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Foreword

Automated planning and machine learning are two fundamental areas of
Artificial Intelligence (AI). Since the first days of Al, researchers have in-
vestigated the synergies of these two areas paying particular attention to
strengthening the automated planning process with machine learning tech-
niques. Continuing the lineage of the events of 2007, 2009 and 2011, the
ICAPS-2013 workshop on planning and learning provides a forum for re-
viewing the current advances in using machine learning for automated plan-
ning and discussing related issues. The proceedings of this 4t edition gather
a collection of works that range from learning techniques for automatically
improve the new planning algorithms to new methods for learning effective
planning models.

Sergio, Adi and Erez
Workshop Organizers
June 2013
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Abstract

In the last International Planning Competition (IPC 2011), the
most efficient planners in the satisficing track were planners
that used unit-cost heuristics. These heuristics ignore the real
cost of the actions and return instead an estimate of the plan
length to the goal. The main advantage of these heuristics
compared with real-cost heuristics is that they solve a greater
number of problems (also known as coverage), which has a
high impact on the IPC score. However, a priori heuristics
that predict the real cost should find solutions of better quality.
To increase the effectiveness of real-cost heuristics and reduce
the impact of their drawbacks without losing quality, we
study the use of machine learning techniques to automatically
obtain good combinations of those heuristics per domain. In
particular, regression techniques are used to predict the real
cost from any state to the goal. We use the heuristic estimations
and the real costs obtained from solving easy problems as
attributes. Later, we feed those instances to several machine
learning techniques to obtain prediction models. All learned
models approximate the real value with high correlation. Then,
we implemented the most suitable model in a planner and
evaluated it on harder problems. With this new planner we
can solve 56 more problems than using the best real-cost
heuristics for each domain separately. Our approach is also
better regarding solution quality.

Introduction

In the last IPC! (2011), the approach followed by most
planners was heuristic forward search. Heuristic planners
search in a state space guided by one or more heuristic
functions. Heuristic functions can take into account the real
cost of actions or assume that all actions have unitary cost.
The former are real-cost heuristics, whereas the latter are unit-
cost heuristics. Overall, real-cost heuristics find solutions
of better quality and unit-cost heuristics find solutions
expanding fewer nodes. Therefore, unit-cost heuristics often
solve more problems under time and memory constraints.

A common solution to the downfalls of both kinds of
heuristics is using anytime schemes that employ both types
of heuristics. Generally, the first solution is found using unit-
cost heuristics with greedy search algorithms and subsequent
solutions are found using real-cost heuristics with more
conservative algorithms (Richter and Westphal 2010).

"http://ipc.icaps—-conference.org/

Here we focus on improving the efficiency of real-cost
heuristics. We are inspired by the work of Arfaee et al. (2011).
The authors propose learning a new heuristic starting with a
very weak one taking into account particular characteristics
of the problem and iteratively improving its accuracy. This
scheme can be improved since: it must be done per problem,
the initial heuristic may be too weak to solve the problem (and
thus alternative methods to generate training instances must
be employed), and the learning process is often on the order
of days. Instead, we learn from existing domain-independent
heuristics per domain, obtaining training instances from
small problems.

In order to minimize the error generated by the use
of a single heuristic, we study whether a combination of
more than one real-cost heuristic function can be useful to
improve the performance of the planner. Given that it is
hard to know a priori which heuristic combination will work
well for each state, problem and domain, we use machine
learning techniques. We extract learning instances from
solutions to some problems in each domain. The instances
will be composed of the values that each domain-independent
heuristic returns for each state and the real cost to the goal.
Then, we use two approaches based on machine learning
techniques to find a useful combination of heuristics. First,
we generate a regression model, which will be used later
as the new domain-dependent heuristic; it computes at each
state the values of several selected heuristics and returns
a combination of the former values for that state. Second,
we use an attribute selection technique to select a subset of
heuristics to be used in an alternating queue, as previous
works have shown that this way of combining heuristic
estimators is overall very effective (Roger and Helmert 2010).
For the experimentation we use Fast Downward (Helmert
2011), a planning framework that implements several state-
of-the-art heuristics, and WEKA (Witten and Frank 2005),
an environment with multiple machine learning techniques.
Our approach is an offline learning technique, as the real cost
to achieve the goals must be known beforehand to create the
training instances.

