

Proceedings of the 3rd International
Planning in Games Workshop

PG 2013

Edited By:

Michael Buro, Éric Jacopin, Stavros Vassos

Rome, Italy - June 10, 2013

1

Organizing Committee

Michael Buro
University of Alberta, Canada

Éric Jacopin
CREC Saint-Cyr, Écoles de Coëtquidan, France

Stavros Vassos
“La Sapienza” University of Rome, Italy

Program committee

Marc Cavazza, University of Teesside, United Kingdom
Carle Coté, Eidos Montréal, Canada
Luke Dicken, University of Strathclyde, United Kingdom
Alan Fern, Oregon State University, United States
Peter Gregory, University of Teesside, United Kingdom
Carlos Linares López, Universidad Carlos III de Madrid, Spain
Christian Muise, University of Toronto, Canada
Jeff Orkin , MIT Media Lab, United States
Julie Porteous, University of Teesside, United Kingdom
Mark Riedl , Georgia Institute of Technology, USA
William van der Sterren, CGF-AI, Netherlands

2

Foreword

Artificial Intelligence Planning is successfully used in video-games: heuristic-based STRIPS-like
planning and HTN Planning generate character behavior in several fast paced games since 2005,
reaching millions of players. This certainly does not make planning in games a solved problem: from
new game genres to next-generation consoles and new markets such as cloud gaming, the AI Planning
research frontier is wide and open to any kind of planning technique in a gaming context.

This 3rd edition of the ICAPS Workshop on Planning in Games shall acknowledge the tighter link
with the video-game industry, while aiming at inspiring traditional Game AI Planning research such
as optimal planning in huge search spaces and temporal reasoning.

The papers gathered in these proceedings are divided in three themes: (i) planning about paths (papers
1-3), (ii) planning about stories (papers 4-5) and (iii) planning about actions (papers 6-8).

3

Table of Contents

Invited Presentations

Planning for Game Characters / 5
 Alex Champandard

Game Application of HTN Planning with State Variables / 6
 Dana Nau

Hierarchical Plan-Space Planning for Multi-Unit Maneuvers / 6
 William van Sterren

Technical Papers (Planning about paths)

Local and Global Planning for Collision-Free Navigation in Video Games / 7
 Jamie Snape, Stephen J. Guy, Ming C. Lin and Dinesh Manocha

Way to go - A framework for multi-level planning in games / 11
 Norman Jaklin, Wouter van Toll and Roland Geraerts

The hybrid optimized path finding in MMOG / 15
 Sung June Chang

Technical Papers (Planning about stories)

On Compilations For Narrative Planning / 19
 Patrick Haslum

Planning for Interactive Storytelling Processes / 23
 Stefano Cianciulli and Stavros Vassos

Technical Papers (Planning about Actions)

Pushing the Envelope of Monte-Carlo Planning: Formal Guarantees Meet Practical Efficiency / 27
 Zohar Feldman and Carmel Domshlak

Planning and Execution Control Architecture for Infantry Serious Gaming / 31
 Alexandre Menif, Christophe Guettier and Tristan Cazenave

BlocksWorld: An iPad Puzzle Game / 35
 Minh Do and Minh Tran

 4

Game Applications of HTN Planning with State Variables

Dana Nau

nau@cs.umd.edu

One reason why AI planning technology has not seen wider use in games is that the classical AI
planning representation -- in which states of the world are sets of propositions, and actions modify
states by adding and deleting propositions -- is different from the data structures used in ordinar
computer programming, making it difficult to integrate AI planners with application programs.

Recently there has been renewed interest in state-variable representation, in which states are
represented by assigning values to variables, and actions modify states by changing the values of
those variables.

In this talk, I’ll

(1) give a brief, informal introduction to state-variable representation, with examples.

(2) describe Pyhop, a Hierarchical Task Network (HTN) planning system written in Python that
uses state-variable representation. The use of state variables has allowed close integration
between planning and ordinary computational operations, which has helped to make the
implementation of Pyhop quite simple.

(3) discuss ways that HTN planning has already been used in game environments. I'll discuss
possible ways to modify Pyhop for use in game environments, and will solicit suggestions
from the audience.

If there's sufficient interest, I can make Pyhop available to AI game developers as open-source
software.

 5

Planning for Game Characters

Alex Champandard

alexjc@aigamedev.com

This talk starts with an overview of AI applied to game characters, in particular the action games that
use planners most extensively. Both the technology and authoring angles will be covered,
emphasizing the tradeoffs between classical planners (e.g. STRIPS) and hierarchical task
decomposition planners. Avenues for that are fruitful for research will be identified, as well as ideas
for planning competitions suited to applications in the games industry.

Hierarchical Plan-Space Planning for Multi-Unit Maneuvers

William van Sterren

william@cgf-ai.com

In combat simulators and war games, coming up with a good plan is half the battle. Good plans make
the AI a more convincing opponent and a more reliable assistant commander. This presentation
describes the design of an AI planner capable of producing plans which coordinate multiple units into
a joint "combined arms" maneuver on the battlefield. First it looks at how planning for multiple units
is different from planning for a single unit, including some of the speaker's struggles with well known
game AI and planning approaches. Then it introduces the basic ideas of hierarchical plan-space
planning. Next, the presentation discusses the concrete implementation of these ideas in a combat
maneuvers "mission generator" and the changes made to address more units on larger terrains. The
presentation concludes with a brief evaluation of the chosen approach.

6

Local and Global Planning for Collision-Free Navigation in Video Games

Jamie Snape and Stephen J. Guy and Ming C. Lin and Dinesh Manocha
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27599
{snape, sjguy, lin, dm}@cs.unc.edu

1 Introduction
Collision avoidance and navigation among virtual agents is
an important component of modern video games. Recent de-
velopments in commodity hardware, in particular the utiliza-
tion of multi-core and many-core architectures in personal
computers and consoles are allowing large numbers of vir-
tual agents to be incorporated into game levels in increasing
numbers and with increasing fidelity. As a result, there is a
need for efficient techniques to automatically generate real-
istic behaviors for such groups of virtual agents.

Simple local collision avoidance behaviors, such as flock-
ing (Reynolds 1987), have been implemented using force-
based models in many recent video games and commer-
cial game engines. These methods model groups of virtual
agents as particle systems, with each particle applying a
force on nearby particles. The laws of physics are used to
compute the motion of the particles, along with a set of be-
haviors specified by game developers that influence prop-
erties of the system such as separation, alignment, and co-
hesion of particles. Examples of video games using this
method include Capcom’s Dead Rising (2006) and Ubisoft’s
Assassin’s Creed (2007).

More recently, velocity-based methods (Fiorini and
Shiller 1998) have exhibited improvements in terms of lo-
cal collision avoidance and behavior of virtual agents, and
improved computational performance, over force-based col-
lision avoidance methods. Rather than using virtual forces to
prevent nearby virtual agents from collisions, velocity-based
methods use the current velocity of each virtual agent in the
group and then extrapolate the position of each virtual agent
for some short time interval under the assumption that the
virtual agent will maintain almost a constant velocity over
some short time interval. Based on predicting the future po-
sitions of other virtual agents, each virtual agent tends to
choose an avoiding new velocity based on some optimiza-
tion. THQ’s video game Warhammer 40,000: Space Marine
(2011) uses a velocity-based approach.

Reciprocal collision avoidance (van den Berg et al. 2008)

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is an extension of the velocity-based approaches. The main
difference with prior velocity-based methods lies in the
fact that reciprocal collision avoidance considers the reci-
procity between pairs of virtual agents. Each virtual agent
is assumed to be attempting to avoid a collision with the
other, rather than seeing the other virtual agent as a moving
obstacle. Incorporating reciprocity into velocity-based ap-
proaches typically ensures smoother motion for the virtual
agents and may also cause emergent phenomena in groups
of virtual agents, such as arching, jamming, bottlenecks, and
wake formation (Guy et al. 2010).

2 Local Collision Avoidance
In this section, we present two different local collision avoid-
ance algorithms based on reciprocal velocity obstacles. They
use slightly different schemes to compute new velocities for
each agent, as shown in Fig. 1.

2.1 Hybrid Reciprocal Velocity Obstacles

The hybrid reciprocal velocity obstacle (Snape et al. 2011)
resolves the problem of reciprocal dances by combining the
velocity obstacle and the reciprocal velocity obstacle, tak-
ing one side from each to form a hybrid reciprocal velocity
obstacle that is enlarged on one side to discourage virtual
agents from passing each other on different sides. If the ve-
locity of a virtual agent is to the right of the centerline of its
reciprocal velocity obstacle induced by some other virtual
agent, then the virtual agent should choose a velocity to the
right of the reciprocal velocity obstacle. To encourage such
behavior, the reciprocal velocity obstacle is enlarged by re-
placing the edge on the side that the virtual agents should not
pass, for example, the left side in this case, by the edge of the
corresponding velocity obstacle. If the velocity of the virtual
agent is to the left of the centerline, the procedure is mir-
rored, exchanging left and right sides. The geometric inter-
pretation of a hybrid reciprocal velocity obstacle HRVOA|B
for a virtual agent A with respect to a virtual agent B, in-
cluding the location of the centerline and an indication of
the enlarged area, is shown in Fig. 1.

7

(a) (b) (c) (d)

Figure 1: (a) Two virtual agents A and B. (b) The velocity obstacle VOA|B for virtual agent A induced by virtual agent B.
(c) The reciprocal velocity obstacle RVOA|B for virtual agent A induced by virtual agent B. (d) The hybrid velocity obstacle
HRVOA|B for virtual agent A induced by virtual agent B. The current velocity vA is right of the centerline CL, so the left side
of HRVOA|B is the left side of VOA|B and the right side of HRVOA|B is the right side of RVOA|B .

2.2 Optimal Reciprocal Collision Avoidance
Optimal reciprocal collision avoidance (van den Berg et al.
2011) solves the problem of reciprocal dances addressed by
the hybrid reciprocal velocity obstacle in a different way.
This approach augments the velocity obstacle with a half-
plane that defines a set of velocities that are both collision
free and will additionally ensure that the motion of the vir-
tual agents will be smooth in all but dense scenarios.

The optimal reciprocal collision avoidance half-plane
ORCAA|B for a virtual agent A with respect to a virtual
agent B is defined as follows. As shown in Fig. 2, let u be
the vector from the relative velocity vA − vB of the virtual
agents A and B to the closest point on the boundary of the
truncated velocity obstacle for virtual agent A induced by
virtual agent B. Let n be the outward normal of the bound-
ary of the velocity obstacle at vA − vB + u. It follows that
u is the smallest change required to the relative velocity of
virtual agents A and B to avoid a collision. Incorporating
reciprocity, each virtual agent should adjust its velocity by
at least 1

2u to avoid the collision. Therefore the velocities
permitted by optimal reciprocal collision avoidance are in a
half-plane in the direction of n starting at the point vA+ 1

2u.

3 Global Navigation
We use standard well-known techniques for global navi-
gation of agents. The simplest approach to global navi-
gation in games is based on roadmaps (Latombe 1991).
In roadmap-based methods, game agents are constrained
to the edges of a graph between intermediate goal nodes
(way points). Increasingly, navigation meshes (Snook 2000;
Kallmann 2010; Van Toll et al. 2011) and similar methods
(Pettré et al. 2005; Geraerts et al. 2008) have begun to sup-
plant roadmaps in games. Navigation meshes are a decom-
position of the freespace of game world into a mesh con-
sisting of convex polygons and the connectivity or neigh-
borhood information is represented using a graph as well. In
practice, navigation meshes have advantages as all edges of
a polygon are implicitly connected to each other. Moreover,
a single navigation mesh can encode clearance for arbitrarily
sized agents. Finding a global path with a navigation mesh
consists of searching the connectivity graph for the shortest
path between two polygons. Many techniques are known in

the literature to combine local techniques based on recipro-
cal velocity obstacles with roadmaps (van den Berg, Patil et
al. 2008) and navigation meshes (Curtis et al. 2012).

4 Implementation
4.1 Libraries
The hybrid reciprocal velocity obstacle approach and opti-
mal reciprocal collision avoidance have been implemented
as C++ libraries, HRVO Library1 and RVO2 Library,2 re-
spectively.

Essentially, the algorithm in RVO2 Library computes the
optimal reciprocal collision avoidance half-planes for a vir-
tual agent induced by the other virtual agents, and then in-
tersects these half-planes to form a region of permitted ve-
locities for the virtual agent. The algorithm then computes
the preferred velocity (see Section 4.2) of the virtual agent
and computes a new velocity using two-dimensional linear
programming (see Section 4.3) that is within the region of
permitted velocities and as close as possible to the preferred
velocity. If there are many virtual agents nearby and there
is no velocity within the region of permitted velocities, then
some constraints are relaxed and a new velocity is found us-
ing three-dimensional linear programming (see Section 4.4).

The algorithm used in HRVO Library is broadly similar
except that it uses the ClearPath geometric algorithm (Guy
et al. 2009) to compute new velocities.

4.2 Preferred Velocity
Both HRVO Library and RVO2 Library choose a new ve-
locity by computing the velocity that is closest to the pre-
ferred velocity and is collision free. If the goal position of
the virtual agent is visible, then the preferred velocity is in
the direction of the goal. If the goal position is not visible,
the preferred velocity should be directed to the nearest node
on waypoint graph to the goal or to some point on the near-
est edge on a navigation mesh path or a roadmap that leads
to the goal.

1See http://gamma.cs.unc.edu/HRVO/.
2See http://gamma.cs.unc.edu/RVO2/.

8

(a) (b) (c)

Figure 2: (a) Two virtual agents A and B. (b) The truncated velocity obstacle VOA|B for virtual agent A induced by virtual
agent B. (c) The optimal reciprocal collision avoidance half-planes of permitted velocities ORCAA|B for virtual agents A and
B.
4.3 Linear Programming

RVO2 Library uses an efficient randomized linear program-
ming algorithm (de Berg et al. 2008) that adds the con-
straints one by one in random order while keeping track of
the current optimal new velocity for a virtual agent in the
group. Linear programming is an optimization technique,
commonly used in operations research, for finding one spe-
cific solution to a set of linear equality and inequality con-
straints that optimizes a given linear function of the vari-
ables. Geometrically, a linear programming algorithm com-
putes a point in a polygon where the function has its maxi-
mum or minimum value if such a point exists. A randomized
linear programming algorithm adds the linear constraints in
a random order in order to compute the optimum solution.

For each virtual agent in the group, the randomized linear
programming algorithm has a linear expected running time
with respect to the number of virtual agents that are input
into the algorithm. The algorithm computes the velocity in
that is closest to the preferred velocity of the virtual agent,
and reports failure if the linear program is infeasible.

4.4 Dense Scenarios

In dense scenarios, when a group of virtual agents is packed
tightly together in part of the game level, there may not be
a velocity that satisfies all the constraints of the linear pro-
gram and the algorithm would return that the linear program
is infeasible. When this occurs, RVO2 Library computes
the safest possible velocity for the virtual agent, the veloc-
ity that minimally penetrates the constraints induced by the
other virtual agents. This can be interpreted geometrically as
moving the edges of the half-planes perpendicularly outward
with equal speed, until exactly one velocity becomes valid.
This velocity may be computed using a three-dimensional
linear program. The same randomized linear programming
algorithm as before may be used by projecting the problem
down onto plane, such that all geometric operations can be
performed in two-dimensions. The three-dimensional linear
program is always feasible, so it always returns a solution.
The running time of the algorithm is still linear with respect
to the number of virtual agents.

Figure 3: A screenshot of the benchmark scenario for an in-
tegration of RVO2 Library with Unreal Development Kit,
two hundred virtual agents navigating in real time between
randomly chosen locations at the four corners of the game
level.

4.5 Game Engine Integration

RVO2 Library has been integrated into several game engines
to either perform local collision avoidance and navigation
for groups of virtual agents or improve upon the default
implementations provided by the game engine developers.
Examples include a multi-platform package for Unity Tech-
nologies’ Unity 33 written in C# and a DLL for Epic Games’
Unreal Development Kit4 written in C++ for Microsoft Win-
dows with UnrealScript bindings. A screenshot from the Un-
real Development Kit integration is shown in Fig. 3.5 An ap-
proach broadly similar to the hybrid reciprocal velocity ob-
stacle, as used in HRVO Library, has been incorporated into
the Detour component of the game navigation toolset Re-
cast and Detour6 to provide local collision avoidance within
a navigation mesh, as shown in Fig. 4.

3See http://rvo-unity.chezslan.fr/.
4As of mid 2011, Unreal Development Kit contains an imple-

mentation of the reciprocal velocity obstacle approach. Details of
the integration of RVO2 Library into the game engine are available
at http://gamma.cs.unc.edu/RVO2-UDK/.

5See http://youtu.be/x8dczNzxM0w for a video.
6See http://code.google.com/p/recastnavigation/.

9

Figure 4: A screenshot of the Dungeon scenario included
with Recast and Detour, fifty virtual agents navigating from
one end of the game level to the other on a navigation mesh
using HRVO Library.

