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Foreword

Automated planning and machine learning are two fundamental areas of
Artificial Intelligence (AI). Since the first days of AI, researchers have in-
vestigated the synergies of these two areas paying particular attention to
strengthening the automated planning process with machine learning tech-
niques. Continuing the lineage of the events of 2007, 2009 and 2011, the
ICAPS-2013 workshop on planning and learning provides a forum for re-
viewing the current advances in using machine learning for automated plan-
ning and discussing related issues. The proceedings of this 4th edition gather
a collection of works that range from learning techniques for automatically
improve the new planning algorithms to new methods for learning effective
planning models.

Sergio, Adi and Erez
Workshop Organizers
June 2013
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Abstract

In the last International Planning Competition (IPC 2011), the
most efficient planners in the satisficing track were planners
that used unit-cost heuristics. These heuristics ignore the real
cost of the actions and return instead an estimate of the plan
length to the goal. The main advantage of these heuristics
compared with real-cost heuristics is that they solve a greater
number of problems (also known as coverage), which has a
high impact on the IPC score. However, a priori heuristics
that predict the real cost should find solutions of better quality.
To increase the effectiveness of real-cost heuristics and reduce
the impact of their drawbacks without losing quality, we
study the use of machine learning techniques to automatically
obtain good combinations of those heuristics per domain. In
particular, regression techniques are used to predict the real
cost from any state to the goal. We use the heuristic estimations
and the real costs obtained from solving easy problems as
attributes. Later, we feed those instances to several machine
learning techniques to obtain prediction models. All learned
models approximate the real value with high correlation. Then,
we implemented the most suitable model in a planner and
evaluated it on harder problems. With this new planner we
can solve 56 more problems than using the best real-cost
heuristics for each domain separately. Our approach is also
better regarding solution quality.

Introduction
In the last IPC1 (2011), the approach followed by most
planners was heuristic forward search. Heuristic planners
search in a state space guided by one or more heuristic
functions. Heuristic functions can take into account the real
cost of actions or assume that all actions have unitary cost.
The former are real-cost heuristics, whereas the latter are unit-
cost heuristics. Overall, real-cost heuristics find solutions
of better quality and unit-cost heuristics find solutions
expanding fewer nodes. Therefore, unit-cost heuristics often
solve more problems under time and memory constraints.

A common solution to the downfalls of both kinds of
heuristics is using anytime schemes that employ both types
of heuristics. Generally, the first solution is found using unit-
cost heuristics with greedy search algorithms and subsequent
solutions are found using real-cost heuristics with more
conservative algorithms (Richter and Westphal 2010).

1http://ipc.icaps-conference.org/

Here we focus on improving the efficiency of real-cost
heuristics. We are inspired by the work of Arfaee et al. (2011).
The authors propose learning a new heuristic starting with a
very weak one taking into account particular characteristics
of the problem and iteratively improving its accuracy. This
scheme can be improved since: it must be done per problem,
the initial heuristic may be too weak to solve the problem (and
thus alternative methods to generate training instances must
be employed), and the learning process is often on the order
of days. Instead, we learn from existing domain-independent
heuristics per domain, obtaining training instances from
small problems.

In order to minimize the error generated by the use
of a single heuristic, we study whether a combination of
more than one real-cost heuristic function can be useful to
improve the performance of the planner. Given that it is
hard to know a priori which heuristic combination will work
well for each state, problem and domain, we use machine
learning techniques. We extract learning instances from
solutions to some problems in each domain. The instances
will be composed of the values that each domain-independent
heuristic returns for each state and the real cost to the goal.
Then, we use two approaches based on machine learning
techniques to find a useful combination of heuristics. First,
we generate a regression model, which will be used later
as the new domain-dependent heuristic; it computes at each
state the values of several selected heuristics and returns
a combination of the former values for that state. Second,
we use an attribute selection technique to select a subset of
heuristics to be used in an alternating queue, as previous
works have shown that this way of combining heuristic
estimators is overall very effective (Röger and Helmert 2010).
For the experimentation we use Fast Downward (Helmert
2011), a planning framework that implements several state-
of-the-art heuristics, and WEKA (Witten and Frank 2005),
an environment with multiple machine learning techniques.
Our approach is an offline learning technique, as the real cost
to achieve the goals must be known beforehand to create the
training instances.

The rest of the paper formalizes the planning task,
describes our approach, gives the details of the employed
components and techniques, presents the experimental results,
compares our approach with the related work and puts
forward the conclusions and future work.
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Propositional Planning
A planning task is defined as a tuple Π=(S,A,I,G), where
S is a set of atomic propositions, A is the set of grounded
actions derived from the operators of the domain, I ⊆ S is
the initial state, and G ⊆ S is the set of goal propositions.
Each action a ∈ A is defined as a tuple (pre(a), add(a), del(a),
c(a)) (preconditions, add effects, delete effects and cost), such
that pre(a), add(a), del(a) ⊆ S and c(a) is a fixed positive
real-valued cost. In this paper, we only consider satisficing
planning; that is, a solution does not have to be optimal with
respect to a given metric.

Description of the Approach
Our approach involves two phases: training and testing.
The training part is also divided into two parts: gathering
the training instances and learning models from them. The
training instances are obtained computing the values of a
set of heuristics (given as input) and the real cost to the
goal of a set of states. The states are those that appear along
the solution paths of simple problems solved by different
methods. Then, regression models are built using different
machine learning techniques. The aim of the models is to
predict the real cost of the solution by combining heuristics.

The testing phase implements the chosen regression
model in a planner and compares its performance against
different state-of-the-art approaches. Different combinations
of heuristic functions are studied.

Training
Given a set of training problems P in a domain D, a set
of heuristic functions H = h1, h2, . . . , hm and a machine
learning technique L, the training phase returns a regression
model R. A regression model R : T → R takes as input a
tuple t(n) = 〈h1(n), h2(n), . . . , hm(n)〉 and returns a real
number, the combined heuristic value of node n according
to the regression model R. Each hj(n), j = 1..m is the
heuristic value of heuristic hj for node n.

We first solve a set of simple problems to obtain training
instances for the learning process. We keep the solutions
of those problems; in particular, for each state along the
solution plan we store the value returned by each heuristic
hj ∈ H for that node, as well as the cost from that node
to the goal according to the computed solution. Suppose
π = (a1, a2, . . . , an) is the solution to a training problem
p ∈ P , and Sπ = (s0, s1, s2, . . . , sn) is the set of states
in the solution path, such that s0 = I , sn is a goal state
(sn ⊆ G), and ai is applicable in the state si−1, generating
state si. For each state si ∈ Sπ and for each heuristic
hj ∈ H , we compute hj(si). Also, we compute c(si) =∑n
k=i c(ak). Then, for each si ∈ S of each solution of

problems in P, we generate a training instance of the form:
〈h1(si), . . . , hm(si), c(si)〉.

There are several ways of computing the solutions of
the problems during the training phase. Ideally, an optimal
planner should be used to ensure that the solution plan is
optimal. With an optimal solution plan, the cost to the goal
for each state along the solution path is guaranteed to be h∗,
the perfect heuristic value using the real actions costs. Using

the optimal solution avoids introducing noise in the training
instances due to imprecisions in the estimation of the cost
to the goal. It is not guaranteed though that using optimal
solutions will yield more accurate models; other methods,
such as the use of suboptimal planners or random walks from
the goal, may also be valid alternatives. This will be explored
in Section Experimentation.

Once the training instances are generated, several machine
learning techniques are used to compute different regression
models. This is done per domain, so there will be several
models for each domain. Prior to learning, we perform
attribute selection to avoid the use of correlated attributes that
may not contribute to the overall process. Finally, we estimate
the accuracy and correlation of the models to compare them
and select the most suitable one. Algorithm 1 shows how the
whole training process is performed.

Algorithm 1: Description of the training process.
input : solving method, M

heuristic set, H
problem set, P
attribute selection, AS
learning technique, L

output: regression model, R
begin

instance set← ∅;
foreach problem ∈ P do

solution path← apply(M ,problem);
foreach node ∈ solution path do

instance← compute instance(node,H);
instance set← instance set ∪ instance;

instance set←apply(AS,instance set);
return R← apply(L,instance set);

end

Testing
We test our approach in each of the domains used in the
training phase. The problems used in the testing phase are
more challenging than those used for training. To asses the
viability of the learning process, the best regression model in
each domain is used as the heuristic function of the planner.
In particular, we compare the score of each heuristic against
the score obtained by using the learned model as heuristic.
This is done both in terms of coverage and IPC score.

Experimental Setting
This section describes the elements involved in the
experimentation. This includes the chosen heuristics, the sets
of problems employed in the training and testing phases, the
methods used to generate the training instances, the machine
learning methods and the details of the testing environment.

Heuristic Functions
The following heuristic functions were used in our setting:
Additive heuristic (Add) (Bonet and Geffner 2001) is the

sum of the accumulated costs of the paths to the goal
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propositions in the relaxed problem (a delete-free version
of the problem).

Blind heuristic returns the cost of the cheapest applicable
action for non-goal states and 0 for goal states.

Causal graph heuristic (CG) (Helmert 2004) is the sum of
the costs of the paths in the domain transition graphs which
are necessary to consider to reach the goal propositions.

Context-enhanced additive heuristic (CEA) (Helmert and
Geffner 2008) is the causal graph heuristic modified to
use pivots that define contexts relevant to the heuristic
computation.

Fast Forward heuristic (FF) (Hoffmann 2003) is the cost
of a plan that reaches the goals in the relaxed problem (a
delete-free version of the problem).

Goal count heuristic is the number of unsatisfied goal
propositions.

Landmark count heuristic (LM-Count) (Richter, Helmert,
and Westphal 2008) is the sum of the costs of the
minimum cost achiever of each unsatisfied or required
again landmark. Landmarks are computed using the RHW
method; disjunctive landmarks were taken into account.

Landmark-cut heuristic (LM-Cut) (Helmert and
Domshlak 2010) is the sum of the costs of each
disjunctive action landmark that represents a cut in a
justification graph towards the goal propositions.

Max heuristic (Bonet and Geffner 2001) is the maximum
of the accumulated costs of the paths to the goal
propositions in the relaxed problem (a delete-free version
of the problem).

Planning Domains and Problem Sets
All the domains in the seventh IPC (2011) have been used in
the experimentation. The domains are the following: Barman,
Elevators, Floortile, Nomystery, Openstacks, Parcprinter,
Parking, Pegsol, Scanalyzer, Sokoban, Tidybot, Transport,
Visitall and Woodworking.

Each domain has two sets of problems: those used in
the optimal track, and those used in the satisficing track.
The problems of the optimal track are designed to be easier
than the problems of the satisficing track. Thus, we used the
problems in the optimal track of each domain for training,
and the problems of the satisficing track of the same domain
for testing.

Generation of Training Instances
Initial experiments showed that using optimal solutions does
not guarantee more accurate models. Hence, three methods
were used to generate the training instances. Each method has
been tested in isolation; that is, the set of training instances
obtained with each method was used to learn different
prediction models.

FDSS optimal solution is the solution found by the optimal
version of Fast Downward Stone Soup (FDSS) (Helmert,
Röger, and Karpas 2011), winner of the optimal track at
IPC’11.

LAMA11 best solution is the solution that
LAMA11 (Richter and Westphal 2010), winner of
the satisficing track at IPC’11, finds. The solution is
not guaranteed to be optimal, although the solutions are
expected to be close to the optimal one due to the anytime
scheme that LAMA11 uses. The FF and the landmark
count heuristics are used during the search process.

Multi-Heuristic First Solution (MHFS) is the first solution
found employing all the studied heuristics in the alternation
open list implemented by Fast Downward (Röger and
Helmert 2010). Besides the choice of heuristics, greedy
best-first search with regular evaluation and no preferred
operators was used. We selected this scheme because we
found interesting to compute the solution paths employing
the same heuristics that will be used afterwards as
attributes in the learning process.

Machine Learning methods
The machine learning techniques used to compute the models
were the following:
Attribute Selection obtains a subset of relevant features.

We employed this technique because some heuristics yield
very similar values in some domains, so including all of
them may not be useful in the learning process. Also,
the computation of several heuristics can be expensive,
so removing uninteresting or correlated heuristics may
increase the performance of the planner. We used
Correlation-based Feature Selection (Hall 1998). This
attribute selection method is independent from the
regression learning method used afterwards.

Regression Analysis is used to compute the prediction
models. The following techniques have been used with
10 fold cross-validation:
Linear Regression (LR) models are linear functions that

minimize the sum of squared residuals of the model.
M5P (Quinlan 1992) models are regression trees that

approximate the value of the class. This method is
more flexible than Linear Regression because M5P can
capture non-linear relations.

M5Rules (Quinlan 1992) is similar to M5P, but generates
rules instead of regression trees.

SVMreg (Shevade et al. 2000) implements Support
Vector Machines for regression.

Testing Environment
The learned model was implemented as a novel heuristic in
Fast Downward (Helmert 2011). To test our system, the time
and memory constraints were the same as in the IPC: 6GB of
RAM and 1800 seconds for the execution. The machines the
planners were tested on were Linux computers with a 2.93
GHz 64-bits AMD processor and 8GB of RAM. To compute
the solutions of the set of training problems a time limit of
600 seconds was used.

Experimentation
This section describes the results obtained in both phases:
training and testing. The results in the training phase are used
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to compare the accuracy of the different regression models.
The results in the testing phase are used to compare the
approach against state-of-the-art heuristics.

Results on Training
To obtain the set of training instances, three problem solving
methods were proposed: FDSS, LAMA11 and MHFS. The
total number of training problems was 280, 20 problems per
domain. FDSS solved only 181 problems, whereas LAMA11
and MHFS solved all problems. Since FDSS solved fewer
problems, the models obtained with this approach employ
fewer training instances.

To analyze the accuracy of the four described regression
methods, we show the average correlation and average
computation time of the model of each instance-generating
method and regression technique over all domains in Table 1.
As we can see, all four regression techniques have high
accuracy, but Linear Regression is noticeably faster. Accuracy
is higher and time is smaller for all methods with the training
sets obtained with FDSS. This is to be expected, given
that the regression methods can approximate the function
more accurately when there are fewer input points to be
approximated.

Instance-
generating Classifier Correlation Time(ms)

method
LR 0.9451 73.57
M5P 0.9505 346.43
M5Rules 0.9500 497.86FDSS

SVMreg 0.9450 987.14
LR 0.9291 104.29
M5P 0.9344 566.43
M5Rules 0.9329 964.29LAMA11

SVMreg 0.9207 1,703.57
LR 0.9399 104.29
M5P 0.9495 627.86
M5Rules 0.9492 1,071.43MHFS

SVMreg 0.9384 2,567.14

Table 1: Average of the correlation and computation time of
the models over the 20 domains for each instance-generating
method and regression technique.

Even if the FDSS method generates fewer instances, the
results obtained are similar to the LAMA method. Looking
at the quality of the solutions of the instances solved by
both methods, we can observe that LAMA is usually very
close in quality (less than 10% worse than the optimal cost on
average in all domains except for nomystery). This means that
the instances solved by both produce likely similar training
examples, and thus we can deduce that fewer instances may
lead to similar results in terms of accuracy as long as these
instances are representative enough.

As linear regression is simpler and its accuracy during
training is similar to the rest of the regression techniques, all
models used from this point on will be the ones computed
with it. Of course, good accuracy during training does not

guarantee good results in the testing phase, but for the sake
of simplicity we assume this is so. Hence, the new heuristic
values will be obtained using a linear equation of the form:

hR(n) = w1h1(n) + w2h2(n) + . . .+ wihi(n) + k

where hi are the heuristics selected by attribute selection, wi
the weights for each hi, and k a constant. We set hR to zero
if hR < 0.