The rest of the paper formalizes the planning task,
describes our approach, gives the details of the employed
components and techniques, presents the experimental results,
compares our approach with the related work and puts
forward the conclusions and future work.



Propositional Planning

A planning task is defined as a tuple II=(S,A,7,G), where
S is a set of atomic propositions, A is the set of grounded
actions derived from the operators of the domain, I C S is

the initial state, and G C S is the set of goal propositions.

Each action a € A is defined as a tuple (pre(a), add(a), del(a),
c(a)) (preconditions, add effects, delete effects and cost), such
that pre(a), add(a), del(a) C S and c(a) is a fixed positive
real-valued cost. In this paper, we only consider satisficing
planning; that is, a solution does not have to be optimal with
respect to a given metric.

Description of the Approach

Our approach involves two phases: training and testing.

The training part is also divided into two parts: gathering
the training instances and learning models from them. The
training instances are obtained computing the values of a
set of heuristics (given as input) and the real cost to the
goal of a set of states. The states are those that appear along
the solution paths of simple problems solved by different
methods. Then, regression models are built using different
machine learning techniques. The aim of the models is to
predict the real cost of the solution by combining heuristics.

The testing phase implements the chosen regression
model in a planner and compares its performance against
different state-of-the-art approaches. Different combinations
of heuristic functions are studied.

Training

Given a set of training problems P in a domain D, a set
of heuristic functions H = hq, hs, ..., h,, and a machine
learning technique L, the training phase returns a regression
model R. A regression model R : T' — R takes as input a
tuple ¢(n) = (h1(n), ha(n),..., hy(n)) and returns a real
number, the combined heuristic value of node n according
to the regression model R. Each h;(n),j = 1.m is the
heuristic value of heuristic h; for node n.

We first solve a set of simple problems to obtain training
instances for the learning process. We keep the solutions
of those problems; in particular, for each state along the
solution plan we store the value returned by each heuristic
h; € H for that node, as well as the cost from that node
to the goal according to the computed solution. Suppose
m = (a1,as,...,ay,) is the solution to a training problem
p € P,and S; = (so,81,82,-..,5y) is the set of states
in the solution path, such that s = I, s, is a goal state
(sn € G), and q; is applicable in the state s; 1, generating
state s;. For each state s; € S, and for each heuristic
h; € H, we compute h;(s;). Also, we compute c(s;) =

+_; c(ag). Then, for each s; € S of each solution of
problems in P, we generate a training instance of the form:
(h1(8i); -+ hin(si), c(s:))-

There are several ways of computing the solutions of
the problems during the training phase. Ideally, an optimal
planner should be used to ensure that the solution plan is
optimal. With an optimal solution plan, the cost to the goal
for each state along the solution path is guaranteed to be h*,
the perfect heuristic value using the real actions costs. Using
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the optimal solution avoids introducing noise in the training
instances due to imprecisions in the estimation of the cost
to the goal. It is not guaranteed though that using optimal
solutions will yield more accurate models; other methods,
such as the use of suboptimal planners or random walks from
the goal, may also be valid alternatives. This will be explored
in Section Experimentation.

Once the training instances are generated, several machine
learning techniques are used to compute different regression
models. This is done per domain, so there will be several
models for each domain. Prior to learning, we perform
attribute selection to avoid the use of correlated attributes that
may not contribute to the overall process. Finally, we estimate
the accuracy and correlation of the models to compare them
and select the most suitable one. Algorithm 1 shows how the
whole training process is performed.