5 Conclusion
We have presented the hybrid reciprocal velocity obstacle
and optimal reciprocal collision avoidance methods for re-
ciprocal collision avoidance and navigation in video games
and described their implementations in C++ as HRVO Li-
brary and RVO2 Library. The libraries can efficiently sim-
ulate groups of twenty-five to one thousand virtual agents
in dense conditions and around moving and static obstacles.
RVO2 Library is on average at least twice as fast as HRVO
Library, but HRVO Library results in fewer collisions be-
tween virtual agents of RVO2 Library and therefore results
in better local interactions between the virtual agents.

6 Acknowledgments
This work was supported in part by Army Research Lab-
oratory Contract W911NF-04-1-0088, by National Sci-
ence Foundation Awards 0917040, 0904990, 100057, and
1117127, and by Intel Corporation.

References
de Berg, M.; Cheong, O.; van Kreveld, M.; and Overmars,
M. 2008. Computational Geometry: Algorithms and Appli-
cations. Berlin, Heidelberg, Germany: Springer, third edi-
tion.
Curtis, S., Snape, J. and Manocha, D. 2012. Way Portals:
Efficient Multi-Agent Navigation with Line-Segment Goals.
Proc. of Symposium on Interactive 3D Graphics and Games.
Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic
environments using velocity obstacles. Int. J. Robot. Res.
17(7):760–772.
Geraerts, R., Kamphuis, A., Karamouzas, I., and Overmars,
M. 2008. Using the corridor map method for path plan-
ning for a large number of characters. In Motion in Games.
Springer, Heidelberg, 11–22.
Guy, S. J.; Chhugani, J.; Kim, C.; Satish, N.; Lin, M.;
Manocha, D.; and Dubey, P. 2009. ClearPath: highly paral-
lel collision avoidance for multi-agent simulation. In Proc.
ACM SIGGRAPH Eurographics Symp. Comput. Animat.,
177–187.

Guy, S.; Chhugani, J.; Curtis, S.; Dubey, P.; Lin, M.; and
Manocha, D. 2010. PLEdestrians: A least-effort approach to
crowd simulation. In Proc. ACM SIGGRAPH Eurographics
Symp. Comput. Animat., 119–128.
Kallmann, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In Proc. ACM SIGGRAPH Euro-
graphics Symp. Comput. Animat., 159–168.
Latombe, J.-C. 1991. Robot Motion Planning. Springer,
Heidelberg.
Pettré, J., Laumond, J.-P., and Thalmann, D. 2005. A navi-
gation graph for real-time crowd animation on multilayered
and uneven terrain. In Proc. Int. Workshop Crowd Simul.
Reynolds, C. 1987. Flocks, herds and schools: a dis-
tributed behavioral model. ACM SIGGRAPH Comput.
Graph. 21(4):25–34.
Snook, G. 2000. Simplified 3D movement and pathfind-
ing using navigation meshes. In Game Programming Gems.
Charles River, Hingham, Mass., ch. 3, 288–304.
Snape, J.; van den Berg, J.; Guy, S. J.; and Manocha, D.
2011. The hybrid reciprocal velocity obstacle. IEEE Trans.
Robot. 27(4):696–706.
J. van den Berg, S. Patil, J. Seawall, D. Manocha, and M. C.
Lin. Interactive navigation of individual agents in crowded
environments. Proc. of ACM Symposium on Interactive 3D
Graphics and Games, pages 139–147, 2008.
van den Berg, J.; Guy, S, J.; Lin, M.; and Manocha, D. 2011.
Reciprocal n-body collision avoidance. In Pradalier, C.;
Siegwart, R.; and Hirzinger, G., eds., Robotics Research: the
14th International Symposium ISRR, number 70 in Springer
Tracts in Advanced Robotics. Berlin, Heidelberg, Germany:
Springer. 3–19.
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Recipro-
cal velocity obstacles for real-time multi-agent navigation.
In Proc. IEEE Int. Conf. Robot. Autom., 1928–1935.
Van Toll, W., Cook, IV, A., and Geraerts, R. 2011. Navi-
gation meshes for realistic multi-layered environments. In
Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 3526–3532.

10

Way to go - A framework for multi-level planning in games

Norman Jaklin, Wouter van Toll and Roland Geraerts

Utrecht University, Department of Information and Computing Sciences

Abstract

Path planning is one of the classical computational
tasks in video games. Virtual characters need to au-
tonomously find a path from their current position to a
designated goal position. This is usually solved by run-
ning the A* algorithm on a grid or a navigation mesh.
However, in many modern games, strictly following the
resulting path is not sufficient. More levels of plan-
ning are necessary to efficiently simulate realistic and
advanced behavior, and the underlying data structure
should support those levels. In this paper, we discuss a
five-level hierarchy of planning in games. Furthermore,
we present a framework that provides solutions for the
three center levels: global route planning, route follow-
ing, and local planning. It uses an efficient and flexible
navigation mesh based on the exact geometry of the en-
vironment. Our framework can be extended to solve ad-
vanced path planning problems in future games. When
used as an interface for higher-level semantic planning
systems, it provides a comprehensive set of techniques
for game developers and path planning researchers.

Introduction - the different levels of planning
Similarly to domains such as graphics, animation, or physics
simulation, the field of path planning in video games has in-
creased in complexity over the last decades. This aspect of
game AI has been studied extensively (Rabin 2002). It might
seem that path planning problems have been solved by algo-
rithms such as A* (Hart, Nilsson, and Raphael 1968). How-
ever, in modern games, path planning is still limited with
respect to an ever-increasing demand for new features that
enhance player immersion. In addition, even when solving
allegedly simple tasks such as letting a character reach a goal
position, some games still suffer from flaws due to approxi-
mated graph-based representations of the navigable space.

A* is a valuable method to find global shortest paths in
any graph structure. In simple cases, one could use a recti-
linear grid, which does not lead to any information loss if
the game world consists of rectilinear tiles. A* on a basic
graph also works well if the game does not require any ad-
vanced features such as visually convincing and smooth tra-
jectories, clearance from obstacles, collision avoidance be-
tween characters, path planning in environments with mul-
tiple height levels, reacting to dynamic changes in the envi-
ronment, dealing with characters of various sizes, or taking

Figure 1: Autonomous virtual characters in a multi-layered
3D environment using the Explicit Corridor Map (ECM)
(van Toll, Cook IV, and Geraerts 2011)

other environmental factors into account, e.g. different ter-
rain types or crowd density information.

Modern games, however, do require such advanced fea-
tures. Viewed from this perspective, computing a global
shortest path from a start to a goal position is only one aspect
in a multi-level hierarchy of planning systems. We propose
five levels of planning that a modern video game might re-
quire. Figure 2 shows this five-level hierarchy.

At the top of the hierarchy, high-level planning (5) trans-
lates the desired semantic behavior of a character to geomet-
ric path planning problems. For example, the character could
have an abstract task such as ‘steal a stash of gold’. This can
be converted to a list of more concrete tasks, e.g. ‘enter the
village, find character X, plunder its chest full of gold and
leave the village without being seen’. Based on this plan, the
character should compute an ordered list of goal positions.
High-level planning is a research topic of its own, involving
techniques such as STRIPS (Fikes and Nilsson 1971) and Hi-
erarchical Task Networks (Kelly, Botea, and Koenig 2008).

Next, the global route planning level (4) uses the list of
goal positions to compute geometric routes through the envi-
ronment. This is where a classical method such as A* might
be used, provided that the underlying graph structure does
not yield any drawbacks with respect to the tasks at hand.

The three lower levels update the character in every step
of the simulation. On the route following level (3), the global
routes are being traversed. Depending on the application,
this can be either a strict and simple following routine, or
an advanced method that creates visually convincing tra-

11

High-level planning

Global route planning

Simulation step

Route following

Local movement

Animation

velocity

preferred
velocity

indicative
route

start/goal
positions

Level 5

Level 4

Level 3

Level 2

Level 1

(event management,
action planning, . . .)

Figure 2: The five-level hierarchy of planning in games.

jectories while take other parameters such as terrain types
into account. On the local movement level (2), the character
might temporarily deviate from its global route to resolve
local collision avoidance with other characters or to react to
dynamic changes in the environment. Finally, the animation
level (1) handles the actual animation down to the skeleton
representation of the character model.

This planning process is not purely serial: events in the
lower levels may cause a character to reconsider its global
plans. For instance, if a part of the environment turns out to
be too crowded, a character may choose to take a detour.

In this paper, we present an efficient and flexible frame-
work for levels 4, 3, and 2, i.e. the levels that concern ge-
ometric path planning. We deliberately treat the high-level
planning phase as a black box, and we argue that our frame-
work can be plugged into any game AI system that follows
the suggested hierarchy.

The Explicit Corridor Map framework
The core of our framework is a navigation mesh called the
Explicit Corridor Map (ECM) (Geraerts 2010). We assume
that the environment consists of polygonal obstacles. The
ECM is based on the medial axis, which is the set of all
points that have at least two distinct closest obstacle points
in the environment. The medial axis is closely related to the
Voronoi diagram, which is a fundamental data structure in
the field of computational geometry (de Berg et al. 2000).

Figure 3 shows an example. The medial axis can be seen
as a special type of waypoint graph in which all edges run
through the middle of the free (or traversable) space. For
each vertex of this graph (shown as big black discs), there
are either at least three different nearest obstacle points, or
the vertex is placed in a non-convex corner of an obstacle.
An edge of the medial axis consists of a sequence of line
segments and parabolic arcs, depending on the type of ob-
stacles to the left and right. For a 2D environment with n
obstacle vertices, the medial axis has O(n) complexity and

Figure 3: A 2D environment with obstacles (shown in gray).
Its ECM is the medial axis (blue) annotated with closest-
obstacle information (orange) at a selection of points. This
subdivides the traversable space into polygonal regions.

can be constructed inO(n log n) time. Alternatively, one can
use graphics hardware to robustly approximate the structure
(Hoff III et al. 1999).

The ECM is an annotated medial axis: it stores the left
and right closest obstacle points for each edge section. This
partitions the environment into a set of polygonal walka-
ble regions. Recently, we have extended the medial axis and
the ECM to multi-layered 3D environments (van Toll, Cook
IV, and Geraerts 2011). An example of a crowd in a multi-
layered ECM is shown in Figure 1.

The ECM has many features that make it well-suited
for our framework. All space is represented with respect
to the exact geometry of the environment. This resolves
the issues that are inherent to approximated representations
such as grids or waypoint graphs. Furthermore, the ECM
is space-efficient and supports time-efficient extraction of
global paths with any desired amount of clearance from ob-
stacles. It therefore supports characters with arbitrary sizes.
The ECM is well-defined for both 2D and multi-layered 3D
environments. In addition, we have shown that the ECM can
be efficiently updated in response to insertions and deletions
of obstacles (van Toll, Cook IV, and Geraerts 2012a). Fi-
nally, the concept of the ECM is general enough to allow for
many extensions and advanced planning methods that build
upon it, as will be illustrated in the next section.

Contributions to the planning hierarchy
Our framework comprises methods and techniques that pro-
vide efficient real-time solutions for the second, third and
fourth levels of the hierarchy. Hence, it can be applied to ge-
ometric planning problems induced by a semantic high-level
planner. We will now discuss the contributions in detail.

Global route planning
A global route planner should compute an indicative route
from the character’s start s to its goal position g. Formally,
an indicative route can be any curve πind : [0, 1] → R2

through the free space of the environment. In practice, we
implement such a route as a sequence of points connected
by straight-line segments that do not intersect any static ob-
stacles. The concept of using an indicative route for path

12

g

s

Figure 4: In the ECM, a path along the medial axis (blue)
induces a corridor (light blue) due to its closest-obstacle an-
notations. Within the corridor, we can define any indicative
route from s to g; two examples are shown in black.

planning has first been introduced in the Indicative Route
Method (Karamouzas, Geraerts, and Overmars 2009).

There are various approaches to compute a global indica-
tive route. For instance, we have implemented A* on the
ECM to find shortest paths along the medial axis. This is
generally more efficient than performing A* on a grid due
to the sparseness of the ECM structure. Furthermore, with
the clearance information stored in the ECM, characters of
all sizes can use the same graph without having to inflate the
obstacles in a preprocessing step.

The optimal route through the ECM does not have to be
the shortest; optimality can also be based on other criteria.
For instance, we have shown how to map crowd density in-
formation onto the regions induced by the ECM (van Toll,
Cook IV, and Geraerts 2012b). By using density information
in the A* algorithm, characters can prefer paths with little
expected delay. In practice, they will plan detours around
congested areas, and the crowd will automatically spread
over multiple routes of different homotopy classes.

Performing A* on the ECM always yields a corridor,
which is a sequence of medial axis edges plus a description
of the surrounding free space. A corridor represents a subset
of the free space in which valid indicative routes that belong
to the same homotopy class are contained. We can therefore
create various indicative routes from s to g, e.g. a route that
stays on the left or right side of the corridor, or the shortest
route in the corridor with a preferred amount of clearance to
obstacles (Geraerts 2010). Figure 4 illustrates this concept.

We have also created a method to find stealthy global
paths with limited exposure to other characters, i.e. a path
that lets the character stay unseen by other moving charac-
ters as much as possible. To this end, we computed visibility
information on the GPU and mapped it onto an extended
version of the ECM (Schager and Geraerts 2010).

Only recently, we added various terrain types to our vir-
tual environments. Those can be used to ensure that a charac-
ter plans its global route based on a set of individual terrain
preferences. For example, a pedestrian might prefer to walk
on the sidewalk while avoiding roads, puddles or muddy ter-
rain. We refer the reader to Figure 6 for an example.

Lastly, we have developed a planning approach based

Figure 5: We have used an extended ECM to plan stealthy
paths based on visibility information.

on linear programming (Karamouzas, Geraerts, and van der
Stappen 2012). It coordinates an entire crowd consisting of
one or more independent groups of characters. The method
efficiently computes the most promising paths in both time
and space and yields an optimal distribution of the groups
members over these paths. Thus, the characters’ average
traveling time is minimized. The computed space-time plan
is then combined with an agent-based steering method to
handle collisions and generate the final motions of the char-
acters. The method runs at interactive rates and is able to
solve complex planning problems involving one or multiple
groups in gaming or crowd simulation applications.

The result of the global planning level serves as input to
the route following level, which we will discuss next.

Route following
In this level, an indicative route πind is given. The character
is supposed to follow the route, but it is allowed to deviate
from it. Our framework is built to switch between different
path following methods. Our methods use the concept of an
attraction point patt that lies on πind to generate smooth
paths. In each step of the simulation, the character picks a
new patt, which directly leads to a preferred velocity vpref
for the character in the current step. The direction of vpref
is the vector from the character’s current position to patt; its
magnitude is the character’s preferred speed.

We implemented two different path following meth-
ods that use attraction points. Firstly, the Indicative Route
Method (Karamouzas, Geraerts, and Overmars 2009) uses
the clearance information provided by the ECM. It defines
patt as the last point along πind that intersects the character’s
clearance disk. When more free space is available, patt lies
farther along the route and larger parts of πind are skipped,
i.e. the amount of smoothing increases.

Secondly, we have introduced a more general path follow-
ing method named MIRAN (Jaklin, Cook IV, and Geraerts
2013 to appear), in which the user can control the charac-
ter’s look-ahead distance and its eagerness to take shortcuts.
Furthermore, MIRAN lets characters plan their paths with re-
spect to their individual terrain preferences. In other words,
the amount of smoothing and route shortening depends on
the local terrain costs for that particular character. Figure 6
shows an example of this method.

13

Figure 6: A path (gray) in a forest (green) with obstacle
trees (black), puddles (blue), fallen trees (brown) and a spot
with a panoramic view (light gray). Two characters (adult
and child) follow automatically computed indicative routes
(solid and dashed black). The smoothed paths (solid red for
the adult, dashed red for the child) are computed with our
MIRAN method. Both the indicative routes and the paths
are based on the characters’ terrain preferences.

The local movement level is the last remaining one before
the actual animation on the skeleton level is handled. We
will now discuss in what way our framework covers it.

Local movement
In a virtual crowd, the characters may need to adjust their
velocities to avoid collisions with other characters. The task
of the local movement level in our framework is to compute
an actual velocity v for each character, based on its preferred
velocity vpref and other crowd members in its vicinity.

Many solutions for this collision avoidance problem are
available. Early algorithms defined repulsive forces between
characters (Helbing and Molnár 1995). Modern methods
prevent future collisions based on the perceived veloci-
ties of other characters, while deviating from vpref as lit-
tle as possible. Our framework includes one such approach
(Karamouzas and Overmars 2010), but it can support any
other velocity-based algorithm, such as the popular RVO
library (van den Berg, Lin, and Manocha 2008). Note that
collision detection for static obstacles is trivial in our frame-
work, because the ECM explicitly stores the nearest obstacle
for any point in the free space.

Conclusion and future work
We have given an overview of our framework that covers the
three center levels of a five-level planning hierarchy. Those
levels comprise the geometric aspects of planning in games
and can be combined with higher-level planning systems.

Our framework is general enough to support various fu-
ture extensions and improvements. One possible extension
is to take characters of different heights into account. For
instance, big vehicles may not fit through small tunnels
that regular characters can use. Another extension could be
visibility-based planning, e.g. letting characters re-plan their
paths based on the dynamic changes they can perceive visu-

ally. Finally, we could extend the MIRAN method so that it
does not only affect the global planning and path following
levels of the hierarchy, but also the local movement level,
e.g. by including terrain-based collision avoidance.