To further justify the adequateness of linear regression,
we present a detailed example in the Floortile domain. In
this domain 1330 instances were obtained from solving
the 20 problems with MHFS. Correlation-based Feature
Selection chooses the Additive, Goalcount, Landmark Count
and Landmark Cut heuristic functions as the most relevant.
We can see the data distribution of these heuristics in Figure 1.
All four heuristics have a distinctive linear shape, evidencing
why linear regression approximates well the real cost to the
goal by weighting the values obtained from the selected
heuristics. The obtained Linear Regression model is shown
in Equation 1.

hR(n) = 0.3676 ∗ Add(n) (1)
+ 1.6692 ∗ Goalcount(n)

+ 0.2429 ∗ LM-count(n)

+ 0.5490 ∗ LM-cut(n)

− 4.9717

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  30  60  90  120  150

(a) Add

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  30  60  90  120  150

(b) Goalcount

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  30  60  90  120  150

(c) LM-Count

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  30  60  90  120  150

(d) LM-Cut

Figure 1: Data distribution in the Floortile domain (real cost
in x-axis and heuristic values in y-axis) of the heuristics
chosen by Correlation-based Feature Selection using MHFS.

The heuristic values are not normalized, so the weight is
not proportional to the relevance of the heuristic. For instance,
Add heuristic yields much higher values than Goalcount, so
Goalcount will have higher weights than Add in most cases
to compensate for it.

Table 2 summarizes the weights (and thus the selected
heuristics by attribute selection) obtained with linear
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regression for each domain after learning with the set of
instances obtained with MHFS. Here we can see that the
heuristic that has been selected more often is FF, followed by
Goalcount and LM-Cut. Interestingly enough, the heuristics
that LAMA11 uses are FF and LM-Count.

An additional advantage of using Attribute Selection is
that it seldom chooses more than one “expensive” heuristic
in most cases, because highly correlated heuristics tend to
have a similar computational cost. This avoids cases in which
computing several expensive heuristics does not improve
over using only one of them, which is important to decrease
the time spent evaluating states. An alternative could have
been using learning algorithms that can take into account the
cost of computing the value of an attribute (Núñez 1991),
although after Attribute Selection this may be redundant and
would force us to use a reduced set of learning techniques.

Results on Testing
To asses the effectiveness of our approach, the learned
models were implemented in Fast Downward. In all cases,
only linear regression was used. We tested two different
configurations for each instance-generating method (FDSS,
LAMA11 and MHFS): the linear combination of weighted
heuristics as the only heuristic function of the planer (LR);
and an alternation multiple queue (Röger and Helmert 2010)
that uses the heuristics selected during the learning process
(ASH), instead of using the learned model. The motivation
behind ASH is that alternation queues are often better than
the sum of heuristics (Röger and Helmert 2010). These new
planners were compared with all the studied heuristics and
the combination of the FF and LM-Count heuristic in an
alternation queue, as done in LAMA11. Greedy best-first
search with regular evaluation and no preferred operators has
been used for all the versions. The scores were computed as
in the IPC, using Equation 2.

scorep =

{
best v
vp

, if solution found
0, if no solution found

(2)

where best v is the best value found by any configuration
for problem p and vp is the value for the configuration to
be compared. The relevant parameters of the score are cost,
number of expanded nodes and time. When computing the
score for the time, all instances solved by a planner in less
than one second were assumed to be solved in exactly one
second.

Table 3 shows the cost, expanded nodes and time scores
and the number of solved problems for each heuristic, the
FF/LM-Count heuristic combination with an alternation
queue and all our approaches. The performance of the
FDSS and LAMA11 instance-generating methods is similar,
probably because the solutions found by LAMA11 are close
to the optimal ones, and in spite of the FDSS instance-
generating method generating fewer learning instances. The
best instance-generating method is MHFS, in both the LR
and ASH combination methods. This is due to the way MHFS
obtains the solutions. The role of heuristics is more important
when computing the first suboptimal solution, than when

finding subsequent (or optimal) solutions by exploring the
search space more exhaustively. It is more likely that the
best heuristics in the problem were accurate along the first
solution path, as they succeeded guiding the search.

LR with the MHFS instance-generating method can solve
185 problems, 24 problems more than LM-Count, the best
single heuristic. This approach can solve a problem more
than the FF/LM-Count combination. The quality score is
similar. ASH(MHFS) can solve 217 problems, 33 problems
more than the FF/LM-Count combination (the one used in
LAMA11). ASH(MHFS) is also the best configuration in
terms of quality. Regarding time, the LM-Count heuristic
is the best one, despite solving fewer problems. A similar
behaviour can be seen with respect to the number of expanded
nodes, where the FF/LM-Count combination is slightly better
than ASH(MHFS) with worse coverage.

Cost Expanded TimeApproach score nodes score score # sol.

Add 118.71 50.96 25.62 143
Blind 31.00 0.23 0.68 31
CG 127.18 37.42 44.07 152
CEA 121.51 62.29 24.36 145
FF 108.31 44.48 23.69 132
Goalcount 108.18 27.23 30.30 119
LM-Count 137.56 51.40 62.53 161
LM-Cut 98.70 44.74 14.01 114
Max 65.90 23.41 18.94 70
FF,LM-Count 150.79 104.06 42.96 184
LR (FDSS) 120.05 71.10 17.20 150
ASH (FDSS) 156.60 88.17 37.15 182
LR (LAMA11) 113.02 65.09 13.81 144
ASH (LAMA11) 152.53 76.49 24.46 184
LR (MHFS) 150.18 81.70 30.86 185
ASH (MHFS) 192.33 101.38 52.04 217

Table 3: Results regarding cost, number of expanded nodes,
execution time and number of solved problems. The instance-
generating methods appear in parentheses.

Table 4 and Table 5 show in detail, respectively, the number
of solved problems and the cost score per domain by each
single heuristic, the FF/LM-Count combination and all our
approaches. It is noteworthy that the a priori best heuristics
are not always chosen, or, if they are chosen, they may not
perform as well as expected. For example, using the best
heuristics in Barman (FF and LM-Count, which solve 5 and
4 problems respectively) leads to only 5 problems solved; but
using Goalcount along with the former heuristics allows the
planner to solve all the problems, noticeably more than the
sum of problems solved by the three heuristics. Another
interesting example is Woodworking, where the FF/LM-
Cut combination proves to be much more useful than the
FF/LM-Count combination or any single heuristic, doubling
the number of problems solved.

Overall, the comparison between the linear combination of
heuristics and their use in an alternation list favors the latter.
This was at least to some extent expected to be so, because:
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Domain Add Blin
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CG CEA
FF Goa
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LM
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LM
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ut

M
ax

constant
Barman 1.08 27.32 0.63 -27.38
Elevators 0.38 0.38 0.47 0.57 -1.33
Floortile 0.37 1.67 0.24 0.55 -4.97
Nomystery 0.17 0.65 0.26 -0.39
Openstacks 1.48 0.17 -1.09
Parcprinter 1.04 0.18 -11,378.34
Parking 0.78 0.51 0.64 -0.63
Pegsol 0.72 -0.09
Scanalyzer 0.49 0.86 0.61
Sokoban 1.22 3.37 0.82
Tidybot 1.58 -0.39
Transport 0.52 0.57 16.05 -66.17
Visitall 0.72 1.33 0.12 -1.82
Woodworking 2.72 0.24 0.66 0.74 -6.36
# of times 2 1 2 2 9 8 4 6 3

Table 2: Matrix of (non-normalized) weights employed in Linear Regression model for each heuristic on each domain using the
instance-generating method MHFS. The last row shows the number of times the heuristic was selected by linear regression.

first, alternation lists exploit effectively the strengths of the
more informative heuristics in the instance while paying only
a linear amount of time as penalty; second, it introduces
diversity, which tends to be beneficial in most planning
domains where plateaus may hinder the search process.

Related Work
Our work is based on (Arfaee, Zilles, and Holte 2011) with
several important differences. First, they used combinatorial
search problems with a single goal state and weak domain-
dependent heuristics, whereas we learn from state-of-the-
art planning heuristics. Going from specific domains to
domain-independent planning is not trivial, so this should
be seen as a significant contribution. When they used a
planning domain, the Blocksworld domain, they restricted
to problems with a single reachable goal state. Second, our
generation of the learning instances does not depend on the
chosen heuristics. While Arfaee et al. adapt the size of the
problems to be solvable by their initial heuristics, we choose
an already existing benchmark suite to minimize any bias the
training sets may introduce. In fact, we do not see that we
are choosing/generating examples, we just take those from
another IPC track. It is widely known that the selection of the
learning examples often has a high impact on the performance
of the final system; in this case, we are exposing ourselves
to such a situation and still obtain good results. Finally, our
method requires much less time to generate the instances and
learn the model.

Several ways of combining heuristics in the same planner
have been proposed (Röger and Helmert 2010), among which
the use of alternation queues has proved to be the most
successful one. We provide in this paper an automatic domain-
independent procedure for selecting the right heuristics to be
used on those alternation queues.

Other recent works learn in a similar fashion (Xu, Fern, and
Yoon 2010). But, they learn weighted action-selection rules
to guide a greedy best first search algorithm. They usually
need to implement matching mechanisms for each planner
they use. The advantage of our work is its simplicity and
flexibility, as the learning process is straightforward and it
can be used by any planner with minimal modifications.

Planner portfolios that use some learning process to
choose the parameters of the final configuration are another
alternative to our approach. Two recent examples are Fast
Downward Stone Soup (Helmert, Röger, and Karpas 2011)
and PbP (Gerevini, Saetti, and Vallati 2009), which choose
several configurations of FD and a set of different planners
with a given amount of allocated time per planner (plus
some macro-actions) respectively. A comparison with such
planners however is out of the scope of this work, as we
focused on working only with cost-based heuristics to study
their behavior in isolation. Additionally, a comparison with
PbP would introduce some noise in the results, as the
framework would not be the same and hence the differences
in the implementation of the planners may influence the
performance of the heuristics.

Conclusions and Future Work
In this work, we have proposed the use of a domain-
independent learning algorithm to automatically acquire sets
of heuristics that are relevant for each domain. The results
show that the resulting domain-dependent heuristics greatly
enhance the performance of current powerful heuristics for
cost-based planning, by configuring state-of-the-art planners
for each domain.

In future work, we will focus on exploiting other
features of the planning instances to achieve more accurate
estimations. Examples of such features may be the size of the
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Barman 0 0 0 0 5 0 4 0 0 5 8 20 0 3 8 20
Elevators 1 0 6 5 0 4 0 0 0 1 6 6 7 8 10 10
Floortile 8 0 2 8 7 0 0 7 12 7 4 4 5 4 4 4
Nomystery 6 3 7 7 10 6 14 7 5 13 7 9 8 10 7 7
Openstacks 0 0 0 0 0 7 20 0 0 20 13 13 7 7 13 13
Parcprinter 12 0 15 13 7 0 13 18 3 14 20 19 17 18 19 19
Parking 15 0 20 19 20 0 0 6 0 20 7 5 8 20 20 20
Pegsol 20 17 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Scanalyzer 20 4 20 20 18 20 20 12 5 20 18 20 19 18 20 19
Sokoban 18 4 18 12 18 13 8 18 18 18 18 18 18 18 18 18
Tidybot 17 2 16 18 13 19 19 9 6 14 9 9 11 14 14 16
Transport 12 0 14 9 0 9 18 0 0 3 0 3 8 9 14 15
Visitall 3 0 3 3 4 20 20 6 0 20 10 16 7 15 8 17
Woodworking 11 1 11 11 10 1 5 11 1 9 10 20 9 20 10 19

Table 4: Number of test problems solved by each heuristic on each domain. Cells colored in dark gray are the heuristics chosen
to Selected Heuristics and Linear Regression models using MHFS. The instance-generating methods appear in parentheses.
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Barman - - - - 4.5 - 4.0 - - 4.5 7.3 19.6 - 2.7 7.2 19.5
Elevators 0.7 - 4.6 3.7 - 4.0 - - - 0.7 3.7 5.1 5.3 6.5 8.2 9.3

Floortile 6.8 - 1.7 6.7 6.0 - - 6.3 11.9 5.4 2.7 3.2 4.2 3.0 2.7 3.4

Nomystery 5.5 3.0 6.4 6.4 9.3 5.6 13.8 6.6 4.7 12.6 6.6 8.5 7.4 9.5 6.6 6.6

Openstacks - - - - - 7.0 16.9 - - 13.9 8.3 9.4 3.2 3.3 8.3 9.4

Parcprinter 11.9 - 14.9 12.9 6.9 - 12.9 17.9 3.0 13.8 19.8 18.9 16.9 17.8 18.8 18.9
Parking 12.5 - 15.5 15.5 14.4 - - 4.5 - 18.9 5.6 4.2 6.5 16.2 16.9 18.5
Pegsol 13.8 17.0 14.7 13.8 14.4 15.0 13.7 17.3 18.3 13.1 12.9 13.6 13.2 13.6 15.1 15.0
Scanalyzer 17.8 4.0 17.0 17.8 15.2 17.4 16.7 11.1 4.6 17.4 16.1 18.6 16.5 16.2 17.7 17.1
Sokoban 15.2 4.0 15.0 9.9 15.3 12.5 6.6 15.2 16.6 13.3 13.5 13.7 13.6 13.7 13.4 13.9
Tidybot 14.2 2.0 13.5 15.4 11.0 17.5 15.0 7.8 5.6 11.3 7.9 7.5 8.7 12.0 12.0 13.9
Transport 8.6 - 12.2 7.6 - 8.0 16.8 - - 2.4 - 2.8 6.7 7.7 10.6 11.9
Visitall 0.3 - 0.3 0.3 0.7 20.0 16.4 1.3 - 14.8 5.2 12.2 1.2 10.9 2.0 15.8
Woodworking 10.8 1.0 10.9 10.8 9.9 1.0 4.2 10.2 1.0 8.1 9.9 18.7 8.9 18.7 9.9 18.5

Table 5: Cost score of test problems solved by each heuristic on each domain. Cells colored in dark gray are the heuristics chosen
by Selected Heuristics and Linear Regression models using MHFS. The instance-generating methods appear in parentheses.
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task, the number of deletes of the operators of the problem,
the existence of replenishable resources,. . .

An important characteristic that has been left out in this
work is the cost of computing a heuristic. In further work we
will try to predict not only the accuracy of a combination of
heuristics, but also the “reward”; that is, the ability of the
heuristic to guide the search taking into account the time
it takes to compute it. As mentioned before, this can be
done in a straightforward way using learning algorithms that
can include the costs directly in the learning examples, like
C4.5 (Núñez 1991), although it would be interesting to define
such a measure to assess its viability.

We will also analyze whether a similar learning process
can be performed online. This is important to create a
domain-independent technique able to capture information
particular to a planning task (as opposed to our current
method, in which we need learning examples prior to the
search process). Similar works have already been done
before (Thayer, Dionne, and Ruml 2011), although they did
not use general learning techniques as we do in this paper.

Regarding the FD framework and its different
configurations, it would also be interesting to analyze
the impact of anytime schemes (that may even include
unit-cost versions of the heuristics, as LAMA does) and
portfolio techniques similar to FD Stone Soup.
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Abstract

One of the latest advances for solving classical planning prob-
lems is the development of new approaches such as portfolios
of planners. In a portfolio, different base planners are run
sequentially to solve a problem. Therefore, the main chal-
lenge of a portfolio planner is to define what base planners
to run, in what order, and for how long. This configuration
can be created manually or automatically, for instance, using
machine learning techniques. In this work, a dynamic portfo-
lio planner is described which, opposite to previous portfolio
planners, is able to adapt itself to every new problem. The
portfolio automatically selects the planners and the time ac-
cording to predictive models. These models estimate whether
a base planner will be able to solve the problem and, if so,
how long it will take. The predictive models are created with
machine learning techniques, using the data of the last Inter-
national Planning Competition (IPC). Prediction capability of
the models depend on the features extracted from the IPC re-
sults for each problem. In this work, we use a group of fea-
tures extracted from the SAS+ formulation of such problems.
We define different portfolio strategies, and we show that the
resulting portfolios provide an improvement when compared
not only with the winning planner of the last competition
(LAMA), but also with less informed portfolio strategies.

Introduction
The International Planning Competition (IPC) is an excel-
lent initiative to foster the study and development of auto-
mated planning systems. Since the event takes the shape of
a competition with different tracks, after the event, a plan-
ner is selected as winner of each track. Different planning
systems have dominated the competition in different years.
However, one of the main invariants of the competition is
that there is not a single planner which is always better (nor
at least equal) than the other planners for every problem.
This means that, although there is a planner which, follow-
ing the quality metrics of the competition, can be considered
the best one, we can always find some problems in different
domains where other planners outperform the global winner.