Algorithm 1: Description of the training process.

input : solving_method, M
heuristic_set, H
problem _set, P
attribute_selection, AS
learning_technique, L
output: regression_model, R
begin
instance_set < 0;
foreach problem € P do
solution_path < apply(M ,problem);
foreach node € solution_path do
instance <— compute_instance(node, H );
L instance_set <— instance_set U instance;

instance_set «+—apply(AS,instance_set);
return R < apply(L.instance_set);

end

Testing

We test our approach in each of the domains used in the
training phase. The problems used in the testing phase are
more challenging than those used for training. To asses the
viability of the learning process, the best regression model in
each domain is used as the heuristic function of the planner.
In particular, we compare the score of each heuristic against
the score obtained by using the learned model as heuristic.
This is done both in terms of coverage and IPC score.

Experimental Setting

This section describes the elements involved in the
experimentation. This includes the chosen heuristics, the sets
of problems employed in the training and testing phases, the
methods used to generate the training instances, the machine
learning methods and the details of the testing environment.

Heuristic Functions
The following heuristic functions were used in our setting:

Additive heuristic (Add) (Bonet and Geffner 2001) is the
sum of the accumulated costs of the paths to the goal



propositions in the relaxed problem (a delete-free version
of the problem).

Blind heuristic returns the cost of the cheapest applicable
action for non-goal states and O for goal states.

Causal graph heuristic (CG) (Helmert 2004) is the sum of
the costs of the paths in the domain transition graphs which
are necessary to consider to reach the goal propositions.

Context-enhanced additive heuristic (CEA) (Helmert and
Geffner 2008) is the causal graph heuristic modified to
use pivots that define contexts relevant to the heuristic
computation.

Fast Forward heuristic (FF) (Hoffmann 2003) is the cost
of a plan that reaches the goals in the relaxed problem (a
delete-free version of the problem).

Goal count heuristic is the number of unsatisfied goal
propositions.

Landmark count heuristic (LM-Count) (Richter, Helmert,
and Westphal 2008) is the sum of the costs of the
minimum cost achiever of each unsatisfied or required
again landmark. Landmarks are computed using the RHW
method; disjunctive landmarks were taken into account.

Landmark-cut heuristic (LM-Cut) (Helmert and
Domshlak 2010) is the sum of the costs of each
disjunctive action landmark that represents a cut in a
justification graph towards the goal propositions.

Max heuristic (Bonet and Geffner 2001) is the maximum
of the accumulated costs of the paths to the goal
propositions in the relaxed problem (a delete-free version
of the problem).

Planning Domains and Problem Sets

All the domains in the seventh IPC (2011) have been used in
the experimentation. The domains are the following: Barman,
Elevators, Floortile, Nomystery, Openstacks, Parcprinter,
Parking, Pegsol, Scanalyzer, Sokoban, Tidybot, Transport,
Visitall and Woodworking.

Each domain has two sets of problems: those used in

the optimal track, and those used in the satisficing track.

The problems of the optimal track are designed to be easier
than the problems of the satisficing track. Thus, we used the
problems in the optimal track of each domain for training,
and the problems of the satisficing track of the same domain
for testing.

Generation of Training Instances

Initial experiments showed that using optimal solutions does
not guarantee more accurate models. Hence, three methods
were used to generate the training instances. Each method has
been tested in isolation; that is, the set of training instances
obtained with each method was used to learn different
prediction models.

FDSS optimal solution is the solution found by the optimal
version of Fast Downward Stone Soup (FDSS) (Helmert,
Roger, and Karpas 2011), winner of the optimal track at
IPC’11.

LAMA11 best solution is the solution that
LAMAI11 (Richter and Westphal 2010), winner of
the satisficing track at IPC’11, finds. The solution is
not guaranteed to be optimal, although the solutions are
expected to be close to the optimal one due to the anytime
scheme that LAMAI11 uses. The FF and the landmark
count heuristics are used during the search process.

