D* Lite (Koenig and Likhachev 2005) algorithms.

In more general cases, some or all of the edges’ traver-
sal costs are initially uncertain. In the Canadian traveller’s
problem (CTP), first introduced by Papadimitriou and Yan-
nakakis (1991), the cost of traversing an edge is revealed
only when a vertex incident to the edge is visited. Once
a cost is revealed, it assumes either a finite or infinite
value, denoting traversable and non-traversable edges, re-

spectively. As prior information, the probability of each
edge being traversable is known. The objective is to min-
imize the expected total cost of traversal.

Several extensions of the CTP have since been studied.
In (Polychronopoulos and Tsitsiklis 1996), edge costs were
considered random variables assuming non-negative val-
ues. Dynamic programming algorithms to solve the problem
were derived in two cases: when edge costs are independent
of each other or when they are dependent random variables.
Bnaya, Felner, and Shimony (2009) extended the CTP to al-
low remote sensing. In the remote sensing variant, the agent
may query the cost of any edge, whether it is incident to the
agent’s current vertex or not.

In all of the above examples, the edge costs remain fixed
after assuming their initial value, although some of the val-
ues are not immediately known by the agent. In (Psaraftis
and Tsitsiklis 1993), edge traversal costs are described by
a known function dependent on an environmental variable
at the source vertex of the edge. The environmental vari-
ables are fully observable and independent of each other
and evolve in discrete time according to finite state Markov
chains. The problem is then to decide when and which edge
to traverse or when to wait for a more favourable environ-
mental state.

In this paper, we combine characteristics of the problems
presented above to yield a more general partially observable
CTP, where the edge costs depend on environment variables
which evolve according to a Markov chain and are only par-
tially observable. In addition, there may be multiple sensing
modalities for the agent to choose from in order to obtain in-
formation on the environment variables. The planning prob-
lem is to find a policy for sensing and edge traversal actions
that minimizes the expected cost to reach the goal. Such a
problem may be considered as a partially observable Markov
decision process (POMDP) and it can model shortest path
problems in dynamic environments e.g. in robotics. To find
a good yet suboptimal solution in a feasible time, we divide
the planning into two parts: a k-step lookahead, and a set of
cost-to-go problems on the underlying graph. This approach
is compared with a state-of-the art online POMDP solution
method. Finally, we present an overview of a system design
to implement our planning scheme in a dynamic real-world
environment.

89

Partially observable Markov decision
processes

A partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) may be defined
as a tuple 〈S,A,Z, T,O,R, b0, γ〉, where
• S is a set of possible states the system may be in,
• A is a set of possible actions that may be executed,
• Z is a set of possible observations that may be perceived,
• T : S×A×S → [0, 1] ≡ p(s′|s, a) is the state transition

model,
• O : S ×A× Z → [0, 1] ≡ p(z|s′, a) is the measurement

model,
• R : S × A → R is a reward function, specifying the

immediate reward when action a ∈ A is executed in state
s ∈ S,

• b0 ≡ p(s0 = s) is a probability distribution over S, de-
scribing the initial information on the system state at time
t = 0, and

• γ ∈ [0, 1) is a discount factor.
We assume that S, A and Z are finite sets. In a POMDP,
the objective is to maximise the expected cumulative sum of
discounted rewards over a specified horizon of time, while
the state st evolves according to the transition model T . The
expected rewards are calculated under the probability distri-
butions, or belief states, bt, which summarize information
on the system state at time t. The space of all possible belief
states B is called the belief space of the POMDP. The belief
state b is updated based on the action a at time t and the ob-
servation result z at time (t+1), through the state transition
and measurement models as

τ(b, a, z)(s′) =
1

η
p(z|s′, a)

∑
s∈S

p(s′|s, a)b(s), (1)

where η is the normalizing factor denoting the prior proba-
bility of observing z;

η = p(z|b, a) =
∑
s′∈S

p(z|s′, a)
∑
s∈S

p(s′|s, a)b(s). (2)

Value iteration based on Bellman’s principle of optimality is
a typical method for finding actions that maximize the ex-
pected reward in POMDPs (Hauskrecht 2000). Value itera-
tion begins from a horizon t = 1 value function V1 : B → R
defined as

V1(b) = max
a∈A

∑
s∈S

R(s, a)b(s) = max
a∈A

RB(b, a), (3)

where the term to be maximized is the expected immedi-
ate reward of performing action a in belief state b, denoted
RB(b, a). The value function for horizon t is constructed
from the value function for horizon (t− 1) by the recursive
equation

Vt(b) = max
a∈A

[
RB(b, a) + γ

∑
z∈Z

p(z|b, a)Vt−1 (b′)

]
, (4)

where b′ = τ(b, a, z). The value function Vt defines the
expected sum of discounted rewards over t time steps, for
any belief state b. It has been shown (Smallwood and Sondik
1973) that the optimal finite horizon value function is convex
and piecewise linear. Therefore it may be represented by a
set of |S|-dimensional hyperplanes, each defining a linear
value function over B for one particular action.

The optimal policy π∗t : B → A for a finite horizon t
specifies an optimal action to perform in belief state b, found
by finding the argument a maximizing Vt(b) in equation (4).

Partially observable CTP
We now define a shortest path problem for a directed graph,
where edge weights are known functions of partially ob-
servable environment variables and there are multiple sens-
ing modalities available to an agent traversing the graph.
We call this problem a partially observable Canadian trav-
eller’s problem. In (Blei and Kaelbling 1999), it was first
shown that a Canadian traveller’s problem with dynamic
edge traversability may be considered as a POMDP. To see
that the problem with multiple sensing modalities is a spe-
cial case of a general POMDP as well, we make the follow-
ing redefinitions for the state and actions sets of the POMDP
described in the previous section.

LetG = (V,E) denote a directed graph with a finite set of
vertices V with cardinality |V | = n and a finite set of edges
E. The agent is initially located at the start vertex v0 ∈ V
and wants to reach the goal vertex g ∈ V . Throughout the
paper we shall assume that a path from v0 to g exists. For
every v ∈ V there exists an environment state wv . A vector
w = [w1 . . . wn]

T ∈ W then describes the environment
state on all vertices.

The state space is S = V ×W , such that any state may be
represented by an ordered pair s = (v, w) where v ∈ V and
w ∈ W . The possible actions are defined by a collection of
subsets Av ⊂ A for each v ∈ V . To account for multiple
sensing modalities, we factor the action subsets as Av =
Ev ×Mv , where Ev ⊂ E is the subset of edges incident to
vertex v, denoting possible edge traversal actions, andMv is
the set of possible measurement actions at v, defined e.g. as
a collection of subsets of V on whose environment variables
it is possible to obtain measurements on when the agent is
at v. The possibility to wait in place is accounted for by
adding an edge from v to v for every v ∈ V . Thus, any
action may be represented by an ordered pair a = (e, am),
where e ∈ Ev and am ∈Mv .

The state transition model T now consists of a deter-
ministic part Td : V × Ev → V , and a stochastic part
Ts :W ×W → [0, 1] ≡ p(w′|w). The measurement model
is defined as O : S ×Mv × Z → [0, 1] ≡ p(z|w′, am).

The deterministic part Td of the state transition model de-
scribes how the current vertex of the agent in the graph is
updated as function of edge traversal actions. The goal ver-
tex g is absorbing, such that the agent may not transition out
of g with any action a ∈ Ag . The stochastic part Ts defines
a Markov process according to which the environment states
evolve, independent of the actions of the agent.

The reward of each action consists of two parts: the state-
dependent edge traversal cost cc(w, e) ≥ 0 and the state-

90

independent measurement cost cm(am) ≥ 0. Thus, the re-
ward function in the partially observable CTP is

R(s, a) = −cc(w, e)− cm(am). (5)

We have given a general formulation where cc(w, e) may
depend on any subset of the environment variables. The spe-
cial case of interest is where the dependence is on a single
environment variable, i.e. cc(wu, e) where the vertex u ∈ V
may be e.g. the source or target vertex of the edge e. As the
goal state is absorbing, we set all rewards in the goal state
equal to zero, i.e. R(s, a) = 0∀a ∈ Ag .

The current vertex of the agent is known and evolves
deterministically according to Td. Therefore, the belief
state may also be written as an ordered pair of form bt =
(vt, pt(w)), where vt denotes the agent’s vertex and pt(w)
is a probability distribution over W describing information
on the environment state at time t. The distribution pt(w)
is updated applying the stochastic model Ts. The belief up-
date equation (1) now also consists of a deterministic and
stochastic part.

The partially observable CTP is related to two other prob-
lem formulations found in the literature. If g is absorbing
and always reachable from v0, i.e. proper policies exist, set-
ting the discount factor γ equal to 1 results in a formula-
tion of the problem as a goal-oriented POMDP (Bonet and
Geffner 2009), where the task is to go from an initial be-
lief state to a goal belief state while minimizing the cost of
traversal. The belief state of the partially observable CTP
is composed of a fully observable part, the location of the
agent, and a partially observable part, the environment state.
Such mixed-observability MDPs were studied in (Ong et al.
2010) and the factorization of the belief state was exploited
in design of an offline planner.

Online planning for the partially observable
CTP

Consider the partially observable CTP presented above. If
the number of vertices in G is n, and if each environment
variable may takeK different values, the number of possible
states in the problem is |S| = n · Kn. As n increases, the
number of states quickly increases to a number intractable
even for modern offline POMDP solvers.

The key idea of online POMDP planning algorithms
(Ross et al. 2008) is to find an optimal action repeatedly for
a single belief state during task execution rather than for all
belief states before execution. Online planning algorithms
interleave planning and execution stages, focusing compu-
tation of the value function on the subset of belief states
reachable from the current belief state by bounded length
sequences of actions and observations.

We now derive an online planning scheme that takes into
account the special features of the partially observable CTP.
We consider the full tree of action and observation possibil-
ities until a finite lookahead horizon is reached. We then as-
sume that no observations on the system state will be avail-
able beyond the lookahead horizon. This enables approxi-
mation of the value of belief states reached at the end of the
lookahead horizon via static graph searches.

The objective in the partially observable CTP may be re-
stated as

max
{at}∞t=0

∞∑
t=0

γtRB(bt, at) (6)

i.e. find an action policy that maximizes the sum of dis-
counted expected rewards. The expected rewards are cal-
culated under the belief state bt which is determined by b0,
the sequence of actions till time (t − 1), and the sequence
of observation data till time t, updated according to equation
(1).

We reformulate the problem (6) into an online planning
problem, where for a finite online time horizon H1 ≥ 1 the
full tree of action and observation data possibilities is con-
sidered. Formally, this leads to

max
{at}

H1−1
t=0

[
H1−1∑
t=0

γtRB(bt, at)+

max
{at}∞t=H1

∞∑
t=H1

γtRB(bt, at)

]
.

(7)

The first summation corresponds to a lookahead for horizon
H1, while the inner maximization problem corresponds to a
cost-to-go problem to reach the goal vertex. The inner maxi-
mization problem is a POMDP, as can be seen by comparing
it to equation (6). In fact, equation (7) instructs us to solve
this POMDP for each possible belief state bH1 that may be
reached at time H1 to find the optimal solution.

We make a simplifying approximation that during time
steps t ≥ H1 the agent no longer has access to any mea-
surements and hence receives no observation data but has to
plan based on information received till H1. The justification
for this approximation is that we are more concerned of the
quality of the information that we base our planning on in
the short term. A particular sequence of observations tends
to be less likely the longer the length of the sequence is, as
the number of possible sequences increases. When deter-
mining an optimal action, the expected value of information
that we gain in the near future is higher than that of infor-
mation we may gain later. We assume that the horizon H1 is
set long enough such that if surprising information (observa-
tions with a low probability) are encountered, the agent has
sufficient time to react.

Consider the inner optimization problem of equation (7),
a cost-to go problem

max
{at}∞t=H1

∞∑
t=H1

γtRB(bt, at) (8)

starting from any of the belief states bH1
= (vH1

, pH1
(w))

that may be reached at end of the on-line horizon at timeH1.
With the simplifying assumption made above, the expected
reward at time t ≥ H1 is

RB(bt, at) = −
∑
w∈W

cc(w, et)pt(w). (9)

As the Markov process Ts by which pt(w) evolves is known
and we assume no observations are available for t ≥ H1,

91

Figure 1: Construction of a time-expanded network GH2

with horizon H2 = 2 (right) from a directed graph G (left).

equation (8) defines a cost-to-go problem in a graph whose
edge costs evolve with time in a known manner described by
equation (9).

A cost-to-go problem in a graph whose edge costs vary in
time in a known manner may be transformed into a shortest
path problem in a static graph known as a time expanded net-
work (Ahuja et al. 2003). An offline time horizon H2 > 1
is selected, over which time-varying edge costs are consid-
ered. For a graph G = (V,E) and offline horizon H2, the
time expanded network is denoted GH2 = (V H2 , EH2).

For each vertex vi ∈ V there are H2 + 1 copies
vH1
i , vH1+1

i , . . . , vH1+H2
i in V H2 , with vti representing ver-

tex vi at time t. For each edge e ∈ E, there are at most H2

edges in EH2 , corresponding to the different possible times
of traversing the edge. Thus if there is an edge between vi
and vj in G, there is an edge between vti and vt+1

j in GH2

for each H1 ≤ t ≤ H1 +H2 − 1, which represents travers-
ing an edge between vi and vj starting at time t. In Figure
1, an example of a time-expanded network is shown for a
horizon H2 = 2. When solving the cost-to-go problem (8)
as a deterministic shortest path problem in a time-expanded
network, the costs of the edges in EH2 are set according to
the discounted expected values with respect to pt(w).

The cost-to-go problem with known time-varying edge
costs in G is a cost-to-go problem in GH2 with static edge
costs that may be solved using any suitable graph search
method. The start vertex is the copy vH1

H1
of the agent’s vertex

at time H1 and the goal vertex is any of the copies gH1+k of
the goal vertex with k ≤ H2.

The offline horizon H2 should be selected so that it is
large enough that we can guarantee that there exists a path
in GH2 from vH1

H1
to some gH1+k. On the other hand, it is

useful to limit the horizon to save both memory and compu-
tational effort. If we construct the time-expanded network
GH2 dynamically while searching for the shortest path by
a method known to find an optimal solution, e.g. Dijkstra’s
algorithm or A* with an admissible heuristic, it is not nec-
essary to set a value for H2 before starting the search. We
may simply run the search algorithm until the optimal path
is found.

A partially observable CTP formulation of a
navigation problem

As an example of a problem formulated as a partially ob-
servable CTP, consider a robot navigating in a dynamic en-

vironment where obstacles appear and disappear according
to Markov processes. The objective of the robot is to reach
a goal location while avoiding collisions with obstacles.

The graph G = (V,E) describes a map with V corre-
sponding to distinct spatial locations and E corresponding
to possible transitions between spatial locations. The envi-
ronment variables wv describe if there is an obstacle present
or not at location v ∈ V , corresponding to wv = 1 and
wv = 0, respectively.

At any v ∈ V , the robot may choose to wait in place or
move to any of the vertices adjacent to v. As the measure-
ment action am, the robot may choose to sense the presence
of obstacles at any of the vertices adjacent to the vertex it
chose to move to.

The environmental variables describe if there are obsta-
cles present in any of the spatial locations V . We have as-
sumed that the environment variables at each vertex are in-
dependent of each other. The obstacles may appear and dis-
appear at any location according to a two-state Markov chain
with state transition probability

p(w′v = 1|wv = j) =

{
po|o if j = 1

1− pu|u if j = 0
(10)

where po|o and pu|u are the probabilities that an occu-
pied spatial location remains occupied and that an unoccu-
pied spatial location remains unoccupied, respectively. The
Markov chain parameters are identical for all vertices, an
assumption that may be relaxed without adding complexity.

The sensor the robot applies to measure the presence of
obstacles in any spatial location v ∈ V is noisy. With proba-
bility pf1 the sensor outputs a false positive observation, and
with probability pf0 a false negative observation. The mea-
surement model for the sensor is defined by the equations

p(z = 0|w′v = m) =

{
1− pf1 if m = 0

pf0 if m = 1,
(11)

and p(z = 1|w′v = m) = 1 − p(z = 0|w′v = m). We
require that 1 − pf1 > 0.5 and 1 − pf0 > 0.5 so the obser-
vations carry information and the meaning of false positives
and false negatives is retained.

A constant wait or move cost C(e) is incurred for each
action, defined

C(e) =

{
Cwait if trg(e) = src(e)

Cmove otherwise,
(12)

where src(e), trg(e) ∈ V denote the source and target
vertices of the edge e, respectively. An additive cost β
is incurred if the target vertex is occupied. Thus, the re-
ward function is R(s, a) = −C(e) − βwtrg(e). We set
β > Cmove > Cwait > 0. The reward function indicates
that due to the need to avoid collisions, moving to a loca-
tion occupied by an obstacle is more costly than moving to
an unoccupied location. We have set the measurement cost
to zero. Note that the selection of measurement still has an
effect on the optimization problem (7), as it influences the
belief states that are reached.