The idea of using a set of base systems to generate so-
lutions more accurate than the ones obtained separately is
not new in Artificial Intelligence. For instance, in ma-
chine learning, meta-classifiers use different base classifier
systems to increase the coverage of the representation bias

of the resulting classifier (Dietterich 2000). In problem
solving, portfolios of search algorithms have also demon-
strated that can outperform the results of single search strate-
gies (Xu et al. 2007).

In automated planning, the portfolios of planners have
taken the interest of the community. A portfolio planner
can be defined as a set of planners with a selection strat-
egy. Such selection strategy has to define three main el-
ements: (1) what sub-set of planners to run, (2) how
long to run each planner? and (3) in what order. In
this work we propose to answer the previous questions us-
ing Machine Learning. Specifically, we use the results of
the sequential satisfying track of the IPC 2011 to construct
predictive models about the capability of the base planners
to solve planning problems -first question-, as well as the
time that they require -second question. The order in which
the planners are executed is given by the confidence of the
predictive models obtained. With those predictive models,
we are able to define a different portfolio configuration for
each planning problem, similarly to previous works about
the use of portfolios in search, but a novelty in automated
planning where previous works always have focused in static
portfolios (Gerevini, Saetti, and Vallati 2009; Gagliolo and
Schmidhuber 2006). From the machine learning point of
view, defining an accurate set of features to characterize the
planning problem is critical. Specifically, we use data ex-
tracted from three different sources. Firstly, the IPC-2011
software (López 2011) contains several packages, which fa-
cilitates testing planners, compare their performance and
obtain reports of the results. IPCReport is the package in
charge of providing access to the data generated during the
competition, so we used this software to extract the results
of every planner in every problem of the competition. Sec-
ondly, some basic features can be obtained from the PDDL
problem files, like the number of literals, objects or goals of
a problem, which gives an idea of the size of the problems.
Lastly, additional features are extracted from the graphs in-
duced by the SAS+ formalism (Backstrom and Nebel 1995;
Helmert 2009) in order to partially recognize the differences
between problems of similar size (Cenamor, de la Rosa, and
Fernández 2012).

We propose to evaluate the resulting portfolio estimating
the behavior that we can expect in the future. For this perfor-
mance estimation we have to consider whether the problems
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belong or not to one of the domains used during the learning
of the predictive models. Therefore we suggest to use two
evaluation strategies derived from the machine learning lit-
erature, split and leave-one-domain-out, as will be explained
later.

The remainder of the paper is organized as follows. In
the next section we present the predictive models of plan-
ner performance, where we will explain the learning process
followed to obtain such models, describing the features that
we use in this work. Following that, we describe how we
create the portfolio, and the different strategies to configure
the portfolio. Afterwards, we describe the empirical evalu-
ation of the portfolios. The paper finishes with the related
work, the conclusions and the future research lines.

Learning Predictive Models of Planner
Performance

Constructing the planning portfolio and learning the predic-
tive models is described from a Data Mining perspective, as
shown in Figure 1. Data Mining is a process of discovering
implicit knowledge from determinate data. This process
may contain different phases depending on the goals. In
our case, we have defined the data mining goals as the
creation of two predictive models. First, whether a planner
will be able to solve a problem, and if so, what will be the
time required to compute the best plan. The first problem
is a classification task, where the predicted attribute is a
Boolean: the planner solved the problem or not. The second
problem is a regression task, where the output belongs to
the positive real numbers, but restricted to the time limit
given to the planners (i.e., 1800 seconds in IPC). The
reason why we have chosen these two tasks is two-fold.
On the one hand, we want to characterize under which
conditions a planner will succeed, so this characterization
will support a better knowledge of the planners and their
possible improvement (Cenamor, de la Rosa, and Fernández
2012). On the other hand, and from a more engineering
point of view, we want to obtain predictive models that can
be used for the selection of planners when configuring the
portfolio-based planner.

The first part of the work flow of the mining process is the
gathering of the features from the planning problems. Given
the problems of the last IPC (IPC-2012), a subset of features
is extracted using the software developed by the organizers.
The report of this software presents a lot of variables to prin-
cipal observations about the execution of the planners for a
given problem and domain. Among all these variables we
used the name of the planner, the domain, the problem, a list
of a time solutions and a list of a quality solutions. These
two last variables represent all the solutions for a problem
in a given planner sorted by appearance order. From all the
data of the IPC 2011, we used the problems of the sequen-
tial satisfying track. We got 7560 instances, corresponding
to the execution of 27 planners in a total of 20 problems for
14 domains. There are 3837 positive instances, i.e., execu-
tions returned a plan, and 3723 negative instances, i.e., no
plan was returned from such execution.
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Figure 1: Data work-flow of the mining process following
CRISP-DM (Chapman et al. 2000) methodology

Besides, we used the problems of this track to create some
features that can characterize the problems (without con-
sider their solutions). In order to obtain a good charac-
terization we used features extracted from the PDDL files
and a set of elaborated features generated from the problem
translation to the SAS+ formalism and its induced graphs,
i.e., causal graphs and domain transition graphs. The ba-
sic features (from PDDL) are typically features of the plan-
ning problem: number of objects defined in the problem,
number of instantiated predicates in the initial state (liter-
als) and number of instantiated predicates that are true in
the final state (goals). The SAS+ formalism is an alterna-
tive representation to STRIPS (Backstrom and Nebel 1995;
Helmert 2009). Using this formalism, a problem instance
can be represented in a structured way using two types of
graphs: The first is the causal graph (CG), which is a graph
that captures the causal dependencies between the state vari-
ables of a given problem. The second is the domain tran-
sition graph (DTG) which encodes the allowed transitions
between different values of a variable. In a problem there is
a DTG for each state variable. For more details see (Helmert
2006).

We have used the LAMA planner (Richter and Westphal
2010) to pre-process and generate all the graphs. We recall
that in the causal graph, the high-level variables are the vari-
ables for which there is a defined value in the goal. Although
the common definition of the causal graph does not consider
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the edges as weighted, LAMA computes the edge weights of
the causal graph as the number of instantiated actions that
induced each edge. We also consider these weights for com-
puting our features. We have extracted a total of 47 features
for each problem, which are summarized next.

Feature Description
For the CG we generated features in four categories: (1) gen-
eral, which includes the direct information from the graph;
(2) ratios, which represents interesting proportions that may
be equal across problems of different size; (3) statistical,
such as the average, maximum and the standard deviation
of the entire graph; and (4) high-level statistical, the same as
before but only considering the high-level variables.

The general variables of a CG are four: the number of
variables, the number of high-level variables, the number of
edges and the sum of weights of the edges. The ratios are
four: The first is the ratio between the total number of vari-
ables and the total edges. The second is the ratio between the
sum of the weights and the number of variables. The third is
the ratio between the number of high-level variables and the
total number of variables. And the last is the ratio between
the number of high-level variables and the total number of
variables.

The statistical information of a CG is used to characterize
the structure of the causal graph. We compute the average,
the maximum and the standard deviation of the following
four values: The first is the number of incoming edges for
each variable. The second is the sum of the weights of the
incoming edges for each variable. The third is the number
of outgoing edges for each variable. And the last is the sum
of the weights of the incoming edges for each variable.

The statistical information of high-level variables is used
to encode the structure for the variables involved in the prob-
lem goals. We compute the same as the statistical informa-
tion of the CG of the following two values: the number of
incoming edges for each variable, and the sum of the weights
of the incoming edges for each variable.

For the DTG we generated features in two categories: (1)
general, aggregating the relevant properties of all graphs and
(2) general aggregated features and some statistics over all
graphs.

The general variables of the DTG are three: the number
of variables, the number of edges and the sum of weights
of the edges. The statistical information of the DTG is used
to characterize the structure of the whole domain transition
graph. In this case, we compute the same statistical infor-
mation as for the CG, but in this case when we compute the
average, it is the average of all the graphs. In the case of
standard deviation, we compute the standard deviation of all
the graphs and the same with the maximum.

Once we have read the SAS+ problem, the computation
time to extract all those features is inconsiderable because
we only realize sums, averages and standard deviation com-
putations.

Data Preparation
After the extraction of the features, data preparation is typi-
cally the following mining step. In this phase, we create the

output features for learning the models. The first task is to
learn whether a planner will be able to solve a problem. This
problem is a classification task with a binary class. This at-
tribute is set to “yes” if there exists at least one solution of
the problem; otherwise it is set to “no”. In this case, the
quality of the solution is not relevant.

The second task is to learn the time that a given planner
expended in a given problem. This attribute is a numerical
attribute in the range [0..1800], limits defined by the IPC
competition. In this case, we have eliminated all the in-
stances where the a planner was not able to find a solution,
i. e. where time and quality vector are missing.

Data Modeling
The data modeling is divided into two parts as defined
above: generating a classification model and generating
a regression model. The classification model is a de-
cision tree created by J48 algorithm (Quinlan 1993), al-
though we performed tests with other algorithms like de-
cision rules (PART) (Frank and Witten 1998), Support Vec-
tor Machines (SMO) (Cristianini and Shawe-Taylor 2000),
and IBK (Witten and Frank 2005) for different values of
k (1, 3, 5). The implementation of these algorithms is pro-
vided by WEKA (Witten and Frank 2005), and they are used
with the pre-defined parameters.

The regression model is created by instance-based learn-
ing (Briscoe and Caelli 1996) (IBK) with k = 3. However,
like in the classification case, we used other algorithms like
the decision trees for regression problems (M5Rules) (Wang
and Witten 1996), IBK (Witten and Frank 2005) for different
values of k (1, 5) and Support Vector Machines in regres-
sion (SMOreg) (Shevade et al. 2000). The implementation
of these algorithms is also provided by WEKA.

Evaluation
We follow two different evaluation mechanisms to estimate
the behavior of the models in different circumstances. The
first way to evaluate the performance of a model is to split
the available data in two sets: a training set and a test set.
In our case, we divide the problems in two sets depending
on its identifier: even or odd 1. We constructed two mod-
els: one with even problems, which is then evaluated with
the odd ones and vice versa. The resulting is the sum of
both processes. In this way, we can evaluate how the model
constructed will behave in previously unseen problems.

The second evaluation mechanism permits to evaluate
how the models will behave in problems of unseen do-
mains. The approach is based in the leave-one-out evalu-
ation method, which in machine learning can be seen as a
cross-validation 2 where k is set to the number of available

1The problems of the competition are created in increasing dif-
ficulty, so separating them in this way almost ensures that the dif-
ficulty of the problems in the two sets generated is very similar, as
the results will show.

2Cross-validation (Browne 2000) permits to estimate the clas-
sification accuracy (percentage of times that the model outputs the
expected class) of a classifier in the future, or the predicting capa-
bility (relative absolute error of the predicted value respect to the
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data. In our case, the method is a cross-validation where
the data is not separated in folds randomly, but per domains.
Therefore, with this approach we create as many folds as
domains and, each time, we build a predictive model with
the data from all the domains except one. In this way we
estimate the behavior of the learned models in previously
unseen planning domains.

Data Exploitation
Table 1 shows how to use the predictive models learned (as
shown in Section ) to build a portfolio of planners.

Predictive Models Based Portfolio
• Given

1. An input vector, d, which represents all the relevant
features of a planning domain

2. An input vector, pr, which represents all the relevant
features of a planning problem

3. A set of planners P = {pl1, . . . , pln}
4. A maximum execution time, t
5. A predictive Model C(pl, d, pr)→< s, c > that for

any planner, pl, domain d, and problem, pr outputs
whether pl will solve problem pr, s, and what is the
confidence, c, of such estimation

6. A predictive Model R(pl, d, pr) →< t, e >
that for any planner, pl, domain d, and problem,
pr, outputs the estimated time that pl will re-
quire to find the best solution of pr, and what
is the standard error expected in that estimation

1. eligible = ∅
2. for i = 1 to n do

(a) < si, ci >= C(pli, d, pr)

(b) if si == true then eligible = eligible ∪ pli

3. For j = 1 to ‖eligible‖, < tj , ej >= R(plj , d, pr)

4. Use the set eligible and the predictive estimations,
< sj , cj > and < tj , ej >, to create the portfolio,
following any selection strategy

5. Execute the portfolio

Table 1: Algorithm to create a portfolio based on the predic-
tive models.

The method assumes that it receives all the relevant fea-
tures of the planning problem in a given domain encapsu-
lated in vectors d and pr. It also receives the set of planners,
the maximum execution time, and the predictive models.

Then, for each of the n planners, the algorithm obtains
from the classification model the estimation of their capabil-
ity to solve the problem. All the planners whose answer is

expected one) of a regression model. A cross-validation splits the
data randomly in k groups, (k−1) used for training the model and
the rest to test the learned model. This process is repeated k rounds.
The result of this process is the average of the results obtained by
all the models computed in the k rounds.

positive are included in the set of eligible planners. For all
the planners in eligible the estimated time to be run is also
estimated with the regression model. The output of the algo-
rithm is the configuration of the portfolio, i.e. a list of plan-
ners with an associated run time. The portfolio is created
using different strategies, which are defined in the following
section. In case of the sum of the times of this list are larger
than the limit t, the list is truncated.

Building strategies with predictive models
We have evaluated various strategies for the configuration of
the portfolio. The list of the strategies is ordered depending
on the use that they make of the knowledge provided by the
prediction models. The first one does not use such knowl-
edge at all, while the last one uses both classification and
regression models.

Equal Time (ET): This strategy does not use the predictive
models. It assigns equal time for each planner (uniform
strategy). This means that, if we have 27 planners (all
the participants of IPC 2011), all the planners will run for
1800/27 = 66.67 seconds.

Best Confidence Estimation (BCE): This strategy uses
the classification model. It selects the planner that ensure
that the problem will be solved, but only the planner with
the maximum confidence. If the classification model es-
timated that no planner is be able to solve the problem,
it chooses the planner with a lower confidence of fail.
In case of a confidence tie, it chooses all the planners in
the tie. The execution time is also distributed uniformly
among all the planners selected.

Best 5 Confidence (B5C): This strategy also uses the clas-
sification model. It selects the 5 planners with the highest
confidence of solving the problem. The run time is as-
signed uniformly to each planner (360 seconds).

Best 10 Confidence (B10C): This strategy is equivalent to
the previous one, but selecting 10 planners instead of 5,
and therefore, assigning 180 seconds to each planner.

Best 5 Regression (B5R): This strategy uses the classifica-
tion and regression models. It follows the same procedure
than B5C to select 5 planners. Then, it estimates the total
time required by the planners as the sum of the predicted
run time of each planner. Since this sum is likely to be dif-
ferent from the maximum execution time (1800 seconds),
the time assigned to each planner is a linear proportion
with respect to the total time.

Best 10 Regression (B10R): This strategy is equivalent to
B5R, but selecting 10 planners.

Experimental Results
In this section we explain the results of the models from their
predictive capability point of view. The predictive power of
the models is relevant because they give clues about wheter
the portfolio strategies will success or fail. Then, we show
and analyze the results of exploiting the models in the dif-
ferent portfolio strategies.
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Estimated Performance of the Models Learned
Predictive models do not usually behave perfectly, i.e. a
100% of success in classification nor an error of zero in re-
gression can be achieved. In fact, every data-set has a max-
imum performance, which is typically called the Bayesian
optimal. The Bayesian optimal is produced by two reasons.
The first one is noise and/or mistakes in the data; the second
one is a lack of information which is required to improve
the predictions. The performance of the models learned is
shown in Tables 2 and 3 for different classification and re-
gression algorithms tested, respectively. We show results
following two different evaluation strategies, the classical
split validation and leave-one-domain-out (both described
above).

Data set Split Validation Leave One Domain Out
J48 88.75 (1.05) 59.14 (12.13)
IBk -K 1 88.67 (1.29) 60.83 (10.13)
IBk -K 3 87.63 (1.07) 60.58 (11.76)
IBk -K 5 88.58 (1.07) 61.95 (11.10)
SMO 72.48 (1.58) 61.34 (10.10)

Table 2: Classification accuracy and standard deviation for
predicting planner success in the sequential satisfying track

The estimated performance of the classification models
following the split validation is very high (close to a 90% of
classification success). It is important to highlight that the
data set is well-balanced in the class distribution: there are
3837 positive instances and 3723 negative ones, so a default
classifier (i.e., a base classifier that always predicts the ma-
jority class) would obtain a performance of 50.75, while J48
obtains 88.75. Comparing the different algorithms tested,
the best result is obtained using decision trees (J48), but
IBk obtained similar accuracy. These results reveal that this
model is good to predict the planner success for problems
of already seen domains and will be very useful to build the
portfolios under this scenarios (as will be described later).