Multi-Heuristic First Solution (MHFS) is the first solution
found employing all the studied heuristics in the alternation
open list implemented by Fast Downward (Roger and
Helmert 2010). Besides the choice of heuristics, greedy
best-first search with regular evaluation and no preferred
operators was used. We selected this scheme because we
found interesting to compute the solution paths employing
the same heuristics that will be used afterwards as
attributes in the learning process.

Machine Learning methods

The machine learning techniques used to compute the models
were the following:

Attribute Selection obtains a subset of relevant features.
We employed this technique because some heuristics yield
very similar values in some domains, so including all of
them may not be useful in the learning process. Also,
the computation of several heuristics can be expensive,
so removing uninteresting or correlated heuristics may
increase the performance of the planner. We used
Correlation-based Feature Selection (Hall 1998). This
attribute selection method is independent from the
regression learning method used afterwards.

Regression Analysis is used to compute the prediction
models. The following techniques have been used with
10 fold cross-validation:

Linear Regression (LR) models are linear functions that
minimize the sum of squared residuals of the model.
MSP (Quinlan 1992) models are regression trees that
approximate the value of the class. This method is
more flexible than Linear Regression because M5P can
capture non-linear relations.

MS5Rules (Quinlan 1992) is similar to MSP, but generates
rules instead of regression trees.

SVMreg (Shevade et al. 2000) implements Support
Vector Machines for regression.

Testing Environment

The learned model was implemented as a novel heuristic in
Fast Downward (Helmert 2011). To test our system, the time
and memory constraints were the same as in the IPC: 6GB of
RAM and 1800 seconds for the execution. The machines the
planners were tested on were Linux computers with a 2.93
GHz 64-bits AMD processor and 8GB of RAM. To compute
the solutions of the set of training problems a time limit of
600 seconds was used.

Experimentation

This section describes the results obtained in both phases:
training and testing. The results in the training phase are used



to compare the accuracy of the different regression models.

The results in the testing phase are used to compare the
approach against state-of-the-art heuristics.

Results on Training

To obtain the set of training instances, three problem solving
methods were proposed: FDSS, LAMA11 and MHFS. The
total number of training problems was 280, 20 problems per
domain. FDSS solved only 181 problems, whereas LAMA11
and MHFS solved all problems. Since FDSS solved fewer
problems, the models obtained with this approach employ
fewer training instances.

To analyze the accuracy of the four described regression
methods, we show the average correlation and average
computation time of the model of each instance-generating

method and regression technique over all domains in Table 1.

As we can see, all four regression techniques have high
accuracy, but Linear Regression is noticeably faster. Accuracy
is higher and time is smaller for all methods with the training
sets obtained with FDSS. This is to be expected, given
that the regression methods can approximate the function
more accurately when there are fewer input points to be
approximated.

Instance-

generating | Classifier | Correlation Time(ms)

method
IR 0.045T 7357
M5P 09505 34643

FDSS | MisRules 00500  497.86
SVMreg 09450  987.14
IR 00291 104.29
M5P 00344 56643

LAMALL | \rsRules 09329  964.29
SVMreg 00207  1,703.57
LR 00399 104.29
M5P 0.0495  627.86

MHFES |\ SRules 00492 107143
SVMreg 00384  2.567.14

Table 1: Average of the correlation and computation time of
the models over the 20 domains for each instance-generating
method and regression technique.

Even if the FDSS method generates fewer instances, the
results obtained are similar to the LAMA method. Looking
at the quality of the solutions of the instances solved by
both methods, we can observe that LAMA is usually very
close in quality (less than 10% worse than the optimal cost on
average in all domains except for nomystery). This means that
the instances solved by both produce likely similar training
examples, and thus we can deduce that fewer instances may
lead to similar results in terms of accuracy as long as these
instances are representative enough.