As we have shown, our framework is flexible and enables
future extensions. We therefore believe that it provides a
comprehensive set of techniques for game developers and
path planning researchers.

References
de Berg, M.; van Kreveld, M.; Overmars, M.; and Schwarzkopf,
O. 2000. Computational Geometry: Algorithms and Applications.
Springer-Verlag, second edition.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2(3/4):189–208.
Geraerts, R. 2010. Planning short paths with clearance using Ex-
plicit Corridors. In IEEE International Conference on Robotics and
Automation, 1997–2004.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics 4(2):100–107.
Helbing, D., and Molnár, P. 1995. Social force model for pedestrian
dynamics. Physical Review E 51(5):4282–4286.
Hoff III, K.; Culver, T.; Keyser, J.; Lin, M.; and Manocha, D. 1999.
Fast computation of generalized Voronoi diagrams using graphics
hardware. In International Conference on Computer Graphics and
Interactive Techniques, 277–286.
Jaklin, N.; Cook IV, A.; and Geraerts, R. 2013 (to appear). Real-
time Path Planning in Heterogeneous Environments. Computer An-
imation and Virtual Worlds.
Karamouzas, I., and Overmars, M. 2010. Simulating human col-
lision avoidance using a velocity-based approach. In Workshop on
Virtual Reality Interactions and Physical Simulations, 125–134.
Karamouzas, I.; Geraerts, R.; and Overmars, M. 2009. Indicative
routes for path planning and crowd simulation. In International
Conference on Foundations of Digital Games, 113–120.
Karamouzas, I.; Geraerts, R.; and van der Stappen, A. 2012. Space-
time group motion planning. In Workshop on the Algorithmic Foun-
dations of Robotics, 227–243.
Kelly, J.; Botea, A.; and Koenig, S. 2008. Offline planning with Hi-
erarchical Task Networks in video games. In Artificial Intelligence
and Interactive Digital Entertainment Conference, 60–65.
Rabin, S. 2002. AI Game Programming Wisdom. Charles River
Media.
Schager, E., and Geraerts, R. 2010. Stealth-based path planning in
corridor maps. In Computer Animation and Social Agents.
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Reciprocal Ve-
locity Obstacles for real-time multi-agent navigation. In IEEE In-
ternational Conference on Robotics and Automation, 1928–1935.
van Toll, W.; Cook IV, A.; and Geraerts, R. 2011. Navigation
meshes for realistic multi-layered environments. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 3526–
3532.
van Toll, W.; Cook IV, A.; and Geraerts, R. 2012a. A navigation
mesh for dynamic environments. Computer Animation and Virtual
Worlds 23(6):536–546.
van Toll, W.; Cook IV, A.; and Geraerts, R. 2012b. Real-time
density-based crowd simulation. Computer Animation and Virtual
Worlds 23(1):59–69.

14

The hybrid optimized path finding in MMOG

Sung June Chang

1
Electronics and Telecommunications Research Institute (ETRI)

dyad@etri.re.kr

Abstract

This paper provides a hybrid optimized path finding method
which consists of reactive and proactive path finding. Our
system generates an optimal guide using proactive path
planning models like A* and D*, and then executes a reactive
path finding which is similar to Boids model and potential field
model using the proactive path plan. The proactive path finding
algorithm is optimal but time-consuming, reactive method is
effective but not optimal. So we integrate them and get the near
optimal and effective path finding algorithm.

Introduction

The path finding method in game field is traditionally A*
using heuristic, which needs heavy recalculation time in
dynamic environment. The D* and similar methods
[Anthony95, Coenig04] use incremental search methods to
decrease recalculation time. But they still need more time
compared with reactive path planning methods.

In robot or Artificial Life field, Boids methods
[Reynolds87, Reynolds99] or potential field methods [Kim91,
Conner03] is very effective because it needs force generation
in a narrow range. It is suitable for real time or massive
application. But it often causes local minimum problem under
complex circumstances.

Our approach uses the hybrid method to solve two kinds of
problems. The algorithm generates an optimal path by
proactive path planning then follows the path while coping
with the dynamic environment using the reactive path
planning.

To integrate two types of path planning, we use the
sampling method which was used in the constraint animation
[Jiayi04], where they generate forces by sampling points and
integrate various kinds of forces.

System Overview

Our system consists of three parts.
The first part carries out a path planning by the proactive

method. As a proactive method, we select A* algorithm where
heuristic function is the straight-line distance. After path
planning, we gather sampling points from the path and
generate the attractive forces from them.

The second part uses a reactive path planning. Reactive
forces are generated from dynamic environments where we

use monsters. We use the repulsive potential field method to
get the reactive forces from monsters.

The third is integration part. We generate attractive forces
from a selected sample of the sampling list and integrate them
with repulsive forces. Then the movement is generated by the
summed forces.

Block-diagram style system overview is as follows.

Hybrid Method

We use classical A* algorithm as a proactive path
planning. Firstly, it needs to span a map by grids to apply the
algorithm. The cost function in A* is f(x) = g(x) + h(x) as
usual. We use the straight line distance as heuristic value h(x)
which is also common. We also choose the position which is
near to the final target when breaking tie. The near grid is
selected in breaking tie because it tends to shorten the time to
arrive at the final target.

We sample points in every grid center of the above A*
path, then make a sample list which is sequentially generated
along the path. The force is generated from the distance

Fig 1: System Overview

15

between the sample position in list and the current position.
The selected sample is sequentially changed when being
reached. The formulation to get the forces from the path is
like the following.

Fpath = NORM(Psample-Pcurrent)*MAX(Fi)/2

In the formulation, Fpath is the force vector by the selected
path sample point in list, NORM is normalization, P is the
sample point’s position vector, Pcurrent is the current position
vector, MAX is the max value of Fi, and Fi is the dynamic
factor’s force which will be explained in the next.

The direction of the path force comes from the difference
between sample point’s position and current position. The
magnitude of the force is the half of maximum value of a
dynamic force which means the reactive force. The magnitude
graph is shown in the below

As seen in Figure 2, the Fpath direction depends on current
position and target position but its magnitude is constant. So
the agent (or robot) is attracted by the path’s sample point
with the same magnitude of force at any distance, even though
the direction is different.

Reactive path planning method in this algorithm is similar
to potential field and Boids method. It generates repulsive
force from dynamic environment for which we use monsters.
The formulation is in the below.

Fi = NORM(Pi-Pcurrent)*Ei

 In the formulation, Fi is the force vector by the ith dynamic
factor like monsters, NORM is normalization, Pi is position of
the ith dynamic factor, Pcurrent is the current position vector,
and Ei is the magnitude of force by the ith dynamic factor

The direction of the force comes from the difference
between the ith dynamic factor’s position vector and current
position vector. The magnitude of the force which is Ei in the
formulation is defined linearly. The details are in the below
Figure 3.

The next formulation is the summation of reactive forces.
Fdynamic is generated by the summation of all Fi vectors.

Fdynamic = SUMMATION(Fi)

In the formulation, Fdynamic is the total reactive forces,
and SUMMATION is the addition of all elements.

Fpath and Fdynamic are integrated into Fhybrid by simple
addition because Fpath‘s magnitude is originally designed to
reference Fdynamic, which is shown in the below.

Fhybrid = Fpath+Fdynamic

In the formulation, Fhybrid is the final result of force
calculation and will be used to generate the movement.

Simulation and Result

Simulation scenario is shown in the below Figure 4. The

character ‘A’ in the Figure points monsters which are dynamic
factors in the simulation. The character ‘B’ points obstacles
which are used in proactive path planning. The character ‘C’
points the way-points including final target. The character ‘D’
points the path which is generated by the A* algorithm.

In the simulation, monsters are designed to move randomly.
And two types of obstacles are designed. We select the first
type of obstacles as a line style because it is generally used.
The second type of obstacles is the concave style which often
causes local minima in reactive path planning algorithm. For
the way-points which are colored red in figure 4, we set two
way-points. The left one is bypass way-point and the right one
is the final target position.

In Figure 4, the generated A* path is shown in green dots.
The A* path finding algorithm finds two kinds of path. The
first is from the start position to the first way-point. It avoids
concave type of obstacles. The second is from the first way-

Fig. 2 Force Magnitude in Fpath

Fig. 3 Force Magnitude in Fi

Fig. 4 Simulation Overview

16

point to the second way-point which is final target. The A*
algorithm connects two kinds of A* path and is shown in
green dots.

The above figure’s red arrow shows Fpath which is the
force attracting the agent into the proactive path. In our
algorithm we use A*. Green dots are converted into sampling
points in list, which will sequentially attract the agent. The
selected sampling point is changed in the list when being
reached until the final point. Because the magnitude of the
force is constant, the force can make the agent consistently
follow the A* path.

The repulsive force Fdynamic is generated around dynamic
factors which are monsters in the simulation. The force is
shown in the Figure 6. The yellow arrow in Figure 6 shows
Fdyanmic which is generated as a repulsive force around
monsters. In this simulation, only the nearest monster’s force
is displayed because other monsters are far from the agent.
Although the threshold of effective distance to monsters is
flexible, we choose very small threshold value. If the
threshold is big value, many monsters affect the agent at the
same time, which makes agent’s chaotic behavior.

In simulation, two types of force are integrated into the
hybrid force like Figure 7’s orange arrow which is same with
the agent’s movement. The agent keeps the green dots until a
monster approach. As the monster goes near, it goes away
while following the green dots. After the monster is away, it
goes back to the green dots again, which means that the agent
is following the proactively generated path while avoiding
dynamic monsters in real time.

 In the above simulation, the average calculation time of the
path planning algorithm including proactive path planning
algorithm and reactive path planning is about 20 milliseconds.
The result is obtained from 1,000 times simulation using Xeon
3.20Hz as CPU.

In the algorithm, we use only one proactive path planning
but its calculation time overwhelms the calculation time of
reactive path planning. It needs almost 20 milliseconds to find
a path by the A* algorithm. The agents controlled by our
algorithm can follow the optimal path very effectively while
avoiding monsters in real time.

Fig. 5 Fpath in simulation

Fig. 6 Fdynamic in simulation

Fig. 7 Fhybrid in simulation

Fig. 8 Simulation in MMOG

17

The time complexity of the algorithm is same with that of
the proactive path planning algorithm because time
complexity of the reactive path planning algorithm is
negligible. In this simulation, the complexity of our algorithm
is O(logh*(x)) which is same with A* algorithm.

Conclusion

In this paper, we show the hybrid method which integrates
proactive path planning and reactive path planning. Using the
method, we can develop the algorithm which follows optimal
path while reacting to the dynamic environment in real time.
We also show that it is useful in the simulation. We make the
proactive path planning by A* algorithm and develop the
reactive path planning by the repulsive force from the
monsters. We set the attractive force generated by A*
algorithm with the same magnitude and the repulsive force by
the reactive path planning. Finally we integrate two kinds of
force and generate the hybrid force which makes the agent
follow A* algorithm and react to the monster at the same
time.

The benefit of our method is that it is effective. In
simulation, our algorithm just takes about 20 milliseconds by
1,000 times testing. It is near-optimal at the same time
because A* algorithm is used to make paths to avoid difficult
obstacles like concave style.

Acknowledgments

This work was supported by Ministry of Culture, Sports
and Tourism(MCST) and Korea Creative Content
Agency(KOCCA) in the Culture Technology(CT) and
Research Development Program 2013.

References

A new potential field method for robot path planning

Yunfeng W., Gregory S. Chirikjian (2000). Proceeding of the 2000 IEEE
International Conference on Robotics & Automation.

Autonomous behavior for interactive vehicle
animations

Jared G. Thuc V. and James J. K. (2004). Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation 9-18

Composition of local potential functions for global
robot control and navigation

Conner D.C. Rizzi A. and Choset. H. (2003). In Proceedings IEEE AAAI-
96. 530-535

Constrained animation of flocks

Matt A. Eric M. and Stephen C. (2003). Eurographics/SIGGRAPH
Symposium on Computer Animation

Continuum crowds

Treuille A. Cooper S. and Popvic Z. (2006). ACM Transactions on
Graphics 2006. 25: 1160-1168

Flocks, herds, and schools: A distributed behavioral
mehod

Reynolds C. (1987). Computer Graphics 1987 4, 25-34.

Forward chaining for potential field based
navigation

Graeme B. (2005). A thesis to be submitted to the University of ST
Andrews for the degree of Doctor of Philosophy

Hierarchical A*: Searching abstraction hierarchies
efficiently.

Holte R. Perez M. Zimmer R. and Macdonald A. Koenig S. Likhachev M.
and Furcy D.(1996). In Proceedings AAAI-96. 530-535

Lifelong planning A*

Koenig S. Likhachev M. and Furcy D.(2004). Journal of Algorithms.
21:267-305

Near optimal hierarchical path-finding

Adi B. Martin M. and Jonathan S. (2004). Journal of Game Development.
1:7-28

Optimal and efficient path planning for partially-
known environments

Anthony S. (1994). Proceedings of the International Conference on
Robotics And Automation. 3310-3317

Path finding and collision avoidance in crowd
simulation

Cherif F. Djedi N. Cedric S. and Yves D. (2009). Journal of Computing
and Information Technology. 3:217-228

Pedestrian reactive navigation for crowd simulation:
a predictive approach

Paris S. Pettre J. and Donikian S. (2007). Computer Grapchis Forum 26:
665-675

Real-time obstacle avoidance using harmonic
potential functions

Kim J. and Khosla. P (1991). IEEE International Conference on Robotics
and Automation. 1: 790-796

Shape-constrained flock animation

Jiayi X. Xiaogang J. Yuzhou Y. Tian T. and Mingdong Z. (2008).
Computer Animation and Virtual Worlds. 19: 319-330

Steering behaviors for autonomous characters

Reynolds C. (1999). In Proceedings of Game Developers Conference,
763-782

The focussed D* algorithm for real-time replanning

Anthony S. (1995). Proceedings of the International Joint Conference on
Artificial Intelligence. 1652-1659

18

On Compilations For Narrative Planning

Patrik Haslum
Australian National University
patrik.haslum@anu.edu.au

Introduction
The classical AI planning model, which assumes complete
knowledge of and control over a deterministic world, is often
considered too limited, as many planning problems appear
to have requirements that do not fit in this model. Recently,
however, it has been shown that some problems thought to
go beyond the classical model can nevertheless be solved
by classical planners through compilation, i.e., a systematic
remodelling of the problem such that a classical plan for
the reformulated problem meets also the non-classical re-
quirements. A striking example is the work of Palacios and
Geffner (2006; 2009), who showed that conformant plan-
ning (generating non-branching plans that are robust to un-
certainty) can be compiled into classical planning.

I will argue for the potential of compilations into classi-
cal planning to play a role in narrative generation. Riedl
and Young (2010) observe that “there are many parallels be-
tween plans and narrative at the level of fabula.” Both are se-
quences of events that change the state of the (story) world.
These parallels have inspired approaches to story generation
based on planning or planning-like techniques (e.g. Meehan
1977; Riedl 2004; Riedl and Young 2010), but most have
made little use of the capabilities of existing classical plan-
ners. Classical planning techniques have been used to drive
the behaviour of individual characters in simulation-based
approaches to story generation (e.g. Aylett, Dias, and Paiva
2006; Pizzi et al. 2007; Brenner 2010).

Intentional Planning and the
Justification-Tracking Compilation

Despite their similarities, narratives are not just plans. A se-
quence of events must satisfy many criteria other than logi-
cal possibility and coherence before we can call it a story.

Riedl and Young (2010) isolate on one such additional
criterion that separates stories from plans, viz. character in-
tentionality. Some events in a story are actions performed
by story characters. (Other events, such as accidents, co-
incidences, etc, have no associated actor; Riedl and Young
call these happenings.) For characters to be perceived as
believable, the actions they take must be seen to contribute
to the characters’ goals, which are not necessarily the same
as the goal of the planning process (the latter is referred to
as the story outcome). Character goals are included in the

model by means of modal literals of the form (intends A f),
where A is a character and f is a fact, i.e., a normal literal.
Intentions can exist in the initial state, or arise as an effect
of actions. Informally, an intentional plan is one in which
each character action contributes, directly or indirectly, to
achieving an intention that the character has.

Formally, intentionality is defined, in the context of par-
tially ordered causal link (POCL) plans, through the concept
of a frame of committment. This is a subset S′ of plan steps,
satisfying four requirements:
(1) Character A is an actor of every step in S′.
(2) There is a final step sfin ∈ S′ that makes g true.
(3) There is a motivating step sm which adds (intends A g)
and which precedes all steps in S′. We say there is a moti-
vational link from sm to every step in S′. Note that sm is not
part of S′; it may be the intitial state.
(4) From each step in S′ other than sfin there is a path of
causal or motivational links to sfin.
The set of domain objects that are characters and the assign-
ment of the role of actor(s) to parameters of actions are part
of the domain theory.

Riedl and Young develop a specialised POCL planner,
called IPOCL, that generates intentional plans. However,
the intentionality requirement can also (almost) be achieved
by a compilation into classical planning. The compilation
has been presented in full detail elsewhere (Haslum 2012).
Here, I will only make a brief sketch.