We also have performed a brief automated feature selec-
tion process prior the generation of the models using the de-
fault parameters in WEKA. However, the process is very
aggressive and eliminates most of the features, all except
the planner and if the planner solved the problem or not
(the class). The results with only those features are worse
than with all the features, 72.06 ± 1.52 independently of
the learning algorithm. We could perform a more extensive
evaluation with additional feature selection processes and/or
algorithms. However, we will show later that the models ob-
tained at this point are good enough to build the portfolios.

In the case of the leave one domain out evaluation pro-
cess, the results are worse, and a maximum performance of
61.95 is achieved with IBK. This result is 26.8 points worse
than when evaluating with split validation, but still 10 points
higher than the default classifier. The reason is that it is
much more difficult to generalize to problems in new do-
mains than to new problems in the same domains. In other
words, the training data gathered from the 14 domains of the
IPC 2011 is not a representative set of all the possible do-

mains that can be modeled in PDDL. Anyway, we will show
later that this result is promising.

Table 3 shows the results of different regression algo-
rithms evaluated. The error metric used is the Relative Ab-
solute Error (RAE), because it is independent of the range
of values of the estimated function. The results obtained are
around a 63%, which means that if, in average, the execu-
tion time were 100, in average we should make a mistake of
63 seconds. We will also show later that this value is good
enough to provide successful estimates in the portfolios.

Algorithm Split validation Leave one Domain Out
M5Rules 73.66 (3.61) 985.64 (2200.93)
IBk -K 1 67.57 (4.07) 93.66 (23.38)
IBk -K 3 62.98 (3.12) 85.96 (22.26)
IBk -K 5 64.39 (3.00) 85.57 (19.21)
SMOreg 69.50 (2.87) 907.32 (2620.74)

Table 3: Relative absolute error and standard deviation of
predicting the time that the planners will invest in finding
the first, median and best solution in the sequential satisfying
track

The best solution in all the cases is the algorithm IBk with
k = 3 and k = 5 in split validation and leave one domain
out. The model with lower error will be used in the portfo-
lios. We follow a pessimistic approach, and the relative error
is used in the regression strategies to assign the time. I.e. if
the regression model estimates a run time of 100 seconds,
we assign 163.

Performance of the Portfolios
In this section we evaluate two different generalization sce-
narios. The first one evaluates how a portfolio learned from
some problems in different domains generalize to new prob-
lems in the same domains, or what we called above, the
split evaluation. The second one evaluates how a portfolio
learned from some problems in some domains generalize to
problems in new domains. In both cases, problems used for
training were not used in the test.

Table 4 shows the result of different portfolio strategies
for the split evaluation. It also includes the results of LAMA-
2011 and the best possible strategy (BS), both to have a
reference for comparison. For each strategy we show the
number of solved problems (S), the number of plans that
have better quality than LAMA-2011 (+), and the number of
problems that have worse quality than LAMA-2011 (-). The
number of problems solved by BS is the number of prob-
lems solved in the track; therefore it is an upper bound for
any conceivable portfolio configuration since we did not in-
troduce new planners for our experiments. We can see that
the best possible strategy would solve 267 problems and that
181 of them could have a better quality than the reported by
LAMA-2011. That confirms there is a considerable room for
improving the performance of the winner of the sequential
satisfying track of IPC.

The less informed strategy, ET, executes every planner for
a fixed time. This strategies shows two important issues: on
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ET BCE B5C B10C B5R B10R Lama BS
S + - S + - S + - S + - S + - S + - S S +

Barman 20 19 0 20 12 8 20 18 0 20 19 0 20 19 0 20 19 0 20 20 20
Elevators 20 16 2 20 14 6 20 17 2 20 20 0 20 16 2 20 19 0 20 20 20
Floortile 8 4 4 8 4 0 8 4 1 8 4 0 8 4 2 8 4 0 6 9 5
Nomystery 15 7 0 18 9 0 17 8 1 17 8 0 18 9 1 17 8 0 10 19 10
Openstacks 20 2 18 20 3 6 20 5 6 20 3 9 20 4 7 20 3 11 20 20 17
Parcprinter 20 0 20 20 8 2 20 8 1 20 11 0 20 8 1 20 11 0 20 20 11
Parking 12 3 16 20 0 20 20 1 16 20 4 12 20 1 16 20 4 13 20 20 9
Pegsol 20 0 8 20 0 2 20 0 2 20 0 2 20 0 2 20 0 2 20 20 0
Scanalyzer 18 2 14 19 9 5 18 8 4 17 8 6 18 8 6 18 10 3 20 20 13
Sokoban 17 5 10 18 2 6 19 4 1 18 4 2 19 4 1 19 5 1 19 19 6
Tibybot 16 5 9 18 6 5 19 6 7 18 7 4 17 4 7 17 6 4 16 20 13
Transport 20 9 11 20 11 9 19 10 8 20 14 6 19 10 8 20 14 6 19 20 18
Visitall 20 20 0 20 18 1 20 20 0 20 20 0 20 20 0 20 20 0 20 20 20
Woodworking 20 9 0 20 16 2 20 18 0 20 19 0 20 18 0 20 19 0 20 20 19
Total 246 101 112 261 112 72 260 127 49 258 141 41 259 125 53 259 142 40 250 267 181

Table 4: Comparison of the six portfolio strategies in split evaluation. Columns labeled with “S” show the number of problems
solved in each domain. Columns labeled with “+” show the number of problems solved with plans of better quality to the ones
reported by LAMA-2011. Columns labeled with “-” show the number of problems solved with worse quality than LAMA-2011.

the one hand it confirms that a portfolio is an interesting ap-
proach, since it is close to the winner of the competition. On
the other hand, it shows that over 87, 85% of the problems
are solved in less than 70 seconds (this strategy splits the
time in 27 slices of 66.67 seconds).

The classification based strategies (BCE, B5E and B10C)
shows that the classification models are useful, and they can
solve over 96 % of the problems that can be solved (the limit
is 267 problems). Classification based strategies solve more
problems than the ET strategy. The use of the regression
models to assign the execution time to each planner does
not increment the number of problems solved over using
only the classification models, and regression based strate-
gies (B5R and B10R) solve a similar number of problems.
The best portfolio of the competition, Fast Downward Stone
Soup 2 (fdss-2), solved less problem than all the strategies:
Fdss-2 solved 221 problems, and we solved in the worse
case 258 problems.

Although quality is not estimated directly by the predic-
tion models, the regression based strategies show that the
regression models permit to maintain the plan quality: given
that the models predict the time to obtain the best solution,
the regression models are accurate to compute an amount of
time enough to achieve high quality solutions. All the in-
formed strategies are better than ET because the difference
in number of problems solved is at least 12 problems more,
but they also improve the quality of the solutions. For in-
stance, B5C improves the quality in 125 problems, and only
decreases the quality in 49. The regression based strategy,
B10R, improves the quality of 142 problems and decreases
the quality in only 40. However, that is not an improvement
over the classification based portfolios, B5C and B10C, re-
spectively.

Those results mean that there is not one strategy perfect
for all the criteria (number of problems solved and qual-
ity). With these results, the better strategy is B10R because it
solves 13 problems more than ET and this strategy improves
more plan qualities.

Table 5 follows the same structure as Table 4, but for the
leave-one-domain-out evaluation mechanism: it shows for
each portfolio strategy the number of problems solved, and

the number of problems with better or worse plan quality
than LAMA-2011, respectively. Like in the results of the
split evaluation, the best possible results are shown in the
last column.

The best strategy with knowledge is B10C. It solves 4
more problems than the uninformed strategy ET, and the
same number of problems as LAMA-2011. Comparing with
the best portfolio of the competition, fdss-2, our technique
obtained 29 problems more (fdss-2 solved 221 problems).
These results mean that the planner combination is a good
approximation for improving a single planner. But the re-
sults are worse than the split validation because the error in
classification is higher than in the split validation.

The bad results only affect significantly to two domains:
Nomystery and Transport, where 3 and 7 problems are not
solved by the portfolio strategies, respectively. In the other
domains, the difference is only of one or two problems. In
some domains, the two evaluations (split and leave one do-
main out) obtain the same result (20 problems for domain).
This domains are Barman, Elevators, Openstacks, Parking,
Pegsol, Visitall and Woodworking. This group of domain
suppose the 57.14 % the problems of the last competition
and it is not a insignificant number, however this group is not
enough. However this result is very significantly because the
model do not have some any information about the domain
and this task is difficult to realize.

The analysis of planning speed is not included because the
created strategies focuses in obtaining the best plan for each
problem in the maximumn time available (1800 seconds).
If we would like to reduce the time where the best solution
is obtained, we should create another strategies focusing in
such objective.

Selection of Planners
The selection of the planners is performed automatically in
the classification based portfolio strategies: for each prob-
lem, the classification based strategies decide a subset of
planners to include in the portfolio. In Figure 2 we report the
planners chosen by the B5C strategy in the split evaluation.
In the x axis we show the domains used in the experiments
and in the y axis we list the planners that the portfolio can
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ET BCE B5C B10C B5R B10R Lama BS
S + - S + - S + - S + - S + - S + - S S +

Barman 20 19 0 20 19 0 20 19 1 20 19 0 20 18 0 20 18 0 20 20 20
Elevators 20 16 2 20 16 1 17 14 4 20 18 0 18 15 3 20 18 1 20 20 20
Floortile 8 4 4 9 5 0 6 0 2 9 5 0 6 0 0 9 5 1 6 9 5
Nomystery 15 7 0 17 7 2 13 4 4 15 4 2 13 4 5 15 5 1 10 19 10
Openstacks 20 2 18 1 1 19 20 3 17 20 3 16 15 1 19 15 2 16 20 20 17
Parcprinter 20 0 20 20 11 0 20 5 12 20 11 0 20 5 12 20 11 0 20 20 11
Parking 12 3 16 20 4 12 20 2 12 20 4 12 20 2 13 20 4 15 20 20 9
Pegsol 20 0 8 20 0 2 20 0 2 20 0 2 20 0 2 20 0 2 20 20 0
Scanalyzer 18 2 14 17 8 4 17 4 6 17 4 7 18 4 6 17 4 6 20 20 13
Sokoban 17 5 10 19 5 1 18 1 7 19 4 1 18 2 6 19 s 5 1 19 19 6
Tibybot 16 5 9 18 5 4 19 6 3 17 4 7 15 3 7 16 3 7 16 20 13
Transport 20 9 11 13 12 7 16 8 7 13 10 7 13 8 9 13 8 10 19 20 18
Visitall 20 20 0 10 7 13 10 7 13 20 20 0 10 7 13 20 20 0 20 20 20
Woodworking 20 9 0 20 19 0 20 19 0 20 19 0 20 19 0 20 19 0 20 20 19
Total 246 101 112 224 119 65 236 92 90 250 125 54 226 88 95 244 122 60 250 267 181

Table 5: Comparison of the six portfolio strategies in leave-one-domain-out evaluation. Columns labeled with “S” show the
numbers of problems solved in each domain. Columns labeled with “+” show the number of problems solved with plans of
better quality to the ones reported by LAMA-2011. Columns labeled with “-” show the number of problems solved with worse
quality than LAMA-2011.

use. The dot size indicates the number of times B5C selects
a particular planner in a given domain. Given that we have
20 problems per domain, the maximum value is 20. In the
case that B5C selected always the same planners for a given
domain, there would be five points with the maximum size
in the row corresponding with that domain.

The only planners that were never selected are ACOPLAN
and ACOPLAN2. The most common selected planners are
FD-AUTOTUNE-1 and RANDWARD. LAMA-2011 is not able
to solve all the problems, and for some of the solved ones,
it does not provide the best solution. Therefore, combining
planners is a requirement to achieve the best results. Inter-
estingly, B5C did not select LAMA-2011 for all the domains.
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Figure 2: The planners selected by B5C for each domain

Related Work
Howe et al. (Howe et al. 2000) described one of the first
portfolio planners. They implemented a system called BUS
that runs only 6 planners in portions of time and in circu-
lar order until one of them finds a solution. In this port-
folio, the planners are sorted following the estimation pro-
vided by a linear regression model of their success and run
time. They used only 5 features to represent the problems
extracted from the PDDL description, while we character-
ize the problems with 47 features extracted from different
sources, which has demonstrated that improve prediction ca-
pabilities (Cenamor, de la Rosa, and Fernández 2012). As in
our case, the configuration of the portfolio can be different
for different problems in the same domain.

Another portfolio (Gagliolo and Schmidhuber 2006) de-
fines the same configuration for all the problems in the same
domain. Each algorithm is run in parallel and dynamic
context-sensitive restart policies for SAT solvers are imple-
mented. Another difference with our work is that they used
SAT solver executions to learn the difficulty of the problems
and split the time in between all SAT solvers, while we cre-
ate models to predict planner performance.

Fast Downward planning system (Helmert 2006) includes
the portfolios FD-Autotune and FD Stone Soup with sev-
eral configurations. Each of these portfolios is a sequential
portfolio planner that uses various heuristics and search al-
gorithms. These algorithms are run consecutively for a total
time of 1800 seconds. Each solver communicates to the fol-
lowing one the quality of the solutions found, and such value
is used to improve the performance of the next solver. The
same configuration is used for all the problems in the same
domain. To learn the configuration, the authors used the re-
sults of different planning competitions, as we expect to do
in the future.

Another portfolio, named PbP (Gerevini, Saetti, and Val-
lati 2009), learns a portfolio for a specific domain. PbP
is not just a portfolio, because it also learns macro-actions
for each domain and generate some portfolio configurations
with them. Then, it runs the best three configurations in a
round-robin strategy. This portfolio incorporate seven plan-
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ners (Fast Downward, LPg-td, Macro-FF, Marvin, Metric-
FF, SGPlan5, YAHSP). In a later version (PbP2 (Gerevini,
Saetti, and Vallati 2011)) the authors introduced LAMA-
2008 in the set of base planners. This portfolio won the
learning track in the last IPC competition.

HYDRA (Xu, Hoos, and Leyton-Brown 2010) is a au-
tomated algorithm that combines portfolio-based algorithm
selection with automatic algorithm configuration. They be-
gin identifying a single configuration for a single problem,
and spend all the time in this configuration. The configura-
tion portfolios based only on a single highly parametrized
SLS algorithm, SATenstein-LS (KhudaBukhsh et al. 2009).
The main difference to our work is that these portfolios are
focused on solving SAT problems.

ArvanHerd (Valenzano et al. 2012) is a satisfying parallel
planner that won the last sequential multi-core track. This
portfolio uses as base planners four configurations of the
planner Arvand (Nakhost, Valenzano, and Xie 2011) an one
configuration of LAMA-2008. In this case, the portfolio is
fixed and it does not need to choose a subset of planners to
run.

Conclusions and Future Work
In this work we have completed an analysis of the IPC-2011
result with a data mining methodology. With this analysis
we built classification models for predicting whether a plan-
ner will success or not in a given problem, and regression
models for predicting the time a planner will need to solve
a given problem. We have introduced a set of elaborated
features that come from the causal graphs and the domain
transition graphs of the SAS+ formulation. The results have
shown that these features are relevant for partially charac-
terizing the complexity of the planning problems. Besides,
these features are easy to compute, therefore they can be
extracted in a pre-processing stage of a planning process.
Then, the features are used to query a learned model for de-
ciding the set of planners to use and the time they must be
run.

We have defined a set of strategies to configure the portfo-
lio and evaluated them with the problems of the IPC-2011.
The results have shown that in 181 cases of 280, there ex-
ists at least a solution with better quality than that offered
by LAMA-2011. This means that although LAMA-2011 is
the planner that solves more problems, it is not the planner
which provides the best plans. In addition, the ideal planner
combination with all the planners in the competition solved
more problems than the winner (17 problems).