92

In the initial belief state b0, the start vertex v0 is set equal
the start location of the robot. The distribution of environ-
ment states p(wv) for each v ∈ V is set to reflect initial
information of presence of obstacles in the environment.

Likhachev and Stentz (2009) studied planning problems
with clear preferences on missing information, i.e. situations
where a particular value of a hidden variable is preferable to
any other possible value. In our navigation example, the
situation is similar: it would be preferable if all spatial lo-
cations were unoccupied. However, the problems studied
by Likhachev and Stentz are narrower in the sense that they
assume perfect sensing of hidden variables and completely
deterministic underlying problem dynamics.

Simulation results
The navigation problem presented above was solved by ap-
plying the online planning scheme derived earlier. In a man-
ner similar to the Real-time Belief Space Search (RTBSS)
algorithm presented in (Ross et al. 2008), we applied an up-
per bound for the value function to prune the search tree.
Use of such branch-and-bound pruning gives a computa-
tional advantage, as it enables ignoring parts of the search
tree that are known to be non-optimal. The upper bound we
applied was the so-called optimistic bound. The optimistic
bound has been applied in fully observable CTPs (Bnaya,
Felner, and Shimony 2009; Eyerich, Keller, and Helmert
2010), where it is derived by defining that if it is possible
that an edge is traversable it is assumed traversable. In a
partially observable CTP, the optimistic bound is derived by
assuming all edges have a cost equal to their minimum pos-
sible cost over all possible environment states.

We compared the results with those of a state-of-the-art
online POMDP solution method known as Partially Observ-
able Monte Carlo Planning (POMCP) (Silver and Veness
2010) that has been successfully applied to POMDPs with
large state spaces. POMCP interleaves the construction of a
search tree of action choices and observation data possibil-
ities with estimation of their value by Monte Carlo simula-
tions. Simulations are run until the time allocated for plan-
ning or a specified number of simulations is exceeded, and
the action with the greatest value is returned. The value of a
tree node is estimated by the mean of sums of discounted re-
wards for all simulations starting from the node. For further
information on the POMCP algorithm, we refer the reader
to (Silver and Veness 2010).

The graph G was defined as a four-connected two-
dimensional grid graph with 8 vertices in both dimensions.
This corresponds to |V | = 8 · 8 = 64, and a state space size
|S| = 64 · 264. For our online planning scheme, the online
horizonH1 was varied from 1 to 3. For POMCP, the number
of simulations was varied from 21 to 211 and the exploration
parameter (Silver and Veness 2010) was set to β + Cmove

to scale it to a range comparable with the value estimates.
The other parameters were defined as follows: H2 = 50,
γ = 0.95, po|o = 0.9, pu|u = 0.95, pf1 = 0.05, pf0 = 0.05,
Cwait = 0.5, Cmove = 1, β = 3. For reaching the goal ver-
tex, a one-time reward of +10 was set. The initial belief state
b0 was set equal to the stationary distribution of the Markov

H1 Sum of discounted rewards
1 -10.16 ± 1.93
2 -10.70 ± 1.46
3 -9.78 ± 1.12

Table 1: Summary of results with online planning while
varying the online horizon H1. Values shown are means
with 95% confidence intervals.

chain. The start and goal vertices were the bottom left corner
and the top right corner of the grid graph, respectively.

Each of the experiments was repeated 20 times for both
planning methods. Table 1 shows results for the online plan-
ning with branch-and-bound pruning. The mean and its 95%
confidence interval is shown for the sum of discounted re-
wards. We note that a longer online horizon H1 slightly im-
proves the average performance, although the improvement
is not very significant. However, performance is more con-
sistent with longer online horizons as indicated by decreas-
ing confidence intervals as function of H1. The improve-
ment in average performance as function of H1 is likely
greater in problems where longer sequences of actions are
required to reach a state with a favourable cost-to-go.

The means and their 95% confidence intervals for the sum
of discounted rewards with POMCP are shown in Figure 2
as function of the number of simulations. Comparing the
data with Table 1, we note that to achieve comparable per-
formance in terms of the accumulated reward, POMCP re-
quires more than 211 simulations.

The two planning methods differ in how they estimate the
cost-to-go to the goal (inner maximization problem of equa-
tion 7). POMCP employs a series of Monte Carlo simula-
tions to iteratively extend the horizon up to which possible
action choices and observation data possibilities are consid-
ered and to improve the value estimates. Our online plan-
ning approach applies a graph search in the time-expanded
network to approximate the cost-to-go after the online hori-
zon H1 is reached. Paths to the goal consist of actions that
must be taken in the correct order. As POMCP applies a ran-
dom rollout policy to simulate the task and to improve value
estimates, it is difficult for it to find a sequence that leads to
a high reward. However, our online planning scheme takes
advantage of the known graph structure and finds action se-
quences leading to a higher reward even with a short online
horizon H1.

System design for practical implementation
We are pursuing experimental validation of our proposed
planning algorithm in a dynamic real-world environment.
Navigation and learning of environment dynamics was stud-
ied in (Meyer-Delius, Beinhofer, and Burgard 2012), where
the A* algorithm was repeatedly applied for path planning.
Formulating the navigation problem as a partially observ-
able CTP allows planning for several time steps ahead avoid-
ing possible problems caused by the myopic replanning ap-
proach. We have designed a system level structure of the
planning algorithm for an autonomous ground vehicle.

93

−40

−35

−30

−25

−20

−15

−10
S

um
 o

f d
is

co
un

te
d

re
w

ar
ds

 20 22 24 26 28 210 212

Number of simulations

Figure 2: The mean sum of discounted rewards with 95%
confidence intervals for POMCP as function of the number
of simulations.

As mentioned earlier, the size of the state space in a par-
tially observable CTP is exponential w.r.t. the number of ver-
tices. Applying the method with metric map representations,
such as e.g. occupancy grids, results in extremely large state
spaces. Our planning formulation is therefore better suited
for topological map representations, where each graph ver-
tex represents a distinct spatial area.

Path planning on such topological graphs returns the order
in which spatial locations are to be visited to reach the goal,
but does not provide actual control signals that may be input
to the actuators responsible for the movement of the vehicle.
We have chosen to integrate the topological level planning
with a local planner (Fox, Burgard, and Thrun 1997), which
produces control signals that execute the topological level
plan. The best control signal is selected based on minimiz-
ing an objective function which is a weighted sum of the
vehicle’s distance from the next waypoint specified by the
topological level plan and the vehicle’s distance from any
obstacles detected near its current location.

In addition, a belief state estimator is employed to esti-
mate the occupancy states of the vertices of the topological
map, based on the state transition and measurement models
and the sensor data perceived.

As initial information for the system, the topological
graph structure of the environment, an initial belief state and
the state transition and measurement models must be pro-
vided. Learning methods may be applied to learn the state
transition models either from pre-collected datasets or on-
line. Additionally, information on the pose of the vehicle is
required, and may be obtained e.g. via a Simultaneous Lo-
calization and Mapping (SLAM) method (Thrun, Burgard,
and Fox 2006).

The proposed system structure and operation are shown in
Figure 3. When a desired goal position is provided, the ve-
hicle’s current pose is mapped onto a graph vertex which is
given to the partially observable CTP planner. A topological

Figure 3: Overview of the system structure for implement-
ing the proposed path planning algorithm. Boxed elements
depict software modules and italicized terms indicate data
and signals.

level plan leading to the goal is obtained. This plan is revised
as new pose information is received and the belief state is
updated by new sensor data. Depending on the current pose
of the vehicle, the next waypoint on the planned path to the
goal is given as target position for the local planner. The
local planner plans a feasible trajectory for the vehicle that
reaches this target position. Once the vehicle is near the tar-
get position, the next waypoint is provided by the partially
observable CTP planner.

Conclusions and future work
We studied a special case of a partially observable Markov
decision process, a partially observable Canadian Traveller’s
problem (CTP). In a partially observable CTP, there is an
underlying shortest path problem in a directed graph, where
the edge costs depend on partially observable environment
variables. Shortest path problems in dynamic environments
may be modelled as partially observable CTPs.

An online planning scheme was formulated consisting of
a finite step lookahead and a set of cost-to-go problems, and
compared with the partially observable Monte Carlo plan-
ning method (POMCP). Our results show that the online
planning scheme achieves good performance with short on-
line horizons, whereas POMCP requires a large number of
Monte Carlo simulations.

Future work includes conducting experiments to prove
practical applicability of our planning method. We are also

94

investigating possible extensions to the problem formula-
tion, e.g. incorporating exploration by modifying the reward
function to include quantities such as information entropy,
and possibilities to further improve planning performance in
partially observable CTPs by taking advantage of the under-
lying graph structure. Further study is also needed to com-
pare our online planning method e.g. to methods exploiting
the Goal-POMDP structure (Bonet and Geffner 2009) or fac-
torization of the belief space (Ong et al. 2010) in a broader
range of domains with varying parameter values.

References
Ahuja, R. K.; Orlin, J. B.; Pallottino, S.; and Scutellà, M. G.
2003. Dynamic Shortest Paths Minimizing Travel Times and
Costs. Networks 41(4):197–205.
Blei, D., and Kaelbling, L. 1999. Shortest Paths in a
Dynamic Uncertain Domain. In Proceedings of the IJCAI
Workshop on Adaptive Spatial Representations of Dynamic
Environments.
Bnaya, Z.; Felner, A.; and Shimony, S. 2009. Canadian
Traveler Problem with Remote Sensing. In Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence, 437–442.
Bonet, B., and Geffner, H. 2009. Solving POMDPs:
RTDP-Bel vs. point-based algorithms. In Proceedings of
the Twenty-Second International Joint Conference on Artifi-
cla Intelligence (IJCAI), 1641–1646.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-Quality
Policies for the Canadian Traveler’s Problem. In Proceed-
ings of the 24th Conference on Artificial Intelligence, 51–58.
Fox, D.; Burgard, W.; and Thrun, S. 1997. The Dynamic
Window Approach to Collision Avoidance. IEEE Robotics
& Automation Magazine 4(1):23–33.
Hauskrecht, M. 2000. Value-function Approximations for
Partially Observable Markov Decision Processes. Journal of
Artificial Intelligence Research 13(1):33–94.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Domains.
Artificial Intelligence 101(1-2):99–134.
Koenig, S., and Likhachev, M. 2005. Fast Replanning
for Navigation in Unknown Terrain. IEEE Transactions on
Robotics 21(3):354–363.
Likhachev, M., and Stentz, A. 2009. Probabilistic planning
with clear preferences on missing information. Artificial In-
telligence 173(5-6):696–721.
Meyer-Delius, D.; Beinhofer, M.; and Burgard, W. 2012.
Occupancy Grid Models for Robot Mapping in Changing
Environments. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2024–2030.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. 2010. Plan-
ning under Uncertainty for Robotic Tasks with Mixed Ob-
servability. The International Journal of Robotics Research
29(8):1053–1068.
Papadimitriou, C. H., and Yannakakis, M. 1991. Short-
est Paths without a Map. Theoretical Computer Science
84(1):127–150.

Polychronopoulos, G. H., and Tsitsiklis, J. N. 1996.
Stochastic Shortest Path Problems with Recourse. Networks
27(2):133–143.
Psaraftis, H., and Tsitsiklis, J. 1993. Dynamic Shortest Paths
in Acyclic Networks with Markovian Arc Costs. Operations
Research 41(1):91–101.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008.
Online Planning Algorithms for POMDPs. Journal of Arti-
ficial Intelligence Research 32(1):663–704.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information Pro-
cessing Systems (NIPS) 23, 2164–2172.
Smallwood, R., and Sondik, E. 1973. The Optimal Con-
trol of Partially Observable Markov Processes over a Finite
Horizon. Operations Research 21(5):1071–1088.
Stentz, A. 1994. Optimal and Efficient Path Planning for
Partially-known Environments. In Proceedings of the 1994
IEEE International Conference on Robotics and Automa-
tion, 3310–3317.
Thrun, S.; Burgard, W.; and Fox, D. 2006. Probabilistic
Robotics. Cambrdige, MA: The MIT Press.

95

On the Traveling Salesman Problem with Simple Temporal Constraints

T. K. Satish Kumar∗
Computer Science Department

University of Southern California
California, USA

tkskwork@gmail.com

Marcello Cirillo
AASS Research Centre

Örebro University
Sweden

marcello.cirillo@aass.oru.se

Sven Koenig
Computer Science Department

University of Southern California
California, USA
skoenig@usc.edu

Abstract

Many real-world applications require the successful
combination of spatial and temporal reasoning. In this
paper, we study the general framework of the Traveling
Salesman Problem with Simple Temporal Constraints.
Representationally, this framework subsumes the Trav-
eling Salesman Problem, Simple Temporal Problems, as
well as many of the frameworks described in the litera-
ture. We analyze the theoretical properties of the com-
bined problem providing strong inapproximability re-
sults for the general problem, and positive results for
some special cases.

Introduction
Tasks are usually situated in both time and space. While
temporal and spatial reasoning are individually well stud-
ied, their combination is not straightforward. For example,
Simple Temporal Networks (STNs) and Traveling Salesman
Problems (TSPs) are two frameworks, for temporal and spa-
tial reasoning respectively, which have been studied exten-
sively over the years. However, little is known about the the-
oretical properties resulting from combining them.

A unified framework is important in many real-life do-
mains. Imagine a surveillance vehicle which needs to au-
tonomously decide in which order to perform the observa-
tion tasks it has been assigned. The tasks, however, are not
completely independent of one another. For instance, the ve-
hicle may be instructed to observe nearby areas allowing
for a certain amount of time to elapse between observations.
This dependence between tasks can be captured by tempo-
ral constraints. Under some assumptions on the nature of the
temporal constraints, this problem is easily solved – or iden-
tified as unsolvable – even for a large number of tasks. Real-
istically, however, different tasks must be performed in dif-
ferent locations, and the vehicle must move from one place
to the next. This adds a new dimension to the problem: a
schedule which completely satisfies the temporal constraints
between tasks could be infeasible because of the time the ve-
hicle spends traveling from one location to the next. On the
other hand, if we want to minimize the time (or distance)
traveled by the vehicle, we still have to satisfy the tempo-
ral constraints among the tasks. Finding a schedule which

∗Alias: Satish Kumar Thittamaranahalli

satisfies the temporal constraints and minimizes the distance
traveled, while taking into account the time necessary for the
vehicle to move from location to location, is a problem for
which there exists no general efficient solution technique.

In this paper, we first recount the two commonly used
frameworks for solving temporal and spatial reasoning prob-
lems separately. We then introduce a unified framework, the
Traveling Salesman Problem with Simple Temporal Con-
straints (TSP-STC). We analyze the combinatorial proper-
ties of the TSP-STC in light of recent results from the the-
oretical computer science community. This analysis yields
both positive and negative results, which allow us to identify
those aspects of the combined problem which require further
research to obtain efficient solutions.

Temporal Reasoning Problems
In this section, we recount well established formalisms for
reasoning about temporal constraints. Many kinds of tem-
poral relations, including the ones considered in this pa-
per, can be represented on a directed graph G = 〈X , E〉,
where a vertex Xi ∈ X is an event and a directed edge
e = 〈Xi, Xj〉 ∈ E is a constraint on the relative execution
times of Xi and Xj . Conventionally, a special event X0 is
used to represent the “beginning of time” and its execution
time is set to 0.

The simplest formalism for temporal reasoning is prece-
dence ordering, which is commonly encoded by a directed
edge e = 〈Xi, Xj〉, indicating that event Xi should be
executed before event Xj . Although their representational
power is limited, precedence constraints are useful in prac-
tice since they are able to represent causal relationships. For
instance, precedence constraints can model a plan whose ac-
tions are causally ordered. In our previous example of the
surveillance vehicle, causal relationships would dictate that
the vehicle should first reach the target area before observ-
ing it. Producing a total ordering for a set of precedence con-
straints, or alternatively identifying that no such ordering ex-
ists, can be done in polynomial time.