The compilation makes use of modal literals of the form
(justified f I), where f is a fact and I an intends atom.1 Sup-
pose character A has (only) goal g, i.e., (intends A g) is true,
and consider applying an action whose actor is A: If the
action directly achieves g, it does not need further justifica-
tion. If not, applying a creates an outstanding obligation that
some later action taken by the character must make use of at
least one effect of the action, to eventually achieve the in-
tended goal. This is modelled by the justified modality. All
justified atoms are true in the initial state, and required to

1Modal atoms cannot be expressed directly in a classical plan-
ning formalism like PDDL. In a PDDL model, they are replaced by
a separate “modal predicate” for each predicate (resp. combination
of two predicates) that can appear in a non-modal fact, whose ar-
guments is the concatenation of all arguments in the modal literal.
That is, (intends A (P ~x)) is replaced by (intends-P A ~x), and
(justified (P ~x) (intends A (Q ~y))) by (justified-P -Q ~x A ~y).

19

hold in the goal state; actions create an obligation by delet-
ing the atom (justified e (intends A g)), where e is an effect of
the action, and fulfil these obligations by adding (justified f
(intends A g)) for all facts f in the actions’ precondition. In
the compiled problem, each (non-happening) action is asso-
ciated with an intention for each of its actors, which marks
the frame of committment that the action will be part of.
Actions are further split into cases, based on whether the in-
tention unifies with an effect of the action, and, if not, which
of its effects becomes unjustified.

Characters can also “delegate” subgoals to other charac-
ters, through actions like (command A B g′). These actions
create new intentions, (intends B g′), and are justified by
the actor (character A) eventually making use of the fact g′
achieved by character B. Some additional machinery is re-
quired for the compilation to handle delegations.

Beyond Intentionality
Character intentionality is just one of many aspects that must
be incorporated into the planning process to generate plausi-
ble narratives. For example, the model formulated by Riedl
and Young (2010) makes no distinction between the state of
the story world and characters’ state of knowledge about it,
and does not allow stories in which a character tries but fails
to achieve a goal (since the failed action does not contribute
to the eventual fulfilment of a character intention, and thus
cannot be part of a frame of committment).

The state of a compiled planning problem is not limited
to representing the state of the (story) world. It can encode
data structures, such as graphs, recording characters’ plans
or mental states. Likewise, actions are not limited those that
actually take place in the (story) world, but can also rep-
resent (characters’) “mental” actions, such as making infer-
ences or plans. This can be seen in, for example, the work of
Palacios and Geffner (2006; 2009) who use modal literals of
the form (K f ϕ), meaning, roughly, “f is known to be true if
ϕ was true in the initial state”, to represent knowledge about
uncertain facts, and actions that represent explicitly reason-
ing (by cases) over such statements.

A similar approach can be taken to representing story
characters’ knowledge and plans. Here, I will only sketch
a possible compilation to illustrate the potential of the idea.
There are many tricky issues in the details to be worked out.2
For illustration, I will use the following story, adapted from
one generated by Brenner’s (2010) system:

Desiring the treasure, and believing it to lie unguarded
in a cave, the king rode to the cave to steal it. Upon ar-
rival, he saw it was guarded by a dragon. Knowing he
could not defeat the dragon, he returned to the castle,
and ordered his knight: Go get me the treasure! The
knight, not knowing where the treasure was, asked the
king: Where might I find this treasure? The king told
him: It’s in the cave. The knight rode to the cave, and
saw the dragon. The dragon had also seen the knight
and attacked him, believing it could defeat him. But,

2A more limited compilation based on the idea of meta-
planning is described in the earlier paper (Haslum 2012).

alas, the knight proved stronger, and the dragon per-
ished. The knight brought the treasure back to the cas-
tle and presented it to the king, who was very pleased.

Character Meta-Planning
Suppose character A intends a goal g: A meta-planning ac-
tion, (plan-to-a A . . .), allows the character to adopt the in-
tention of achieving the preconditions of some action a that
has g among its effects. That is, the meta-planning action
does not affect any change to the story world, but models
the character’s mental process of planning. The committ-
ment is recorded by a modal fact (supports A f g), i.e., that
the character’s intention to achieve f is motivated only as a
step towards achieving g. The character can recursively plan
how to achieve f , until arriving at a set of intentions that can
be achieved by taking “real” actions in the story world. To
ensure that characters’ actions are justified, their real actions
are preconditioned on the character having an (unsupported)
subgoal that is achieved by the action. Characters’ beliefs
can be represented with another modality, (believesA f). We
have a lot of freedom in formulating meta-planning actions,
for example to precondition them on the character believing
facts that should hold for the planned action to make sense.
In this, they somewhat resemble HTN planning methods.

The record of the character’s plan, by means of supports
facts, is useful for several reasons: meta-planning actions are
preconditioned on the planned-for subgoal not being sup-
ported (to avoid characters making plans that they don’t act
on), and to avoid characters making cyclic plans. Using
PDDL’s derived predicates (Thiebaux, Hoffmann, and Nebel
2003), we can define complex conditions, such as
(:derived (subgoal ?who g)

(or (intends ?who g) (exits (h) (supports ?who g h))))

(:derived (unsupported ?who g)
(and (subgoal ?who g)

(not (exists (f) (supports ?who f g)))))

expressing that g is a subgoal of character ?who, and that it
is an open subgoal, respectively.

In the example story, initial facts include (intends King
(has King Treasure)), (believes King (at Treasure Cave)) and
(believes King (unguarded Cave)). We may apply the meta-
planning action

(:action plan-to-steal-1
:parameters (?who ?what ?where)
:precondition (and (unsupported ?who (has ?who ?what))

(believes ?who (at ?what ?where))
(believes ?who (unguarded ?where)))

:effect (and (supports ?who (at ?who ?where)
(has ?who ?what))

(supports ?who (at ?what ?where)
(has ?who ?what))

(supports ?who (unguarded ?where)
(has ?who ?what))))

to create the new character subgoal (unsupported King (at
King Cave)). This justifies the king travelling to the cave, an
action that is immediately applicable.

With only the condition that actions achieve some cur-
rent character subgoal, characters can act hastily, before they
have a complete plan (which may not even exist). To make

20

them more cautious, we can add to the precondition of real
actions that any unsupported character subgoals are believed
to be already true:
(:derived (complete-plan ?who)

(forall (g) (imply (unsupported ?who g) (believes ?who g))))

Revising Character Plans
As the example story shows, characters’ plans can fail, if
based on invalid beliefs. To allow characters to replan, we
need mechanisms to update characters’ beliefs, and to de-
cide when to retract plans. The first part is straightforward:
an action like

(:action observe-guard
:parameters (?who ?guard ?where)
:precondition (and (at ?who ?where)

(guards ?guard ?where))
:effect (and (not (belives ?who (unguarded ?where)))

(believes ?who (guards ?guard ?where))))

allows changing characters beliefs about facts that they can
immediately observe. To give some impression of persis-
tence of characters’ plans, replanning should only be al-
lowed when a character’s beliefs has changed in a way that
affects their plan. The simplest approach to replanning is to
retract all supports, letting the character replan from scratch.
The general form of a replanning action is then

(:action replan
:parameters (?who)
:precondition (and (not (believes ?who f))

(unsupported ?who f))
:effect (forall (p q) (not (supports p q))))

Character replanning is not suitable for all situations; some-
times we must allow characters to learn new beliefs through
mistakes (and suffer the consequences). For actions that
have uncertain outcomes (from the character’s point of
view), we need to model all possibilities. In the example
story, the dragon attacks the knight, mistakenly believing it
can win the fight. Here, we need at least two actions:

(:action attack-and-win
:parameters (?who ?victim ?where)
:precondition (and (subgoal ?who (dead ?victim))

(believes ?who (stronger ?who ?victim))
(at ?who ?where) (at ?victim ?where)
(stronger ?who ?victim))

:effect (and (dead ?victim) (not (guards ?victim ?where))))

(:action attack-and-lose
:parameters (?who ?victim ?where)
:precondition (and (subgoal ?who (dead ?victim))

(believes ?who (stronger ?who ?victim))
(at ?who ?where) (at ?victim ?where)
(stronger ?victim ?who))

:effect (and (dead ?who) (not (guards ?who ?where))))

(The inclusion of (not (guards ?victim ?where)) in the effects
is a clumsy way to implement ramification. When a char-
acter dies, many facts about that character change, which,
ideally, should be encoded in a more modular way.)

Knowledge Goals
A final challenge illustrated by the example story is plan-
ning to achieve knowledge goals. When the king commands

the knight to get the treasure, the knight adopts the goal (in-
tends Knight (has King Treasure)). The knight may plan to
achieve this by giving the treasure to the king, leading to
the unsupported goal (has Knight Treasure). But not having
any beliefs about the whereabouts of this treasure, the knight
cannot make any plan to acquire it. Here, we need a different
meta-planning action:

(:action plan-to-steal-2
:parameters (?who ?what ?where)
:precondition (unsupported ?who (has ?who ?what))
:effect (intends-to-know ?who (at ?what ?where)))

This allows the knight to motivate the action
(:action ask-answer-yes-truthfully

:parameters (?who-Q ?who-A f)
:precondition (and (intends-to-know ?who-Q f)

(trusts ?who-Q ?who-A)
(believes ?who-A f))

:effect (believes ?who-Q f))

or the analogous action ask-answer-no-truthfully, if the char-
acter asked does not believe f to be true. (This is again
somewhat clumsy, since it does not allow a character to
ask “who/what/where” questions, for which other machin-
ery may be needed (Petrick and Bacchus 2002). On the other
hand, since the planner takes the part of the story’s author, it
knows the correct question to ask.) In this action, only the
character asking the question is an actor. If we want to model
an action in which the character who answers lies, it would
perhaps be more appropriate to consider both of them to be
actors, so that both need a motivation for their behaviour.

Discussion
Engaging and interesting characters have more dimensions
than their knowledge and plans: They have emotions and
personality, which manifests, among other ways, in their
choice of actions (Bahamon and Young 2012). To what ex-
tent those aspects can also be captured through compilation
(via meta-planning or other techniques) is an open question.

A key consideration in any form of automated narrative
generation is originality. If we draw the boundaries of the
problem too tightly, the system will only “generate” a story
that we have scripted, and thus lack any element of sur-
prise. Therefore, encoding narrative generation as a plan-
ning problem we should strive to give the planner maximum
freedom to generate alternative stories, while ensuring that
every plan meets the criteria we expect of stories (such as
character believability). In the meta-planning compilation
sketched above, this creates a tension between on the one
hand allowing characters to achieve their goals in any way
possible and on the other imposing preconditions on meta-
planning actions so that they reflect “reasonable” problem-
solving strategies (characters don’t behave stupidly).

Classical planners often seek the simplest (i.e., shortest)
solution to a problem, which is somewhat at odds with the
aim of making stories “interesting”. In the example story,
why did the king first try to get the treasure himself, when
he could just have ordered the knight to get it right away?
One answer is, that would have made the story (even more)
boring. PDDL offers a rich set of mechanisms to influence
plan choice, including metrics, preferences and trajectory

21

constraints, which may be used to encode narrative control
knowledge (Porteous, Cavazza, and Charles 2010). Alter-
natively, giving the planner more freedom and using tech-
niques for generating diverse plans (e.g. Srivastava et al.
2007), we can generate many story variants to be evaluated
for their “aesthetic” or “entertainment” value. The work of
Porteous et al. (2011) on controlling “narrative tension” by
rearranging the sequence of events in a story can be viewed
as pursuing this approach (though they assume the arc of ten-
sion is provided as input). Work on “reader modelling” (e.g.
Bailey 1999) could form the basis for such an evaluation.

Another question is whether handling full-scale narrative
planning models is within the reach of current classical plan-
ners. If we want planners to generate many diverse stories
for a scenario, domain models will almost certainly involve
many possible facts and actions. Compiled problems of-
ten use advanced features, such as conditional effects and
derived predicates, that are not as well supported as the
basic STRIPS model, and sometimes have a structure that
make them particularly difficult for current planning meth-
ods, such as delete relaxation-based heuristics (e.g. Pala-
cios and Geffner 2009; Bonet, Palacios, and Geffner 2009;
Brafman, Shani, and Taig 2012). Although the justification-
tracking compilation of Reidl’s and Young’s (2010) exam-
ple problem is solved by a state-of-the-art classical planner
several orders of magnitude faster than the original problem
is solved by IPOCL, adding just a few (irrelevant) objects
and actions to the model increases runtime on its compila-
tion by a factor of 7 (Haslum 2012). Thus, compilations of
narrative planning problems may also provide a challenging
benchmark for classical planning.

Conclusion
Classical planners are domain-independent, and sometimes
highly effective, problem solvers. Through compilations,
their performance can be directed at many more problems
than those that on the surface appear to be classical planning
problems, including narrative generation. Their efficiency,
combined with the flexibility to impose and lift constraints
on plans by merely changing the declartive problem model,
suggests that classical planners can be a useful tool to ex-
plore ideas and methods for automated narrative generation.

Clearly there are many challenges, and of course there
are limits on what problems can be compiled into classical
planning. But I conjecture that the compilation of narrative
planning problems can be pushed much further before those
limits are reached, and encourage researchers interested in
narrative generation to take part in that exploration.

References
Aylett, R.; Dias, J.; and Paiva, A. 2006. An affectively
driven planner for synthetic characters. In Proc. 16th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’06), 2–10.
Bahamon, J., and Young, R. 2012. A choice-based model of
character personality in narrative. In Proc. 3rd Workshop on
Computational Models of Narrative, 166–170.

Bailey, P. 1999. Searching for storiness: Story generation
from a reader’s perspective. In Narrative Intelligence: Pa-
pers from the AAAI Fall Symposium. AAAI Press.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS’09),
34–41.
Brafman, R.; Shani, G.; and Taig, R. 2012. Leveraging
classical planners through translations. In Proc. ICAPS’12
workshop on the International Planning Competition, 6–9.
Brenner, M. 2010. Creating dynamic story plots with con-
tinual multiagent planning. In Proc. 24th AAAI Conference
on Artificial Intelligence, 1517–1522.
Haslum, P. 2012. Narrative planning: Compilations to clas-
sical planning. Journal of AI Research 44:383–395.
Meehan, J. 1977. TALE-SPIN, an interactive program that
writes stories. In Proc. International Joint Conference on AI
(IJCAI’77), 91–98.
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a classi-
cal planner (sometimes). In Proc. 21st National Conference
on Artificial Intelligence (AAAI’06).
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of AI Research 35:623–675.
Petrick, R., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sens-
ing. In Proc. 6th International Conference on Artificial In-
telligence Planning and Scheduling (AIPS’02), 212–221.
Pizzi, D.; Charles, F.; Lugrin, J.; and Cavazza, M. 2007.
Interactive storytelling with literary feelings. In Proc. 2nd
International Conference on Affective Computing and Intel-
ligent Interaction, 630–641.
Porteous, J.; Teutenberg, J.; Pizzi, D.; and Cavazza, M.
2011. Visual programming of plan dynamics using con-
straints and landmarks. In Proc. 21st International Confer-
ence on Automated Planning and Scheduling (ICAPS’11),
186–193.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology 1(2).
Riedl, M., and Young, R. 2010. Narrative planning: Balanc-
ing plot and character. Journal of AI Research 39:217–268.
Riedl, M. 2004. Narrative Planning: Balancing Plot and
Character. Ph.D. Dissertation, Dept. of Computer Science,
North Carolina State University, Raleigh, NC.
Srivastava, B.; Kambhampati, S.; Nguyen, T.; Do, M.;
Gerevini, A.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Proc. 20th Inter-
national Conference on Artificial Intelligence (IJCAI’07),
2016–2022.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In defense
of PDDL axioms. In Proc. 18th International Conference
on Artificial Intelligence (IJCAI’03), 961–968.

22

Planning for Interactive Storytelling Processes

Stefano Cianciulli
Sapienza University of Rome

Rome, Italy
stefano.cianciulli@gmail.com

Stavros Vassos
Sapienza University of Rome,

Rome, Italy
vassos@dis.uniroma1.it

Abstract

In this paper we present some preliminary results exper-
imenting with the AI method of behavior composition
for the purpose of facilitating interactive storytelling in
video games. The motivation is twofold: first, behav-
ior composition is based on transition systems that are
ubiquitous in video game development under the term
finite state machines, and second, as the research com-
munity explores ways for a non-linear adaptive story-
line in video games by means of automated planning
and scheduling, the use of behavior composition may
be able to offer added benefits by means of performing
planning for a target desired process instead of a target
desired state. We introduce JACO, a web service for be-
havior composition, and present a use case based on a
simple conceptual example for interactive storytelling.

Introduction
In this paper we experiment with the AI method of behav-
ior composition so as to facilitate interactive storytelling in
video games. Behavior composition (De Giacomo, Patrizi,
and Sardiña 2013) is concerned with orchestrating a set of
available behaviors, each of which is expressed as a transi-
tion system, in order to accommodate a virtual target service
also expressed as a transition system. The aim is to synthe-
size an orchestrator that is able to realize the target service
by exploiting execution fragments of available services.

The motivation is twofold. First, transition systems are
ubiquitous in video game development. Variants of transi-
tion systems, typically referred to as finite state machines
(FSMs), is one of the most widely used techniques for spec-
ifying the behavior of non-player characters (NPCs) in video
games. This familiarity makes behavior composition well
suited for orchestrating the behavior of NPCs. Second, as the
research community explores ways for a non-linear adaptive
and interactive storyline in video games by means of auto-
mated planning and scheduling, the use of behavior com-
position may be able to offer added benefits as transition
systems essentially facilitate planning for a target desired
process instead of a target desired state. For example, the
target process may describe a recurring transportation activ-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ity connecting two areas, which may be realized by different
available services, i.e., agents or devices.