With the analisys of the results, we have shown that the
portfolios of planners are interesting in automated planning
because there is not a best planner for all domains. The com-
bination of the best planner in each domain is the perfect
strategy, but this strategy is very difficult to obtain. The pro-
posed option is learning what are the right planners to select,
and we demonstrate that it is very close to that optimal solu-
tion. The results show that our strategies solved at least the
80% of the problems for previously unseen domains (leave
one domain out evaluation). When affording new problems
in known domains (split evaluation) the success raises over
92% in all the strategies.

In the future, we will try to learn better models for un-
known domains to improve the performance of the portfolio.
To achieve this goal, several strategies may be followed. A
first one is to learn with more domains, so training data will
cover a wider area of the domain space. A second one is to
create new features that characterize the problems, as well
as to apply feature selection approaches, to improve gener-
alization capabilities. A third one is to perform a selection
of the planners a priori, so we can discard planners that does
not contribute to the global performance.
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Abstract
The ability to learn relational action models from noisy, in-
complete observations is essential to support planning and
decision-making in real-world environments. While some
methods exist to learn models of STRIPS domains in this set-
ting, these approaches do not support learning of actions at
the knowledge level. In contrast, planning at the knowledge
level has been explored and in some domains can be more
successful than planning at the world level. In this paper
we therefore present a method to learn knowledge-level ac-
tion models. We decompose the learning problem into multi-
ple classification problems, generalising previous decomposi-
tional approaches by using a graphical deictic representation.
We also develop a similarity measure based on deictic refer-
ence which generalises previous STRIPS-based approaches
to similarity comparisons of world states. Experiments in a
real robot domain demonstrate our approach is effective.

Introduction
The related problems of planning and learning domain dy-
namics in domains with incomplete knowledge and uncer-
tainty are both challenging. The planning problem has been
tackled using the possible worlds paradigm (Weld et al.,
1998; Bonet and Geffner, 2000; Bertoli et al., 2001), where
the planner reasons about actions across all possible worlds
in which the agent might be operating given its current
knowledge. An alternative is to use a knowledge-level rep-
resentation that describes the agent’s knowledge without
enumerating possible worlds. One such approach is to re-
strict the agent’s knowledge to simple relational and func-
tional properties using knowledge fluents, and then plan with
these structures either directly (Petrick and Bacchus, 2002,
2004) or indirectly through compilation techniques (Pala-
cios and Geffner, 2009), in an attempt to build plans more
efficiently. However, while a few approaches have tack-
led learning domain dynamics with incomplete knowledge
(Amir and Chang, 2008; Zhuo et al., 2010; Mourão et al.,
2012), none have considered learning knowledge-level ac-
tions, such as would be required by a planner operating di-
rectly at that level.

In this paper we present a method for learning action rules
in knowledge domains. We consider the problem of acquir-
ing domain models from the raw experiences of an agent
exploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.

The domains we consider are based on relational STRIPS
domains (Fikes and Nilsson, 1971) but also include func-
tions, run-time variables and knowledge fluents.

We tackle the problem of learning action models from
noisy and incomplete observations by decomposing the
problem into multiple classification problems, similar to the
work of Halbritter and Geibel (2007) and Mourão et al.
(2009; 2010; 2012). Our approach generalises these earlier
approaches by using a decomposition based on a deictic rep-
resentation. We represent world states as graphs and develop
a similarity measure, also based on deictic reference, to per-
form similarity comparisons between states. The features
used to measure similarity are closely related to the rules un-
derlying the true action models. We reuse the rule extraction
method of Mourão et al. (2012) to derive planning operators
from classifiers trained using our new representation.

We test our approach in a real robot domain. The robot
bartender (Petrick and Foster, 2013) serves drinks to cus-
tomers by generating plans based on input from its vision
and dialogue processing systems. State observations derived
from these systems can be incomplete or noisy, due to sens-
ing errors. Therefore states are modelled at the knowledge
level, with functions and run-time variables used to capture
customer requests. Our experiments show that the domain
models we learn for the robot bartender perform as well as a
“gold-standard” hand-written domain model used to gener-
ate the robot’s plans.

The Learning Problem
A domain D is defined as a tuple D = 〈O,P,F ,A〉, where
O is a finite set of world objects, P is a finite set of predicate
(relation) symbols, F is a finite set of function symbols, and
A is a finite set of actions. Each predicate, function, and
action also has an associated arity. A fluent expression of
arity n is a statement of the form:
(i) p(c1, c2, ..., cn), where p ∈ P , and each ci ∈ O, or
(ii)f(c1, c2, ..., cn) = cn+1, where f ∈ F , and each ci ∈ O.

A real-world state is any set of positive or negative fluent
expressions, and S is the set of all possible states. State ob-
servations may be incomplete, so we assume an open world
where unobserved fluents are deemed to be unknown. At the
world level, for any state s ∈ S, fluent φ is true at s iff φ ∈ s,
and false at s iff ¬φ ∈ s. A fluent and its negation cannot
both be in s. If φ /∈ s and ¬φ /∈ s then φ is unobserved.
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At the knowledge level we transform state observations
of the real world into knowledge states: statements about
the agent’s knowledge of the world. A knowledge fluent
Kφ denotes whether a real-world fluent φ is known to be
true in the world (Kφ), false in the world (K¬φ) or un-
known (¬Kφ and ¬K¬φ). Therefore at the knowledge
level the closed world assumption can be reinstated and
whenever both Kφ /∈ s and K¬φ /∈ s, we know that
¬Kφ ∈ s and ¬K¬φ ∈ s. Additionally we introduce
the operator Kv which indicates whether the value of a
function f(c1, c2, . . . , cn) is known (Kv(f(c1, c2, . . . , cn)))
or unknown (¬Kv(f(c1, c2, . . . , cn))), regardless of the ac-
tual value. Thus (∃d ∈ O)K(f(c1, . . . , cn) = d) ≡
Kv(f(c1, . . . , cn)). All states at the knowledge level are
written entirely in terms of these knowledge fluents.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of knowl-
edge fluent expressions. We consider two different kinds of
action effects. First, we allow STRIPS-like effects, where
each e ∈ Effa has the form add(φ), or del(φ), and φ is any
knowledge fluent expression. Second, we permit conditional
effects of the form Ce ⇒ add(φ) or Ce ⇒ del(φ). Here, Ce
is any set of knowledge fluent expressions, and is referred
to as the secondary preconditions of effect e. Action pre-
conditions and effects can also be parameterised. An action
with all of its parameters replaced with objects fromO is an
action instance.

In contrast to STRIPS domains, which assume that ob-
jects mentioned in the preconditions or the effects must be
listed in the action parameters (the STRIPS scope assump-
tion (SSA)), we make the more general deictic scope as-
sumption that objects mentioned in the preconditions or ef-
fects are either action parameters or are directly or indirectly
related to the action parameters, i.e., they have a deictic term
(see Deictic Reference section).

We restrict previous domain knowledge to the assump-
tion of a weak domain model where the agent knows how to
identify objects, has acquired predicates to describe object
attributes and relations, and knows what types of actions it
may perform, but not the appropriate contexts for the ac-
tions, or their effects. Experience in the world is then devel-
oped by observing changes to object attributes and relations
when “motor-babbling” with primitive actions.

The task of the learning mechanism is to learn the pre-
conditions and effects Prea and Effa for each a ∈ A, from
data generated by an agent performing a sequence of ran-
domly selected actions in the world and observing the re-
sulting states. The sequence of states and action instances
is denoted by s0, a1, s1, ..., an, sn where si ∈ S and ai
is an instance of some a ∈ A. Our data consists of ob-
servations of the sequence of states and action instances
s′0, a1, s

′
1, ..., an, s

′
n, where state observations may be noisy

(some φ ∈ si may be observed as K¬φ ∈ s′i) or incomplete
(some φ ∈ si are not in s′i). Action failures are allowed:
the agent may attempt to perform actions whose precondi-
tions are unsatisfied. In these cases the world state does not
change, but the observed state may still be noisy or incom-
plete. To make accurate predictions in domains where action
failures are permitted, the learning mechanism must learn

both preconditions and effects of actions.
Consider, for example, the dishwasher domain (shown in

Figure 1), a domain where an agent can load and unload a
dishwasher, switch it on, and check the status of the dish-
washer. In our examples we use a PDDL-like syntax to rep-
resent knowledge fluents and states. For a state where the
agent knows the dishwasher contains some dirty dishes, the
real world state could be:
(AND (status=dirty) (¬in washer dish1) (¬in washer dish2)

(in washer dish3) (isdirty dish1) (¬isdirty dish2)

(isdirty dish3) (in washer dish4) (isdirty dish4)).

From this the agent might observe the knowledge state:
(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2)).

A sequence of knowledge states and actions could be:
s0:(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a1:(load washer dish1)

s1:(AND Kv(status) K(status=dirty) K(in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a2:(switchon)

s2:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a3:(checkstatus)

s3:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2)

Kv(status) K(status=clean)).

Taking a sequence of such inputs, we learn action descrip-
tions for each action in the domain, such as in Figure 1.

Related Work
Knowledge-level reasoning is not a new idea (Newell,
1982), and the use of knowledge fluents like Kφ and K¬φ
has been explored as a means of restricting the syntac-
tic form of knowledge assertions in exchange for more
tractable reasoning, e.g., by avoiding the drawbacks of
possible-worlds models (Demolombe and Pozos Parra,
2000; Soutchanski, 2001; Petrick and Levesque, 2002).
Planners like PKS (Petrick and Bacchus, 2002, 2004) at-
tempt to work directly with knowledge-level models, sim-
ilar to those of knowledge fluents, while approaches like
(Palacios and Geffner, 2009) compile traditional open world
planning problems into a classical closed-world form, in the
process automatically generating knowledge fluents.

Only a few approaches to learning action models are capa-
ble of learning under either partial observability (Amir and
Chang, 2008; Yang et al., 2007; Zhuo et al., 2010), noise
in any form (Pasula et al., 2007; Rodrigues et al., 2010),
or both (Halbritter and Geibel, 2007; Mourão et al., 2010).
Some rely on prior knowledge of the action model, such as
using known successful plans (Yang et al., 2007; Zhuo et al.,
2010), or excluding action failures (Amir and Chang, 2008).
None explicitly support functions or knowledge fluents.

While the representation used in our previous work
(Mourão et al., 2012) does not support functions or the Kv
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(define (domain dishwasher)

(:predicates (in ?washer ?dish) (isdirty ?dish))

(:functions (status ?washer) = ?washstatus)

(:constants clean dirty)

(:action checkstatus

:parameters (?washer)

:precondition ()

:effect (Kv(status(?washer))))

(:action switchon

:parameters (?washer)

:precondition ()

:effect (¬Kv(status(?washer))))

(:action unload

:parameters (?washer ?dish)

:precondition (and Kv(status(?washer)) K(status(?washer)=clean) K(in ?washer ?dish))

:effect (and K(¬in ?washer ?dish) K(¬isdirty ?dish)))

(:action load

:parameters (?washer ?dish)

:precondition (K¬(in ?washer ?dish) )

:effect (and K(in ?washer ?dish)

(when (K(isdirty ?dish)) (Kv(status(?washer)) K(status(?washer)=dirty)))

(when (and ¬K(isdirty ?dish) Kv(status(?washer)) K(status(?washer)=clean)) (¬Kv(status(?washer)))))))

= status load isdirty

clean statusv arg1 arg2

¬in in ¬in

¬isdirty [D2] [D3] isdirty

1 2

1

2

1 21

2

Figure 1: A description of the dishwasher domain (left), and (right) a graphical representation of state s0 when combined with
the load action. The node representing the result of the status(?washer) function is labelled statusv .

operator, it could support knowledge fluents of the formKφ.
In this earlier work, each fluent φ was assigned one of the
values 1, −1 or ∗ which correspond to the Kφ, K¬φ and
¬Kφ/¬K¬φ defined earlier. However, the learning method
depended on the SSA to generate vector representations of
states. With the introduction of functions the SSA no longer
applies and the vector representation can no longer be used.

Our new approach depends upon coding world states (and
correspondingly, preconditions and effects) in terms of de-
ictic reference (Agre and Chapman, 1987). A deictic rep-
resentation maintains pointers to objects of interest in the
world, with objects coded relative to the agent or current
action. Previous work in learning action models has also
used deictic reference (Benson, 1996; Pasula et al., 2007)
because there are benefits in doing so: it reduces the size
of the state representation, by limiting the observations to
a small number of objects, and also permits generalisation
across different instances of the same action, as the obser-
vations are described in terms of the action and the agent
instead of specific objects.

Method outline
Our approach to learning knowledge-level action models is
based on the work of Mourão et al. (2012), but differs signif-
icantly in terms of the representation used and in the details
of the learning process. Real-world states are observed by
an agent as a knowledge state where each fluent φ(¬φ) is
observed as Kφ(K¬φ) and when Kf(c1, . . . , cn) = cn+1,
also Kv(f(c1, . . . , cn)). We represent these observations as
graphs where objects, known fluents and actions are nodes
in the graph, and edges link fluents to their arguments. The
prediction problem is then to determine which nodes in a

graph change as the result of an action. Our strategy is to
decompose the prediction problem into many smaller classi-
fication problems, where each classifier predicts change to a
single fluent of the overall state, given an input situation and
an action. After training the classifiers we derive planning
operators from the learnt parameters, using the same process
described by Mourão et al. (2012).

Central to the classification process is a measure of sim-
ilarity between states. Commonly, similarity comparisons
between graphs are performed using graph kernels which
implicitly map into another feature space; here we define an
explicit mapping of state graphs into a feature space, where
the mapping is calculated via a simple relabelling scheme.

The remainder of this paper is structured as follows. We
define deictic reference and show how it is used to create
the graphical representation of world states. Then we ex-
plain how we calculate a similarity measure for two states
based on deictic reference. The structure and operation of
the classification learning model is described, followed by
an explanation of how rules are extracted from the classi-
fiers. Finally, we give some experimental results and discuss
conclusions and future work.

Deictic reference
Deictic reference underlies a number of aspects of the learn-
ing process. The structure of the state observation graphs is
determined by the deictic terms of the objects in the state.
In turn, this means that the feature space mapping relies on
deictic reference to map objects with the same roles in an
action to the same points in the feature space.

In the deictic representation we use, we code objects with
respect to the action. Every action parameter is referred to
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by its own unique deictic term, corresponding to its position
in the parameter list. Constant values are also considered
to have their own deictic terms. Deictic terms referring to
other objects are their definitions in terms of their relations
with the action parameters and other objects.

Thus, similar to Pasula et al. (2007), a deictic term is a
variable Vi and a constraint ρi where ρi is a set of literals
defining Vi in terms of the arguments of the current action
and any previously defined Vj (j < i). Then an object has
a deictic term if it is an argument of the current action, or
it is related directly, or indirectly via other objects, to the
arguments of the action. For functions, every argument must
already have a deictic term in order for the function result to
have a deictic term.

Additionally, we add the constraint that for an object to
have a deictic term, it must be linked by a positive fluent
to either an action parameter, or another object which has
a deictic term (the positive link assumption). This addi-
tional restriction accounts for the open world representation
now in place (at the world level), avoiding deictic terms of
the form “the-object-not-under-the-object-I-am-picking-up-
and-not-on-the-floor”, which will not usually be unique and
seem counter-intuitive. Apart from the action parameters,
any object in a state may be referred to by several deictic
terms, and (unlike Pasula et al. (2007)) any deictic term may
refer to several objects in a state.

We say that an object has an n-th order deictic term when
n is the minimum number of relations relating the object to
an action parameter. Thus the parameters of the action have
zero-order deictic terms, while objects related to the action
parameters have first-order deictic terms.

For example, in the dishwasher domain (Figure 1), if the
action were (load washer dish1) in state s0, then
action parameters washer and dish1 would have deictic
terms arg1 and arg2, indicating their positions in the load
argument list. Relative to the (load washer dish1)
action, dish2 is referred to by deictic terms
x : ¬in(washer, dish2) and x : ¬in(washer, dish2) ∧
¬isdirty(x), but not x : ¬isdirty(x) alone. The dish2
node is labelled [dish2] to indicate that it represents all
objects with the same deictic terms as dish2.

State representation
We represent a knowledge state by a graph, where objects
(as deictic terms), known fluents, and the current action are
represented by nodes in the graph. Edges link fluents (or the
current action) and their arguments, and are labelled with the
argument position.