A more expressive but still tractable formalism for tem-
poral reasoning is the framework of Simple Temporal Prob-
lems (STPs). Here, each directed edge e = 〈Xi, Xj〉 ∈ E ,
annotated with the bounds [LB(e), UB(e)], is a simple tem-
poral constraint between Xi and Xj , indicating that the rel-
ative execution times of events Xi and Xj are constrained

96

by the pair of inequalities LB(e) ≤ Xj − Xi ≤ UB(e).1
A solution to an STP is an assignment of execution times
to all events such that all simple temporal constraints are
satisfied. STPs are one of the most widely used formalisms
for reasoning about metric time. They are fairly rich in their
expressiveness, although they cannot represent disjunctions.
STPs can be solved in polynomial time using shortest path
computations on their distance graph representations. In the
distance graph representation, the constraint Xj −Xi ≤ w
is represented as an edge from Xi to Xj annotated with a
cost w. Each simple temporal constraint in the STP is there-
fore represented as a pair of edges in the distance graph. The
absence of negative cost cycles in the distance graph charac-
terizes the consistency of the temporal constraints (Dechter,
Meiri, and Pearl 1991), that is, the existence of a solution.
Shortest paths in the distance graph are commonly calcu-
lated using the Bellman-Ford algorithm. However, recent,
more efficient algorithms can be employed for solving STP
instances with additional structure (Planken, De Weerdt, and
van der Krogt 2008).

There also exist more expressive formalisms for temporal
reasoning, such as Disjunctive Temporal Problems (DTPs).
However, their higher expressiveness comes at the cost of a
higher complexity. In particular, DTPs are NP-hard prob-
lems, and all known procedures for solving them require
exponential time. Here, we limit our analysis of combin-
ing temporal and spatial reasoning to cases with precedence
and simple temporal constraints. The negative results proved
here for the combined problem carry over to extensions in
which DTPs are used instead of STPs.

Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is an established
formalism for reasoning about spatial problems and has been
extensively studied by different communities. Many variants
of the problem exist. In this section, we recount the results
associated with those variants which are relevant to our for-
mal definition of TSP-STCs.

The classical TSP is the problem of finding a Hamiltonian
cycle of minimum cost on an edge-weighted complete undi-
rected graph. A Hamiltonian cycle is a cycle in which each
vertex of the graph is visited exactly once. The TSP is NP-
hard and even hard to approximate within any polynomial
factor. However, many of its variants can be approximated
in polynomial time because they allow for tours instead of
cycles. A tour visits all vertices of the graph, like a Hamil-
tonian cycle, but any vertex can be visited more than once.
This relaxation is equivalent to the metric assumption, where
the triangle inequality holds for the distances between ver-
tices (Chekuri and Pál 2007).

The most common TSP variants consist of different com-
binations of assumptions and requirements, such as: a.
Whether we assume a metric distance function; b. Whether
distances between vertices are symmetric; c. Whether we are
interested in calculating a path between given start and goal

1Here, for convenience, we use the same notation to indicate
events and their execution times.

vertices or a cycle (in both cases all vertices should be vis-
ited); d. Whether a subset of the vertices should be visited
in a given order; and e. Whether a subset of the vertices
should be visited in an order consistent with specified prece-
dence constraints. The difference between requirements (d)
and (e) is that we have a total ordering over the vertices of
the subset for (d), while we have a partial ordering for (e).
Other variants based on different assumptions and require-
ments are well studied in different communities, such as the
relaxation of the requirement that every vertex should be vis-
ited or the assumption that a price is assigned to each vertex.
However, these variants are out of scope for our analysis.

Table 1 summarizes the known results for the TSP and
some of its most common variants which are relevant to
us (Charikar et al. 1997). There is no polynomial-time ap-
proximation algorithm for the classical TSP (unless P =
NP). However, under the metric assumption, polynomial-
time approximation algorithms can be designed. In particu-
lar, for the symmetric TSP, where the distance from one ver-
tex to another is the same as that in the opposite direction,
there exists a factor-1.5 polynomial-time approximation al-
gorithm. In the case of the Asymmetric TSP (ATSP), the dis-
tances are not necessarily symmetric. The ATSP is amenable
to an O(log n) polynomial-time approximation algorithm.2
Next, the table lists both the symmetric and asymmetric path
variants of the TSP, TSP-Path and ATSP-Path, respectively,
where the start and end vertices are given. While the approx-
imation factor ofO(log n) carries over to the ATSP-Path, the
best known polynomial-time algorithm for the TSP-Path has
a slightly worse approximation factor of 5/3.

Two other notable variants are the TSP and ATSP with
precedence constraints. These variants allow the specifica-
tion of precedence constraints between vertices, which can
be encoded as a directed acyclic graph and interpreted as a
partial order. A feasible solution is a total ordering on the
vertices which is consistent with the partial order. The cost
of a feasible solution is equal to the cost of the tour that it
induces. An optimal solution is a feasible solution with min-
imum cost. There are fairly strong inapproximability results
for the TSP and ATSP with precedence constraints, which
hold even under the metric assumption. Finally, the TSP and
ATSP with path constraints are special cases of the TSP and
ATSP with precedence constraints, respectively, where the
precedence constraints induce a total ordering on a subset
of the vertices. These last two variants have factor-3 and
O(log n) approximation algorithms, respectively.

TSP-STC: A Formal Definition
Having reviewed STPs and TSPs, we now study a combina-
tion of the two, a spatial problem with temporal constraints
where traveling from vertex to vertex takes time. In the ex-
ample from the Introduction, the traversal times depend on
both the terrain and the speed of the surveillance vehicle.
Thus, the solution of the spatial part of the problem gen-
erates temporal constraints in addition to the ones already
specified by the STP. The complexity of the TSP-STC can-
not be smaller than the one of TSPs or STPs individually.

2Here, and in the rest of the paper, n is the number of vertices.

97

Variant Assumptions Tractable approximations
TSP No assumptions –

TSP Symmetric distances,
metric domains

1.5
(Christofides 1976)

ATSP Asymmetric distances,
metric domains

O(log n)
(Frieze, Galbiati, and Maffioli 1982)

TSP-Path
(given start and goal vertices)

Symmetric distances,
metric domains

5/3
(Hoogeveen 1991)

ATSP-Path
(given start and goal vertices)

Asymmetric distances,
metric domains

O(log n)
(Chekuri and Pál 2007)

TSP with path constraints Symmetric distances,
metric domains

3
(Bachrach et al. 2005)

ATSP with path constraints Asymmetric distances,
metric domains

O(log n)
(Chekuri and Pál 2007)

TSP with precedence constraints Symmetric distances,
metric domains

Inapproximability results
(Charikar et al. 1997)

ATSP with precedence constraints Asymmetric distances,
metric domains

Inapproximability results
(Charikar et al. 1997)

Table 1: A summary of the complexity results associated with different variants of the Traveling Salesman Problem.

Formally, a TSP-STC is a sextuplet 〈V, d, t,X , c, E〉,
where:

V is the set of vertices, each of which represents a location;
d is the distance function, that maps an ordered pair of ver-

tices to a non-negative real number (d : V × V → R≥0),
which represents the distance from one vertex to another;

t is the traversal function, that maps an ordered pair of ver-
tices to a non-negative real number (t : V × V → R≥0),
which represents the time required to move from one ver-
tex to another;

X is the set of events, as defined for a standard STP;
c is the function mapping events to vertices (c : X → V);
E is the set of directed edges of the form e = 〈Xi, Xj〉, an-

notated with the bounds [LB(e), UB(e)]. Each e is a sim-
ple temporal constraint between two events Xi and Xj .

A feasible solution of a TSP-STC is a total ordering on
events in X and an assignment of execution times to all of
them such that: a. The execution times are consistent with
the total ordering; b. The execution times are consistent with
the constraints in E ; and c. The execution times of two con-
secutive events Xi and Xi+1 in the total ordering satisfy the
induced constraint Xi+1 − Xi ≥ t(c(Xi), c(Xi+1)). The
last condition accounts for the traversal time between ver-
tices (locations) of consecutive events while not penalizing
waiting time at any location.3

Since every event in X is mapped to a unique location in
V , a feasible solution defines a visit sequence on the loca-
tions. The cost of a feasible solution of a TSP-STC is equal
to the cost of the induced tour as derived from the distance
function d. An optimal solution of the TSP-STC is a feasible
solution of minimum cost.

3In the rest of the paper, we use “vertex” and “location” syn-
onymously, as one corresponds to the other in our definition of the
TSP-STC.

Just like for TSPs, we assume metric distances between
vertices for TSP-STCs as well. Unless otherwise specified,
we also assume that the distance function of TSP-STCs is
symmetric. If this is not the case, we refer to these problems
as Asymmetric Traveling Salesman Problems with Simple
Temporal Constraints (ATSP-STCs).

The above definition is only one possible way to combine
TSPs and STPs. However, it is general enough to encode
many real-world problems. In fact, both TSPs and STPs
are special cases of TSP-STCs. Given a TSP with a set of
vertices V and a distance function d, it can be represented
in this framework by imposing the following conditions:
t(Vi, Vj) = 0 for all 1 ≤ i, j ≤ |V|; |X | = |V|, where
each Xi ∈ X is a fictitious event; c is a bijective function
mapping each event to a unique location and vice versa; and
E = ∅. These conditions entail that every vertex must be
visited in the tour, but no temporal constraints need to be
considered. Conversely, a standard STP with a set of events
X and a set of constraints E can be represented in this frame-
work by imposing the following conditions: V = {V0};
d(V0, V0) = 0; t(V0, V0) = 0; and each event Xi ∈ X is
associated with the same location, meaning that c(Xi) = V0
for all 1 ≤ i ≤ |X |.

Computational Analysis of TSP-STCs
In this section, we present a complexity analysis of TSP-
STCs. We show that this class of problems is subject to
strong inapproximability results, even under simplifying as-
sumptions commonly made for TSPs. We first address the
complexity of TSP-STCs when temporal constraints are lim-
ited to precedence constraints (Theorems 1 and 2). Next, we
prove that TSP-STCs are NP-hard to approximate within any
polynomial factor, even under the assumption that both the
distance and traversal functions are metric and symmetric.
As TSP-STCs are a special case of ATSP-STCs, the inap-
proximability results for the former carry over to the latter.

98

Theorem 1. For the TSP-STC, there is no polynomial-time
|V|α-approximation algorithm, for some α > 0, unless P =
NP .

Theorem 2. For the TSP-STC, there is no polynomial-time
(log |V|)δ-approximation algorithm, for any δ > 0, unless
NP ⊆ DTIME(|V|log log |V|).

Proof. Consider TSPs with precedence constraints. Since
precedence constraints are a special case of simple tempo-
ral constraints, TSPs with precedence constraints are a sub-
class of TSP-STCs and therefore inapproximability results
for the former carry over to the latter. Theorems 1 and 2 cor-
respond to Theorems 5 and 9 in (Charikar et al. 1997) after
setting k = n = |V|.

A Closer Look at TSP-STCs with Precedence
Constraints
Theorems 1 and 2 dictate that we cannot design polynomial-
time approximation algorithms for TSP-STCs or ATSP-
STCs with precedence constraints. However, we can pre-
cisely characterize the instance complexity of solving TSP-
STCs and ATSP-STCs with only precedence constraints.

The first, trivial case encompasses instances without any
temporal constraints, resulting in classical TSPs and ATSPs,
for which there exist applicable polynomial-time approxi-
mation algorithms (see Table 1).

The second case encompasses instances where the sub-
set of events for which precedence constraints are specified
is totally ordered, resulting in TSPs and ATSPs with path
constraints, for which there exist factor-3 and O(log n) ap-
proximation algorithms, respectively.

Finally, the third case encompasses those instances where
precedence constraints are specified, but whose events can-
not be uniquely ordered. For such cases, we can still re-
duce TSP-STCs and ATSP-STCs with only precedence con-
straints to multiple instances of TSPs and ATSPs with path
constraints, where each instance corresponds to a total order-
ing over a subset of the vertices consistent with the original
precedence constraints. The best guaranteed result obtained
by evaluating all possible total orderings is a factor-3 ap-
proximation for the given original instance of the TSP-STC
with precedence constraints or an O(log n) approximation
for the ATSP-STC instance with precedence constraints. Ob-
viously, the overall running time to find an approximate so-
lution depends on the number of total orderings for that spe-
cific subset which are consistent with the specified prece-
dence constraints.

The tractability of approximating TSP-STCs and ATSP-
STCs with only precedence constraints depends on the num-
ber of total orderings over all events allowed by the prece-
dence constraints. As a rule of thumb, a large space of pos-
sible total orderings (as in the first case) and a small space
of total orderings (as in the second case) are both amenable
to efficient approximations.

Strong Inapproximability Results
We now prove a strong inapproximability result for TSP-
STC. Theorem 3 is stronger than Theorems 1 and 2 as

it proves the inapproximability of the problem within any
polynomial factor. Moreover, it proves that the negative re-
sults hold even under the assumption that both the dis-
tance and traversal functions are metric and symmetric. It
is worth comparing this with the original TSP, which, al-
though inapproximable within any polynomial factor, be-
comes amenable to tractable approximations under the met-
ric assumption.

Theorem 3. The TSP-STC is NP-hard and also NP-hard to
approximate within any polynomial factor, even under the
assumptions that both the distance and traversal functions
are metric and symmetric.

Proof. We reduce the Hamiltonian path problem to the TSP-
STC. The Hamiltonian path problem is the problem of find-
ing a path in a given undirected graph in which each vertex
of the graph is visited exactly once. Consider a Hamiltonian
path problem over an undirected graph G = 〈N ,A〉, where
N is a set of vertices (|N | = n) and A is a set of undi-
rected edges (|A| = k). We associate each Ni ∈ N with a
vertex Vi ∈ V . For each 1 ≤ i ≤ n, we define a unique
event Xi ∈ X associated with Vi. We define t and d as
follows: t(Vi, Vj) = d(Vi, Vj) = t(Vj , Vi) = d(Vj , Vi);
t(Vi, Vj) = 1 if there is an edge between Ni and Nj in
G; t(Vi, Vj) = 1.5 otherwise. Note that both t and d are
symmetric and metric, as the triangle inequality holds by
construction. We complete the construction of the TSP-STC
instance by defining 2

(
n
2

)
temporal constraints of the form

eij = 〈Xi, Xj〉 for all 1 ≤ i, j ≤ n and i 6= j, with
LB(eij) = −∞ and UB(eij) = n − 1. A Hamiltonian
path exists in G iff we can visit all vertices in the TSP-STC
and satisfy the temporal constraints. This is so because the
temporal constraints dictate that, regardless of the starting
point of the path, every vertex should be visited within n−1
time units. The traversal function indicates that it takes ex-
actly one time unit to go from one vertex to another if there
is an edge between the two in G. It is easy to see that a so-
lution of the Hamiltonian path problem maps to a solution
of the TSP-STC instance constructed above. In addition, a
solution of the TSP-STC instance maps to a solution of the
Hamiltonian path problem: no vertex can be visited twice
and no edge can be traversed in the TSP-STC which was not
present in G because the time constraints would be violated.
Finally, we can view the TSP-STC as a constraint optimiza-
tion problem. The optimization component of the problem
is the minimization of the sum of the distances in the tour
induced by the visitation order. The satisfaction component
is to respect the simple temporal constraints and the con-
straints induced by the traversal function. If the satisfaction
component is itself NP-hard, it follows that the TSP-STC is
NP-hard to approximate within any polynomial factor. As
we have demonstrated, the reduction from the Hamiltonian
path problem is only to the satisfaction component of the
TSP-STC, hence proving the Theorem.

A Notable Special Case
We now analyze an important special case of the TSP-STC
which is reducible to TSPs with precedence constraints and

99

to which the analysis presented above applies. This notable
case occurs when the traversal function is degenerate, i.e.,
maps all combinations of its arguments to zero, and all sim-
ple temporal constraints can be expressed in the form of
time windows. A time window represents an interval during
which an event must be executed. This is more restrictive
than simple temporal constraints because, in the latter case,
we can constrain the relative execution times of two differ-
ent events, while, with time windows, we only constrain the
execution times of individual events. A time window is de-
fined by the interval [ai, bi] for event Xi, where ai is the
start time and bi the end time, with ai ≤ bi. A degener-
ate traversal function captures the case in which the agent
which has to travel between locations can move fast enough
so that the traversal times can be disregarded as a factor in
the problem domain. The case we analyze can be viewed
as a special case of the well studied TSP with Time Win-
dows (TSPTW) which also considers non-degenerate traver-
sal functions (Melvin et al. 2007).

A time window for event Xi is modeled in the STP com-
ponent of the TSP-STC as a simple temporal constraint
〈X0, Xi〉 annotated with the bounds [ai, bi], where X0 is a
special event which is used to represent the “beginning of
time” and is conventionally set to 0. A TSP-STC instance
with only time window constraints and a degenerate traver-
sal function can be reduced to an instance of the TSP with
precedence constraints as follows. The set of locations V and
the distance function d remain unchanged, but locations are
duplicated, if needed, so that at most one event is assigned
to each location. For all events Xi and Xj with bi < aj , a
precedence constraint c(Xi) ≺ c(Xj) is added.