As linear regression is simpler and its accuracy during
training is similar to the rest of the regression techniques, all
models used from this point on will be the ones computed
with it. Of course, good accuracy during training does not

guarantee good results in the testing phase, but for the sake
of simplicity we assume this is so. Hence, the new heuristic
values will be obtained using a linear equation of the form:

hr(n) =wihy(n) + waha(n) + ...+ wihi(n) + k

where h; are the heuristics selected by attribute selection, w;
the weights for each h;, and k a constant. We set i to zero
ifhr <O0.

To further justify the adequateness of linear regression,
we present a detailed example in the Floortile domain. In
this domain 1330 instances were obtained from solving
the 20 problems with MHFS. Correlation-based Feature
Selection chooses the Additive, Goalcount, Landmark Count
and Landmark Cut heuristic functions as the most relevant.
We can see the data distribution of these heuristics in Figure 1.
All four heuristics have a distinctive linear shape, evidencing
why linear regression approximates well the real cost to the
goal by weighting the values obtained from the selected
heuristics. The obtained Linear Regression model is shown
in Equation 1.

hr(n) = 0.3676 x Add(n) (1)
+ 1.6692 x Goalcount(n)
+ 0.2429 x LM-count(n)
+ 0.5490 x LM-cut(n)
— 49717
160 160
140
120
100
80
60
40
20 -
0 30 60 90 120 150 0 0 30 60 90 120 150
(a) Add (b) Goalcount
160 160
140 140
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80 e 8 ettt
20 = 20
0 0
0 30 60 90 120 150 0 30 60 90 120 150

(c) LM-Count (d) LM-Cut

Figure 1: Data distribution in the Floortile domain (real cost
in x-axis and heuristic values in y-axis) of the heuristics
chosen by Correlation-based Feature Selection using MHFS.

The heuristic values are not normalized, so the weight is
not proportional to the relevance of the heuristic. For instance,
Add heuristic yields much higher values than Goalcount, so
Goalcount will have higher weights than Add in most cases
to compensate for it.

Table 2 summarizes the weights (and thus the selected
heuristics by attribute selection) obtained with linear



regression for each domain after learning with the set of
instances obtained with MHFS. Here we can see that the
heuristic that has been selected more often is FF, followed by
Goalcount and LM-Cut. Interestingly enough, the heuristics
that LAMAL11 uses are FF and LM-Count.

An additional advantage of using Attribute Selection is
that it seldom chooses more than one “expensive’” heuristic
in most cases, because highly correlated heuristics tend to
have a similar computational cost. This avoids cases in which
computing several expensive heuristics does not improve
over using only one of them, which is important to decrease
the time spent evaluating states. An alternative could have
been using learning algorithms that can take into account the
cost of computing the value of an attribute (Nifiez 1991),
although after Attribute Selection this may be redundant and
would force us to use a reduced set of learning techniques.

Results on Testing

To asses the effectiveness of our approach, the learned
models were implemented in Fast Downward. In all cases,
only linear regression was used. We tested two different
configurations for each instance-generating method (FDSS,
LAMA11 and MHFS): the linear combination of weighted
heuristics as the only heuristic function of the planer (LR);
and an alternation multiple queue (Roger and Helmert 2010)
that uses the heuristics selected during the learning process
(ASH), instead of using the learned model. The motivation
behind ASH is that alternation queues are often better than
the sum of heuristics (Roger and Helmert 2010). These new
planners were compared with all the studied heuristics and
the combination of the FF and LM-Count heuristic in an
alternation queue, as done in LAMAI11. Greedy best-first
search with regular evaluation and no preferred operators has
been used for all the versions. The scores were computed as
in the IPC, using Equation 2.

best-v —if solution found
score, = Up ) ) )
0, if no solution found

where best_v is the best value found by any configuration
for problem p and v, is the value for the configuration to
be compared. The relevant parameters of the score are cost,
number of expanded nodes and time. When computing the
score for the time, all instances solved by a planner in less
than one second were assumed to be solved in exactly one
second.