Both predicates and functions are represented by nodes
and are only present in the graph if known. However, for
functions additionally the result of a function f is repre-
sented by a special node fv , which denotes the deictic term
defined by the function. The actual value of the function
is linked to fv by an equality node. Thus, for example,
K(f(c1, c2) = c3) would be represented as in Figure 2.

The size of the graph is limited by restricting the deictic
terms to zero- or first-order terms only.1 Using only zero-

1Higher order terms are possible but are left to future work.

f

c1 c2 fv c3

=

1 2 3

Figure 2: Representation of K(f(c1, c2) = c3). c1,c2 and
c3 are represented by nodes labelled with their deictic terms
(here we assume they are constants). The function node f
has edges to nodes c1 and c2, indicating they are parameters,
and also an edge connecting to the result node fv . fv and c3
are linked by an equals node, indicating that the value of
f(c1, c2) is c3.

order terms would be equivalent to working with a STRIPS
representation, as we would only consider parameters of the
action during learning. Here, we require first-order deictic
terms to represent functions, as the result of a function will
not usually be an action parameter. Figure 1 shows a graph
encoding the state s0 in the context of the (load washer
dish1) action, after converting the objects to deictic terms.

Calculating changes

Our classification model operates by taking a knowledge
state (as a graph) as input, and predicting which knowledge
fluents will change. Each training example must therefore
consist of a prior state, an action, and the changes resulting
from performing the action on the state.

We denote changes by creating a change graph, cre-
ated by annotating the prior state graph with additional
marker nodes (similar to Halbritter and Geibel (2007)).
Marker nodes have an edge linking to the fluent node which
changed. Given a prior and successor state, a marker node
Mφ is added to the change graph for every fluent φ which
changes real-world value between the states. A marker node
MKφ is added for every fluent which changes knowledge
state between the states. During training, each classifier
will learn to predict the presence or absence of a single
marker node in the graph (i.e. whether the associated flu-
ent changes).

It is straightforward to determine the marker nodes to add
to the change graph, given prior and successor state graphs.
For any fluent φ in the prior state, if ¬φ is in the successor
state, we add Mφ. If neither φ nor ¬φ are present in the suc-
cessor state we addMKφ. Similarly, any fluent present in the
successor state but not the prior state is added to the change
graph, along with MKφ. For example, for the load action
in Figure 1, the changes to the state would be indicated by
a node M= linked to the (statusv = clean)node and a
node Min linked to the (¬in arg1 arg2)node.

Crucially, because the successor state immediately fol-
lows the prior state, matching fluents can be determined by
matching the actual objects which were arguments of the
fluents. In general such matching is not possible between
states. We return to this point when describing the structure
of the learning model.
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Figure 3: Valid (a) and invalid (b) subgraphs of the state
graph in Figure 1.

Comparing states using deictic reference
The classification process requires a measure of similarity
between states. In classification problems, graphical inputs
are usually mapped either implicitly — via graph kernels
— or explicitly into a feature space where the inner product
provides a similarity score.

A feature space where the features are all possible con-
junctions of fluents would seem to be ideal for learning ac-
tion preconditions which are arbitrary conjunctions of flu-
ents. However, similarity calculations in this space are un-
likely to be tractable as it is closely related to the subgraph
kernel (mapping graphs to the space of all possible sub-
graphs), known to be NP-hard (Gärtner et al., 2003), and
contains the feature space of the DNF kernel (Sadohara,
2001; Khardon and Servedio, 2005), which cannot be used
by a perceptron to PAC-learn DNF (Khardon et al., 2005).

Following Mourão et al. (2012) we therefore work with
the space of all possible conjunctions of fluents of length
≤ k for some fixed k. The space is further restricted so that
in every conjunction, every object must have a valid deictic
term depending only on fluents in the conjunction. This re-
striction avoids learning meaningless preconditions where
variables in the preconditions are undefined e.g., action
a(x, y) with precondition p(z). Also, it forces the similarity
comparison to account for the roles of objects (as defined by
their deictic terms) by mapping objects in different states,
but with similar deictic terms, to similar sets of features.

We define an explicit mapping into this space, creating a
(sparse) feature vector. Each element of the vector corre-
sponds to a conjunction of up to k fluents present in the state
graph, subject to the restriction that every object has a valid
deictic term depending only on fluents in the conjunction.
E.g. considering subgraphs of the dishwasher state shown in
Figure 1, Figure 3a would be valid but not Figure 3b. The
value of each element in the vector is the number of occur-
rences of the corresponding subgraph in the state graph.

The feature vector can be constructed via a labelling
scheme similar to the process used in some graph kernel cal-
culations (Shervashidze et al., 2011). First we label object
nodes with either their position in the action parameter list,
or their type if they are not listed in the action parameters.
Next we identify the set of core fluents, whose arguments
are contained within the set of action parameters. By defini-
tion, every argument of a core fluent has a deictic term, and
so any conjunction of core fluents will be valid.

For each conjunction C of i core fluents (1 ≤ i ≤ k),
we identify the set of supported fluents, whose arguments

are also arguments of either the action or a fluent in C. For
example, in Figure 3a, in is a core fluent and isdirty is a
supported fluent. Every argument of a supported fluent will
have a deictic term depending only on fluents in C. Now we
create all possible conjunctions of supported fluents of size
k − i or fewer, and combine each with C in turn to give C ′.

We convert each fluent in C ′ to a string encoding the flu-
ent, the argument positions and their ordering. E.g. (in
arg1 dish) could convert to “in1(arg1)2(dish)”. (Note
that here “dish” is a type.) Next we sort the fluent strings and
concatenate them to give a unique string representing C ′.
This string is looked up in a lookup table mapping strings
to feature vector locations. If the string is not found in the
lookup table, we add a new entry with value 1 to the feature
vector and a matching entry in the lookup table. Otherwise
we increment the existing entry in the feature vector.

Structure of the learning model
Using the state graphs defined above, the structure of the
learning model can be defined. Given a state s ∈ S and
an action a ∈ A, the model predicts the successor state s′.
Equivalently, the set of fluents which change between s and
s′ — the deltas — can be predicted. Our strategy is to use
multiple classifiers where each classifier predicts change to
one or a small set of fluents of the overall state, given an
input situation and an action.

Such a structure requires a classifier for each possible flu-
ent node in any state graph. Then given a state graph, we
predict the effect of an action by predicting whether each
fluent node in the graph changes or not. The conjunction of
all the predicted changes is the predicted effect of the action.
For example, in Figure 1, consider the following fluents:

1. (¬in arg1 arg2)
2. (¬in arg1 [dish2])

where [dish2] = {x : ¬in(arg1, x) ∧ ¬isdirty(x)}
3. (in arg1 [dish4])

where [dish4] = {x : in(arg1, x) ∧ ¬isdirty(x)}
4. (¬in arg1 [dish5])

where [dish5] = {x : ¬in(arg1, x)}
Fluents (1) and (2), present in the graph, and (3), not

present, but possible, would each have their own classifier.
Additionally we must consider fluents with more general de-
ictic terms, such as (4), which includes both (1) and (2). The
classifier associated with (4) predicts whether fluent (in
arg1 x) changes for any x not in arg1, whereas the classi-
fiers associated with (1) and (2) predict whether (in arg1

x) changes for x which is the second argument of the load
action (1), or for x which is not in arg1 and not dirty (2).
However, although there are many possible fluent nodes, in
practice most of the associated classifiers are not instanti-
ated by our algorithm, resulting in a default prediction of no
change for the corresponding fluents.

Our training algorithm therefore has two tasks. First, it
manages sets of classifiers, in terms of deciding which clas-
sifier to train on which data, and when to instantiate new
classifiers. Second, it trains the classifiers. Likewise, at pre-
diction our algorithm must select which classifiers to use,
and then generate a prediction from them.
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As in the work of Mourão et al. (2012), we will use voted
perceptron classifiers (Freund and Schapire, 1999), since
they are known to be robust to noise and efficient to train.
We use the standard procedures for training of, and predic-
tion from, individual classifiers. In our algorithm descrip-
tions below, train(c, x, y) denotes updating classifier c with
training example (x, y), and predict(c, x) returns classifier
c’s prediction of the class of example x. We now describe
how classifiers are managed during training and prediction.

Initialisation
The algorithm is provided with the set of action labelsA, the
set of predicates P , the set of functions F , and the number
and types of their arguments. In the following description
we treat any function f(c1, . . . , cn) = cn+1 as two predi-
cates: f ′(c1, . . . , cn, fv) and equals(fv, cn+1), correspond-
ing to the graph structure defined earlier, and contained in
an extended set P ′. The learning algorithm maintains a set
of classifiers Ca,p for each action a and predicate p. Initially
eachCa,p is empty and is populated as training examples are
seen by the algorithm. Every member of Ca,p will be a clas-
sifier cm associated with a different tuple of deictic terms
m which are valid arguments of p. For example, in our
dishwasher domain, one of the sets of classifiers would be
C(load,in): the set of classifiers which predict changes to the
in predicate when the load action is performed. A mem-
ber of C(load,in) could be c(arg1,{x:in(arg1,x)∧¬isdirty(x)}).

Training
Each training example consists of a state description xi, an
action ai, and a successor state x′i. Both state descriptions
are converted into state graphs and a change graph δi, based
on the action ai as previously described. The marker nodes
from the change graphs will provide target values.

The training process is outlined in Algorithm 1. In
the main loop we identify all the fluent nodes p(m)
in a training example x (fluentNodes(x)) and determine
whether each fluent changed in the example, by checking
whether the node has a marker node in the change graph δ
(isFluentInDelta). If the fluent changed, the target value y
is set to 1, otherwise it is set to 0. Then updateClassifiers
is called for each fluent node.

In updateClassifiers , classifiers which match p(m) are
trained, and new classifiers may be instantiated if neces-
sary. Recall that in principle there is one classifier for ev-
ery possible fluent, each initially predicting no change to
the fluent. ’No-change’ classifiers are not actually instan-
tiated since no prediction function is needed. During train-
ing, updateClassifiers must decide which classifiers to up-
date, i.e., first, whether to instantiate a classifier, and second,
which classifier(s) to train. There is also a secondary goal of
minimising the number of instantiated classifiers to keep the
calculation tractable.

Thus given any p(m) we first seek classifiers which pre-
dict for p(m) and then update them with the training exam-
ple (x, y). A classifier predicts for p(m) if it is labelled with
p(m) (an exact match) or labelled with p(m′) where m′ is
equal to or more general than m (a subset match). For ex-
ample, if q({x : a(x) ∧ b(x)}) is a unary predicate then

Algorithm 1 Training

Require: training egs (x1, a1, δ1), ..., (xn, an, δn) ∈ X
Ensure: trained classifiers

1: Ca,p := ∅ ∀a ∈ A,∀p ∈ P
2: for all (x, a, δ) ∈ X do
3: for all p(m) ∈ fluentNodes(x) do
4: y := isFluentInDelta(p(m), δ)
5: Ca,p := updateClassifiers(x, y,m,Ca,p)

function updateClassifiers(state graph x, target y, deictic
terms m, set of classifiers C)

1: exactMatch := false; intersectMatches := ∅
2: for all c ∈ C do
3: if subsetMatch(c,m) then
4: call train(c, x, y)
5: call updateReliability(c)
6: if exactMatch(c,m) then
7: exactMatch := true
8: else if intersectMatch(c,m) then
9: intersectMatches := intersectMatches ∪ {c}

10: if (y 6= 0) ∧ (exactMatch = false) then
11: C := C∪createClassifiers(x, intersectMatches,m)
12: return C

q({x : a(x)}) is more general, and so whenever the for-
mer changes, so will the latter. Thus whenever we update
cq({x:a(x)∧b(x)}) we must also update cq({x:a(x)}). Formally,
we define that if classifier c predicts change for p(n):
• exactMatch(c,m) when n = m;
• subsetMatch(c,m) if the i-th term in n is a subset of the
i-th term in m ∀i;

Any classifier c ∈ Ca,p for which subsetMatch(c,m) holds
is trained on the training example (x, y), and a measure of
its reliability updated (see below).

Next we consider whether any classifiers should be instan-
tiated. There are two cases where instantiation is required.
If there was no exactly matching classifier for p(m) and
in our training example p(m) changed, then cp(m) should
be instantiated. If p(m) did not change then the original
‘no-change’ classifier is still correct. Additionally, the de-
ictic terms seen in training examples may be more specific
than the underlying rules. For example if a and b are de-
ictic terms we may only ever see changes to p(a, arg1) or
p(b, arg1) but the true change could be to p(a ∩ b, arg1).
To predict change to the correct set of fluents we therefore
need to consider more general deictic terms, and so when-
ever a new classifier is instantiated, classifiers for tuples of
more general deictic terms are also instantiated. However, it
is undesirable to add a classifier for every possible tuple, so
only those supported by the data are added. These are cases
where the deictic terms of p(m) intersect with deictic terms
of p(n) already seen in the data. Such p(n) can be found by
considering the terms of previously instantiated classifiers.

Formally, if classifier c predicts change for p(n):
intersectMatch(c,m) if the i-th term in n intersects the i-th
term in m ∀i. A tally is kept of exact matches and intersect
matches for p(m), and if cp(m) in instantiated, so are classi-
fiers for all the intersecting cases (createClassifiers).
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Algorithm 2 Prediction

Require: Unlabelled instance (x, a), model parameters
Ca,p

Ensure: Prediction δ
1: δ = ∅
2: for all p(m) ∈ fluentNodes(x) do
3: if getPrediction(Ca,p, x,m) = 1 then
4: δ = δ ∪ {p(m)}

function getPrediction(set of classifiers C, state graph x,
deictic terms m)

1: r := 0, y := 0
2: for all c ∈ C do
3: if subsetMatch(c,m) and r < getReliability(c)

then
4: y := predict(c, x)
5: r := getReliability(c)
6: return y

Reliability and Prediction

The algorithm maintains a reliability score for each classi-
fier (updateReliability), used during prediction to select the
best classifier. The reliability of a classifier is calculated as
the fraction of predictions made which were correct during
training. We also maintain the null reliability, the reliability
which would have been achieved if this classifier had always
predicted no change. The null reliability score is thus the
fraction of training examples where there was no change.
In noisy situations, the null reliability may be higher than
the classifier reliability, indicating that many training exam-
ples were noisy. In this case, predicting no change gives
better results than using the classifier’s predictions (on the
training set). During prediction, getReliability returns ei-
ther the classifier reliability or the null reliability, whichever
is higher. If the null reliability is higher predict will always
predict no change, instead of the classifier’s prediction. (Ad-
ditionally, although not used here, low reliability classifiers
can be deleted if the number of classifiers grows too large.)

At prediction, given a test example x, each fluent node
p(m) of x is considered in turn and a search for matching
classifiers is performed. If no classifiers are found then the
model predicts no change for the fluent p(m). If exactly one
classifier is found then its prediction is used, and if there are
multiple matching classifiers, the classifier with the highest
reliability score is used.

Learning planning operators

Once the classifiers are trained, planning operators can be
derived using the approach of Mourão et al. (2012). First,
rules are extracted from individual classifiers. Since each
voted perceptron classifier predicts change to a single flu-
ent, this results in a set of candidate preconditions for each
candidate effect. Second, the candidate preconditions and
effects are combined via a heuristic merging process to pro-
duce planning operators. These steps are outlined below.

Algorithm 3 Rule extraction

Require: Positive support vectors SV +

Ensure: Rules R = {rulev : v ∈ SV +}
1: for v ∈ SV + do
2: child := v
3: while child only covers +ve training examples do
4: parent := child
5: for each fluent node in parent do
6: flip node to its negation and calculate weight
7: child := child whose parents have least weight dif-

ference
8: rulev := parent

Extracting rules from individual classifiers
Extracting rules from individual classifiers in the graphical
case is a straightforward reapplication of the approach used
for STRIPS vectors (Mourão et al., 2012). A key point is
that the decision function of the voted perceptron is a func-
tion of the set of support vectors identified during learning,
where the set of support vectors is some subset of the set of
training examples.2

Rules are extracted from a voted perceptron with kernelK
and support vectors SV = SV +∪SV −, where SV + (SV −)
is the set of support vectors whose predicted values are 1
(−1). Value 1 means the corresponding fluent changes, and
−1 means there is no change. The positive support vectors
are each instances of some rule learnt by the perceptron, and
so are used to “seed” the search for rules. The extraction
process aims to identify and remove all irrelevant nodes in
each support vector, using the voted perceptron’s prediction
calculation to determine which nodes to remove.