A solution of the original TSP-STC instance is retrieved
from a solution of the corresponding instance of the TSP
with precedence constraints as follows. We assign execution
times to the events in the TSP-STC using the total order-
ing obtained as a solution of the TSP with precedence con-
straints. This assignment of execution times is constructed to
satisfy the invariant that the execution time of any event Xi

is always equal to the starting point of the time window of
an already scheduled event Xj . Assume that the event that
corresponds to the initial location of the TSP with prece-
dence constraints is Xi. We set the execution time of Xi to
ai. Thus, it holds that the execution time of Xi corresponds
to the starting point of the time window of an already sched-
uled event (namely, Xi). Now, assume that the solution of
the TSP with precedence constraints moves from the loca-
tion that corresponds to event Xi to the location of the next
event Xj in the total ordering. It cannot be the case that
bj < Xi for the following reason: Xi corresponds to the
starting point of the time window of an already scheduled
event Xk, which the solution of the TSP with precedence
constraints visits no later than event Xi. But this is impossi-
ble since Xi = ak and bj < Xi mean that there is a prece-
dence constraint c(Xj) ≺ c(Xk). Thus, a solution of the
TSP with precedence constraints cannot visit Xk and then
later move to Xj . Thus, Xi ≤ bj . We now have two distinct
cases:

• aj ≤ Xi, that is, Xi ∈ [aj , bj]. In this case, we set Xj =

Xi, which satisfies the time window constraint of Xj . It
holds that Xj corresponds to the starting point of the time
window of an already scheduled event (namely, Xk).

• aj > Xi. In this case, we set Xj = aj , which satisfies the
time window constraint of Xj . Here, too, it holds that Xj

corresponds to the starting point of an already scheduled
event (namely, Xj).

We claim that any solution of the TSP-STC instance is
also a solution of the corresponding instance of the TSP
with precedence constraints and vice versa. It would there-
fore follow that the optimal solution of the corresponding
instance of the TSP with precedence constraints is also an
optimal solution of the original instance of the TSP-STC.
Consider any solution of the TSP-STC. Assume, for proof
by contradiction, that it does not satisfy some precedence
constraint c(Xi) ≺ c(Xj) of the TSP with precedence con-
straints because Xi ≥ Xj . This is a contradiction since
Xi ≤ bi < aj ≤ Xj due to the semantics of the precedence
constraint c(Xi) ≺ c(Xj). Conversely, consider any solu-
tion of the TSP with precedence constraints. The procedure
described above already provides an algorithmic construc-
tion of a corresponding solution for the TSP-STC.

Related Work
The combination of spatial and temporal aspects is impor-
tant in different domains, among which are robotics and ve-
hicle routing. Thus, problems similar or identical to TSP-
STCs have been studied in operations research, theoretical
computer science, artificial intelligence and robotics. Differ-
ent combinations of spatial and temporal aspects are possi-
ble. The spatial aspects can be expressed by minimizing dis-
tances or maximizing the (uniform or non-uniform) total re-
ward of the visited vertices. The temporal aspects can be ex-
pressed via precedence constraints, absolute time windows
or more general temporal constraints. The resulting com-
bined problems are often solved with constraint program-
ming, branch-and-bound search and dynamic programming
as exact algorithms; or genetic algorithms, tabu search, co-
operative auctions and insertion or interchange heuristics as
heuristic algorithms. In this section, we present a general
overview of the solution techniques adopted in different re-
search areas.

Robotics researchers have studied multi-robot routing
problems with rewards and disjoint time windows (that do
not overlap), where robots have to visit targets during given
time windows. The objective is to maximize the sum of the
rewards of the visited targets minus the sum of the costs in-
curred for moving from target to target (Melvin et al. 2007).
The problem is solvable in pseudo polynomial time for a
single robot but is NP-hard for multiple robots, although
special cases can be solved in polynomial time (including
the case where the robots are identical and the targets have
singleton time windows). Robotics researchers have also
studied multi-robot routing problems where robots have to
visit targets in the presence of precedence constraints be-
tween targets. The objective is to maximize the sum of time-
decreasing rewards of the targets (Jones, Dias, and Stentz
2011). Cooperative auctions and genetic algorithms have

100

been proposed as heuristic algorithms to solve this prob-
lem. An alternative approach for solving multi-robot routing
problems is to use multiple constraint solvers which progres-
sively refine trajectory envelopes for each vehicle according
to mission requirements, by leveraging the notion of least
commitment to obtain easily revisable trajectories for exe-
cution (Pecora, Dimitrov, and Cirillo 2012).

Theoretical computer science researchers have studied
prize-collecting traveling salesman (or vehicle routing)
problems with time windows, where a salesperson (or ve-
hicle) has to visit customers during given time windows.
The objective is to maximize the sum of the rewards of
the visited customers. Several scheduling problems with
sequence-dependent setup times can be reduced to this prob-
lem, which can be solved with O(log n) approximation al-
gorithms (Bansal et al. 2004).

Operations researchers have studied time-constrained
TSPs, where a salesperson has to visit customers during
given time windows. The objective is to minimize the travel
distance or time (Baker 1983). It is already NP-hard to de-
cide whether a feasible solution exists (Savelsberg 1985).
Constraint programming, branch and bound search and dy-
namic programming have been proposed as exact algorithms
to solve this problem, and greedy heuristics or interchange
heuristics as heuristic algorithms (Pesant et al. 1998).

Conclusions
In this paper, we defined the framework of the TSP-STC,
which combines the temporal aspects of STPs and the spatial
aspect of TSPs. We recounted known computational results
from the theoretical computer science community for the
spatial and temporal aspects of the problem separately. We
then analyzed the problem in its entirety, proving strong in-
approximability results. These results hold even under com-
mon assumptions (such as the metric assumption) which al-
low for tractable approximations for TSPs.

Despite these negative results, we were able to present
special cases which are amenable to tractable approxima-
tions with low-order instance complexities. Given the com-
plexity of the TSP-STC and the strong inapproximability re-
sults, the most promising avenues for future investigations
are heuristic and knowledge engineering approaches. From
the heuristic perspective, we can potentially generalize well
established heuristics for TSPs (e.g., the 2-opt heuristic).
From the knowledge engineering perspective, we can poten-
tially employ mixed-initiative approaches.

Although the TSP-STC is only a particular way of com-
bining spatial and temporal reasoning, it is general enough
to capture the requirements of many real-world applications.
Therefore, our results bear strong implications on a variety
of problems, namely the combination of temporal and spatial
planning in agent-based systems and robotics. As we have
seen in the previous sections, there are many existing meth-
ods for addressing more restrictive cases, whose applicabil-
ity is, however, very limited. Our analysis covers the cases
in which a single agent or robot is present, and therefore the
inapproximability results carry over to multi-agent systems
as well, which are more complex.

Our future work will focus on the adaptation of well es-
tablished heuristic techniques developed in the TSP frame-
work to TSP-STCs and on the generalization of our frame-
work to multi-agent systems.

Acknowledgments. This paper is based upon research
supported by a MURI under contract/grant number N00014-
09-1-1031 and by the Swedish Knowledge Founda-
tion (KKS) under project Safe Autonomous Navigation
(SAUNA). The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies or the U.S.
government.

References
Bachrach, A.; Chen, K.; Harrelson, C.; Mihaescu, R.; Rao,
S.; and Shah, A. 2005. Lower bounds for maximum parsi-
mony with gene order data. In Proceedings of the Interna-
tional Conference on Comparative Genomics.
Baker, E. 1983. An exact algorithm for the time-
constrained traveling salesman problem. Operations Re-
search 31(5):938–945.
Bansal, N.; Blum, A.; Chawla, S.; and Meyerson, A. 2004.
Approximation algorithms for deadline-TSP and vehicle
routing with time-windows. In Proceedings of the Annual
ACM Symposium on Theory of Computing.
Charikar, M.; Motwani, R.; Raghavan, P.; and Silverstein,
C. 1997. Constrained TSP and low-power computing. In
Dehne, F.; Rau-Chaplin, A.; Sack, J.-R.; and Tamassia, R.,
eds., Algorithms and Data Structures, volume 1272 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg.
104–115.
Chekuri, C., and Pál, M. 2007. An O(log n) approximation
ratio for the asymmetric traveling salesman path problem.
Theory of Computing 3(1):197–209.
Christofides, N. 1976. Worst-case analysis of a new heuristic
for the traveling salesman problem. Technical Report 388,
Graduate School of Industrial Administration, Carnegie-
Mellon University.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1):61–95.
Frieze, A. M.; Galbiati, G.; and Maffioli, F. 1982. On the
worst-case performance of some algorithms for the asym-
metric traveling salesman problem. Networks 12(1):23–39.
Hoogeveen, J. 1991. Analysis of Christofides’ heuristic:
Some paths are more difficult than cycles. Operations Re-
search Letters 10(5):291–295.
Jones, E.; Dias, M.; and Stentz, A. 2011. Time-extended
multi-robot coordination for domains with intra-path con-
straints. Autonomous Robots 30(1):41–56.
Melvin, J.; Keskinocak, P.; Koenig, S.; Tovey, C.; and
Ozkaya, B. Y. 2007. Multi-robot routing with rewards and
disjoint time windows. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS).

101

Pecora, F.; Dimitrov, D.; and Cirillo, M. 2012. On mission-
dependent coordination of multiple vehicles under spatial
and temporal constraints. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).
Pesant, G.; Gendreau, M.; Potvin, J.-Y.; and Rousseau, J.-M.
1998. An exact constraint logic programming algorithm for
the traveling salesman problem with time windows. Trans-
portation Science 32(1):12–29.
Planken, L.; De Weerdt, M.; and van der Krogt, R. 2008.
P 3C: A new algorithm for the simple temporal problem.
In Proceedings of the International Conference on Planning
and Scheduling (ICAPS).
Savelsberg, M. 1985. Local search in routing problems with
time windows. Annals of Operations Research 4:285–305.

102

On the Many Interacting Flavors of Planning for Robotics

Kartik Talamadupula† and Matthias Scheutz§ and Gordon Briggs§ and Subbarao Kambhampati†

†Dept. of Computer Science and Engg.
Arizona State University

Tempe AZ
{krt,rao} @ asu.edu

§HRI Laboratory
Tufts University

Boston MA
{mscheutz,gbriggs} @ cs.tufts.edu

Abstract

Automated planners have been employed in a variety of
robotics applications. However, there still remains a distinct
divide between task planning, or high-level planning, and its
counterparts in robotics. In particular, navigation and dia-
logue planning have emerged as important concerns in the
quest to make realistic end-to-end robotic systems a reality.
However, in the absence of a unifying problem to solve, col-
laborations between these three fields have been sparse and
mostly narrow and project-driven. In this paper, we discuss
Human-Robot Teaming as that unifying problem, and outline
via a simple example the various sub-fields of the different
kinds of planning that interact naturally to produce a solution
to the overall problem. Our hope is to spur the various, frag-
mented planning communities into further collaboration by
highlighting the rich potential of these interactions.

1 Introduction
Automated planning systems have come a long way since
the days of the STRIPS planner (Fikes and Nilsson 1972)
and Shakey the Robot. Specifically, the evolution of fast
heuristics and various compilation methods has enabled the
application of state-of-the-art planners to cutting edge re-
search problems in robotics. Planners – in one form or the
other – now regularly guide robotic systems that hitherto had
to rely on painstakingly pre-programmed scripts in a robust
and real-time manner. The idea that robotic agents need to
be endowed with autonomy is not new – from depictions
in popular culture to actual deployed agents, robots are as-
sumed to be autonomous and independent in many crucial
ways. However, it is the meaning of this autonomy that is
constantly changing. Much remains to be done is defining
a full taxonomy for the usage of the word planning when it
comes to robotic systems. Such an effort would go a long
way towards recognizing the various disciplines and sub-
fields that have hitherto been treated as separate from each
other, and spur research on further bridging the divide be-
tween the automated planning and robotics communities.

Apart from automated planning – alternatively known as
task planning – robotic systems have also had to contend
with navigation or path planning. Increasingly, dialogue
planning is gaining importance as well, reflecting the key
role that speech and dialogue play in interaction with hu-
mans. All three of these fields house thriving research com-
munities that report progresses at highly rated venues year

after year. However, collaborations between these fields are
few and far in between, and usually only come about as a
result of integrated systems that are task or project specific.

In this paper, we discuss a motivating problem that brings
these different types of planning together, and outline a sim-
ple example task that demonstrates the need for different
kinds of planning. We conclude by pointing out various
connections between existing work in the field of automated
planning, and important and outstanding problems in other
fields associated with robotics.

2 Planning for Human-Robot Teaming
Human-Robot Teaming scenarios are defined as those that
involve humans working with autonomous robotic agents to
achieve high-level goals that are determined and specified by
a human (Talamadupula et al. 2011). Alternatively, any gen-
eral problem that considers symbiotic interaction between
humans and robots (Rosenthal, Biswas, and Veloso 2010)
can be used to illustrate the point that we wish to make, too.
Here we present a simple example of an HRT task.
A Motivating Example Consider a robot, Cindy, that must
deliver a medical kit to Commander Z. Cindy is told that there
is such a kit in a room at the end of the hallway, what the kit
looks like, and instructed to remain undetected by the enemy
while performing this task. Just before entering the room, Cindy
encounters Commander Y, who asks her to void her earlier, more
important goal in order to follow him. Cindy declines while
indicating urgency and interruption in her voice, and negotiates a
commitment to meet Commander Y wherever he happens to be
when she achieves her current goal. Arriving outside the room
where Commander Z is located, she senses that the door is closed,
thus triggering a further query to her handler. Cindy is instructed to
try a new action – pushing the door open with her hand. She enters
the room and delivers the kit to Commander Z, who reinforces the
commitment that she must go meet Commander Y at his current
location at once.
Even in this simple task, various planning modalities must
interact and occur in parallel to enable the script.

1. Task Planning: Agents must be able to plan for changing
or conditional goals like the medical kit (Talamadupula
et al. 2010), elaboration of the goals associated with
the task (Baral and Zhao 2008) as well as trajectory
constraints like ‘remain undetected’ on the form of the
plan (Mayer et al. 2007). Additionally, the task planner
may have to deal with updates to the model that are either
learned, or specified by humans (Cantrell et al. 2012).

103

ROBOT

Goals
Model Updates

Trajectory
Constraints

Hypotheticals

Reports

Active
Model Elicitation

PDDL

Δ-PDDL

LTL
N-LTL

Replanning

Open World
Planning
Excuse

Generation

HUMAN

Affect

Dialog

Planning

Task Planning

Instructions

Negotiation

Excuses Questions

Belief

Modeling

Path

Planning

Sensing Intent Recognition
Activity Recognition Dynamics

Figure 1: A schematic of the various interactions present in
a simple Human-Robot Teaming task.

2. Path Planning: Autonomous robots must be endowed
with capabilities of planning their paths. These may in-
clude planning with goal-oriented actions like looking
for the medical kit (Simmons and Koenig 1995), finding
the shortest path to the room that holds the kit (Koenig,
Likhachev, and Furcy 2004), obeying constraints on the
trajectories of the path (Saffiotti, Konolige, and Ruspini
1995) or planning for agents that exhibit different dynam-
ics, like UAVs and AUVs (McGann et al. 2008).

3. Dialogue Planning: Robots need to skilled at both rec-
ognizing and producing subtle human behaviors vis-a-vis
dialogue (Briggs and Scheutz 2013) – for example, in the
above scenario, Cindy needs to both understand the supe-
riority in Commander Y’s voice when requesting a new
task, as well as inflect her own response with urgency
in order to indicate that the task at hand cannot be inter-
rupted. Negotiation is another possibility, for which the
robot needs to be informed by the task planner regarding
excuses (Göbelbecker et al. 2010) and other hypotheti-
cals.

4. Mental Modeling: The agent must be in a position to
model the beliefs and mental state of other agents that are
part of the scenario (Briggs and Scheutz 2012); in this
case, Cindy may want to model Commander Y’s mental
state to determine his location at the end of the first task.

5. Intent and Activity Recognition: Closely tied in to both
dialogue and mental modeling is the problem of recog-
nizing the intents of, and activities performed by, other
agents (Vail, Veloso, and Lafferty 2007). Humans are en-
dowed with these capabilities to a very sophisticated de-
gree, and agents that interact and team with humans must
possess them as well.

6. Architecture: Finally, the integrated architecture that all
these processes execute in plays a big role in determin-
ing the planning capabilities of the autonomous system.
A good control structure must display programmability,
adaptability, reactivity, consistent behavior, robustness,
and extensibility (Alami et al. 1998). By dint of having to

interact with humans, it must also fulfill the notions of at-
tending and following, advice-taking, and tasking (Kono-
lige et al. 1997). Finally, it must be able to detect and
recover from failure, and tide all the other planning com-
ponents over that failure.