In the setting we explore, each of the NPCs of the game
may feature any preferred method for specifying and realiz-
ing their intended behavior, but we also assume that there is
one additional interaction layer that specifies the role of the
NPC with respect to the storyline. For each NPC a transition
system or FSM is assumed that specifies which events in the
storyline may be initiated and handled by the NPC and how
they affect an internal state. For example, a particular NPC
may be used to initiate a conversation with the player that re-
veals a clue or initiate a quest, but only if in the course of the
game the player has not previously engaged in combat with
the NPC in some previous encounter. Different states of the
FSM may be used to represent the internal state of the NPC,
and transitions may be used to encode available storyline in-
teractions at each state. The set of these FSMs constitute the
available behaviors for behavior composition.

As far as the intended storyline is concerned, a desired
target behavior is constructed that describes how the events
in the storyline may unfold. The desired target is not a fixed
sequence of events, rather than another FSM that provides a
high-level view of the process that the storyline should fol-
low. Each state in the FSM corresponds to a decision point
allowing a number of available storyline events to be in-
voked as transitions that lead to other states accordingly.

Finally, anticipating that service-oriented computing may
become a useful paradigm for game development, we pro-
vide a RESTful web service for behavior composition,
called JACO. The interaction with JACO is carried out by
sending and receiving HTTP messages according to the
REST principles. Our intention is to release JACO as a cloud-
based tool that game developers can employ offline to com-
pute an “AI orchestrator” for NPCs in a video game, which
can then be used online to orchestrate NPCs according to the
specified target and the choices of the “AI director”.

A motivating example
We adopt a simplified game concept where the player em-
barks to a journey of becoming a mighty fighter or a power-
ful magician by pursuing various quests. A high-level view
of this storyline is depicted as the desired target FSM in Fig-
ure 1. The storyline structure requires the player to begin
his journey by completing a fixed quest, i.e., quest0. After

23

this initiation phase, he has the opportunity to pursue vari-
ous quests, i.e., quest1–quest7, which influence the path he
is taking toward becoming a fighter or a magician. For exam-
ple, different sequences of quests may result to the storyline
FSM being in state “Fighter”, “Magician”, or “Main”. Note
that only from the states “Fighter” and “Magician” can the
storyline evolve to the ending through an appropriate quest.

The target FSM does not prescribe the desired sequence
of events; it only specifies a process that the storyline should
comply with. A so-called AI director component could use
this as the basis for presenting available quests to the player
to choose in order to progress the story. A more sophisticated
AI director could look into the available options and choose
to progress the story using the one that would be considered
more fun for the player taking into account other informa-
tion. In any case, each state in the target FSM is a decision
point which specifies the possible ways to proceed. The ac-
tual realization of the decision though is to be performed by
one of the available NPCs, also expressed as FSMs.

In our simple example there are six NPCs that the player
may interact with for the purposes of achieving quests. Each
NPC may be involved in more than one quest affecting the
evolution of the storyline with respect to the target FSM of
Figure 1, but also affecting the disposition of the NPC in a
positive or negative way. Depending then its disposition, a
different set of quests may be facilitated by the NPC in the
course of the game. For example, Character1 may be used to
facilitate quest3 and quest4 but not both. Similarly, Charac-
ter2 may facilitate quests 3,5, and 6, but executing quest6
may get him into “Negative” state in which only quest6
could be re-invoked. Note also that the same quest may have
a positive effect for one character but a negative effect on an-
other, e.g., quest3 for characters 2 and 3. Also, for simplicity
we have allowed quests to reoccur in this specification – in
practice this may be reasonable only for some quests.

A problem that arises is that it is not easy to guarantee
that the available FSMs corresponding to NPCs can realize
all possible runs of the specified target FSM. For example
consider the following scenario:

• Character3 facilitates quest0: this causes the storyline to
evolve from “Beginning” to “Main” state, and Character3
to change its internal state from “Neutral” to “Positive”;

• Character4 facilitates quest1: this causes the storyline to
evolve from “Main” to “Fighter” state, and Character4 to
change its internal state from “Neutral” to “Negative”;

• Character4 facilitates quest7: this causes the storyline to
go back to “Main” state, and Character4 to change its in-
ternal state from “Negative” to “Positive”.

At this point, according to the target FSM the player should
still be able to get involved with quest1 or quest2, but the
only character that is capable of facilitating it, i.e., Char-
acter4, is in “Positive” state, from which he is not able to
facilitate these quests.

The method of behavior composition that we described in
the introduction is able to automatically construct a global
strategy that specifies how each of the transitions of the tar-
get FSM should be delegated to available FSMs in order to
avoid such situations for any possible run of the target tran-

Figure 1: Storyline as a target FSM

sition system. In the next section we present JACO, a web
service that provides this functionality.

Behavior composition with JACO
JACO is a web service for behavior composition following
the REST software architecture. For a formal definition of
behavior composition the reader is referred to (De Giacomo,
Patrizi, and Sardiña 2013). The interaction with JACO is
done by sending and receiving HTTP messages that handle
information and requests. JACO’s main computational com-
ponent is built on top of JTLV1,i.e., a Java implementation
of the Temporal Logic Verifier (Pnueli and Shahar 1996).

JACO performs the following computation: given (i) a set
of available behaviors as possibly nondeterministic FSMs
and (ii) a target behavior as a deterministic FSM that is to be
realized by combining execution fragments of the available
behaviors, JACO provides a composition that specifies how
the target can be realized. The composition can be used as
a look-up table specifying for every collective state of the
available behaviors and the target, which of the behavior can
be used to realize the transitions supported by the target.

The JACO API identifies five endpoints with which the
user can interact using HTTP verbs, such as GET and POST,
in order to send or receive information expressed in XML:
• /auth: provides the user with a unique identifier client id

to be used with all requests to JACO as follows;
• /{client id}/behaviors: allows the user to retrieve a list of

available behaviors that have been submitted to the server
by issuing an HTTP GET request, or add a new behavior
with an HTTP POST request;

• /{client id}/behavior/{behavior id}: allows the user to
perform the usual CRUD operations (Create, Read, Up-
date, and Delete) on the behavior identified by behav-
ior id using HTTP GET, POST, PUT, DELETE;
1http://jtlv.ysaar.net/

24

(a) Character 1 (b) Character 2 (c) Character 3 (d) Character 4

(e) Character 5

(f) Character 6

Figure 2: The finite state machines of the six characters of the domain

• /{client id}/target: allows the user to perform the CRUD
operations to set, update or delete the desired target for
behavior composition;

• /{client id}/composition: allows the user to request the
computation of the specified behavior composition prob-
lem by issuing a POST request, and obtain the resulting
composition (or the status of the operation if it is still pro-
cessing or in queue) using a GET HTTP request.
In a typical JACO usage scenario the user starts by get-

ting a client id, and then using appropriate POST requests
specifies available behaviors and the desired target behav-
ior, as well as initiates the computation of the behavior
composition. Then the user goes on a loop of appropri-
ate GET requests with which the status of the composi-
tion is retrieved, until the actual composition is returned
as output. More information about the API and the XML
data that is sent and received by the user can be found at
http://jaco.dis.uniroma1.it/.

We now proceed to show how JACO can be employed to
orchestrate the NPCs of Figure 2 in order to guarantee the
realization of the target FSM of Figure 1.

JACO in action
Each of the NPCs of Figure 2 is specified as an available be-
havior using XML. The XML representation is very simple
including a name and a finite state machine specified using
nodes and transitions. For example, the following XML list-
ing is used for Character1:
<behavior>
<name>Character1</name>
<finiteStateMachine>
<state node="neutral">
<transition action="quest3">
<target>positive</target>

</transition>
<transition action="quest4">
<target>negative</target>

</transition>
</state>
<state node="positive">
<transition action="quest3">
<target>positive</target>

</transition>
</state>
<state node="negative">
<transition action="quest4">
<target>negative</target>

</transition>
</state>

</finiteStateMachine>
</behavior>

The target behavior is also represented using the same tags.
The following is an excerpt used for the target of Figure 1:
<behavior>
<name>Target</name>
<finiteStateMachine>
<state node="beginning">
<transition action="quest0">
<target>main</target>

</transition>
</state>

Following the usage scenario of JACO we get a client id
and post the available behaviors and the target behavior one
by one. We then request a composition that would provide
an orchestrating strategy. If one such strategy exists, it will
ensure that we can always continue progressing our storyline
following the options formalized in the target FSM. More-
over for every available transition in the target FSM (and
every corresponding possible state of all available FSMs), it
will instruct exactly which of the available FSMs we should
choose to realize the transition in order to ensure this.

When we get back an answer from JACO, the result is that
such a composition is not possible. This means that some
problematic runs for the target FSM (like the one we iden-
tified involving characters 3 and 4, and quests 0,1,2, and 7,
in the section of the motivating example) cannot be avoided

25

by delegating the quests to characters in a different way. Es-
sentially, there exists some run for the target FSM such that
there is no way to realize using the available FSMs.

As a piece of information this is important to know but
it is not very helpful for the purpose of specifying and exe-
cuting an interactive storytelling experience as we intended.
Nonetheless, in order to investigate which are all the prob-
lematic cases that lead to a deadlock, we can proceed as
follows. We specify a simple “all-purpose” character that
can facilitate all available quests always staying in the same
“Neutral” state, and post it as an additional available behav-
ior. Then we request a composition again. As expected, this
time a composition is possible, but what is more interesting
is that the details of the composition2 point out the problem-
atic cases. The composition shows at each step information
about which of the available FSMs could facilitate a transi-
tion of the FSM based on the current state of the available
FSMs. The cases then where only the “all-purpose” charac-
ter comes out as an option are the ones that would originally
lead to a deadlock. Essentially, this provides a simple way to
“debug” storyline processes and behaviors at design time.

Related work
Our approach is similar in spirit to many other approaches
in the literature that are based on automated planning, in-
cluding STRIPS and HTN planning, for example the system
I-Storytelling (Cavazza, Charles, and Mead 2002), GADIN
(Barber and Kudenko 2009), and MIST (Paul et al. 2010) as
well as the work on the framework Mimesis (Young 2001)
and Zócalo (Young et al. 2011). Nonetheless, the methodol-
ogy of behavior composition is different from planning both
in conceptual and technical terms as we explain next.

Firstly, the target behavior is not a specification of a goal
situation to reach but, rather, a description of a set of routines
one would like to be able to carry on at runtime. Moreover,
such routines cannot be seen as (classical or nondeterminis-
tic) plans, either, in that they do not prescribe the actions to
execute, but leave the choice to the executor. Further, they
may contain loops, which are typically ruled out in plan-
ning. From this perspective, target behaviors are more sim-
ilar to IndiGolog programs (De Giacomo et al. 2009), i.e.,
high-level procedures definable on top of planning domains,
for which one is typically interested to find an executable
realization at runtime.

Secondly, in behavior composition, actions are not the
subject of a planning task. Indeed, the controller does not
select the actions to execute; instead it returns the index
of the behavior that should execute the action selected by
the AI director. In this sense, actions constitute the input,
not the output, of the reasoning task, but in a way that
takes into account all possible narrative trajectories. From
a more formal perspective, we observe that both behav-
ior composition and conditional planning are EXPTIME-
complete problems (De Giacomo, Patrizi, and Sardiña 2013;
Littman 1997), thus some way of reducing composition to
(nondeterministic) planning must exist. Nonetheless, how

2XML files are available at JACO website.

this can actually be done is not as straightforward as one
might expect, as shown by the above considerations.

Finally, our implementation of the behavior composition
engine as the web-service Jaco is similar to the client-server
based approach that is adopted in Mimesis and Zócalo. In
fact as JACO is built as a pure behavior composition engine
that can be accessed via a REST API, one interesting direc-
tion for future work is to explore how it can be used it as
a service in such frameworks in order to provide high-level
orchestration of characters, either as an alternative or in pair
with the embedded narrative planner.

Conclusions
In this paper we present some preliminary results experi-
menting with the AI method of behavior composition for
the purpose of facilitating interactive storytelling in video
games. We motivate the use of this method with a simple
conceptual example that would require the orchestration of
various non-player characters in order to facilitate different
parts of the story. Anticipating that service-oriented comput-
ing may become a useful paradigm for this type of aspects of
game development, we provide a RESTful web service for
behavior composition, called JACO, and we use it to provide
solutions for the motivating example. Our preliminary re-
sults show that such a service can be useful for use cases
similar to our motivating example, and our current work
focuses on identifying scenarios coming from commercial
video games to validate our approach.

References
Barber, H., and Kudenko, D. 2009. Generation of adaptive
Dilemma-Based interactive narratives. Computational Intelligence
and AI in Games, IEEE Transactions on 1(4):309–326.
Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Character-Based
interactive storytelling. IEEE Intelligent Systems 17(4):17–24.
De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sardina, S.
2009. IndiGolog: A High-Level programming language for embed-
ded reasoning agents. In Multi-Agent Programming: Languages,
Tools and Applications. 31–72.
De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2013. Automatic
Behavior Composition Synthesis. Artif. Intell. 196:106–142.
Littman, M. L. 1997. Probabilistic Propositional Planning: Rep-
resentations and Complexity. In Proc. of AAAI 97 and IAAI 97,
748–754.
Paul, R.; Charles, D.; McNeill, M.; and McSherry, D. 2010. MIST:
An interactive storytelling system with variable character behavior.
In Interactive Storytelling, volume 6432 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg. 4–15.
Pnueli, A., and Shahar, E. 1996. A platform for combining de-
ductive with algorithmic verification. In Proceedings of the Eighth
International Conference on Computer Aided Verification.
Young, R. M.; Thomas, J.; Bevan, C.; and Cassel, B. A. 2011.
Zócalo: A service-oriented architecture facilitating sharing of com-
putational resources in interactive narrative research. In Working
Notes of the Workshop on Sharing Interactive Digital Storytelling
Technologies at ICIDS.
Young, R. M. 2001. An overview of the mimesis architecture:
Integrating intelligent narrative control into an existing gaming en-
vironment. In Working Notes of the AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment.

26

Pushing the Envelope of Monte-Carlo Planning:
Formal Guarantees Meet Practical Efficiency

Zohar Feldman
Technion & IBM HRL

Haifa, Israel
zoharf@tx.technion.ac.il

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Abstract

Popular Monte-Carlo tree search (MCTS) algorithms for on-
line planning, such as ε-greedy tree search and UCT, aim
at rapidly identifying a reasonably good action, but provide
rather poor worst-case guarantees on performance improve-
ment over time. In contrast, a recently introduced MCTS
algorithm BRUE guarantees exponential-rate improvement
over time, yet it is not geared towards identifying reasonably
good choices right at the go. We take a stand on the indi-
vidual strengths of these two classes of algorithms, and show
how they can be effectively connected. We then rationalize a
principle of “selective tree expansion”, and suggest a concrete
implementation of this principle within MCTS. The resulting
algorithm, BRUEIC , favorably competes with other MCTS
algorithms under short planning times, while preserving the
attractive convergence properties of BRUE.

Introduction
In online planning for MDPs, the agent focuses on its current
state only, deliberates about the set of possible policies from
that state onwards and, when interrupted, uses the outcome
of that exploratory deliberation to choose what action to per-
form next. The quality of the action a, chosen for state swith
H steps-to-go, is assessed in terms of the probability that a
is sub-optimal, or in terms of the (closely related) measure
of simple regret. The latter captures the performance loss
that results from taking a and then following an optimal pol-
icy π∗ for the remaining H − 1 steps, instead of following
π∗ from the beginning (Bubeck and Munos 2010).

With a few recent exceptions developed for declarative
MDPs (Bonet and Geffner 2012; Kolobov, Mausam, and
Weld 2012; Busoniu and Munos 2012), most algorithms
for online MDP planning constitute variants of what is
called Monte-Carlo tree search (MCTS) (Péret and Garcia
2004; Kocsis and Szepesvári 2006; Coquelin and Munos
2007; Cazenave 2009; Rosin 2011; Tolpin and Shimony
2012). Most MCTS algorithms for online planning, such
as ε-greedy tree search and UCT, aim at rapidly identify-
ing a reasonably good action, but offer only polynomial-
rate reduction of simple regret over the deliberation time.
In contrast, a recently introduced MCTS algorithm BRUE
guarantees exponential-rate reduction of simple regret over

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time, yet it does not make special efforts to home in
on a reasonable alternative fast (Feldman and Domshlak
2012). Of course, “good” is often the best one can hope
for in large MDPs of interest under practically reasonable
deliberation-time allowances. This is precisely our contri-
bution here: Reflecting on the differences between the two
types of algorithms, we show that a redesign of BRUE, bap-
tized BRUEIC , favorably and robustly competes with other
MCTS algorithms under short planning times, while pre-
serving both the attractive formal properties of BRUE, as
well as the empirical strength of the latter under permissive
deliberation-time allowances.