We define the weight of any possible state graph x to be
the value calculated by the voted perceptron’s prediction cal-
culation before thresholding. The basic intuition behind the
rule extraction process is that more discriminative features
will contribute more to the weight of an example. Thus the
rule extraction process operates by taking each positive sup-
port vector and repeatedly deleting the fluent node which
contributes least to the weight until some stopping criterion
is satisfied. This leaves the most discriminative features un-
derlying the example, which can be used to form a precon-
dition. This algorithm is detailed in Algorithm 3.

Combining rules into planning operators
Finally we combine the rule fragments ((precondition,effect)
pairs) resulting from the rule extraction process into
planning operators. For each action the process de-
rives a rule (grule, erule) from the set of rules R =
{(g1, e1), . . . , (gr, er)} produced by rule extraction, ordered
by decreasing weight. The process first initialises grule to
the highest weighted precondition in R and sets erule = ∅.
The rule is then refined by combining it with each of the re-
maining per-fluent rules in turn, in order of highest weight.

Combining rules involves merging the graphs encoding
the preconditions, as well as the markers encoding the ef-
fects, into a new candidate rule. After merging, a simplifica-

2Note that support vectors are therefore state graphs.
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tion step removes unnecessary fluents in the preconditions
and effects by testing the coverage and weight of the can-
didate rule without each new fluent. Then the new rule is
accepted if its F-score on the training set is within some tol-
erance of the F-score of the previous rule on the training set.
Lastly the rule is translated into PDDL or some variant.

Experiments
We evaluate our approach by learning planning operators in
a real robot domain, whose underlying model is defined at
the knowledge level. We compare the F-scores for predic-
tions made by both the learnt planning operators and un-
derlying classification model with predictions made by the
“gold-standard” domain description: the original specifica-
tion of the behaviour of the robot.

The data used for training and testing was generated from
logs of the JAMES robot bartender system, recorded dur-
ing a drink ordering scenario in which human subjects were
asked to order drinks from the robot. State descriptions
were generated by the system’s state manager, based on real-
world sensor data (vision and automatic speech recognition),
interleaved with the names of planned actions generated for
the goal of serving all agents. In total, 93 interactions were
recorded for 31 human users. Each interaction involves ap-
proximately 5-10 robot actions.

The robot bartender domain description is at the
knowledge-level, and several actions require functions in
their definitions. One action is of particular interest:
ask-drink, where the robot asks a human customer for
their order. If successful, ask-drink has the effect that
the robot now knows the value of the customer’s requests
(Kv(request ?x)). Although ask-drink will also re-
sult in the robot knowing the actual drink requested (e.g.
K(request(?x) = water)) this is only useful at run-
time, whereas Kv(request ?x) is needed at plan-time.
Furthermore, because ask-drink involves accurately in-
terpreting the user’s chosen drink, it is particularly prone to
failure. Therefore it is of additional interest to investigate
how well this action is learnt.

Results
A ten-fold cross-validation procedure was used to test the
performance of the learning model, and was repeated across
different numbers of training examples to assess how many
examples would be needed to learn an adequate model. The
performance was measured by considering the fluents which
the model predicted would change versus the fluents which
did change, and calculating the F-score, the harmonic mean
of precision and recall (true positives/predicted changes and
true positives/actual changes, respectively).

The results were compared to the predictions made by
the gold-standard model. In Figure 4 we show F-scores for
action predictions made by the classifiers; by rules derived
from the classifiers; and by the gold-standard model on data
from the robot experiment. As can be seen in the graph,
the rules extracted from the classifiers perform similarly to
making predictions directly with the classifiers, but with the
added benefit of providing action descriptions which can
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Figure 4: Results from the robot experiment: Mean F-scores
from ten-fold cross-validation for predictions from the clas-
sifiers, extracted rules and gold-standard action descriptions.

be used for planning. The F-scores for the classifiers and
extracted rules are not significantly different from the F-
score of the gold standard rules (noise in the domain means
that even the gold-standard rules cannot always predict the
changes which will or will not occur).

An example of an action description learnt for
ask-drink with 200 training examples is given below.
Fluents marked in italic do not exist in the gold standard do-
main description. Some fluents are also missing, all relating
to preconditions involving other agents which we currently
do not represent. However, the crucial Kv(request ?x)
effect is learnt.
(:action ASK-DRINK

:parameters (?x)

:precondition (AND K(transHistory RobotAckAttention ?x)

K(¬transHistory AgentOrdered ?x)

¬Kv(request ?x) K(closeToBar ?x) K(faceseen ?x))

:effect (AND (Kv(request ?x)

K(transHistory AgentOrdered ?x))))

Conclusions and Future Work
Our results show that we can learn knowledge-level planning
operators in a noisy robot domain. The approach we use
depends on decomposing the learning problem into many
small classification problems, using the deictic scope as-
sumption to constrain the problem. Deictic reference also
plays an important role in defining the representation for
functions and in the similarity calculations made by the clas-
sifiers. In future work we plan to test our approach in other
real or simulated knowledge-level domains. Another step
will be to use the learnt planning operators in an automated
knowledge-level planning system such as PKS (Petrick and
Bacchus, 2002, 2004).

Acknowledgements This work was partially funded by the
European Commission through the EU Cognitive Systems and
Robotics projects Xperience (FP7-ICT-270273) and JAMES (FP7-
ICT-270435).

30



References
Agre, P. E. and Chapman, D. (1987). Pengi: An implemen-

tation of a theory of activity. In AAAI, pages 268–272.
Amir, E. and Chang, A. (2008). Learning partially observ-

able deterministic action models. JAIR, 33, 349–402.
Benson, S. S. (1996). Learning Action Models for Reactive

Autonomous Agents. Ph.D. thesis, Stanford University.
Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001).

Planning in nondeterministic domains under partial ob-
servability via symbolic model checking. In Proc. of IJ-
CAI 2001, pages 473–478.

Bonet, B. and Geffner, H. (2000). Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS 2000, pages 52–61.

Demolombe, R. and Pozos Parra, M. P. (2000). A simple
and tractable extension of situation calculus to epistemic
logic. In Proc. of ISMIS 2000, pages 515–524.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell., 2, 189–208.

Freund, Y. and Schapire, R. (1999). Large margin classifica-
tion using the perceptron algorithm. Machine Learning,
37, 277–96.
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Abstract

Maintaining accurate maps for off-road route planning is an
ongoing, error-prone, and time-intensive process. Missing or
erroneous map information may result from glitches in trans-
lation of imagery data, from features not detectable in that
data, or from changes in the environment that have occurred
since the last update. These errors can lead to severely de-
graded planning performance, such as routes crossing areas
that are in reality impassible or excessively hazardous, or
routes that are much more costly in terms of time, fuel, or
human effort than they need to be. In this paper, we describe
G2I2, a map-based off-road route planner that learns correc-
tions to the model through comparison of planned routes to
the actual routes executed. Implemented using a field-tested
off-road route planning package as the underlying planning
engine, G2I2 modifies the performance of that engine by ad-
justing the input costs used by the planning algorithm. G2I2
is capable of learning both corrections to features in the cur-
rent model (e.g., adjusting the cost associated with walking
through waist-high grass), and corrections that encode fea-
tures not present in the model at all, by modifying traversal
costs based on geographic location.

1 Introduction
In this paper, we describe a specific approach to iterative
planning in the domain of off-road route planning, in which
the objective is to find a cost-minimal path from one point
to another. In iterative planning we are concerned with find-
ing a way to solve a succession of planning problems, im-
proving the system’s behavior over time.1 For example, this
improvement might come about through improved heuris-
tics, leading to more effective search of the space of pos-
sible plans, or through corrections or additions to the do-
main model used in planning. In this work, we take the lat-
ter approach, modifying the domain model based on differ-
ences between plans generated using the existing model and
“good” plans.

We have implemented our approach to iterative planning
for generating off-road routes in a system called G2I2. In

1As with many phrases of relatively recent coinage, “iterative
planning” has several interpretations, even within the computer sci-
ence community. The most recent articulation of the interpretation
used here of which we are aware was in a AAAI 2012 Spotlight
talk by David Smith (Smith 2012).

Section 2, we briefly discuss the route planning problem.
Section 3 presents the current implementation of G2I2. Sec-
tion 4 describes the learning model. The rest of the paper
presents a set of experiments undertaken and summarizes
the results obtained (Section 5), and discusses the implica-
tions of those results and the relationship of this work to
other approaches to learning planning models (Section 7).
Finally, we offer some concluding discussion in Section 7.

2 Route Planning

Path planning is an old and well-studied area of research. In
this paper, we are specifically interested in path planning as
applied to finding a way to travel from one physical loca-
tion to another, generally out-of-doors. To distinguish this
from other types of path planning such as maze solving, or
moving physical objects through an occluded space (e.g., the
piano movers’ problem), we will refer to this as route plan-
ning.

Previous work has resulted in implemented systems that
plan routes in spaces that correspond roughly to on-road and
off-road scenarios. The former are most often graph-based
planners. These kinds of planners are sufficiently well-
understood to have been freely available via the Internet for
at least the past decade, for example in Google maps. Off-
road planners span a wider range, because there are signif-
icant qualitative differences between different types of ter-
rain. Heuristic search using some form of remaining dis-
tance to the goal is a common technique. This works well in
domains that are highly-obstructed, but not so obstructed as
to be mazes.2

Route planning is a model-based process: it uses a map
of the area, which may consist of a graph of streets, paths,
corridors, and so forth, or as a description of the terrain on
a pixel-by-pixel basis. For the work reported in this paper,
the map is a given: it may contain numerous local errors, but
the general structure of the area is accurately described. Due
both to the presence of the map and to the availability of GPS
information, localization is assumed: any route reported by
a vehicle will be accurate within a reasonable error bound.

2It also works well in very open terrain, but that is less remark-
able: so do much simpler techniques.
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3 G2I2
Map-based route planning presents the classic difficulties
faced by any model-based implementation. Maintaining ac-
curate maps for off-road route planning is an ongoing, error-
prone, and time-intensive process. Missing or erroneous
map information may result from glitches in translation of
imagery data, from features not detectable in that data, or
from changes in the environment that have occurred since
the last update. These errors can lead to severely degraded
planning performance, such as routes crossing areas that are
in reality impassible or excessively hazardous, or routes that
are much more costly in terms of time, fuel, or human effort
than they need to be. The terrain-based cost maps used for
route planning share another common problem with model-
based systems: there may be costs or map features that
are very important to the human user, which would be pro-
hibitively difficult to represent and keep current.

Ground Guidance ISK Integration (G2I2) addresses these
issues by exploiting the complementary strengths of previ-
ous experience and knowledge-based planning. The pres-
ence of maps means that some form of plan can be generated
even for areas that have never been previously traversed.
Previous experience in the form of executed routes can be
used to correct errors in those maps, and additionally to pro-
vide context not available in the maps at all, for example
sensitivity to time-of-day or the prevailing weather patterns,
both of which might significantly affect routing choices.

The user specifies a starting point and a destination, the
intended mode of travel (on foot, or using any of a selection
of vehicles), and a desired cost function, for example that the
route be the fastest possible, or the most concealed, or any
of several other criteria, some of which are only possible
due to the information on previous execution maintained by
G2I2. For example, one common criterion for military route
planning in hostile environments is the desire not to use the
same route too frequently or too predictably, so as to avoid
some form of pre-positioned attack.

Figure 1: G2I2 functional architecture

The functional architecture for G2I2 is shown in Figure 1.
G2I2 maintains a database of previous route executions, ma-
nipulating the domain model used by a commercial off-road
route planning system called Ground Guidance. 3 Ground
Guidance plans using a variable-resolution, modified A∗

search over an annotated map. This map is constructed using
utilizing aerial photographs, land cover maps, digital eleva-
tion models (DEMs), and road data to plan optimal routes

3http://primordial.com/index.php/products/ground-guidance

in mixed and urban terrain. Ground Guidance is called as
a subroutine for every planning operation. These calls are
made with varying cost maps and cost functions, producing
differing results. Ground Guidance is additionally used to
store and present map information.

4 Learning
G2I2 performs two learning tasks based on two sources of
data. The first source of data is historic tracks. These tracks
are presented to G2I2 as an unsupervised learning problem,
used to build an initial set of preferences for features. This
is very similar to the task addressed in (Silver, Bagnell, and
Stentz 2008), where a training set of tracks assumed to be
optimal (defined as the minimum summed cost) are used to
induce a mapping from pixel labels in image data to cost
values which are then used in planning. One difference is
that we are dealing with a larger feature space, including
time-varying meta-data associated with specific routes such
as weather, as well as slope information that is not readily
detectable in single overhead visual images.

The current implementation of G2I2 includes an elemen-
tary approach to inducing these costs, ignoring pixel features
other than location. In other words, a given location is more
attractive if some previous path has traversed it, rather than
the more general approach where location features such as
terrain type or slope are mapped to a traversal cost. We are
currently in the process of generalizing this learning process,
with specific attention to dimensionality reduction, moti-
vated both by the large number of features (i.e., types of
meta-data) associated with each pixel, and an intuition that
the number of dimensions required for learning an effective
mapping is much smaller.

The second learning task encompassed by G2I2 is the one
which is the main thrust of this work. Based on the com-
parison of route plans as planned by G2I2, with the routes
as executed, G2I2 further adjusts pixel traversal costs, both
based on pixel meta-data, and based on location. The latter
is significant because it allows the system to learn to avoid
areas for reasons not represented by the map. Sometimes the
human choice to traverse or avoid a given area will be either
due to unmodeled features (the known presence of a specific
threat, e.g.), or due to errors in the maps provided, such as a
bridge that is no longer present.

This is a classic example of a supervised learning prob-
lem, and we address it as such. In this system, the routes are
executed by humans. We assume the human route executors
are taking the route they do because it is the best route for
them, that is, the executed route has the lowest cost accord-
ing to the route executor’s cost function. If this route differs
from the planned route, this is then because the planner cal-
culated a cost for the planned route that was too low and the
cost placed on the executed route by the planner is too high.
We therefore alter the costs used by the route planner. This
learning is performed online, improving the resulting gener-
ated plans with the feedback from each executed route.

The problem has some novel properties, including the
presence of numerous, qualitatively very different types of
features in the training instances presented. These are dis-
cussed in detail in our presentation of the application do-
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main, in Section 2. We treat this as a parameter estimation
problem, rather than as a pure classification problem. In-
stances (pairs of routes) are not used to infer a classifica-
tion of routes, but to adjust an underlying set of costs used
to compute a value for each instance. The result is a form
of learning for planning in which what is being learned is
not improved heuristics, but corrections to the underlying
model. Previous work on similar kinds of learning includes
Learning by Demonstration such as surveyed in (Argall et
al. 2009), and Maximum Margin Planning (Ratliff, Bagnell,
and Zinkevich 2006).

The assumption is that where the executed route diverges
from the route as planned, that indicates some difference be-
tween the map representation of the territory and the terri-
tory itself. These differences can be separated into local-
ized and non-localized phenomena. Localized phenomena
are tied to a specific location, such as an obstruction along
a path, a bridge out, or a location being mischaracterized
in terms of terrain type or slope value. Non-localized phe-
nomena include such things as incorrect costs on specific
land cover types (perhaps driving a truck through waist-high
grass is more costly than currently modeled) or slope pref-
erences. In the results reported in this paper, we evaluate
G2I2’s ability to adjust its route planning through the modi-
fication of both localized and non-localized costs.

In G2I2, the form of learning being done is a modifica-
tion of the cost of movement at specific locations on the
map. This is not computing expected distance to a goal: the
computed costs can be (and are) applied in planning numer-
ous routes, for points located at different points on the map.
This cost has several components, some purely geographic,
but most related to features associated with the map as meta-
data, for example the kind of land cover or the slope at that
point. These costs are modified as well by additional infor-
mation associated with the plan itself, such as the mode of
transportation to be used, and the time and weather during
which the route will be executed.