3 Planning, and More Planning
As the above list shows, even a simple task requires various
kinds of planning components in order to present humans
with a seamless teaming experience. However, the mere
presence of these components is not enough – they must in-
teract in order to process data that comes in both from the
human team-member as well as the world, so that the sce-
nario objectives may be furthered. Figure 1 presents an out-
line of the various components described previously, and the
interactions among them. Here, we look at three of the most
important ones:

Task and Motion Planning The interaction between these
two kinds of planning is well-established; in the above sce-
nario, task planning sets the waypoints that must be visited
in order to fulfill the higher level goals, and these waypoints
are then passed on as goals themselves to the motion plan-
ning process. In return, the motion planning provides up-
dates to the task planner on new objects in the world, and
the current location of the robot.

Task and Dialogue Planning Real-world robotics appli-
cations are seeing an increase in the use of dialogue man-
agers as more and more systems try to interact with and en-
gage humans gainfully. On the one hand, dialogue systems
provide more information and context to task planners in the
form of instructions (goals), actions models and user prefer-
ences. In the reverse direction, task planners can be used
to inform robotic agents about relevant questions to ask in
order to elicit more information from humans, and to help
determine the tone and affect of the interaction.

Mental Modeling and Task Planning Many human-
robot teaming applications consider just the presence of one
agent in the world; however, the real world is more closely
approximated by multi-agent scenarios. Although a given
agent will not interact with all of the agents in the world
with the same degree of closeness, sometimes it is useful to
model those other agents. In the example scenario described
in Section 2, for instance, Cindy the robot must model
Commander Y’s mental state to some level in order to know
his possible location when she achieves her prior goal, so
that she may rendezvous with him. Similarly, given a model
as well as the goals of Commander Y, a task planner can be
used to simulate a mental model (in lieu of a real mental or
belief model).
The challenge – and opportunity – for the automated plan-
ning community is to develop algorithms and systems that
take all these interactions into account explicitly, in order to
support more real-world robotics applications.

Acknowledgments
This research is supported in part by the ARO grant W911NF-13-
1-0023, the ONR grants N00014-13-1-0176, N00014-09-1-0017,
N00014-07-1-1049 and N00014-13-1-0519, and the NSF grant
IIS201330813.

104

References
[Alami et al. 1998] Alami, R.; Chatila, R.; Fleury, S.; Ghal-
lab, M.; and Ingrand, F. 1998. An architecture for autonomy.
The International Journal of Robotics Research 17(4):315–
337.

[Baral and Zhao 2008] Baral, C., and Zhao, J. 2008. Non-
monotonic temporal logics that facilitate elaboration tolerant
revision of goals. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI, 13–17.

[Briggs and Scheutz 2012] Briggs, G., and Scheutz, M.
2012. Multi-modal belief updates in multi-robot human-
robot dialogue interaction. In Proceedings of 2012 Sympo-
sium on Linguistic and Cognitive Approaches to Dialogue
Agents.

[Briggs and Scheutz 2013] Briggs, G., and Scheutz, M.
2013. A hybrid architectural approach to understanding and
appropriately generating indirect speech acts. In Proceed-
ings of the 27th AAAI Conference on Artificial Intelligence,
(forthcoming).

[Cantrell et al. 2012] Cantrell, R.; Talamadupula, K.; Scher-
merhorn, P.; Benton, J.; Kambhampati, S.; and Scheutz, M.
2012. Tell me when and why to do it!: Run-time planner
model updates via natural language instruction. In Human-
Robot Interaction (HRI), 2012 7th ACM/IEEE International
Conference on, 471–478. IEEE.

[Fikes and Nilsson 1972] Fikes, R., and Nilsson, N. 1972.
STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3):189–
208.

[Göbelbecker et al. 2010] Göbelbecker, M.; Keller, T.; Eye-
rich, P.; Brenner, M.; and Nebel, B. 2010. Coming up With
Good Excuses: What to do When no Plan Can be Found. In
Proc. of ICAPS 2010.

[Koenig, Likhachev, and Furcy 2004] Koenig, S.;
Likhachev, M.; and Furcy, D. 2004. Lifelong Plan-
ning A*. Artificial Intelligence 155(1):93–146.

[Konolige et al. 1997] Konolige, K.; Myers, K.; Ruspini, E.;
and Saffiotti, A. 1997. The saphira architecture: A design
for autonomy. Journal of experimental & theoretical artifi-
cial intelligence 9(2-3):215–235.

[Mayer et al. 2007] Mayer, M. C.; Limongelli, C.; Orlandini,
A.; and Poggioni, V. 2007. Linear temporal logic as an exe-
cutable semantics for planning languages. Journal of Logic,
Language and Information 16(1):63–89.

[McGann et al. 2008] McGann, C.; Py, F.; Rajan, K.;
Thomas, H.; Henthorn, R.; and McEwen, R. 2008. A delib-
erative architecture for AUV control. In Robotics and Au-
tomation, 2008. ICRA 2008. IEEE International Conference
on, 1049–1054.

[Rosenthal, Biswas, and Veloso 2010] Rosenthal, S.;
Biswas, J.; and Veloso, M. 2010. An effective personal
mobile robot agent through symbiotic human-robot inter-
action. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, 915–922.

[Saffiotti, Konolige, and Ruspini 1995] Saffiotti, A.; Kono-
lige, K.; and Ruspini, E. H. 1995. A multivalued logic

approach to integrating planning and control. Artificial in-
telligence 76(1):481–526.

[Simmons and Koenig 1995] Simmons, R., and Koenig, S.
1995. Probabilistic robot navigation in partially observable
environments. In International Joint Conference on Artifi-
cial Intelligence, volume 14, 1080–1087.

[Talamadupula et al. 2010] Talamadupula, K.; Benton, J.;
Kambhampati, S.; Schermerhorn, P.; and Scheutz, M. 2010.
Planning for Human-Robot Teaming in Open Worlds. ACM
Transactions on Intelligent Systems and Technology (TIST)
1(2):14.

[Talamadupula et al. 2011] Talamadupula, K.; Kambham-
pati, S.; Schermerhorn, P.; Benton, J.; and Scheutz, M. 2011.
Planning for Human-Robot Teaming. In ICAPS 2011 Work-
shop on Scheduling and Planning Applications (SPARK).

[Vail, Veloso, and Lafferty 2007] Vail, D. L.; Veloso, M. M.;
and Lafferty, J. D. 2007. Conditional random fields for ac-
tivity recognition. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent sys-
tems, 235. ACM.

105

Planning Surface Cleaning Tasks by Learning Uncertain Drag Actions Outcomes∗

David Mart ı́nez, Guillem Alenyà and Carme Torras
Institut de Rob̀otica i Informàtica Industrial (CSIC-UPC)

Llorens i Artigas 4-6, 08028 Barcelona, Spain

Abstract

A method to perform cleaning tasks is presented where
a robot manipulator autonomously grasps a textile and
uses different dragging actions to clean a surface. Ac-
tions are imprecise, and probabilistic planning is used
to select the best sequence of actions. The character-
ization of such actions is complex because the initial
autonomous grasp of the textile introduces differences
in the initial conditions that change the efficacy of the
robot cleaning actions. We demonstrate that the action
outcome probabilities can be learned very fast while the
task is being executed, so as to progressively improve
robot performance. The learner adds only a little over-
head to the system compared to the improvements ob-
tained. Experiments with a real robot show that the most
effective plan varies depending on the initial grasp, and
that plans become better after only a few learning itera-
tions.

1 Introduction
Robotized household environments are a promising field
where action planning can be useful. Typically to solve a
task, a set of perceptions and a set of actions are defined,
and a planner is used to choose the sequence of actions to
execute. In this paper we put the attention on repetitive ac-
tions that are difficult to model offline because some initial
conditions can change their outcomes. We use as an exam-
ple the task of cleaning surfaces with a robot using an au-
tonomously grasped textile, where the initial grasping of the
textile clearly changes the effectiveness of the actions.

The actions used to clean are represented with rules
which, given some preconditions on the state, define the ex-
pected behaviour of an action as a set of possible outcomes
with probabilities associated. To obtain the best results we
should use rules that accurately characterize any available
action in the current environment.

As initial conditions may introduce large variability, we
incorporate a learning system that improves the rules after
the execution of each action, leading to better plans in the
long term. Common learning methods usually need many

∗This work was supported by the Spanish Ministry of Sci-
ence and Innovation under project PAU+ DPI2011-27510, by EU
Project IntellAct FP7-ICT2009-6-269959 and by the Catalan Re-
search Commission through SGR-00155.

Figure 1: On the left the WAM robot arm is cleaning lentils
from a table to a container. On the right three different grasps
of the textile used for cleaning, each one leading to different
behaviours of the cleaning actions.

executions until good rules are obtained, but we aim to fin-
ish the task quite fast after a few action executions. We pro-
pose starting with very simple handcrafted rules and update
them with a new heuristic based on them-estimate (Cestnik
1990) to get more accurate rules that will perform quite well
after a few executions. This is intended for the initial steps
until enough experience is obtained to apply more complex
methods that can refine the rules with more details. The cri-
teria of thenumber of actions executedandtime to complete
the whole taskwill be used to measure the success of the
method. A more simple approach, like a reactive action exe-
cution, will not provide a proper solution as the combination
of different actions cannot be taken into account.

The presented approach uses a WAM robot arm to per-
form the actions, and a Kinect camera to get a representation
of the state, which is assumed to be completely observable.
Figure 1 shows the environment used for the task, and differ-
ent grasping configurations. As the actions are stochastic, an
online probabilistic planner is used. As mentioned, a learner
updates the planning rules to adapt to the grasped textile.
The performance of the system depends on the quality of
the rules, so learning will be critical to get the best results.

106

This paper is structured as follows. Section 2 presents
some related work and where our idea fits in state of the
art on automatic learning. The proposed algorithm is intro-
duced in Sec. 3, where perceptions, actions and planning
are presented. Section 4 explains the details of the learning
procedure. Section 5 shows some experiments of cleaning a
surface and the improvements attained when using our ap-
proach. Finally, Sec. 6 is devoted to draw some conclusions
and future work.

2 Previous work
There are a few recent works in which a robot performs sim-
ilar tasks to the one presented in this paper. In (Kormushev
et al. 2011) and (Sato et al. 2011) robot skills to clean a
whiteboard are presented. The robot is trained using imita-
tion learning with hybrid position/force control to learn and
execute trajectories trying to maintain the force of the hand
against the whiteboard. Force feedback has also been used
to learn dynamic motion primitives that ensure that the robot
maintains contact and applies the desired force in tasks such
as wiping a table (Gams et al. 2010). Moreover, methodolo-
gies to sequence motion primitives have been proposed (Ne-
mec and Ude 2012). The surface cleaning strategy is fixed
and thus the robot is unable to adapt to different layouts of
dirt that could be cleaned more efficiently with simpler tra-
jectories.

For this, a perception system is necessary to acquire the
scene state, and actions should be selected accordingly. Then
a model-based planner can generate sequences of actions to
clean efficiently all kinds of dirt. As we have stochastic ac-
tions a probabilistic planner is needed. For large state spaces,
a very common planning technique is UCT (Kocsis and
Szepesv́ari 2006), which uses bandit ideas to guide a Monte-
Carlo planner. The algorithm finds near-optimal solutions
in finite-horizon or discounted MDPs. PRADA (Lang and
Toussaint 2010) is a probabilistic planner that handles the
uncertainty by converting the rules into a dynamic Bayesian
network for state representation, and predicts the effects of
action sequences by using an approximate inference method
to efficiently propagate beliefs. PRADA has a better perfor-
mance than classic UCT, so it will be the planner used.

Creating models manually is tedious as it has to be re-
peated for every task and environment, but learning meth-
ods exist to generate models based on experience. Two dif-
ferent approaches can tackle the problem of learning mod-
els. The first one is reinforcement learning (RL). Model-
based bayesian RL that aims to obtain optimal behaviour
as it chooses actions that maximize the expected reward as a
function of the belief-state. However, this optimization prob-
lem is intractable so near optimal solutions have been pro-
posed (Asmuth and Littman 2011).

The second approach is learning actions models. Using
the accumulated knowledge of all executions of an action, a
set of rules defining the model is generated. These rules de-
fine relational worlds which allow to generalize much bet-
ter over different states, as the same rule may apply to sev-
eral similar objects. Methods for learning stochastic actions
(Pasula, Zettlemoyer, and Kaelbling 2007) and partially ob-
servable domains (Mourao, Petrick, and Steedman 2010) are

available. These approaches lack an exploration-exploitation
behaviour, and they require several samples for each action
before they can get useful models.

(Lang, Toussaint, and Kersting 2010) propose a solu-
tion to this exploration-exploitation problem using a strat-
egy based on the Explicit Explore or ExploitE3 (Kearns
and Singh 2002) algorithm and updating the rules with Pa-
sula’s algorithm. Although in the end good results are ob-
tained, the algorithm just explores and uses vague rules until
enough experience is acquired, getting bad results during the
initial executions.

As executing actions in real robots has a large cost, we
like our robot to perform as well as possible also during
the first executions until enough experience is obtained to
learn the action models. We propose using a very simple set
of initial rules which can adapt with fast learning heuristics
until enough samples are obtained to apply action learning
algorithms. The initial rules will begin with very optimistic
outcomes, getting the advantages of the optimism under un-
certainty bias (Brafman and Tennenholtz 2003).

The rules are provided to the learner which has to up-
date their probabilities online to improve the estimated out-
comes of the actions. Several heuristics have been proposed
and their performances have been compared (Janssen and
Fürnkranz 2010). The family of parametrized heuristics, and
in particular them-estimate (Cestnik 1990), allows to ad-
just the trade-off between learned estimations and a priori
probabilities. Similar to the work of (Agostini, Torras, and
Wörgötter 2011), we want to produce confident estimates
with a few examples by regulating the influence of them
value, but having stochastic actions we can’t know a pri-
ori the number of actions needed to cover all possibilities.
Therefore we propose a new heuristic that decreases them
value as experiments are carried out so as to adapt quickly
the rule outcomes, but the decrease ofm is gradually slowed
down so that a small influence of the a priori probability is
maintained for a long time to take into account unexperi-
enced outcomes.

3 Proposed Method
The method proposed in this paper is aimed at cleaning a
surface using a calibrated RGB-D camera and robot arm
grasping a cloth.

Observations are continuously acquired with the camera
and processed to have an updated representation of the en-
vironment. The robot has a set of actions consisting of se-
quences of movements to clean or displace dirt. Given a rep-
resentation of the environment and a set of rules defining the
available actions, a planner chooses a sequence of actions
to clean the surface efficiently. An action is then performed
by the robot, and once it is completed, the learner analyzes
the changes in the state to update the rules of the executed
action accordingly. The system keeps replanning, executing
actions and learning if necessary until the task is complete.

Actions
A set of actions is designed to clean a surface containing
small objects like lentils. These actions are parametrized

107

(a) Move to container (b) Join 2 groups (c) Group scattered

Figure 2: Cleaning actions.

with ellipses representing the dirty areas on the scene, and
generate a sequence of points defining the cleaning move-
ments. Lentils are detected with a simple RGB segmentation
algorithm. The cleaning tool is always oriented perpendicu-
lar to the direction of motion to get effective moves.

Actions can be divided in two groups.
• Cleaning actionsthat remove dirt from the surface, mov-

ing it towards a container positioned near the edge of the
surface (Fig. 2a).

– Fast move to container (ellipse):
∗ Pushes the lentils in a dirty area to the container posi-

tion using a grasped cloth.
– Straight move to container (ellipse):
∗ It is equivalent toFast move to container, but ensures

that the trajectory is straight at the cost of being a little
slower.

– Short move to container (ellipse):
∗ It is equivalent toFast move to container, but only

does a short movement towards the container, ensur-
ing that the trajectory is straight, although it won’t
reach the container if the dirt is far from it.

• Grouping actions that rearrange the dirty areas on the
surface, so that they become easier to clean by means of
future actions.

– Join 2 Groups(ellipse1, ellipse2):
∗ The movement pushes the lentils of ellipse1 to el-

lipse2 joining them (Fig. 2b).
– Join 3 Groups(ellipse1, ellipse2,
ellipse3):

∗ Moves ellipse1 and ellipse2 to the position of ellipse3.
– Grouping scattered dirt(ellipse):
∗ Moves scattered groups together to get compact

groups that are more manageable (Fig. 2c).

These actions are stochastic due to several factors:
• Actions rely on the accuracy of the depth information pro-

vided by RGB-D cameras, which may have some errors.
Although using a cloth provides some compliance, some-
times actions may fail to move the dirt as expected.

• The same action may get different outcomes for similar
dirty areas. For example, some dirt may spread during the
trajectory in some cases, while they may move success-
fully in other similar cases.

• The cloths used for cleaning produce different results de-
pending on the way they are grasped.