Background
An MDP 〈S,A, Tr,R〉 is defined over states S, actions A,
a stochastic transition function Tr : S × A × S → [0, 1],
and a reward function R : S × A × S → R. In the finite
horizon setting considered here, the reward is accumulated
over some predefined number of steps H . Henceforth, Π
denotes the set of all valid policies for the MDP in question,
A(s) ⊆ A denotes the actions applicable in state s, the op-
eration of drawing a sample from a distributionD over set ℵ
is denoted by ∼ D[ℵ], U denotes uniform distribution, and
JnK for n ∈ N denotes the set {1, . . . , n}.

Canonical MCTS Scheme
MCTS, a canonical scheme underlying various MCTS algo-
rithms for online MDP planning, is depicted in Figure 1a.
Starting with the current state s0, MCTS performs an iter-
ative construction of a tree1 T rooted at s0. At each itera-
tion, MCTS rollouts a state-space sample ρ from s0, which
is then used to update T . First, each state/action pair (s, a)
is associated with a counter n(s, a) and a value accumula-
tor Q̂(s, a), both initialized to 0. When a sample ρ is rolled
out, for all states si ∈ ρ ∩ T , n(si, ai+1) and Q̂(si, ai+1)
are updated on the basis of ρ by the UPDATE-NODE proce-
dure. Second, T can also be expanded with any part of ρ;
The standard choice is to expand T with only the first state

1In MDPs, there is no reason to distinguish between nodes as-
sociated with the same state at the same depth. Hence, the graph
T constructed by MCTS instances typically forms a DAG. Never-
theless, for consistency with prior literature, we stay with the term
“tree”.

27

MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0

for n← 1 . . . time permits do
PROBE(s0, 0)

return arg maxa bQ(s0, a)

PROBE (s : state, d : depth)
if END-OF-PROBE(s, d) then return EVALUATE(s, d)
a← ROLLOUT-POLICY(s)
s′ ∼ P (S | s, a)
r ← R (s, a, s′) + PROBE(s′, d+ 1)
UPDATE-NODE(s, a, r)
return r

(a)

END-OF-PROBE (s : state, d : depth)
if s 6∈ T then

add s to T and return true
else if d = H then return true else return false

UPDATE-NODE (s : state, a: action, r : reward)
n (s, a)← n (s, a) + 1bQ(s, a)← bQ(s, a) + r− bQ(s,a)

n(s,a)

ROLLOUT-POLICY (s : state)
if n(s, a) = 0 for some a ∈ A(s) then

return a ∼ U [{a ∈ A(s) | n(s, a) = 0}]
else
n(s)←P

a∈A(s) n(s, a)

return argmaxa

h bQ(s, a) + c
q

logn(s)
n(s,a)

i
EVALUATE (s : state, d : depth)

for t← d . . .H do
a ∼ U [A(s)]
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

return r
(b)

Figure 1: (a) Monte-Carlo tree search template, and (b) the
UCT specifics.

along ρ that is new to T . In any case, once the sampling is
interrupted, MCTS uses the information stored at the tree’s
root to recommend an action to perform in s0.

Numerous concrete instances of MCTS have been pro-
posed, with ε-greedy probably being the most widely
known, and UCT (Kocsis and Szepesvári 2006) and its
modifications (Coquelin and Munos 2007; Tolpin and Shi-
mony 2011) being the most popular such instances these
days (Gelly and Silver 2011; Sturtevant 2008; Bjarnason,
Fern, and Tadepalli 2009; Balla and Fern 2009; Eyerich,
Keller, and Helmert 2010; Keller and Eyerich 2012). Con-
crete instances of MCTS vary mostly along the implementa-
tion of the ROLLOUT-POLICY sub-routine, that is, in their
policies for directing the rollout within T . For instance,
the specific ROLLOUT-POLICY of UCT is shown in Fig-
ure 1b. This policy is based on the deterministic decision
rule UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), origi-
nally proposed for optimal balance between exploration and

exploitation for cumulative regret minimization in stochas-
tic multi-armed bandit (MAB) problems (Robbins 1952).
However, it has already been noticed that exploitation may
considerably slow down the reduction of simple regret over
time (Bubeck, Munos, and Stoltz 2011). Indeed, UCB1 (and
thus UCT) achieves only polynomial-rate reduction of sim-
ple regret over time (Bubeck, Munos, and Stoltz 2011), and
the number of samples after which the bounds of UCT on
simple regret become meaningful might be as high as hyper-
exponential in H (Coquelin and Munos 2007). In fact, none
of the MCTS instances suggested so far breaks the barrier
of the worst-case polynomial-rate reduction of simple regret
over time.

Separation of Concerns

If fast convergence to optimal choice is of interest, then
Monte-Carlo planning should be as exploratory as possi-
ble (Bubeck, Munos, and Stoltz 2011). However, what it
means to be “as exploratory as possible” with MDPs is less
straightforward than it is in MABs. In particular, recently it
was observed that “forecasters” s ∈ T should be devoted to
two, somewhat competing, exploratory objectives, namely
identifying an optimal action π∗(s), and estimating the value
of that action, because this information is needed by the pre-
decessor(s) of s in T (Feldman and Domshlak 2012).

Following this observation, previously we introduced
MCTS2e, a refinement of MCTS scheme that implements
the principle of “separation of concerns,” whereby different
parts of each sample are devoted to different exploration ob-
jectives (Feldman and Domshlak 2012). In MCTS2e (Fig-
ure 2a), rollouts are generated by a two-phase process in
which the actions are selected according to an exploratory
policy until an (iteration-specific) switching point, and from
that point on, the actions are selected according to an es-
timation policy. A specific instance of MCTS2e, dubbed
BRUE, was shown to achieve an exponential-rate reduction
of simple regret over time, with the bounds on simple regret
becoming meaningful after only exponential in H2 number
of samples (Feldman and Domshlak 2012).

The specific MCTS2e sub-routines that define the BRUE
algorithm are shown in Figure 2b. Similarly to UCT, each
node/action pair (s, a) is associated with variables n(s, a)

and Q̂(s, a), but with the latter being initialized to −∞.
BRUE instantiates MCTS2e by choosing actions uniformly
at the exploration phase of the sample, choosing the best
empirical actions at the estimation phase, and changing the
switching point in a round-robin fashion over the entire
horizon. Importantly, if the switching point of a rollout
ρ = 〈s0, a1, s1, . . . , aH , sH〉 is σ, then only the state/action
pair (sσ−1, aσ) is updated by the information collected by
ρ. That is, the information obtained by the estimation phase
of ρ is used only for improving the estimate at state sσ(n)−1,
and is not pushed further up the sample. While that may
appear wasteful and counterintuitive, this locality of update
is required to satisfy the formal guarantees of BRUE on
exponential-rate reduction of simple regret over time (Feld-
man and Domshlak 2012).

28

MCTS2e: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0; σ ← 0
for n← 1 . . . time permits do

σ ← SWITCH-FUNCTION(n, σ)
PROBE(s0, 0, σ)

return arg maxa bQ(s0, a)

PROBE (s : state, d : depth, σ ∈ JHK)
if END-OF-PROBE(s, d) then return EVALUATE(s, d)
if d < σ then
a← EXPLORATION-POLICY(s)

else
a← ESTIMATION-POLICY(s)

s′ ∼ P (S | s, a)
r ← R (s, a, s′) + PROBE(s′, d+ 1, σ)
if d = σ then UPDATE-NODE(s, a, r)
return r

(a)

END-OF-PROBE (s : state, d : depth)
if d = H then return true else return false

EVALUATE (s : state, d : depth)
return 0

UPDATE-NODE (s : state, a: action, r : reward)
if s 6∈ T then add s to T
n (s, a)← n (s, a) + 1bQ(s, a)← bQ(s, a) + r− bQ(s,a)

n(s,a)

SWITCH-FUNCTION (n : iteration, σ ∈ JHK)
return H − ((n− 1) mod H) // round robin on JHK

EXPLORATION-POLICY (s : state)
return a ∼ U [A(s)]

ESTIMATION-POLICY (s : state)
return a ∼ U

h
{a | arg maxa∈A(s)

bQ(s, a)}
i

(b)

Figure 2: Monte-Carlo tree search with “separation of con-
cerns” (a), and the BRUE specifics (b).

Two Types of Forecasters
A comparative evaluation on Sailing (Péret and Garcia
2004) and PGame (Kocsis and Szepesvári 2006) domains
showed that BRUE is continually improving towards an op-
timal solution, rather quickly obtaining results better than
UCT (Feldman and Domshlak 2012). However, that evalu-
ation also showed that UCT sometimes manages to identify
reasonably good actions rather quickly, while BRUE is still
“warming up”. In fact, later we show that a very simple MC
algorithm performs even better than both UCT and BRUE
under tight planning deadlines. We now take a closer look
at this gap between “fast optimal” and “fast good”.

Consider the state/steps-to-go pairs (s, h) as a hierarchy
of forecasters, all acting on behalf of the root forecaster
(s0, H) that aims at minimizing its own simple regret in a
stochastic MAB induced by the applicable actionsA(s0). In
the setup of online planning, there is a conceptual difference

between the exploration objective of the root forecaster and
this of all other forecasters in the hierarchy. To see that,
suppose there is an oracle that can provide each forecaster
(s, h) either with the identity of the optimal action π∗(s, h)
but without revealing its value Qh(s, π∗(s, h)), or with the
value Qh(s, π∗(s, h)) but without revealing the identity of
π∗(s, h). For the root forecaster (s0, H), the first type of
information is all he needs, while the second type of infor-
mation buys him very little, if anything. In contrast, even
if the oracle provides all the forecasters (s, h) but (s0, H)
with (only) the identities of the respective optimal actions
π∗(s, h), then the root forecaster (s0, H) in some sense re-
mains as clueless as it was before, and needs to explore the
state space in order to obtain at least some ordinal infor-
mation about the expected value of the alternative choices
A(s0). However, if the oracle provides a non-root fore-
caster (s, h) (only) with the best Q-value among its alter-
native choices A(s), then (s, h) can stop working since no
further exploration of the sub-hierarchy rooted in (s, h) is
needed.

In sum, what matters to the root forecaster is only what
to execute, while all other forecaster care only about the
value they can provide to their ancestors in the hierarchy,
and not about how this value can actually be acquired. Of
course, the reader may question this classification by argu-
ing that these two objectives are just two sides of the same
coin: estimating the value of optimal action assumes aim-
ing at identifying an optimal action and vice versa. To some
extent, that is true, but only to some extent. For instance,
the very realization that this coin has two sides, and that
these two sides are somewhat competing, is precisely what
motivates the “separation of concerns” principle behind the
MCTS2e scheme. Turns out that this classification of objec-
tives suggests further insights into the dynamics of MCTS
algorithms.

In all MCTS algorithms for online MDP planning, each
iteration corresponds to examining a chain of forecasters
within the overall hierarchy under (s0, H), with the differ-
ence between the algorithm boiling down to two decisions:

(I) which chain of forecasters to examine, and

(II) how to estimate Qh(s, π∗(s, h)) for each forecaster
(s, h) in the hierarchy.

At first view, choosing the right strategy for (I) seems to
be the key to rapid homing in on “good” decisions. The de-
tails of various MCTS algorithms suggest that their design
was indeed primarily guided by choices for (I), with choices
for (II) being implied by the former. Here, however, we sug-
gest that decoupling these two decisions is important, and
that the key to the quest of our interest actually lies in deci-
sion (II).

A closer look at different Monte-Carlo planning algo-
rithms for MDPs reveals an interesting generalizing perspec-
tive on the way they all approach decision (II). Let V πh (s)
be the value of (s, h) under policy π ∈ Π, V ∗h (s) ≡
Qh(s, π∗(s, h)) be the value of (s, h) under the optimal
policy, and let V̂ πh (s), V̂ ∗h (s) denote empirical estimates of
these two quantities, respectively. In all MCTS algorithms,

29

at each point of time, the entire hierarchy of forecasters can
be seen as consisting of two types of forecasters.

TOUT forecasters (s, h) (possibly schematically) estimate
V ∗h (s) by an estimate of

Eπ∼U [Π]V
π
h (s),

that is, of the expected total reward of a policy sampled
from Π uniformly at random.

TIN forecasters (s, h) distinguish between their alternative
choices A(s), and estimate V ∗h (s) by an estimate of

max
a∈A(s)

∑

s′

P (s′ | s, a)
[
R(s, a, s′) + V ∗h−1(s′)

]
,

where the estimate of V ∗h−1(s′) is based on the informa-
tion provided by s′ to s.

Consider the way in which the specific MCTS algorithms
approach decision (II) in terms of this TOUT/TIN partition
of the forecasters. In both UCT and BRUE, TIN-forecasters
correspond to the nodes of T , while all other state/steps-
to-go pairs correspond to TOUT-forecasters. Note that these
TOUT-forecasters are very much not virtual. For instance,
in UCT they are queried by the EVALUATE sub-routine,
and in BRUE they are queried, possibly in interleaving
with TIN-forecasters, by both EXPLORATION-POLICY and
ESTIMATION-POLICY sub-routines.

At first view, TOUT-forecasters appear to be strangely lazy
and potentially very misleading, while TIN-forecasters seem
to be doing the right thing. However, it is not all that simple.
First, while each TOUT-forecaster samples a single random
variable, each TIN-forecaster (s, h) has to sample |A(s)| ran-
dom variables. Thus, TOUT-forecasters converge to quality
estimates of quantities of their interest much faster than their
TIN counterparts. Second, while TIN-forecasters try to es-
timate the right thing, their success totally depends on the
quality of estimates of V ∗h−1(s′) they receive from their suc-
cessors. Hence, in general it is not clear that we should pre-
fer all forecasters to be of type TIN.

We return to this issue in more detail later on. For now,
note only that both UCT and BRUE can be seen as contin-
uously reconsidering the typing of the forecasters. Specifi-
cally, in both UCT and BRUE, (at most) a single forecaster
is “converted” from TOUT to TIN at every iteration: in UCT
it is the shallowest TOUT-forecaster found along the rollout,
and in BRUE, it is the TOUT-forecaster that happens to lie
at the rollout’s switching point σ. This way, the set of TIN-
forecasters in UCT grows incrementally as a single commu-
nity connected to the root forecaster (s0, H). In contrast,
TIN-forecasters in BRUE evolve in H independent, equally
sized sets, where each of these sets is distributed over the
respective depth level of the forecast hierarchy according to
the transition distribution induced by the uniform action se-
lection at the preceding levels.

This specific difference between UCT and BRUE is di-
rectly related to their relative efficiency under different
orders of deliberation time allowance. Populating TIN-
forecasters at all levels of the hierarchy is generally neces-
sary to guarantee fast convergence to optimal choice at the

root. However, the marginal value of TIN-forecasters at dif-
ferent levels vary with the deliberation time allowance: In-
formation gathered by TIN-forecasters at deep levels takes
time to be propagated to the root, making their near-term
influence on the choices at (s0, H) smaller than this of the
TIN-forecasters closer to the root.

In that respect, a modification of BRUE that suggests it-
self almost immediately is as simple as it gets: Instead of
converting the TOUT-forecaster at the switching point σ, we
can resort to converting the shallowest TOUT-forecaster on
the exploratory part of the rollout, that is, up to the level
σ. By offering both exponential-rate reduction of the simple
regret at the root, as well as incremental conversion of TOUT-
forecasters as a connected set around (s0, H), the resulting
algorithm, BRUEI , substantially improves over BRUE in
short-term effectiveness.2 However, this simple modifica-
tion of BRUE is not our final destination, and next we show
that this simple bridge between MCTS and MCTS2e opens
a much wider window of opportunity.

Selective Tree Expansion
Similarly to UCT and BRUE, each iteration of BRUEI ei-
ther finds no candidate for type conversion, or uncondition-
ally converts a concrete single TOUT-forecaster to type TIN.
However, suppose that we somehow know that, for that spe-
cific forecaster (s, h),

Eπ∼U[Π]V
π
h (s) = max

a∈A(s)

X
s′
P (s′ | s, a)

ˆ
R(s, a, s′) + V ∗h−1(s′)

˜
.

Since direct Monte-Carlo estimation of the quantity on the
left-hand side is substantially easier than this of the right-
hand side, converting (s, h) to type TIN is clearly not a good
idea. In fact, both (s, h) and all of its exclusive descendants
in the hierarchy would better remain TOUT-forecasters for
the entire deliberation process, no matter how long it is. Of
course, this equality rarely holds, and, more importantly, we
have no prior knowledge about the size of the gap between
the quality of the best policy under (s, h) and the expected
quality of the randomly picked policy. However, this ex-
treme example still hints on the promise of selective type
conversion, and below we examine the prospects of this di-
rection.

The variance of a Monte-Carlo estimator Q̂h(s, a) of the
value of action a at state s stems from two sources. The first
source of variance comes from following different policies
(aka action selections) along different rollouts. The other
source of variance comes from the stochastic nature of the
action outcomes. That is, if r is the reward obtained by fol-
lowing policy π for h steps starting from state s, then

Var [r] = E [Var [r | π]] + Var [E [r | π]] . (1)

At one extreme, we have all policies yielding the same ex-
pected reward, and thus all the variance comes from the ac-
tion outcomes. In that case, distinguishing between the poli-
cies under (s, h) is not only useless, but also computation-
ally harmful. Thus both (s, h) and its descendants should be

2The specific empirical results for BRUEI are shown later in
the paper.