Table 3 shows the cost, expanded nodes and time scores
and the number of solved problems for each heuristic, the
FF/LM-Count heuristic combination with an alternation
queue and all our approaches. The performance of the
FDSS and LAMAI11 instance-generating methods is similar,
probably because the solutions found by LAMA11 are close
to the optimal ones, and in spite of the FDSS instance-
generating method generating fewer learning instances. The
best instance-generating method is MHFS, in both the LR
and ASH combination methods. This is due to the way MHFS
obtains the solutions. The role of heuristics is more important
when computing the first suboptimal solution, than when

finding subsequent (or optimal) solutions by exploring the
search space more exhaustively. It is more likely that the
best heuristics in the problem were accurate along the first
solution path, as they succeeded guiding the search.

LR with the MHFS instance-generating method can solve
185 problems, 24 problems more than LM-Count, the best
single heuristic. This approach can solve a problem more
than the FF/LM-Count combination. The quality score is
similar. ASH(MHFS) can solve 217 problems, 33 problems
more than the FF/LM-Count combination (the one used in
LAMAI11). ASH(MHFS) is also the best configuration in
terms of quality. Regarding time, the LM-Count heuristic
is the best one, despite solving fewer problems. A similar
behaviour can be seen with respect to the number of expanded
nodes, where the FF/LM-Count combination is slightly better
than ASH(MHFS) with worse coverage.

AT Cost Expanded Time # sol.
score nodes score  score
Add 118.71 50.96 25.62 143
Blind 31.00 0.23 0.68 31
CG 127.18 37.42 44.07 152
CEA 121.51 62.29 24.36 145
FF 108.31 4448 23.69 132
Goalcount 108.18 27.23  30.30 119
LM-Count 137.56 51.40 62.53 161
LM-Cut 98.70 4474 14.01 114
Max 65.90 2341 18.94 70
FE,LM-Count | 150.79 104.06 42.96 184
LR (FDss) 120.05 71.10 17.20 150
ASH Fbss) 156.60 88.17 37.15 182
LR AmAIL 113.02 65.09 13.81 144
ASH @AmaI 152.53 76.49 24.46 184
LR vHFs) 150.18 81.70 30.86 185
ASH MHFS) 192.33 101.38 52.04 217

Table 3: Results regarding cost, number of expanded nodes,
execution time and number of solved problems. The instance-
generating methods appear in parentheses.

Table 4 and Table 5 show in detail, respectively, the number
of solved problems and the cost score per domain by each
single heuristic, the FF/LM-Count combination and all our
approaches. It is noteworthy that the a priori best heuristics
are not always chosen, or, if they are chosen, they may not
perform as well as expected. For example, using the best
heuristics in Barman (FF and LM-Count, which solve 5 and
4 problems respectively) leads to only 5 problems solved; but
using Goalcount along with the former heuristics allows the
planner to solve all the problems, noticeably more than the
sum of problems solved by the three heuristics. Another
interesting example is Woodworking, where the FF/LM-
Cut combination proves to be much more useful than the
FF/LM-Count combination or any single heuristic, doubling
the number of problems solved.

Opverall, the comparison between the linear combination of
heuristics and their use in an alternation list favors the latter.
This was at least to some extent expected to be so, because:
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> & ol > ’ ’ &
Domain ¥ > & & & & \?\ \)Q » constant
Barman 1.08  27.32 0.63 -27.38
Elevators 0.38 0.38 0.47 0.57 -1.33
Floortile 0.37 1.67 0.24 0.55 -4.97
Nomystery 0.17 0.65 0.26 -0.39
Openstacks 1.48 0.17 -1.09
Parcprinter 1.04 0.18 | -11,378.34
Parking 0.78 0.51 0.64 -0.63
Pegsol 0.72 -0.09
Scanalyzer 0.49 0.86 0.61
Sokoban 1.22 3.37 0.82
Tidybot 1.58 -0.39
Transport 0.52 0.57 16.05 -66.17
Visitall 0.72 1.33 0.12 -1.82
Woodworking 2.72 0.24 0.66 0.74 -6.36
# of times 2 1 2 2 9 8 4 6 3