Action:
straightMoveToContainer(X)
Preconditions:
dirt(X), mediumSize(X),¬scattered(X)
Outcomes (Success probability: predicate changes):
0.4: ¬dirt(X), clean(X)
0.3: ¬mediumSize(X), smallSize(X)
0.2: ¬mediumSize(X), smallSize(X) scattered(X)
0.1: noise

Figure 3: Rule example for removing lentils.

Planning
The planner selects the set of actions to execute based on the
perceptions and the probabilistic effects of action sequences.
The task is quite complex, and selecting the fastest action
sequence is challenging. For example, plans beginning with
groupingactions maypenalizein the beginning (remove no
dust) compared tocleaningactions, but they can provide the
best results in the long run.

Using a probabilistic planner is important when actions
have several possible outcomes with different probabilities.
Deterministic planners (Little and Thibaux 2007) only con-
sider the most probable outcome for each action, while a
probabilistic planner takes into account all outcomes.

The planner takes as input the state representing the scene
and a set of rules defining the expected results of the actions,
and it outputs a plan consisting in a sequence of actions.
These actions will be converted into motions that the robot
will perform to clean the dirty areas.

State representing the scene: The states is defined as

s = (d1, ..., dn, near(di, dj), ..., near(dk, dl)) (1)

where di are the dirty areas represented by ellipses and
near(di, dj) indicates dirty areas whose positions are close
to each other.

Each dirty area is defined asdn = (Id, s, σ)

• Id: Identifier.

• s: Size, wheres ∈ {big,medium, small}.

• σ: Scattered, whereσ ∈ {true, false} accounts for com-
pact or scattered distributions.

Action rules: We are using noisy indeterministic deic-
tic (NID) rules (Pasula, Zettlemoyer, and Kaelbling 2007),
where each outcome has associated the list of predicates
that change when the rule is applied. There may be several
rules with different preconditions for every action, and sev-
eral outcomes for every rule. An example is shown in Fig 3.

4 Learning
The planner needs a set of rules defining the actions that may
be performed, and the quality of the plans will depend on the
precision of these rules. As our environment is stochastic, it
is difficult to define accurate rules for every surface, type
of dust, robot and grasping of cleaning tools. To solve this
problem, we will learn the actual outcome probabilities for
each configuration while performing the cleaning task with

108

initially inaccurate rules. The learner updates the expected
rule outcomes for every action that is executed to reflect the
result of the execution. Also, it saves a record of previously
executed actions and their results to get better estimates of
the outcomes.

Having stochastic actions means that the rule defining the
action may have several outcomes for just one set of precon-
ditions. After executing an action that we want to learn, the
robot will have to take a new perception and look carefully
for differences in the state to know which outcome was ob-
tained. When no outcome matches the result of the action,
the noise outcome probability will be increased.

Learning heuristics
We want the system to rapidly refine the outcomes to adapt
to the new environment, but we also want to avoid wrong
premature estimations to degrade the performance of the
system, as it is learning at the same time that it is solving
the task.

A learning heuristic to prevent these premature wrong es-
timations is them-estimate (Cestnik 1990), that includes a
parameterm to implement a trade-off between learned out-
comes and a priori probabilities in rule outcomes

P =
p+mP0

p+ n+m
, (2)

whereP is the estimated probability,P0 the a priori proba-
bility, p the number of positive examples andn the number
of negative examples.

The problem with this heuristic is that small values ofm
may yield wrong estimates of rule outcomes, while a high
value ofm would entail the system taking too much time
to converge to the learned estimates. We propose to use a
different heuristic:

P =
p+ (m/

√
p+ n)P0

p+ n+ (m/
√
p+ n)

. (3)

This decreasing-m-estimate is similar to them-estimate
when there are only a few examples, favouring a priori prob-
abilities. But as the number of examples increases, its influ-
ence decreases, leading to better estimates that have little
influence from a priori probabilities. The value ofm should
depend on the stochasticity of the task. In our experiments a
value of10 provided good estimates and was low enough to
converge fast to the learned estimates.

Stop learning: Learning adds some overhead to the sys-
tem. After executing an action to be learned, the arm has to
leave the visual field of the camera to get a good perception
of the surface and estimate correctly the outcome obtained.
Otherwise, planning would rely on partial perceptions that
may have occlusions.

Therefore, we only learn actions until we have enough
examples to consider that the learned estimate is quite accu-
rate. Using the Hoeffding inequality, we can have a bound
for having a high probability(1 − δ) that our estimatêp is
accurate enough|p̂ − p| ≤ ǫ. The number of trials required
is

T ≥ 1

2ǫ2
ln

2

δ
. (4)

Initial rules

The initial rules were written manually, defining only the
basic expected behaviours of the actions. As the proposed
learner is intended only for the first executions, little ef-
fort should be spent on these initial rules, as they will be
changed later to more precise ones when enough experience
is obtained. Based on the optimism under uncertainty bias
(Brafman and Tennenholtz 2003), all rules are defined with
a probability1.0 of getting the best outcome, and as actions
get executed, this probability tends to the actual one.

Another possible set of optimistic rules is learning the
probabilities of outcomes for the best scenario, which in our
case is a very good cloth grasp, and use them as the ini-
tial rules. These rules will converge faster to the actual ones
as they already have learned some of the dynamics of the
system and their outcome probabilities will be closer to the
actual current ones.

5 Experimental results

We have carried out two experiments to analyze the learner
performance in the task of surface cleaning. Both experi-
ments involved cleaning a surface with 30 lentils spread over
it. The robot had to move the lentils to a container positioned
near an edge of the surface. The task was repeated a num-
ber of iterations in each experiment to analyze the learning
process. The value ofm was set to10 andT to 12 in both
experiments.

First experiment: rules evolution over time. We an-
alyzed the estimated probabilities of the rules over time
(Fig 4). For clarity, only 4 rules are shown. Figure 4a shows
the learning process starting with optimistic rules with a1.0
probability for the best outcome, and along 15 iterations.
Then the resulting rules were used in new situations with
two different graspings (Figs. 4b and 4c).

As can be observed, these two grasps produce different
rules. The grasp of Fig. 4b yields very good results withjoin
actions, while the grasp in Fig. 4c gets very bad results with
them, particularly the one joining two groups. Also theclean
fastaction has significant differences between both grasps.

Second experiment: improvement using learning. Us-
ing the rules obtained during the previous experiment, we
measured the number of actions and time taken to clean with
new grasps. The experiment was repeated 4 times and the av-
erage of the results is shown in Fig. 5. As can be seen, the
number of actions required to complete the tasks decrease
as the rules improve. Also, the learner stops refining actions
once it gets enough examples of them, reducing the learning
time after a few iterations.

Moreover, the same experiment was repeated using the
original m-estimate to compare its performance with our
proposal. Although them-estimate also improves the rules,
the decreasingm-estimate obtains better results with fewer
iterations as shown in Fig. 5c.

109

0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

G
oo

d
ou

tc
om

e
pr

ob
ab

ili
ty

join 2 groups
join 3 groups
clean fast
clean straight

(a) Initial rule learning.

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

G
oo

d
ou

tc
om

e
pr

ob
ab

ili
ty

join 2 groups
join 3 groups
clean fast
clean straight

(b) Refining rules from (a) with a new grasp.

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

G
oo

d
ou

tc
om

e
pr

ob
ab

ili
ty

join 2 groups
join 3 groups
clean fast
clean straight

(c) Refining rules from (a) with another grasp.

Figure 4: Rule learning over time with m=10. In (a) initial rules are obtained with a common grasp. In (b) and (c) rules from
(a) are refined with new grasps. Observe that each particular grasp changes the outcome probabilities of the different rules, e.g.
join 2 groups performs well in (b) but bad in (c).

2 4 6 8 10
0

2

4

6

8

10

12

Iterations

A
ct

io
ns

Executed actions
Learned actions

(a)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Iterations

T
im

e
(s

)

Planning
Actions
Learning + extra perceptions

(b)

2 4 6 8 10
0

50

100

150

200

250

Iterations

T
im

e
(s

)

Decreasing m−estimate
m−estimate

(c)

Figure 5: Improvements using the learner.(a) Number of actions executed and the number of them that required learning as
they were considered unknown.(b) Distribution of time between planning, action execution and learning.(c) Time taken to
clean the board using the proposed decreasingm-estimate and the originalm-estimate.

6 Conclusions

In this work we have shown the use of a learner integrated in
a surface cleaning system where a planner is used to choose
good sequences of actions to clean efficiently with very little
experience. Different grasps of the cloth vary significantly
the rule outcomes probabilities, which makes the learner a
very important piece to get accurate rules for the planner.
As seen in the experiments, good rules improve the plans
obtained, which allow the system to clean faster.

The learner produces quite accurate rules after a few ex-
ecutions using the decreasingm-estimate heuristic. It also
adds a little overhead to the system, which almost disap-
pears after a few executions when most used rules get al-
ready learned. Overall we can conclude that the inclusion of
a learner for rule refinement is highly recommendable in dy-
namic environments where accurate rules are not available.
Once enough experience is obtained, more complex meth-
ods for refining the rules preconditions and outcomes (Pa-
sula, Zettlemoyer, and Kaelbling 2007) can be used to get
more accurate rules.

A future improvement to the system would be integrating
the initial learning heuristic with the more complex action

model learner to incrementally update the rules precondi-
tions and outcomes, thus getting the best of using both learn-
ing methods simultaneously.

References
Agostini, A.; Torras, C.; and Ẅorgötter, F. 2011. Integrat-
ing task planning and interactive learning for robots to work
in human environments. InProc. of the International Joint
Conference on Artificial Intelligence (IJCAI), 2386–2391.
Asmuth, J., and Littman, M. L. 2011. Learning is planning:
near bayes-optimal reinforcement learning via monte-carlo
tree search. InProc. of Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 19–26.
Brafman, R. I., and Tennenholtz, M. 2003. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning.The Journal of Machine Learning Research3:213–
231.
Cestnik, B. 1990. Estimating probabilities: A crucial task
in machine learning. InProc. of European Conference on
Artificial Intelligence, 147–149.
Gams, A.; Do, M.; Ude, A.; Asfour, T.; and Dillmann, R.
2010. On-line periodic movement and force-profile learning

110

for adaptation to new surfaces. InProc. of the IEEE-RAS
Int. Conf. on Humanoid Robots, 560–565.
Janssen, F., and Fürnkranz, J. 2010. On the quest for optimal
rule learning heuristics.Machine Learning78(3):343–379.
Kearns, M., and Singh, S. 2002. Near-optimal reinforcement
learning in polynomial time.Machine Learning49(2):209–
232.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. InProc. of the European Conference on
Machine Learning, 282–293.
Kormushev, P.; Nenchev, D. N.; Calinon, S.; and Caldwell,
D. G. 2011. Upper-body kinesthetic teaching of a free-
standing humanoid robot. InProc. IEEE Intl Conf. on
Robotics and Automation (ICRA), 3970–3975.
Lang, T., and Toussaint, M. 2010. Planning with noisy prob-
abilistic relational rules.Journal of Artificial Intelligence
Research39:1–49.
Lang, T.; Toussaint, M.; and Kersting, K. 2010. Exploration
in relational worlds.Machine Learning and Knowledge Dis-
covery in Databases178–194.
Little, I., and Thibaux, S. 2007. Probabilistic planning vs
replanning. InProceedings of the ICAPS07 Workshop on
the International Planning Competition: Past, Present and
Future.
Mourao, K.; Petrick, R. P.; and Steedman, M. 2010. Learn-
ing action effects in partially observable domains. InProc.
of European Conference on Artificial Intelligence (ECAI),
973–974.
Nemec, B., and Ude, A. 2012. Action sequencing using
dynamic movement primitives.Robotica30(5):837.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains.Journal of
Artificial Intelligence Research29(1):309–352.
Sato, F.; Nishii, T.; Takahashi, J.; Yoshida, Y.; Mitsuhashi,
M.; and Nenchev, D. 2011. Experimental evaluation of a tra-
jectory/force tracking controller for a humanoid robot clean-
ing a vertical surface. InProc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3179
–3184.

111

Robot Location Estimation in the Situation Calculus∗

Vaishak Belle and Hector J. Levesque
Dept. of Computer Science

University of Toronto
Toronto, Ontario M5S 3H5, Canada
{vaishak, hector}@cs.toronto.edu

Abstract

Location estimation is a fundamental sensing task in robotic
applications, where the world is uncertain, and sensors and
effectors are noisy. Most systems make various assumptions
about the dependencies between state variables, and espe-
cially about how these dependencies change as a result of ac-
tions. Building on a general framework by Bacchus, Halpern
and Levesque for reasoning about degrees of belief in the sit-
uation calculus, and a recent extension to it for continuous
domains, in this paper we illustrate location estimation in the
presence of a rich theory of actions using an example. We
also show that while actions might affect prior distributions
in nonstandard ways, suitable posterior beliefs are nonethe-
less entailed as a side-effect of the overall specification.

Introduction
The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is an important representational formalism for reason-
ing about actions. Equipped with a simple ontology, the for-
malism serves as a foundation for numerous planning lan-
guages (Lin and Reiter 1997; Claßen et al. 2007; 2008) and
methodologies, such as loopy plans (Levesque 2005) and ex-
ecution monitoring (Fritz and McIlraith 2007), among oth-
ers (Gabaldon 2006; Fritz, Baier, and McIlraith 2008). More
recently, the agent programming proposal Golog (Levesque
and Reiter 1998), formulated as a situation calculus action
theory, shows how plans can be filtered based on various
(user-specified) control imperatives.

However, when imagining robots operating in the real
world, a number of issues arise. The fundamental concern
perhaps is that the world is uncertain, and the robot operates
in such an environment with noisy sensors and effectors. It
then becomes imperative that the underlying formalism, at
least in terms of a specification, cope with the problems of
how the robot is to modify its beliefs based on the actions
performed and the results returned by its sensors. At one ex-
treme, calculi such as the situation calculus, are expressive
for rich domains, and exploit regularities in the effects that
actions have on propositions to describe physical laws com-
pactly. For example, the breaking of a fragile object held by

∗A version of this paper appears in the Eleventh International
Symposium on Logical Formalizations of Commonsense Reason-
ing, 2013.

the robot against a broken one getting fixed is written as:
∀a, s. Broken(x, do(a,s)) ≡

a = drop(x) ∧ Holding(x,s) ∧ Fragile(x) ∨
Broken(x,s) ∧ a , repair(x).

At the other extreme, sensor fusion and similar phenomena
is effortlessly addressed using probabilistic models such as
Kalman filtering and Dynamic Bayesian Networks (Dean
and Kanazawa 1988; 1989; Dean and Wellman 1991). Un-
fortunately, while belief update of known priors over Gaus-
sian and other continuous error models is treated appropri-
ately here, very little is said about how actions might change
values of certain state variables while not affecting others.
These formalisms also assume a full specification of the
dependencies between variables, making it difficult to deal
with other forms of incomplete knowledge, and strict uncer-
tainty in particular.

The above issues bring to forefront concerns about in-
tegrating high-level actions, incomplete information, and
probabilistic state estimation in a general way. To see a sim-
ple example in the larger context of robots operating and
manipulating objects in a 2-dimensional world, imagine the
agent located at a certain distance h to the right of a wall,
as in Figure 1. The robot might initially believe that h is
drawn from a uniform distribution on [2, 12]. Among the
robot’s many capabilities, we imagine the ability of mov-
ing left, which might be predicated on the ground’s slip-
periness. A leftwards motion of 1 unit would shift the uni-
form distribution on h to [1, 11], but a leftward motion of
4 units would change the distribution more radically. The
point h=0 would now obtain a weight of .2, while h ∈ (0, 8]
would retain their densities. This mixed distribution would
then be preserved by a subsequent rightward motion. Like-
wise, we might imagine the robot to be equipped with two
onboard sensors: a sonar unit aimed at the wall estimating
h, and a GPS (global positioning system) device sensing
both h and the robot’s vertical position. Each of these might
be characterized by Gaussian error models, and the effect
of a reading from any sensor would revise the distribution
on h from uniform to an appropriate Gaussian. The robot
is now left with the difficult task of adjusting its beliefs as
it moves and obtains competing (perhaps conflicting) mea-
surements from individual sensors. Apart from these con-
cerns, the robot might have to reason about goals, and about
how those are to be achieved.

112

h

v

Figure 1: Robot operating in a 2-dimensional world.

Perhaps the most general formalism for dealing with
probabilistic belief in formulas, and how that should evolve
in the presence of noisy acting and sensing, is a logical ac-
count by Bacchus, Halpern and Levesque (BHL) (1999). In
the BHL approach, besides quantifiers and other logical con-
nectives, one has the provision for specifying the degrees of
belief in formulas in the initial state. This specification may
be compatible with one or very many initial distributions and
sets of independence assumptions. All the properties of be-
lief will then follow at a corresponding level of specificity.