30

Planning and Execution Control Architecture for Infantry Serious Gaming

Alexandre Menif, Christophe Guettier1 and Tristan Cazenave2
1SAGEM, 27, Rue Leblanc, 75012 Paris, France

2LAMSADE, Universit́e Paris-Dauphine, Paris, France
{alexandre.menif, christophe.guettier}@sagem.com

cazenave@lamsade.dauphine.fr

Abstract

Serious gaming is developing among all modern armies for
teaching and training as well as for developing new concepts
of engagement. To reach a realistic level of simulation, on-
line planning techniques provide an expressive and construc-
tive approach to define basic tactical activities. To achieve a
mission goal, a virtual soldier must follow a short-term plan
that can be quickly reprocessed in order to follow changes
in the environment, orders or situation awareness. This pa-
per presents a planning and execution control architecture
for simulating the behaviour of virtual infantry soldier. The
planning approach relies on the frequent generation of short
plans using a Hierarchical Task Networks approach. Execu-
tion control handles synchronisations of soldiers and trigger
replanning whenever action cannot be executed in simulation.
Applied to two generic types of action, preliminary results
show that response times match the level of reactivity needed
for serious gaming.

Introduction
Automatic planning has always given major challenges in
defence domains. Many problem models and search tech-
niques have been considered at strategic, operative or tacti-
cal command levels. However, simulation of low level tac-
tics and basic soldier behaviours refer in general to action
scripting. In order to match the expected level of realism
required by modern armies, this practice tends to become a
tremendous and time-consuming engineering activity.

In video game, however, planning techniques have be-
come more and more popular for a decade. The experience
of planning in video games has started with FEAR, a first
person shooter issued in 2005, which implements an algo-
rithm called GOAP (Goal Oriented Action Planning) to pro-
vide an efficient coordinated behaviour to the enemies. Al-
though GOAP was inspired on STRIPS, one of the oldest
algorithm in actions planning, this experience has success-
fully illustrated the possibility to compute short linear plans
for a few coordinated agents in real time (Orkin 2006).

Planning techniques provide an expressive way to model
tactical behaviour, by developing a compositional approach
to basic activities. Several dedicated planning domains can
be developed according to the type of mission, environment

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or military action. Using search techniques, automatic plan
generation can be used at different hierarchical levels to sim-
ulate both the command chain and soldier activities.

The paper exhibits a planning and execution control ar-
chitecture that integrates mission management along the
command-chain, automatic tactical sequence generation and
execution control. The architecture makes use of Hierar-
chical Task Networks (HTN) representations, that facilitate
command-chain modelling, automatic goal breakdown as
well as sequential task synthesis. To match mission exe-
cution tempo and contingencies, the planning functionality
can generate very short plans over small horizons. Once a
plan is generated, each action is tentatively executed by the
execution controler which interacts with the simulated en-
vironment. Execution control also handles synchronisations
of soldiers and trigger replanning whenever action cannot be
executed.

Applied to two generic types of action, preliminary re-
sults show that response times match the level of reactivity
needed for serious gaming.

First section focuses on the relation between serious gam-
ing and military requirements for infantry warfare at tactical
level. The second section describes a software planning ar-
chitecture intended to meet those requirements. The next
section presents the modelling of a planning domain for in-
fantry tactical behaviours and provide details about a new
implementation of SHOP2. Finally the last parts are dedi-
cated to the state of the art and conclusion.

Soldier Level Serious Gaming
Rather than using old fashion tactical simulation, serious
gaming is a very promising approach to teach, train and de-
velop new concepts of engagement. Serious gaming reuses
video game design and offers immersive and interactive en-
vironment to armies end-users. To be effective in profes-
sional tasks, these environments necessitate realistic and in-
telligent behaviour for simulated soldiers.

Different requirements stress both agents behaviour as
well as the architectural design of such serious gaming:

• Teaching: Basic infantry scenarii must be easy to pro-
gram, and soldier behaviour must be realistic enough to
stimulate the end-user. Basic action sequences can be
analysable to give explanations during after action review.

31

• Training: Such training stresses coordination, orders and
reporting capabilities of the end-user. The serious game
must be able to handle a large set of soldiers, and to con-
struct complex situation. Again, in spite of their complex-
ity, user performances can be analysed during after action
review.

• Concept development: the development of new opera-
tional concept or the integration of new systems need doc-
trinal evolution. On one hand, serious gaming can help
understanding the impact of new tactics, operational tech-
niques and procedures. On the other hand, it provides a
strong support to evaluate new system performances and
man-machine interactions.

Planning and Execution Control Architecture
Figure 1 gives an overview of the Planning and Execution
Control Architecture. It features two different levels of plan-
ning functionalities. Mission management solves medium
and long term planning from brigade down to the platoon
level. Below this level, squads and soldier sequence of ac-
tions are generated by a dedicated HTN planner. This core
component drives the quality of virtual soldier behaviour
and is detailed in a dedicated section.

The planning architecture is meant to be integrated in a
real time simulator, which means that it is not possible to
spend much processing power in planning procedures that
may alter frame rate, gameplay and graphical rendering. The
architecture must scale up to several dozens of entities to be
managed in parallel, potentially leading to many planning
queries to be conducted simultaneously (see figure 2).

Both planners takes inputs from a situation awareness and
threat assessment components that gathers and fuses data
from the simulation environment. The execution control
component processes the realisation of a sequence of actions
in the simulator kernel. Whenever a basic sequence of action
cannot be correctly executed in the simulation environment,
a replanning event is triggered.

Mission manager, situation awareness, threat assessment
and execution control modules are fundamental software
components for the architecture design, however their de-
tailed design are out of the scope of this paper.

Mission manager
The mission manager combines mission planning and
scheduling as well as plan decomposition for lower units.
Given initial conditions (on both friendly and enemy units),
mission planning and scheduling (P&S) defines the course
of actions to reach mission objectives. P&S takes in account
terrain structure, unit capabilities and their coordination :

• Terrain representation involve axis of advances, observa-
tion points, covers and concealments.

• Capabilities refer to mobility, engagement, communica-
tion and observations.

• Coordination of actions is needed in time and space for
self protection, or to reach an expected effect.

The problem solved by the mission manager P&S is to
find, for each unit, a course of actions and movements (e.g.

Figure 1: Global planning architecture for agent gaming

squad platoon company battalion
timeline < second < 5 mins 5 to 15 mins > hour
units 10 4 16 70

Figure 2: This table gives the timeliness with respect to the
number of units to plan for

a plan) with an associated schedule from the initial position
to the mission objective. The mission planning problem can
be modelled and solved following a complete constraint pro-
gramming approach (Guettier 2007).

The mission manager must also handle plan breakdown
along the tactical command chain. Each hierarchical level
defines an operational order (OPORD) using its own mission
goal. The OPORD tasks / organises units of a lower eche-
lon and allocates resources. This part is not automated yet,
since many constructive parameters have to be taken in ac-
count simultaneously (organisational, logistics, assessment
of enemy situation and associated course of action, complex
coordination procedures...). However, it is possible to auto-
matically structure the different OPORD by using the out-
come of both mission planner and units organisation.

When major changes occur during mission execution,
global replanning might be necessary. This has two impacts:

• A new problem instance is provided to the planner. Then,
plan repair or local search can be used to find a plan that
cope with the new situation.

• OPORD are updated, using so-called FRAGmentary Or-
ders (FRAGO).

Execution Controller
The execution controller executes action provided by the se-
quence generator. In several ways it interacts with the sim-
ulation environment by controlling the virtual soldier. For
a given action, it will set the virtual soldier mobility, ori-
entation, and posture. Through the simulator, the controller
can request a waypoint to reach, assess visibility of a line-
of-sight, or find threatening objects within its field of view.
To evaluate the success of an action, the execution controller
uses the following logic:

32

• Preconditions are verified. Their scope are mobility (way
points), previous action termination, observation results,
or event occurring in the environment.

• Request to the simulator succeeds (for instance, the path
finder has been able to find a waypoint).

• Time / space coordination can be met. These coordination
can be either defined by the mission planner or by collab-
orative type of actions (for instance a mutual protection or
a synchronised mobility action).

Whenever an action cannot be successfully achieved, a
replanning event is triggered.

Situation awareness and threat assessment
Situation awareness is maintained by a Red Force Tracker
(RFT) directly inspired from target acquisition and tracking
systems (Sella & al. 2011). The RFT service tackles ob-
servation reports, target association, short term position es-
timate, long term enemy course of action prediction. Data
fusion algorithms such as Kalman Filtering (KF), Interac-
tive Multiple Models, or Multiple Hypothesis Tracking are
integrated to associate observations, remove inconsistencies,
and to manage an active list of tracks. Delayed reporting and
tracking are also simulated such that two units does not nec-
essarily have the same immediate awareness (note that in
real life, this knowledge is actuated by issuing an OPORD
through the chain of command).

Based on these outputs, whenever the enemy situation
changes, each soldier or squad evaluates its own threat level
in order to potentially recompute a new plan sequence.

Tactical sequence generator
Each hierarchical unit uses planning for its level and then
assigns orders for its sub-level units. Units coordinationis
verified by planning at the upper level, so that each level
can behave more autonomously within its own action area.
It also results in time / space synchronisations, enforced by
the execution controller.

In combat simulation, the tactical environment is con-
stantly evolving, so that plans can be quickly invalidated.
Replanning is necessary to comply with the up to date situa-
tion awareness. Relying on a planning domain where actions
would be interleaved between hierarchical levels would be
hard to manage. Indeed this would likely produce complex
and expensive plans that would be compromised by the first
unexpected event.

Instead, the proposed approach is closed to the Com-
mand Hierarchies concept (Pittman 2008). This results in
a much more flexible way of planning: not only the global
plan search complexity would be reduced, but an unexpected
event would only affect a tiny sub-part of the overall plan
and not trigger a re-planning for the whole operation. An-
other aspect is that low-levels units would probably be much
more subjected to planning events than high-levels ones. For
example, the detection of obstacles, traps or enemies would
surely alter the way a fireteam had planned to conduct its
mission, but not necessarily the global manoeuvre of a pla-
toon.

; monitor problem definition
(defproblem problem monitor

; this line describe the environment as a set of predicates
((down soldier1) (detected soldier1 target sector))
; the task assign to the soldier
((monitor soldier1 sector)))

; a computed plan for the monitor problem
(:task !report soldier1 target)
(:task !stand-up soldier1)
(:task !use-weapon soldier1 target)

; patrol problem definition
(defproblem problem patrol

((sector front) (sector sector1) (unsafe sector1) (front fireteam soldier2)
(back fireteam soldier1) (covering soldier1 front) (covering soldier2 sector1)
(up soldier1) (up soldier2))

((patrol fireteam)))

; a computed plan for the patrol problem
(:task !cover soldier2 sector1)
(:task !cover soldier1 front)
(:task !find-cover-point soldier1 sector1)
(:task !go-to-cover-point soldier1 sector1)
(:task !pass soldier1 soldier2)
(:task !cover soldier1 sector1)

Figure 3: Planning request and plan answer for monitoring
actions

Infantry domain modelling
It sounds crucial that the lower a unit is in the command
chain, the simpler its behaviour should be defined. For ex-
ample, a single soldier would probably be constantly plan-
ning to adapt his activity to a constantly changing environ-
ment, so his behaviour should be extremely cheap to plan.
Therefore, our requirement for a planning domain relies on
two aspects: actions at one hierarchical level should only
focus on its level and the synchronization of the direct sub
level, and at the bottom of the hierarchy, planning should be
extremely simple. With those rules in mind, we have started
to design a simple planning domain that could match our
expectation, using SHOP formalism (Nau & al. 2003).

The planning domain (see appendix) describes a set of
very simple actions for monitoring and patrolling tasks, car-
ried out by one soldier or a two-soldiers fireteam. The ”mon-
itor” action illustrates how planning would interact with
events from the simulator. Here the simulator would request
planning for the ”monitor” task each time an event modifies
the situation (in this case, simply either there is an enemy
which is detected or not). Then, the virtual soldier has a
few possible behaviours. He may or may not engage the tar-
get, according to its ability to do it or if it is allowed to do
it. The ”patrol” action is collaborative (it involves two sol-
diers from a fireteam) and handles the coordination between
the two soldiers (so one soldier only moves if it is covered
by the other), and will assign very simple tasks to each sol-
dier agent. Figure 3 representes two typical queries for both
examples (planning requests for actions ”monitor” and ”pa-
trol”) as they would be issued by the simulated environment,
and the replies from the planning system: two plans as se-
quences of tasks.

Search Algorithm
In order to constitute a benchmark of popular planning al-
gorithms, a first implementation of SHOP2 is under devel-
opment. The C++ programming language is used as it is

33

the one employed in the targeted simulator product. At its
current state, the planner implements the main core func-
tionalities of the original one from Nau (Nau & al. 2003),
alongside with a parser component that is able to read plan-
ning domains and problems written with a subset of the for-
malism described for SHOP.

On different situations, all the previously detailed exam-
ples (figures 3) are computed in less than a millisecond with
our current implementation of SHOP2. Even if actual plan-
ning domains would probably be more sophisticated, this is
the target time we will have to achieve for such basic level
hierarchical units.

Conclusion
This paper proposed a way to apply planning techniques
from the video games experience on basic military units be-
haviour to professional simulation tools. The main objec-
tive is to demonstrate that tactical behaviours for low level
entities of military hierarchy (individual soldier, fireteam,
squad...) could be encoded and executed with low computa-
tional power through two main considerations.

On one hand, hierarchical planners seem adapted to
model complex behaviour for coordinated units. They af-
fords a segregation of the chain of command from the lo-
cal virtual agent behaviour, alongside with a convenient ex-
pression of action sequences. On the other hand, a reactive
architecture, aware of any triggered events from the simu-
lated environment, can restrict the time horizon for planning
request considerably, and thus reduces the need for compli-
cated planning processes.

The dedicated planner fits easily with other components
(long term mission planning, situation awareness and execu-
tion control). In terms of software engineering, the approach
provides a strong gain compared to scripting methods.

References
Guettier C. Solving Planning and Scheduling Problems in Net-
work based Operations. Proceedings of CP’07, USA. 2007.

Sella, G.; Cherrier, O.; Guettier, C. & Yelloz, J. Development and
Experimentation of Collaborative Red Force Tracking in Service
Oriented Architecture for Tactical Networking Systems Procees-
dings of MILCOM’11, USA. 2011

Orkin, J.. Three states and a plan: the AI of FEAR. In Game
Developers Conference. 2006.

Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D. & Yaman, F. SHOP2: An HTN planning system. J. Artif.
Intell. Res. (JAIR), 20, 379-404. 2003.

Pittman, D. Command Hierarchies Using Goal-Oriented Action
Planning, AI Game Wisdom 4, Charles River Media (2008),
pages 383 to 391. 2008.

Planning domain
(defdomain monitor (

(:operator (!use-weapon ?soldier ?target) ((up ?soldier)) () ())

(:operator (!watch ?soldier ?area) ((up ?soldier)) () ())

(:operator (!report ?soldier ?target) () () ((can-engage ?soldier ?target)))

(:operator (!bend-down ?soldier)
((up ?soldier))

((up ?soldier))
((down ?soldier)))

(:operator (!stand-up ?soldier)
((down ?soldier))
((down ?soldier))
((up ?soldier)))

(:operator (!cover ?soldier1 ?sector1)
(and (sector ?sector2) (covering ?soldier1 ?sector2))
((covering ?soldier1 ?sector2))
((covering ?soldier1 ?sector1)))

(:operator (!follow ?soldier1 ?soldier2) () () ())

(:operator (!go-to-waypoint ?soldier1) ((have-waypoint ?soldier1)) () ())

(:operator (!find-cover-point ?soldier1 ?sector1)
()
()
((have-cover-point ?soldier1 ?sector1)))

(:operator (!go-to-cover-point ?soldier1 ?sector1)
((have-cover-point ?soldier1 ?sector1))
()
((at-cover-point ?soldier1 ?sector1)))

(:operator (!pass ?soldier1 ?soldier2)
(and (front ?fireteam ?soldier2) (back ?fireteam ?soldier1))
((front ?fireteam ?soldier2) (back ?fireteam ?soldier1))
((front ?fireteam ?soldier1) (back ?fireteam ?soldier2)))

(:method (use-weapon ?soldier ?target)
; soldier cannot use weapon if down
((down ?soldier))
((!stand-up ?soldier) (!use-weapon ?soldier ?target))
; soldier already up
()
((!use-weapon ?soldier ?target)))

(:method (watch ?soldier ?area)
; soldier cannot watch if down
((down ?soldier))
((!stand-up ?soldier) (!watch ?soldier ?area))
; soldier already up
()
((!watch ?soldier ?area)))

(:method (engage ?soldier ?target)
; soldier must protect itself
((under-fire ?soldier))
((!bend-down ?soldier))
; target is neither hostile nor can be engaged
; according to rule of engagement
((not (hostile ?target)) (not (can-engage ?soldier ?target)))
((!report ?soldier ?target) (use-weapon ?soldier ?target))
; else engage target
()
((use-weapon ?soldier ?target)))

(:method (monitor ?soldier ?area)
; a target is detected while monitoring
(and (detected ?soldier ?target ?area))
((engage ?soldier ?target))
; else, keep watching
()
((watch ?soldier ?area)))

(:method (patrol ?fireteam)
; if a target is detected in a given sector, engage it
((detected ?target ?sector1) (covering ?soldier1 ?sector1))
((engage ?soldier1 ?target))
; if there is an unsafe sector, use parrot-like move
((sector ?sector1) (unsafe ?sector1)
(front ?fireteam ?soldier1) (back ?fireteam ?soldier2))
((!cover ?soldier1 ?sector1) (!cover ?soldier2 front)
(!find-cover-point ?soldier2 ?sector1)
(!go-to-cover-point ?soldier2 ?sector1)
(!pass ?soldier2 ?soldier1) (!cover ?soldier2 ?sector1))
; else progress normally
((have-waypoint ?soldier1) (front ?fireteam ?soldier1)
(back ?fireteam ?soldier2))
((!cover ?soldier1 front) (!cover ?soldier2 far)
(!follow soldier2 soldier1) (!go-to-waypoint ?soldier1)))))

34

BlocksWorld: An iPad Puzzle Game

Minh Do∗ and Minh Tran†

∗ SGT Inc., NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035
† TranCreative, 788 Stern Ave, Palo Alto, CA 94303

Abstract

Blocksworld is arguably the most well-known and simplest
planning domain. Classical planning is the most researched
branch of AI planning. In this paper, we describe an iPad puz-
zle game, appropriately named BlocksWorld, in which users
solve a variation of the traditional blocksworld problems in the
form of anagram matching. User performance is graded by
comparing against the baseline score produced by a state-of-
the-art classical planner using the exact same scoring function
employed by the recent International Planning Competitions
(IPC). The app has been released in the Apple AppStore and
accumulated more than 1000 downloads. Our game demon-
strates that the most basic planning concepts can be utilized in
a game/application that people are willing to play.