Table 2: Matrix of (non-normalized) weights employed in Linear Regression model for each heuristic on each domain using the
instance-generating method MHFS. The last row shows the number of times the heuristic was selected by linear regression.

first, alternation lists exploit effectively the strengths of the
more informative heuristics in the instance while paying only
a linear amount of time as penalty; second, it introduces
diversity, which tends to be beneficial in most planning
domains where plateaus may hinder the search process.

Related Work

Our work is based on (Arfaee, Zilles, and Holte 2011) with
several important differences. First, they used combinatorial
search problems with a single goal state and weak domain-
dependent heuristics, whereas we learn from state-of-the-
art planning heuristics. Going from specific domains to
domain-independent planning is not trivial, so this should
be seen as a significant contribution. When they used a
planning domain, the Blocksworld domain, they restricted
to problems with a single reachable goal state. Second, our
generation of the learning instances does not depend on the
chosen heuristics. While Arfaee et al. adapt the size of the
problems to be solvable by their initial heuristics, we choose
an already existing benchmark suite to minimize any bias the
training sets may introduce. In fact, we do not see that we
are choosing/generating examples, we just take those from
another IPC track. It is widely known that the selection of the
learning examples often has a high impact on the performance
of the final system; in this case, we are exposing ourselves
to such a situation and still obtain good results. Finally, our
method requires much less time to generate the instances and
learn the model.

Several ways of combining heuristics in the same planner
have been proposed (Roger and Helmert 2010), among which
the use of alternation queues has proved to be the most
successful one. We provide in this paper an automatic domain-
independent procedure for selecting the right heuristics to be
used on those alternation queues.
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Other recent works learn in a similar fashion (Xu, Fern, and
Yoon 2010). But, they learn weighted action-selection rules
to guide a greedy best first search algorithm. They usually
need to implement matching mechanisms for each planner
they use. The advantage of our work is its simplicity and
flexibility, as the learning process is straightforward and it
can be used by any planner with minimal modifications.

Planner portfolios that use some learning process to
choose the parameters of the final configuration are another
alternative to our approach. Two recent examples are Fast
Downward Stone Soup (Helmert, Réger, and Karpas 2011)
and PbP (Gerevini, Saetti, and Vallati 2009), which choose
several configurations of FD and a set of different planners
with a given amount of allocated time per planner (plus
some macro-actions) respectively. A comparison with such
planners however is out of the scope of this work, as we
focused on working only with cost-based heuristics to study
their behavior in isolation. Additionally, a comparison with
PbP would introduce some noise in the results, as the
framework would not be the same and hence the differences
in the implementation of the planners may influence the
performance of the heuristics.

Conclusions and Future Work

In this work, we have proposed the use of a domain-
independent learning algorithm to automatically acquire sets
of heuristics that are relevant for each domain. The results
show that the resulting domain-dependent heuristics greatly
enhance the performance of current powerful heuristics for
cost-based planning, by configuring state-of-the-art planners
for each domain.