Subjective uncertainty is captured in the BHL scheme us-
ing a possible-world model of belief (Kripke 1963; Hintikka
1962; Fagin et al. 1995). Intuitively, the degree of belief in
φ is defined as a normalized sum over the possible worlds
where φ is true of some nonnegative weights associated with
those worlds. To reason about belief change, the BHL model
is then embedded in a rich theory of action and sensing pro-
vided by the situation calculus (McCarthy and Hayes 1969;
Reiter 2001; Scherl and Levesque 2003). The BHL account
provides axioms in the situation calculus regarding how the
weight associated with a possible world changes as the re-
sult of acting and sensing. The properties of belief and belief
change then emerge as a direct logical consequence of the
initial specifications and these changes in weights.

However, in contrast to the earlier mentioned Bayesian
formalisms, one of the limitations of the BHL approach is
that it is restricted to fluents whose values are drawn from
discrete countable domains. One could say, for example, that
h ∈ {2, 3, . . . , 11} is given an equal weight of .1, but stipu-
lating a continuous uniform distribution and Gaussian sen-
sor error models (and not discrete approximations thereof)
is quite beyond the BHL approach. In (Belle and Levesque
2013a), we show how with minimal additional assumptions
this serious limitation of BHL can be lifted.

In this paper, we illustrate how the (generalized) BHL
scheme is utilized in location estimation using our exam-
ple consisting of a robot’s position in XY-plane, a sonar
and a GPS device. Our example supposes that the robot
is capable of deterministic physical actions, while the sen-
sors are characterized by continuous error models. We stip-
ulate that the GPS device operates problematically when
the robot approaches the wall, perhaps due to signal ob-
structions, in which case readings are subject to system-
atic bias. Thus, the domain formalization illustrates belief
change with respect to shifting densities as logical prop-
erties of actions, competing sensors, and situation-specific
bias, among others. Since no assumptions need to be made
in general regarding the kind of distributions that initial state
variables are drawn from, nor about dependencies between
state variables, this work illustrates how beliefs about the

robot’s location would change after acting and sensing in
complex uncertain domains. Owing to these features, we
also believe the formalism might be useful to study ex-
tensions of planning languages for uncertainty, using the
situation calculus as a formal basis (Claßen et al. 2007;
2008). Note that the paper focuses only on illustrating the
logical specification, that is, properties studied are entail-
ments of the background theory. In particular, computational
considerations are discussed as part of future work.

The paper is structured as follows. In the next section,
we briefly review formal preliminaries, such as the situation
calculus, the BHL scheme as well as the essentials of its
generalization to continuous domains. We then model the
robot domain and illustrate properties about belief change.
In the final sections, we discuss related and future work.

Preliminaries
The language L of the situation calculus (McCarthy and
Hayes 1969) is a many-sorted dialect of predicate calcu-
lus, with sorts for actions, situations and objects (for ev-
erything else, and includes the set of reals R as a sub-
sort). A situation represents a world history as a sequence
of actions. A set of initial situations correspond to the ways
the world might be initially. Successor situations are the
result of doing actions, where the term do(a, s) denotes
the unique situation obtained on doing a in s. The term
do(α, s), where α is the sequence [a1, . . . , an] abbreviates
do(an, do(. . . , do(a1, s) . . .)). Initial situations are defined as
those without a predecessor:

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
we use the variable ι to range over initial situations only.

In general, the situations can be structured into a set of
trees, where the root of each tree is an initial situation and
the edges are actions. In dynamical domains, we want the
values of predicate and functions to vary from situation to
situation. For this purpose, L includes fluents whose last ar-
gument is always a situation. Here we assume without loss
of generality that all fluents are functional.

Basic action theory Following (Reiter 2001), we model
dynamic domains in L by means of a basic action theoryD,
which consists of 1

1. axioms D0 that describe what is true in the initial states,
including S0;

2. precondition axioms that describe the conditions under
which actions are executable;

3. successor state axioms that describe the changes to fluents
on executing actions;

4. domain-independent foundational axioms, the details of
which need not concern us here. See (Reiter 2001).

An agent reasons about actions by means of the entailments
of D, for which standard Tarskian models suffice. We as-

1As usual, free variables in any of these axioms should be un-
derstood as universally quantified from the outside.

113

sume henceforth that models also assign the usual interpre-
tations to =, <, >, 0, 1,+,×, /,−, e, π and xy (exponentials).2

Likelihood and degree of belief The BHL model of be-
lief builds on a treatment of knowledge by Scherl and
Levesque (2003). Here we present a simpler variant based
on just two distinguished binary fluents l and p.

The term l(a, s) is intended to denote the likelihood of
action a in situation s. For example, suppose sonar(z) is the
action of reading the value z from a sensor that measures the
distance to the wall, h.3 We might assume that this action is
characterized by a Gaussian error model:4

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ u = N(z − h(s); µ, σ2)) ∨ (z < 0 ∧ u = 0)

which stipulates that the difference between a nonnegative
reading of z and the true value h is normally distributed with
a variance of σ2 and mean of µ. In general, the action theory
D is assumed to contain for each action type A an additional
action likelihood axiom of the form

l(A(~x), s) = u ≡ φA(~x, u, s)

where φA is a formula that characterizes the conditions under
which action A(~x) has likelihood u in s. (Actions that have
no sensing aspect should be given a likelihood of 1.)

Next, the p fluent determines a probability distribution on
situations. The term p(s′, s) denotes the relative weight ac-
corded to situation s′ when the agent happens to be in situa-
tion s. The properties of p in initial states, which vary from
domain to domain, are specified by axioms as part of D0.
The following nonnegative constraint is also included inD0:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)

While this is a stipulation about initial states ι only, BHL
provide a successor state axiom for p, and show that with an
appropriate action likelihood axiom, the nonnegative con-
straint then continues to hold everywhere:

p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧

u = p(s′′, s) × l(a, s′′)]
∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0]

(P2)

Now if φ is a formula with a single free variable of sort situ-
ation,5 then the degree of belief in φ is simply defined as the
following abbreviation:

Bel(φ, s) �
1
γ

∑
{s′:φ[s′]}

p(s′, s) (B)

2Alternatively, one could specify axioms for characterizing the
field of real numbers in D. Whether or not reals with exponentia-
tion is first-order axiomatizable remains a major open question.

3Naturally, we assume that the value z being read is not under
the agent’s control. See BHL for a precise rendering of this nonde-
terminism in terms of Golog operators (Reiter 2001).

4Note that N is a continuous distribution involving π, e, ex-
ponentiation, and so on. Therefore, BHL always consider discrete
probability distributions that approximate the continuous ones.

5The φ is usually written either with the situation variable sup-
pressed or with a distinguished variable now. Either way, φ[t] is
used to denote the formula with that variable replaced by t.

where γ, the normalization factor, is understood throughout
as the same expression as the numerator but with φ replaced
by true. For example, here γ is

∑
s′ p(s′, s). We do not have

to insist that s′ and s share histories since p(s′, s) will be
0 otherwise. BHL show how summations can be expressed
using second-order logic, see the appendix. That is, neither
Bel’s definition nor summations are special axioms ofD, but
simply convenient abbreviations for logical terms. To sum-
marize, in the BHL scheme, an action theory consists of:

1. D0 as before, but now also including (P1);
2. precondition axioms as before;
3. successor state axioms as before, but now also including

one for p viz. (P2);
4. foundational domain-independent axioms as before; and
5. action likelihood axioms.

From sums to integrals While the definition of belief in
BHL has many desirable properties, it is defined in terms of
a summation over situations, and therefore precludes fluents
whose values range over the reals. The continuous analogue
of (B) then requires integrating over some suitable space of
values.

As it turns out, a suitable space can be found. First, some
notation. We use a form of conditional if-then-else expres-
sions, by taking some liberties with notation and the scope
of variables as follows. We write f = If ∃x. φ Then t1 Else t2
to mean the logical formula

f = u ≡ ∃x. [φ ∧ (u = t1)] ∨ [(u = t2) ∧ ¬∃x. φ]

Now, assume that there are n fluents f1, . . . , fn in L, and that
these take no arguments other than a situation.6 Next, sup-
pose that there is exactly one initial situation for any vector
of fluent values (Levesque, Pirri, and Reiter 1998):

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (∗)

Under these assumptions, it can be shown that the summa-
tion over all situations in (B) can be recast as a summation
over all possible initial values x1, . . . , xn for the fluents:

Bel(φ, s) �
1
γ

∑
~x

P(~x, φ, s) (B′)

where P(~t, φ, s) is the (unnormalized) weight accorded to the
successor of an initial world where fi equals ti:

P(~x, φ, do(α, S0)) �
If ∃ι.

∧
fi(ι) = xi ∧ φ[do(α, ι)]

Then p(do(α, ι), do(α, S0))
Else 0

6Basically, if we were to assume that the arguments of all flu-
ents, even k-ary ones, are taken from finite sets then this would
allow us to enumerate the n random variables of the domain (for
some large n). Note that, from the point of view of situation calcu-
lus basic action theories, fluents are typically allowed to take argu-
ments from any set, including infinite ones. In probabilistic terms,
this would this would correspond to having a joint probability dis-
tribution over infinitely many, perhaps uncountably many, random
variables. We know of no existing work of this sort, and we have
as yet no good ideas about how to deal with it.

114

where α is an action sequence. In a nutshell, because every
situation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible
fluent values, it is sufficient to sum over fluent values to ob-
tain the belief even for non-initial situations. Note that un-
like (B), this one expects the final situation term do(α, S0)
mentioning what actions and observations took place to be
explicitly specified, but that is just what one expects when
the agent reasons about its belief after doing things, and for
the projection problem in particular (Reiter 2001).7

The generalization to the continuous case then proceeds
as follows. First, we observe that some (though possibly not
all) fluents will be real-valued, and that p(s′, s) will now be
a measure of density not weight. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the
first k take their values x1, . . . , xk from R, while the rest take
their values yk+1, . . . , yn from countable domains, then the
degree of belief in φ is an abbreviation for:

Bel(φ, s) �
1
γ

∫
~x

∑
~y
P(~x · ~y, φ, s)

The belief in φ is obtained by ranging over all possible fluent
values, and integrating and summing the densities of situa-
tions where φ holds.8 In the appendix, we show how inte-
grals can be formulated using second-order quantification.
That is, as before, Bel, P, integrals and sums are simply con-
venient abbreviations, and do not involve special axioms in
D. More precisely, the continuous extension to BHL has the
same components from earlier, with a single revision:

1. D0 additionally includes (∗).

Note that likelihood axioms are specified as before, but we
will no longer have to approximate Gaussian error models
(or any other continuous models) as would BHL.

Location Estimation
We build a basic action theory D for a robot in a 2-
dimensional grid. We imagine two fluents h and v in addition
to Poss, l and p. The fluent h gives the distance to the wall
and v gives the position of the robot along the vertical axis.
We consider two physical actions left(z) and up(z), and two
sensing actions sonar(x) and gps(x, y).
D0 includes the following domain-independent axioms:

(∗) and (P1). Specific to the domain, imagine that D0 in-
cludes the following for p:9

p(ι, S0) =

{
.1 × N(v(ι); 0, 16) if 2 ≤ h(ι) ≤ 12
0 otherwise

7In fact, we can use regression on the φ and the p to reduce the
belief formula to one involving the initial situation only. More on
this in the final section.

8We are assuming here that the density function is (Riemann)
integrable. If it is not, belief is clearly not defined, nor should it
be. Similarly, if the normalization factor is 0, which corresponds to
the case of conditioning on an event that has 0 probability, belief
should not be (and is not) defined.

9Initial beliefs can also be specified forD0 using Bel directly.

This says that the value of v is normally distributed about the
horizontal axis with variance 16, and independently, that the
value of h is uniformly distributed between 2 and 12.10 No
other sentence is included inD0.

For simplicity, we assume that actions are always exe-
cutable.D’s successor state axioms are the following. There
is a fixed one for p, which is (P2). For h suppose:

h(do(a, s)) = u ≡
¬∃z(a = left(z)) ∧ u = h(s) ∨
∃z(a = left(z) ∧ u = max(0, h(s) − z)).

(1)

This says an action left(z) moves the robot z units to the left
(towards the wall), but that the motion stops if the robot hits
the wall. It is also assumed that left(z) is the only action that
affects h. Of course, to move away from the wall, z can be
any negative value. Similarly, for v stipulate:

v(do(a, s)) = u ≡
¬∃z(a = up(z)) ∧ u = v(s) ∨
∃z(a = up(z) ∧ u = v(s) + z).

(2)

This captures the upward motion of the robot, while assum-
ing that up(z) is the only action affecting v.

Finally, we specify the likelihood axioms in D. We will
suppose that the sonar unit, which senses h, is quite accurate:

l(sonar(z), s) = u ≡
(z ≥ 0 ∧ u = N(h(s) − z; 0, .25))
∨ (z < 0 ∧ u = 0)

(3)

which stipulates that the difference between a nonnegative
reading of z and the true value h is normally distributed with
a variance of .25 and mean of 0. (A mean of 0 indicates that
there is no systematic bias in the reading.) For the GPS de-
vice, assuming that its absolute readings of latitude and lon-
gitude have been converted to relative readings (Hightower
and Borriello 2001) for h and v, imagine a bivariate Gaussian
error model:

l(gps(x, y), s) =

{
N(h(s) − z, v(s) − y; µ1,Σ) if h(s) ≥ 2
N(h(s) − z, v(s) − y; µ2,Σ) otherwise

where Σ is the 2 × 2 identity matrix, µ1 = [0 0]T and µ2 =
[0 2]T . This says that the components of the Gaussian are
independent, and that there is systematic bias in the reading
for v when the robot is close to the wall (due to a signal
obstructions).

As mentioned earlier, physical actions such as left(z) and
up(z) are assumed to be deterministic for this paper, so they
are given trivial likelihoods, for example:

l(left(z), s) = 1,
l(up(z), s) = 1.

This completes the specification ofD.

10We model a simple distribution for illustrative purposes. In
general, neither do the variables have to be independent, nor does
the specification need to be complete in the sense of mentioning all
the variables.

115

2.5 5 7.5 10 12.5

0.4

0.8

S0

do(sonar(5.3), S0)

do(sonar(5.6), do(sonar(5.3), S0))

Figure 2: Belief density change for h at S0 (in blue), after
sensing 5.3 (in green), and after finally reading 5.6 (in red).

Theorem 1: The following are logical entailments ofD:

Initial beliefs
1. Bel(true, S0) = 1.

2. Bel(h = 2 ∨ h = 3 ∨ h = 4, S0) = 0
Although we are integrating a density function q(x1, x2)
over all real values, q(x1, x2) = 0 unless x1 ∈ {2, 3, 4}.

3. Bel(5 ≤ h ≤ 5.5, S0) = .05
Here we are integrating a function that is 0 except when
5 ≤ x1 ≤ 5.5. This is ∫R ∫

5.5
5 .1 × N(x2; 0, 16) dx1 dx2 =

.05.

Sensing by sonar
4. Bel(5 ≤ h ≤ 5.5, do(sonar(5.3), S0)) ≈ .38

Compared to item 3, belief is sharpened significantly by
obtaining a reading of 5.3 on the highly sensitive sonar.
This is because the p function incorporates the likelihood
of a sonar(5.3) action. Starting with the density function
in item 3, the sensor reading multiplies the expression to
be integrated by N(x1 − 5.3; 0, .25), as given by (3). This
amounts to evaluating the expression∫

R

∫
A
.1 × N(x1 − 5.3; 0, .25) × N(x2; 0, 16) dx1 dx2

with A = [5, 5.5] for the numerator, and A = [2, 12] for
the denominator.

5. Bel(4.5 ≤ h ≤ 6.5, do[sonar(5.3), sonar(5.6)], S0) ≈ .99
Two successive readings around 5.5 sharpen belief within
1 unit of 5.5 to almost certainty. Compared to item 4,
the density function is further multiplied by N(x1 −

5.6; 0, .25), and integrated over [2, 12] for the denomina-
tor as usual but over [4.5, 6.5] for the numerator. These
changing densities are shown in Figure 2.

Physical actions
6. Bel(h = 0, do(left(4), S0)) = .2

Here a continuous distribution evolves into a mixed one.
By (1), h = 0 holds after the action iff h ≤ 4 held before.
This results in ∫R ∫

4
2 .1 × N(x2; 0, 16) dx1 dx2 = .2.

7. Bel(h ≤ 5, do(left(4), S0)) = .7
Bel’s definition is amenable to a set of h values, where
one value has a weight of .2, and all the other real values
have a uniformly distributed density of .1. This change in
weights is shown in Figure 3.

8. Bel(h = 4, do([left(4), left(−4)], S0)) = .2
Bel(h = 4, do([left(−4), left(4)], S0)) = 0
The point h = 4 has 0 weight initially (like in item 2).
Moving leftwards first means many points “collapse”, and
so this point (now having h value 0) gets .2 weight which
is retained on moving away. But not vice versa.