Introduction
Blocksworld is one of the oldest benchmark domains in plan-
ning research. It’s simple, easy to understand, challenging,
and is representative of a large class of “construction” do-
mains (Hoffmann 2005). Classical planning, the simplest
branch of planning, dominates the planning research land-
scape based on both the number of papers accepted and the
number of best paper awards won at recent ICAPSs. How-
ever, the most popular complaint at the Festivus events is that
there are not enough work on planning application and sim-
plistic settings such as classical planning and simple domains
such as blocksworld are the leading examples of the discon-
nection.

The debate between the connection/disconnection between
important topics in planning research and planning applica-
tion developments motivated us to build a planning appli-
cation based on solving the simplest planning domain with
a classical planner. With a strong belief that getting plan-
ning technology into applications is the most effective way to
grow the field, we want to build a planning application that
can serve as a new type of motivation: instead of pointing
out the gap between basic and applied planning research, we
would like to encourage planning researchers to look for new
types of not-so-complex applications where techniques such
as classical planning can readily be applicable and can make
impact with minimal efforts.

For the rest of this paper, we will describe BlocksWorld, an
iPad puzzle game, and the roles within this game of the fa-
miliar planning concepts such as: PDDL modeling, classical
planning, IPC’s objective and scoring functions. The app has
been released in the Apple’s AppStore last year with limited
success.

Background & Game Setup
BlocksWorld: is an artificial planning domain with actions
moving unique blocks between different towers located on a
table. The goal is to reconfigure the initial block-tower setting
to match with a predefine goal tower configuration. Because
it is clear and simple, it has been by far the most frequently
used example in the AI planning literature since the 1960s
and has been rather thoroughly investigated (Gupta and Nau
1992; Slaney and Thiebaux 2001). The two most cited ver-
sions of blocksworld are: (1) 4-operator version: that involves
a robot hand that can pick-up or drop-off a single block from
the top of a tower or from the table; and (2) 3-operator ver-
sion: in which there is no robot hand and blocks can be moved
in parallel between different towers and the table. In both ver-
sions, the table has infinite number of free spaces. Gupta &
Nau (1992) discusses some other variations such as with lim-
ited number of table spaces or blocks having different sizes.
Classical planning: is the the simplest setting in planning re-
search where: (1) state variables are discrete; (2) actions are
instantaneous and deterministic; (3) the world state is fully-
observable; and (4) the planner is the only agent that can
change the world state. The planner’s objective is to find a
sequence of actions that leads from the fully-specified initial
state to a state that satisfies all goals.

After exploring different potential ideas for making an ap-
plication out of the traditional blocksworld domain and classi-
cal planning, we settled on developing an iPad app1 in which
users try to solve blocksworld problems with various levels
of difficulty. Specifically, an user will use his fingers, through
the iPad’s touch interface, to move and rearrange the blocks
from the initial block arrangement to the final/goal configu-
ration. User can also rearrange the full towers. However, the
game score only keeps track of the number of block-moving
actions, not the number of tower-rearrangement actions.

Figure 1 shows several variations of the blocksworld do-
main that we have considered to be used in the app. The
first one (showing the famous Sussman Anomaly problem
(Sussman 1975)) is the traditional variation where blocks are
unique and the initial and goal states are random configu-
rations. We discarded this version due to our believe that
random configurations are not interesting for normal human
players. The second variation that we considered has blocks
with different properties such as having different colors or are

1iPad is a new type of tablet computer made by Apple Inc. iPad
uses iOS operating system and has access to the Apple’s App Store,
from which a published iOS application can be downloaded and in-
stalled on the iPad.

35

Figure 1: BlocksWorld Variations

built of different materials (e.g., glass, wood) and thus carry-
ing different properties. Figure 1(b) shows an example of a
colored-block variation. We believe that they are interesting
enough. However, one critical problem is that we are not artist
and it is hard for us to create by ourselves enough interesting
problems of different difficulty levels. We finally settled on
using anagrams2. Figure 1(c) shows an ICAPS-friendly ana-
gram example in which users need to reconfigure the initial
block configuration: “DEREK LONG” into the goal configu-
ration “KERNEL GOD”3. In our app, we use two sets of ana-
grams ranging from easier ones like “THE EYES”→ “THEY
SEE” to the harder problems like “STATUE OF LIBERTY”
→ “BUILT TO STAY FREE”. The anagrams were collected
and handpicked from hundreds of anagrams available freely
on various anagram-enthusiast websites.

Figure 2 shows the app’s screenshot of the playing win-
dows of one example: “VACATION TIME”→ “I AM NOT
ACTIVE”. The main difference from the limited table space
variation of the blocksworld domain (Gupta and Nau 1992) is
that: blocks are not all unique and can be duplicate. they are
represented by the same letter and should be considered “in-
terchangeable” (e.g., there are two “I” , two “A” , and two “T”
blocks in the example shown in Figure 2). This is necessary
due to the nature of anagrams. Note that we did not choose
the traditional unlimited table space setting because we be-
lieve it will degrade the game play experience. That version
allows the possibility of having too many towers, thus enforc-
ing us to either: (1) reduce the size of the playing windows,
which can make the blocks tiny and not touch friendly; or (2)

2An anagram is a type of word play involves rearranging the let-
ters of a word or phrase to produce a new word or phrase.

3This example came from Malte Helmert.

the user will need to scroll left or right to be able to see the
whole set. Both options are not attractive.

Problem Ranking & PDDL Modeling
As all multi-level games, the problems need to be ranked in
the order of increasing hardness. In this case, it is easy to
use the number of block moves from the initial configuration
to the desired configuration as the measurement of problem
hardness. Thus, we can safely use the plan-length in terms
of the number of block-moving actions in classical planning
setting; which is the standard object function in the IPC for
the classical planning track. To measure that, we simply need
to first model this blocksworld variation in PDDL and use a
state-of-the-art classical planner, preferably optimal classical
planner, to find the shortest plan. Thus, the problem of lower
level is the one with shorter (optimal) plan-length.

PDDL Model: As mentioned above, we need to adjust
the traditional PDDL no-hand blocksworld model with three
block-moving actions: MoveToTable, MoveFromTable, and
MoveToBlock to account for two changes: (1) limited number
of table spaces; and (2) interchangeable blocks. The first issue
can be handled quite easily while the second required a sur-
prisingly large amount of work to get a clean PDDL model.
We indeed had to seek advices from Patrik Haslum and Malte
Helmert, two of the best researchers on classical planning to
come up with the final model. Our full PDDL model is in-
cluded in the Appendix.

To handle the limited number of table spaces, we use an
approach similar to modeling rover’s battery level when the
Mars Rover domain was first introduced in the 3rd IPC in
2002 (Long and Fox 2003). Specifically, we introduced:

1. an object type count, and the predicate (next ?n - count ?n-
plus-one - count) to represent consecutive integer numbers

2. a predicate (table-space ?n - count) that tracks the number
of “free” table spaces; this predicate changes value when-
ever a MoveToTable or MoveFromTable action executes.

To handle interchangeable/duplicate blocks, after several
iterations, we settled on the version in which blocks have
types (e.g., two blocks each in Figure 2 are of the same type
“I” , “A” , or “T”). The goals describe the final tower con-
figuration with a given block B at a particular position P on a
tower T needs to be of type X. For example, in Figure 2, the
goals specify that the block at the second location (from the
bottom) on the first tower (“VACATION”) is of type “O”.

We then add two more actions to the existing set of three
existing MoveToTable, MoveFromTable, and MoveToBlock
block-moving actions:
• Start-Tower: that starts the process of building a particular

goal tower, basically establishing that the first block that is
on the table should match the block type specified in the
goal to be the foundation of that tower. For example (refer
to Figure 2), if the block on the table is of type “N”, then it
can start the first tower.

• Extend-Tower: that extends the tower T that has been built
up to level L to the new level L+ 1. Basically, it checks:

1. if a given tower T that has been built up to L correctly;
2. if the block B at level L + 1 matches the block-type at

level (L+ 1) of T specified in the goal condition.
For example, in Figure 2, if the first tower has been “built”
successfully until level L = 3 (i.e., the lowest three blocks

36

Figure 2: Screenshot of the playing pane of one problem: “VACATION TIME”→ “I AM NOT ACTIVE”.

are of correct types “I O N” in that order) and the planner
checks that if the block at level L + 1 = 4 is of type “T”,
then this tower can be extended from level 3 to level 4.
Each of the goal tower will be started and then keep on be-

ing extended with blocks of the correct types until it reaches
its full height. Obviously, adding the tower starting/building
actions will lengthen the final plan. However, those extra
actions can be filtered out easily through post-processing
to reveal the actual number of block-moving actions. One
additional (critical) nice property of this particular PDDL
model is that for a given problem P , every valid plan has the
same number of tower start/building actions (equals to the
total number of blocks + total number of towers). Therefore,
an optimal plan for P also represents the optimal solution
when excluding the “dummy” tower building actions. In the
Appendix, we includes the full PDDL model.

Problem Hardness/Ranking: We wrote several scripts to
automatically generate the PDDL problem files for all the
candidate anagrams. We then use off-the-shelf classical plan-
ners to find the best solution for each problem. Specifically,
we run FastDownward with LAMA-2011 setting (Helmert
2011) which uses an anytime algorithm to incrementally finds

better quality solutions. We ran LAMA-2011 with 30 minutes
of running time on an early 2010 Macbook Pro machine with
Core I7 and 8GB of RAM4.

In summary, for each problem P , we find the best pos-
sible plan in terms of plan length L(P) by running LAMA
for 30 minutes. We then discount the number of extra tower
building actions from L(P) to get the number of only block-
moving actions L

′
(P). We then rank all problems P in our

final problem set in the increasing order of L
′
(P). The eas-

iest problem in our set is P1: “MUMMY” → “MY MUM”
with L

′
(P1) = 3 and the hardest problem is “TELEVISION

PROGRAMMING” → “PERMEATING LIVING ROOMS”
with L

′
(P55) = 69.

Near the top-left corner of Figure 2, the line “Best Known:
14 moves” represents the best solution L

′
(P22) = 14 found

4Besides LAMA, we also ran another optimal-guarantee planner
(Zhou and Hansen 2006). However, that planner can only solve very
small problems and for all problems that it can solve, LAMA-2011
also returns best solution of the same quality. Another option is
to use the domain-specific algorithm (Slaney and Thiebaux 2001).
However, we believe that existing domain-specific algorithms do not
work for our blocksworld variation with interchangeable blocks.

37

by LAMA for this problem. This serves two main purposes:
(1) to challenge the users; (2) to act as the basis to grade the
user’s performance (details in the next section).

Measuring User Performance
Like other games, the user’s performance needs to be mea-
sured and for that we turn to the way the last two IPCs have
used to score competing planners. Specifically, for a given
benchmark classical problem P , assume that the best-known
solution for P is L∗(P). If a given competing planner X can
return within the allotted time the plan with length LX(P)
then the score given to X for P is: S = L∗(P)/LX(P).

Our scoring function is exactly the same with the value
L

′
(P) produced by LAMA serves as the baseline score

L∗(P) and the length of the user’s actual “plan” (i.e., number
of block moves that the user made until the final goal config-
uration is made) serves as LX(P) in the IPC scoring func-
tion above. In short, each user acts as a planner competing
in our BlocksWorld IPC. We also integrated our BlocksWorld
app with Apple’s Game Center so that users can report their
best scores and see how they rank against other players. For
us, we are mostly interested in seeing if any user can indeed
beat our baseline planner LAMA in any problem. Given that
LAMA does not guarantee optimality, it is totally possible to
see a user performs better than the best-known-score provided
by LAMA. However, we haven’t seen that so far.

Near the top-left corner of the Figure 2, the line “Your
Best: 24 moves - 58 points” indicates that the best found so-
lution by this player X is LX(P) = 24 and thus the score
for this player for this problem is: 14/24 = 0.58 = 58/100
points with L∗(P) = 14 shown right above that line. An-
other game-related extension is that we added the star-based
performance-grade visualization for easier categorization of
user performance. Specifically:

• no star iff S ≤ 0.6;
• one ? iff: 0.6 < S ≤ 0.75 (i.e., within 40% of the best

solution);
• two ?? iff: 0.75 < S ≤ 0.9 (i.e., within 25% of the best

solution); and
• the full three ? ? ? iff: 0.90 < S (i.e., within 10% of the

best solution).

The star system is popular and easier for human players
to understand than the numerical scoring function. Figure 2
also has example of how we display the star score to the user
(again, near the top-left corner).

Current Status & Future Work
We have released BlocksWorld on the Apple’s App-
Store around March, 2012 and priced it initially at
$2.99 (then later changed to $0.99), the AppStore URL
for this game is: https://itunes.apple.com/us/app/blocks-
world/id593706027?mt=8. It has accumulated 110 down-
loads. We then changed it in February, 2013 to the free-
with-ad model and at the moment accumulated around 1020+
downloads (thus total of 1120+ downloads). Given the fact
that there are more than 200 millions iTunes accounts, that is
a tiny number. Thus, our app so far is not a successful iPad
app. However, from the planning application point of view,
we believe that having at least 1120 unique users indeed make
it one of the more used applications/games utilizing AI plan-
ning technologies directly.

From the user-acquisition point of view, there are several
lessons learnt. So far, we have not used any marketing mech-
anism and totally depended on “word-of-mouth” marketing.
Thus, if a given user likes it, he may tell his friends about
that app. Obviously, it haven’t really worked in this case.
With more than 1 million iOS apps (with 300,000+ exclu-
sively built for the iPad), app-discovery is a big problem and
we know that most popular apps spent heavily on many dif-
ferent marketing channels.

There are a couple of things that we intend to do. We would
like to spend some time thinking about the best way to market
the app, which is none so far. There are many paid services
for app-marketing but we are not sure at the moment which
one is the most effective for this type of games.

Conclusion
In this paper, we describe BlocksWorld, our effort to create
a game/application from some of the most basic components
of our planning research community: the simplest planning
benchmark domain + the simplest classical planning setting
+ off-the-shelf classical planner + IPC objective and scoring
function. Our app is available on the Apple AppStore. While
it is not a successful iPad app, it has paid users and is a legit-
imate planning application.

Given the contrast between our BlocksWorld game and
most traditional planning applications that are complex,
expensive, and single-user, we would like to see BlocksWorld
acting as a motivation for planning researchers to look for
applying their work to a new type of real-world applications.
The raise of ecosystems such as the Apple’s AppStore
has enabled $0.99-AngryBird-making Rovio to become a
multi-billion-dollar company and flashlight apps that do
nothing more than turning the whole phone screen into a
pure-white windows to be used by millions of users. Maybe
AI planning researchers can look at those opportunities to
see if we can get planning technologies and concepts, no
matter how “simple” it is, into the new style of applica-
tions that can impact the world in a different way: small
impact to a single user multiplied by millions of unique users.

Acknowledgement: We would like to sincerely thank Patrik
Haslum and Malte Helmert for helping us building a clean
PDDL model for our variation of blocksworld and also with
information on how to setup and run FastDownward/LAMA.

References
Gupta, N., and Nau, D. 1992. On the complexity of blocks
world planning. Artificial Intelligence 56:223–254.
Helmert, M. 2011. The fastdownward planner. In
http://www.fast-downward.org/.
Hoffmann, J. 2005. Where ignoring delete lists works: Local
search topology in planning benchmarks. Journal of Artificial
Intelligence Research 24:685–758.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.
Sussman, G. 1975. A computer model of skill acquisition.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic search.
Articial Intelligence Journal 170:385–408.

38