In future work, we will focus on exploiting other
features of the planning instances to achieve more accurate
estimations. Examples of such features may be the size of the
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Barman 0 0 0 0 5 0 4 0 0 5 8 20 0 3 8 20
Elevators 1 0 6 5 0 4 0 0 0 1 6 6 7 8 10 10
Floortile 8 0 2 8 7 0 0 7 12 7 4 4 5 4 4 4
Nomystery 6 3 7 7 10 6 14 7 5 13 7 9 8 10 7 7
Openstacks 0 0 0 0 0 7 20 0 0 20 13 13 7 7 13 13
Parcprinter 12 0 15 13 7 0 13 18 3 14 20 19 17 18 19 19
Parking 15 0 20 19 20 0 0 6 0 20 7 5 8 20 20 20
Pegsol 20 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Scanalyzer 20 4 20 20 18 20 20 12 5 20 18 20 19 18 20 19
Sokoban 18 4 18 12 18 13 8 18 18 18 18 18 18 18 18 18
Tidybot 17 2 16 18 13 19 19 9 6 14 9 9 11 14 14 16
Transport 12 0 14 9 0 9 18 0 0 3 0 3 8 9 14 15
Visitall 3 0 3 3 4 20 20 6 0 20 10 16 7 15 8 17
Woodworking 11 1 11 11 10 1 5 11 1 9 10 20 9 20 10 19

Table 4: Number of test problems solved by each heuristic on each domain. Cells colored in dark gray are the heuristics chosen
to Selected Heuristics and Linear Regression models using MHFS. The instance-generating methods appear in parentheses.
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Domain Ragiie 2 o 0O S E oY YL % Lol Lol kot
Barman - - - - 45 - 4o - -1 45 T3 196 - 27 a2 195
Elevators 0.7 - 46 34 - 4o - - -1 07 37 51 53 65 82 9.3
Floortile 6.8 - 1o 64 6o - - 63 1lo| 54 27 32 42 30 27 3.4
Nomystery 55 30 64 64 93 56 138 6.6 47| 126 66 85 T4 95 65 6.6
Openstacks - - - - - To 160 - -1 130 83 94 32 33 83 9.4
Parcprinter 11. - 149 1209 6. - 120 1709 30| 1353 195 189 160 1785 18 18.9
Parking 12.5 - 155 155 144 - - 45 -| 189 56 42 65 162 16w 18.s
Pegsol 133 170 147 138 144 150 137 173 183| 134 120 136 132 136 154 15.0
Scanalyzer 178 40 170 175 152 174 160 11a 46| 174 160 186 165 162 17 17.1
Sokoban 152 40 150 99 153 125 6.6 152 166 | 133 135 137 13,6 137 134 13.9
Tidybot 142 20 135 154 1lo 175 150 78  S6| 1l 7o 75 87 120 120 13.9
Transport 8.6 - 1220 T - 8o 163 - - 24 - 28 67 T 10s 11,
Visitall 0.3 - 03 03 07 200 164 13 -| 148 52 122 12 100 2.0 153
Woodworking | 10.s = 1o 100 108 99 lo 42 102 lo| 81 99 187 89 187 9u 18.s

Table 5: Cost score of test problems solved by each heuristic on each domain. Cells colored in dark gray are the heuristics chosen
by Selected Heuristics and Linear Regression models using MHFS. The instance-generating methods appear in parentheses.
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task, the number of deletes of the operators of the problem,
the existence of replenishable resources,. . .

An important characteristic that has been left out in this
work is the cost of computing a heuristic. In further work we
will try to predict not only the accuracy of a combination of
heuristics, but also the “reward”; that is, the ability of the
heuristic to guide the search taking into account the time
it takes to compute it. As mentioned before, this can be
done in a straightforward way using learning algorithms that
can include the costs directly in the learning examples, like
C4.5 (Nufez 1991), although it would be interesting to define
such a measure to assess its viability.

We will also analyze whether a similar learning process
can be performed online. This is important to create a
domain-independent technique able to capture information
particular to a planning task (as opposed to our current
method, in which we need learning examples prior to the
search process). Similar works have already been done
before (Thayer, Dionne, and Ruml 2011), although they did
not use general learning techniques as we do in this paper.

Regarding the FD framework and its different
configurations, it would also be interesting to analyze
the impact of anytime schemes (that may even include
unit-cost versions of the heuristics, as LAMA does) and
portfolio techniques similar to FD Stone Soup.
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