9. Bel(−1 ≤ v ≤ 1, do(left(6), S0))
= Bel(−1 ≤ v ≤ 1, S0)
= ∫

1
−1N(x2; 0, 16)dx2

Owing to Reiter’s solution to the frame problem, belief in
v is unaffected by a lateral motion. For v ∈ [−1, 1] it is the
area between [−1, 1] bounded by the specified Gaussian.

10. Bel(v ≤ 1.5, do(up(3.5), S0)) = Bel(v ≤ −2, S0)
After the action up(3.5), the Gaussian for v’s value has its
mean “shifted” by 3.5 because the density associated with
v = x2 initially is now associated with v = x2 + 3.5.

Sensing by GPS
11. Bel(−1 ≤ v ≤ 1, do(gps(5, .1), S0)) ≈ .27

Compared to item 9, which evaluates to ≈ .19, a GPS
reading of .1 increases the posterior belief for v ∈ [−1, 1]
to ≈ .27. Using the error model, this is a result of∫ 12

2

∫
A
.1 · N(x2; 0, 16) · N(x1 − 5, x2 − .1; µ1,Σ) dx2 dx1

with A = [−1, 1] for the numerator and A = [−∞,∞] for
the denominator.11

Competing sensors
12. Bel(5 ≤ h ≤ 5.5, do([gps(5, .1), gps(5.3, .1)], S0)) ≈ .27

Bel(5 ≤ h ≤ 5.5, do([sonar(5.3), gps(5, .1)], S0)) ≈ .42
The sonar is more sensitive than the GPS, and so its read-
ing is far more effective. Relating this to item 4, a GPS
reading of 5 for h only slightly redistributes the density.

Systematic bias
13. h(S0) ≤ 4 ⊃

Bel(−1 ≤ v ≤ 1, do([left(4), gps(1, 0)], S0)) ≈ 0
After moving left by 4 units, v’s reading from the GPS has
a systematic bias of 2. Among other things, this entails
that the belief in v ≤ 1 is almost 0 which is much weaker
than its prior from item 9.

Nonstandard properties
14. Bel(h > 7v, S0) ≈ .6

Beliefs about any mathematical expression involving the
random variables, even when that does not correspond to

11This is a simple instance of Kalman filtering (Dean and Well-
man 1991) where the value being sensed is static. Gaussian distri-
butions enjoy the conjugate property: multiplying Gaussians results
in another Gaussian (Box and Tiao 1973), and is easily computed.

116

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

do(left(4), S0)

S0

Figure 3: Belief update for h after physical actions. Initial
belief at S0 (in blue) and after a leftward move by 4 (in red).

well known density functions, are entailed. In this case,
we are basically evaluating:∫ 12

2

∫ x1/7

−∞

.1 × N(x2; 0, 16) dx2 dx1.

15. Bel([∃a, s. now=do(a, s) ∧ h(s)>1], do(left(4), S0)) = 1.
It is possible to refer to earlier or later situations using
now as the current situation. This says that after moving,
there is full belief that (h > 1) held before the action.

Related Work
Sensor fusion has been a primary concern in state estimation
approaches (Thrun, Burgard, and Fox 2005). Popular mod-
els include variants of Kalman filtering (Fox et al. 2003),
where priors and likelihoods are assumed to be Gaussian.
We already pointed out that entailment item 11 is a simple
instance of Kalman filtering. But in general, our approach
does not make any assumptions about the nature of distri-
butions, nor about how distributions and dependencies may
evolve after actions, and allows for strict uncertainty. This
distinguishes the current method from numerous probabilis-
tic formalisms (Lerner et al. 2002; Dean and Wellman 1991;
Fox et al. 2003), including those that handle explicit ac-
tions (Darwiche and Goldszmidt 1994; Hajishirzi and Amir
2010). To the best of our knowledge, none of these for-
malisms have treated cases where state variables change in
the manner indicated in the paper.

Probabilistic logical formalisms such as (Halpern 1990;
Bacchus 1990) are equipped to handle features such as dis-
junctions and quantifiers, but they do not explicitly address
actions. Relational probabilistic languages and Markov log-
ics (Ng and Subrahmanian 1992; Richardson and Domin-
gos 2006) also do not model actions. Recent temporal ex-
tensions, such as (Choi, Guzman-Rivera, and Amir 2011),
specifically treat Kalman filtering, but not complex actions.
In this regard, action logics such as dynamic and process
logics are closely related. Recent proposals, for example
(Van Benthem, Gerbrandy, and Kooi 2009), treat sensor fu-
sion. However, these and related frameworks (Halpern and
Tuttle 1993), are mostly propositional. In the last years, there
have been extensions to the PDDL planning language, so as
to account for probabilistic effects and partial observability

(Younes and Littman 2004; Sanner 2011). The focus in this
literature, as well other probabilistic planning approaches
(Kushmerick, Hanks, and Weld 1995), is on certain sorts of
initial databases rather than a specification that allows for
full first-order expressivity. Be that as it may, a closer ex-
amination of PDDL generalizations, and how they relate to
situation calculus dialects might nevertheless be useful.

Finally, proposals based on the situation and fluent calculi
are first-order (Bacchus, Halpern, and Levesque 1999; Poole
1998; Boutilier et al. 2000; Mateus et al. 2001; Shapiro
2005; Gabaldon and Lakemeyer 2007; Fritz and McIlraith
2009; Belle and Lakemeyer 2011; Thielscher 2001), but
none of them deal with continuous sensor noise, and nor
do the extensions for continuous processes (Reiter 2001;
Herrmann and Thielscher 1996; Fox and Long 2006). For
instance, in (Fritz and McIlraith 2009), state variables are
assumed to be continuous in nature, but neither probabilistic
sensing nor belief change over such sensing results is ad-
dressed.

Conclusions and Future Work
This paper illustrates location estimation for a robot operat-
ing in an incompletely known world, equipped with noisy
sensors. In contrast to a number of competing formalisms,
where the modeler is left with the difficult task of decid-
ing how the dependencies and distributions of state variables
might evolve, here one need only specify the initial beliefs
and the physical laws. Suitable posteriors are then entailed.
The framework of the situation calculus, and a recent gener-
alization to the BHL scheme, allows us to additionally spec-
ify situation-specific biases and realistic continuous error
models. Our example demonstrates that belief changes ap-
propriately even when one is interested in nonstandard prop-
erties, such as logical relationships of state variables, all of
which emerges as a side-effect of the general specification.

There are a number of avenues for future research. On
the representation side, features such as continuous time, ex-
ogenous actions, decision theory and durative actions have
been proposed in the situation calculus (Reiter 2001), which
could be imported to our formalism. From a more compu-
tational side, this paper restricted itself to the logical spec-
ification. Nevertheless, our reformulation of belief seems
amenable to regression (Reiter 2001), and a proposal to
extend regression over degrees of belief is ongoing work.
(See (Belle and Levesque 2013b) for steps in this direc-
tion.) Many planning approaches in the situation calculus
are based on regression (Fritz and McIlraith 2009; 2007;
Levesque 2005), and so it would be useful to explore rea-
soning about probabilistic belief in dynamic domains with
this methodology. More broadly, we are interested in the
achievability of plans (Levesque 1996), that is, the question
of when can a plan be found and executed, given noisy ef-
fector and sensor specifications.

Appendix: Sums and Integrals in Logic
Logical formulas can be used to characterize sums and a va-
riety of sorts of integrals. Here we show the simplest pos-
sible cases: the summing of a one variable function from 1

117

to n, and the definite integral from −∞ to ∞ of a contin-
uous real-valued function of one variable. Other complica-
tions are treated in a longer version of the paper.

First, sums. For any logical term t and variable i, we in-
troduce the following notation to characterize summations:

n∑
i=1

t = z � ∃ f [f (1) = ti
1 ∧ f (n) = z ∧

∀j (1 ≤ j < n ⊃ f (j + 1) = f (j) + ti
(j+1))]

where f is assumed to not appear in t, and j is understood to
be chosen not to conflict with any of the variables in t and i.

Now, integrals. We begin by introducing a notation for
limits to positive infinity. For any logical term t and variable
x, we let lim

x→∞
t stand for a term characterized by:

lim
x→∞

t = z � ∀u(u > 0 ⊃ ∃m∀n(n > m ⊃
∣∣∣z − tx

n

∣∣∣ < u)).

The variables u, m, and n are understood to be chosen here
not to conflict with any of the variables in x, t, and z.

Then, for any variable x and terms a, b, and t, we intro-
duce a term INT[x, a, b, t] to stand for the definite integral of
t over x from a to b:

INT[x, a, b, t] � lim
n→∞

h ·
n∑

i=1

tx
(a+h·i)

where h stands for (b − a)/n. The variable n is chosen not to
conflict with any of the other variables.

Finally, we define the definite integral of t over all real
values of x by the following:∫

x
t � lim

u→∞
lim
v→∞

INT[x,−u, v, t].

The main result for this logical abbreviation is the following:

Theorem 2: Let g be a function symbol of L standing for a
function from R to R, and let c be a constant symbol ofL. Let
M be any logical interpretation of L such that the function
gM is continuous everywhere. Then we have the following:

If
∫ ∞

−∞

gM(x) . dx = cM then M |= (c =

∫
x
g(x)).

References
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999. Rea-
soning about noisy sensors and effectors in the situation cal-
culus. Artificial Intelligence 111(1–2):171 – 208.
Bacchus, F. 1990. Representing and Reasoning with Proba-
bilistic Knowledge. MIT Press.
Belle, V., and Lakemeyer, G. 2011. A semantical account of
progression in the presence of uncertainty. In Proc. AAAI,
165–170.
Belle, V., and Levesque, H. J. 2013a. Reasoning about con-
tinuous uncertainty in the situation calculus. In Proc. IJCAI.
Belle, V., and Levesque, H. J. 2013b. Reasoning about prob-
abilities in dynamic systems using goal regression. In Proc.
UAI.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming in
the situation calculus. In Proc. AAAI, 355–362.

Box, G. E. P., and Tiao, G. C. 1973. Bayesian inference in
statistical analysis. Addison-Wesley.
Choi, J.; Guzman-Rivera, A.; and Amir, E. 2011. Lifted
relational kalman filtering. In Proc. IJCAI, 2092–2099.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of golog and planning. In Proc. IJ-
CAI, 1846–1851.
Claßen, J.; Engelmann, V.; Lakemeyer, G.; and Röger, G.
2008. Integrating Golog and planning: An empirical evalu-
ation. In NMR Workshop, 10–18.
Claßen, J.; Hu, Y.; and Lakemeyer, G. 2007. A situation-
calculus semantics for an expressive fragment of PDDL. In
Proc. AAAI, 956–961.
Darwiche, A., and Goldszmidt, M. 1994. Action networks:
A framework for reasoning about actions and change under
uncertainty. In Proc. UAI, 136–144.
Dean, T., and Kanazawa, K. 1988. Probabilistic temporal
reasoning. In Proc. AAAI, 524–529.
Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Computational intelligence
5(2):142–150.
Dean, T., and Wellman, M. 1991. Planning and control.
Morgan Kaufmann Publishers Inc.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. MIT Press.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. J. Artif. Intell. Res. (JAIR)
27:235–297.
Fox, D.; Hightower, J.; Liao, L.; Schulz, D.; and Borriello,
G. 2003. Bayesian filtering for location estimation. Perva-
sive Computing, IEEE 2(3):24–33.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In ICAPS, 144–151.
Fritz, C., and McIlraith, S. A. 2009. Computing robust plans
in continuous domains. In Proc. ICAPS, 346–349.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. Congolog,
sin trans: Compiling congolog into basic action theories for
planning and beyond. In KR, 600–610.
Gabaldon, A., and Lakemeyer, G. 2007. ESP: A logic of
only-knowing, noisy sensing and acting. In Proc. AAAI,
974–979.
Gabaldon, A. 2006. Formalizing complex task libraries in
golog. In ECAI, 755–756.
Hajishirzi, H., and Amir, E. 2010. Reasoning about deter-
ministic actions with probabilistic prior and application to
stochastic filtering. In Proc. KR.
Halpern, J. Y., and Tuttle, M. R. 1993. Knowledge, proba-
bility, and adversaries. J. ACM 40:917–960.
Halpern, J. 1990. An analysis of first-order logics of proba-
bility. Artificial Intelligence 46(3):311–350.
Herrmann, C. S., and Thielscher, M. 1996. Reasoning about
continuous processes. In AAAI/IAAI, Vol. 1, 639–644.
Hightower, J., and Borriello, G. 2001. Location systems for
ubiquitous computing. Computer 34(8):57–66.

118

Hintikka, J. 1962. Knowledge and belief: an introduction to
the logic of the two notions. Cornell University Press.
Kripke, S. 1963. Semantical considerations on modal logic.
Acta Philosophica Fennica 16:83–94.
Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An al-
gorithm for probabilistic planning. Artificial Intelligence
76(1):239–286.
Lerner, U.; Moses, B.; Scott, M.; McIlraith, S.; and Koller,
D. 2002. Monitoring a complex physical system using a
hybrid dynamic bayes net. In Proc. UAI, 301–310.
Levesque, H., and Reiter, R. 1998. High-level robotic con-
trol: Beyond planning. Position paper at AAAI Spring Sym-
posium on Integrating Robotics Research.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Founda-
tions for the situation calculus. Electron. Trans. Artif. Intell.
2:159–178.
Levesque, H. J. 1996. What is planning in the presence of
sensing? In Proc. AAAI / IAAI, 1139–1146.
Levesque, H. 2005. Planning with loops. In Proc. IJCAI,
509–515.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1-2):131–167.
Mateus, P.; Pacheco, A.; Pinto, J.; Sernadas, A.; and Ser-
nadas, C. 2001. Probabilistic situation calculus. Annals of
Math. and Artif. Intell. 32(1-4):393–431.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Machine Intelligence, 463–502.
Ng, R., and Subrahmanian, V. 1992. Probabilistic logic
programming. Information and Computation 101(2):150–
201.
Poole, D. 1998. Decision theory, the situation calculus and
conditional plans. Electron. Trans. Artif. Intell. 2:105–158.
Reiter, R. 2001. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT
Press.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1):107–136.
Sanner, S. 2011. Relational dynamic influence diagram lan-
guage (rddl): Language description. Technical report, Aus-
tralian National University.
Scherl, R. B., and Levesque, H. J. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144(1-2):1–
39.
Shapiro, S. 2005. Belief change with noisy sensing and
introspection. In NRAC Workshop, 84–89.
Thielscher, M. 2001. Planning with noisy actions (prelimi-
nary report). In Proc. Australian Joint Conference on Artifi-
cial Intelligence, 27–45.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.
Van Benthem, J.; Gerbrandy, J.; and Kooi, B. 2009. Dy-
namic update with probabilities. Studia Logica 93(1):67–96.

Younes, H., and Littman, M. 2004. PPDDL 1. 0: An ex-
tension to pddl for expressing planning domains with prob-
abilistic effects. Technical report, Carnegie Mellon Univer-
sity.

119

	PlanRob 2013 Proceedings v1
	PlanRob 2013 Proceedings
	PlanRob_mod
	toc
	paper_7
	paper_13
	paper_11
	paper_20
	paper_14
	paper_21
	paper_6
	paper_9
	paper_23
	paper_3
	paper_4
	paper_5
	paper_22
	paper_19
	Introduction
	Planning for Human-Robot Teaming
	Planning, and More Planning

	paper_8
	paper_15

	toc
	PlanRob 2013 Proceedings
	PlanRob_mod
	toc
	paper_7
	paper_13
	paper_11
	paper_20
	paper_14
	paper_21
	paper_6
	paper_9
	paper_23
	paper_3
	paper_4
	paper_5
	paper_22
	paper_19
	Introduction
	Planning for Human-Robot Teaming
	Planning, and More Planning

	paper_8
	paper_15

	paper_3
	PlanRob 2013 Proceedings v1
	PlanRob 2013 Proceedings
	PlanRob_mod
	toc
	paper_7
	paper_13
	paper_11
	paper_20
	paper_14
	paper_21
	paper_6
	paper_9
	paper_23
	paper_3
	paper_4
	paper_5
	paper_22
	paper_19
	Introduction
	Planning for Human-Robot Teaming
	Planning, and More Planning

	paper_8
	paper_15

	toc
	PlanRob 2013 Proceedings
	PlanRob_mod
	toc
	paper_7
	paper_13
	paper_11
	paper_20
	paper_14
	paper_21
	paper_6
	paper_9
	paper_23
	paper_3
	paper_4
	paper_5
	paper_22
	paper_19
	Introduction
	Planning for Human-Robot Teaming
	Planning, and More Planning

	paper_8
	paper_15