Figure 2 shows the cost model used in G2I2. Dashed lines
indicate features not presently calculable in Ground Guid-
ance. Map, vehicle, and other data combine to form a fea-
ture vector. The combination of features is available to a
variety of heuristic cost functions, each estimating the cost
of traversing a given area based on the feature vector. These
heuristic cost functions produce the component costs, such
as speed or concealment, for the given vehicle traveling over
the given map. These costs can be combined into a weighted
sum, which provides the cost of movement at a point used
by the search algorithm in Ground Guidance.

We represent the cost cp of traversing a specific location
p on the map as a local multiplier cl times a sum of individ-
ual non-local feature costs f1...fn with coefficients c1...cn
at that point:

cp = cl

n∑

i=1

cifi (1)

this cost function works for the current feature set, but will
be revisited with additional features as noted in Section 7.
The total cost of a route R is the sum of traversal costs for

each location (pixel) along the route:

cR =

Rend∑

i=Rbegin

ci (2)

The form of learning performed by G2I2 is described in
Algorithm 1, exploiting the notion that the route planner pro-
duced a route with too high a total cost. For both localized
and non-localized costs, learning proceeds through a form
of gradient descent.

Lines 2-8 find the proportions of features to be adjusted,
using a minimum of 1% for any feature. This minimum is
enforced to constrain the updates to reasonable values. Fea-
tures present in the same proportions in each route are not
adjusted. Features present in differing proportions are ad-
justed based on their relative proportion in the planned and
executed routes. This proportion is stored in the map in
line 6. Line 9 finds the value of a multiple for each fea-
ture that causes the executed route to have the same cost as
the planned route when computed with the product of the
initial feature cost and the feature proportion, with all other
costs held constant. Using a multiple of the features’ relative
proportions as the basis of a cost update makes the planned
route more expensive and the executed route less expensive.

When there is no cost update that renders the cost of the
actual route lower than the planned route, such as is the case
where the actual route traverses a longer path over a sin-
gle, same feature found in the planned path, the local feature
costs are updated instead. An update for the local feature
costs is generated and returned, as shown in lines 10-14.
Here the update doubles the cost of the local area where the
routes differ.

When a cost update can be found, lines 15-17 store those
updates, which are the feature proportions scaled by the mul-
tiplier found in line 9. These replace the initial, unscaled
proportions originally stored on line 6. Line 18 totals the
sum of the updates. If the total update to all features exceeds
some threshold, indicating a radical departure from the prior
costs, local feature costs are updated instead in lines 19-22.
Choosing this threshold is an open issue, but the intention is
to not allow a single pairing of routes to drastically alter the
the feature costs. Line 23 returns a map of non-local feature
cost updates or the local update weight if the threshold was
exceeded.

Localized costs are adjusted through the addition of “cor-
dons” that adjust the cost of movement for specific locations
along routes. Due to the manner in which the underlying
Ground Guidance planner operates, these localized costs are
a multiplier upon the sum of non-local feature costs. Be-
cause localized differences necessarily exist when any dif-
ference in routes exists, these are treated specially. If no
update to non-local costs can cause the planned route’s cost
to exceed that of the executed route, local costs are altered.4
In the case that the updates are very large or cannot be found,

4In other words: if there is no explanation for the difference in
routes in terms of the pixel meta-data, then we assume that there is
some unmodeled feature of those particular locations that explains
it.
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Figure 2: G2I2 Cost Model

Data: Planned route P , Executed route A
Result: Update map M(f, u) mapping feature f with

update u
1 begin
2 for f in union(P.features, A.features) do
3 fp ←− max(percentage of P containing f , 1)
4 fa ←− max(percentage of A containing f , 1)
5 if fp 6= fa then
6 M(f)←− fp/fa
7 end
8 end
9 Solve for x > 0 such that for each feature f costs

scaled by xM(f) causes costP = costA when
calculated with the feature costs costfxM(f).

10 if For any feature, no such x exists then
11 M.clear
12 M(local)←− 2
13 return M
14 end
15 for f in M do
16 M(f)←− xM(f)
17 end
18 U ←− sum of all u in M(f, u)
19 if thresholdhigh < U then
20 M.clear
21 M(local)←− 2
22 end
23 return M
24 end

Algorithm 1: Calculate Cost Update

as would be the case when the non-local features are largely
the same but the executed route takes a longer path, the cost
along the divergent portion of the planned route is doubled.

Broadly speaking, segments of planned routes that are
avoided have their costs incrementally increased, while the
corresponding, divergent segments of the same route as ex-
ecuted will have their costs reduced. Using this form of
cost adjustment, the system can accommodate not only er-
roneous information in the map such as the bridge example
mentioned above, but unmodeled features. So long as those
features are tied to particular locations, systematic attrac-
tion to or avoidance of those locations will over time result
in plans that preferentially traverse or avoid those areas as
well.

In the results reported in Section 5, the non-localized cost
being updated is the land cover cost. As there are many
types of traversable land cover, there are numerous features
related to land cover in the feature vector for a single route
(because the route may cross multiple land cover types). Be-
cause of limitations in the version of Ground Guidance used
at the time of the experiments, to determine which costs in
the land cover vector need to be updated, strict exclusion
of land cover types between the two paths is used with fixed
updates, opposed to relative percentages. If the planned path
includes forest but no fields, while the actual path includes
fields but no forest, then the cost to traverse fields will go
down and the cost to traverse forests will go up.

Figure 3 shows an overlay of cost differences between
base and learned costs to traverse different parts of the map,
based on a learned correction to costs for different kinds of
land cover. Areas of red indicate the learned cost is higher,
while areas of green indicate lower cost. Color saturation
indicates the relative difference in costs. White indicates no
cost difference, and black is an area that is impassible in both
cost models.

Other non-localized costs can be updated in the same way,
adjusting the heuristic cost functions to yield an altered cost
to areas that contain the non-local cost in the learned situa-
tion. If pairs of planned and actual paths indicate that, for ex-
ample, paths over areas of lower slope are consistently taken
over planned routes on higher slope, the costs of traversing
high slope areas will be increased and the costs of traversing
low slope decreased.
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Figure 3: Terrain cost difference between base costs and
learned costs

5 Experimentation
We report on three different experiments. In the first, the
planner is initially presented with a map in which the costs
of movement for various land cover types are set to incorrect
values. More precisely, this “terrain cost” is a measure of
how fast a given type of vehicle can travel over that type of
land cover, as a percentage of the vehicle’s maximum speed.
The as-planned route is generated using this incorrect in-
formation. A corresponding as-executed route is generated
using the real information.5 Paired routes are generated se-
quentially, for randomly-chosen start and end points, up to
1.5 kilometers apart, within a 120 km2 area.

These costs are non-localized in the sense described
above: adjustments to terrain costs apply for that type of
land cover anywhere it appears on the map, not just along
this particular pair of routes. This type of learning will con-
verge, if it converges, only on a corrected set of relative ter-
rain costs. While there is information available on the to-
tal cost of both the planned and executed route in a given
pair, this information is local rather than global: small dif-
ferences in terrain costs may have disproportionate effects
on route costs for specific routes. There may be additional
errors in the learned costs for such things as terrain types
that occur rarely on the map and so appear infrequently in
route pairs. For this experiment, we defined “convergence”
to have occurred when fewer than 5% of the last N itera-
tions produced changes in any terrain costs. Since there are
10 different terrain costs that might individually be adjusted,
this means either that most of the costs are not changing, or
that some larger set of them are changing, but very infre-
quently. Using larger values of N results in fewer errors in
the final learned terrain costs, but converge more slowly. For
the results reported here, we used a value of 400.

As discussed previously, our ultimate objective is not cor-
rected terrain costs, but better routes, meaning in this case
routes that are closer to those generated using the real map
data. We evaluate this by comparing route pairs using the
final learned costs and the real data, measuring the distance
between multiple points along the two routes in a given pair.

5This cost information is “real” in a strong sense of that word:
the map we used is drawn from actual terrain and cost data for an
area in Afghanistan.

Terrain Type Initial Learned Actual
Deciduous Forest 0% 5% 5%
Developed, High 2% 2% 2%
Secondary Road 100% 75% 75%
Trail 33% 30% 33%
Open, Barren 7% 33% 33%
Open, Grassland 7% 4% 5%
Open, Shrub 7% 25% 25%
Stream, Intermittent 7% 20% 10%
Stream, Shallow 7% 2% 2%
General Agriculture 7% 4% 4%

Table 1: Experiment 1 initial, learned, and actual costs (per-
centage of maximum speed) over varying terrain types

This divergence is then averaged over a large number of
route pairs.

The second experiment evaluates the ability of G2I2 to
learn to generate improved plans in the presence of local-
ized map errors. For this experiment, we chose an subsec-
tion of the map including a river and several bridges across
it. One of these bridges is then rendered impassible in the
“real” data (as an edit to what is, in fact, real map data for
a part of Afghanistan), but not in the map provided for gen-
eration of as-planned routes. Route pairs are then generated
as in the first experiment, for randomly-chosen start and end
points on opposite sides of the river. Divergence between
the planned and executed routes in each pair in turn is used
to adjust the map cost. In this case, the cost being adjusted is
spatial: the specific area traversed by each route is affected,
rather than the cost associated with some form of meta-data
applying to multiple map locations.

The third experiment was designed to show that G2I2 can
learn in the presence of both localized and non-localized er-
rors. This experiment recapitulated the first experiment de-
scribed above, with the addition of the impassible bridge as
in the second experiment. The objective in this case was
to show that localized and non-localized errors can be ad-
dressed at least somewhat independently: the adjustment of
non-localized costs will converge in the presence of local-
ized errors, which can subsequently be dealt with as in the
second experiment. All routes for all three experiments were
generated using a Jeep as the mode of transport.

Table 1 shows results for the first experiment, which was
run five times to convergence as described above. Listed
are the changes to ten terrain features found in the area, of
which eight were altered from the initial values for generat-
ing actual routes. The table shows the results of the single
run that took the median time to converge, which was 4,000
iterations. Each of the five experiment runs took fewer than
6,000 iterations to converge.

Furthermore and as previously discussed, our primary in-
terest is not in how accurately the system learns these costs,
but in the degree to which planning improves. Table 2 com-
pares planning results using initial and learned costs. In
each case, the quality of the plans generated is evaluated
by computing the “divergence” between the planned route
and a route generated for the same endpoints using the real
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Initial Costs Value
Maximum Divergence 99.83%
Average Divergence 38.53%
Routes with Divergence 724
Learned Costs Value
Maximum Divergence 98.55%
Average Divergence 1.83%
Routes with Divergence 94

Table 2: Experiment 1 - Comparing the quality of routes
generated using initial and learned costs

data. Divergence is calculated by dividing the length of the
portion of the planned route that does not overlap the actual
route by the length of the entire planned route.6 Maximum
and mean divergence is computed using 1000 pairs of routes
between randomly generated start and end points.

The results summarized in Table 2 are very strongly pos-
itive. The number of routes for which there is any diver-
gence (i.e., any difference between the planned route and
the “real” one) drops dramatically, though it remains close
to 10%. The more striking result is the average divergence.
On average, less than 2% of the total extent of a given route
differed from the desired route. Considering that at least one
route out of 94 was essentially completely divergent, the av-
erage divergence for the other 93 routes was probably closer
to 1%.

Figure 4: Local cost updates in Experiment 2

In the second set of experiments, 100 pairs of routes are
planned from one side of the river to the other, using mod-
els that do and do not include the erroneously passable river
crossing. When the planned route differs from the actual
route, the portions that differ are overlaid with cordons that
alter the local cost. Figure 4 shows the resulting set of cor-
dons projected onto the map. The blue line through the cen-
ter of the image is the river, dull red are urban areas, dull
green are roads. Bright red areas, such as in the center cross-
ing the river, are areas of increased cost. These coincide with

6In other words, any difference between the planned and actual
route, regardless of how close it may be, is treated as an error.

Terrain Type Initial Learned Actual
Deciduous Forest 0% 6% 5%
Developed, High 2% 2% 2%
Secondary Road 100% 80% 75%
Trail 33% 30% 33%
Open, Barren 7% 33% 33%
Open, Shrub 7% 25% 25%
Stream, Intermittent 7% 10% 10%
General Agriculture 7% 4% 4%

Table 3: Experiment 3 initial, learned, and actual speeds
over varying terrain

the bridge that is out, as well as extending out along the road
leading to the bridge. Bright green areas, such as those both
north and south of the bridge that is out indicate reduced
cost.

The first five plans generated using the erroneous map at-
tempted to traverse the impassible bridge, resulting in a net
increase of the local movement cost in that area by a factor
of approximately 7.5. After those five, all other generated
routes avoided that bridge. At least for relatively simple fea-
ture errors, it is clearly the case that small numbers of train-
ing examples and relatively minor local cost modifications
can be effective at improving the routes generated.

This example is not entirely realistic. In the more likely
scenario, the actual route would traverse the planned route
towards the impassible bridge, diverging only when close
enough to the bridge to detect the problem. In the “exe-
cuted” routes generated by Ground Guidance using real data,
this knowledge was a given, so the actual routes avoided any
inefficiency. This is a minor issue, though: the actual route
will still not cross the bridge, thus the cost of crossing will be
increased. Once the cost of crossing the bridge has increased
enough (after 5 attempts, in this experiment), then the plan-
ner will use the other bridges, planning minimal-cost routes
to cross them, rather than heading for the original bridge.
The end result will be almost exactly the same in terms of
planner performance.

Our final experiment was intended to evaluate the degree
to which localized feature errors interfere with learning cor-
rections to non-localized costs. Similar to the second experi-
ment, the real map was modified to mark several choke point
areas on the map as impassible. After that, we proceeded to
learn terrain costs as in the first experiment, but over an area
of reduced size (10 km2), which eliminated the “Grassland”
and “Shallow Stream” terrain types.

Table 3 shows the initial, learned, and actual costs for this
experiment. The experiment was run several times, with
runs taking on average more iterations to converge than in
the first experiment. Each run converged within 10,000 iter-
ations. The table shows the results of the run that took the
median time to converge, which was 8,000 iterations. Con-
vergence in this experiment is slower than in the first exper-
iment, probably due to the presence of the localized feature
errors’ introducing differences in between actual and learned
costs that are not being adjusted in the learning process.

Table 4 compares planning results using initial and
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Initial Costs Value
Maximum Divergence 99.98%
Average Divergence 39.23%
Routes with Divergence 722
Learned Costs Value
Maximum Divergence 99.97%
Average Divergence 8.20%
Routes with Divergence 352

Table 4: Experiment 3 - Divergence of 1,000 paths planned
with learned and actual results

learned costs, with divergence computed as before. Maxi-
mum and mean divergence is again computed in each case
using 1000 routes between randomly generated start and end
points. The improvement is still significant, but notably
weaker than in the first experiment, probably because areas
that are marked impassible in the real data do not have their
costs adjusted in the learned map in this experiment.

6 Related Work
(Rogers, Fiechter, and Langley 1995) describes an on-road
navigation system that models the user’s preference for dif-
ferent classes of road, such as highway, freeway, arterial
roads, and local roads, along with other route features such
as driving time, distance, number of turns, and number of in-
tersections. In this system, the user is presented with a pro-
posed route, which can be accepted or rejected. Upon rejec-
tion, new routes are generated and the preference model up-
dated based on the ultimate route selected compared to those
rejected. Even beyond the restriction to on-road routes, this
approach is strictly simpler than ours. For example, the sys-
tem does not learn localized model changes. If the user
knows that a proposed freeway is under construction, the re-
jection of routes including this freeway will update the pref-
erence for all freeways, not just the one rejected.

In (Letchner, Krumm, and Horvitz 2006), a route plan-
ner called TRIP is described that uses previously executed
plans in the form of GPS tracks to inform future route gen-
eration. The previous trip information is used in two ways.
First, it is used to update speed information along roads for
the time at which the trip was recorded. Second, a user’s
inefficiencies are bundled into a preference factor for non-
optimal routes. TRIP then plans over route segments, dis-
counting previously-taken segments by the preference fac-
tor. This work is related to an earlier version of G2I2, which
used only historical track information, rather than integrat-
ing that information back into an annotated map as in the
current system.

There is a long history of research on learning planning
models, including filling in incomplete domain models, for
example (Gil 1992), and diagnosing and learning action def-
initions (Wang 1995).

Work specifically on learning to adjust a cost model for
route planning includes the work by (Ratliff, Bagnell, and
Zinkevich 2006) and (Silver, Bagnell, and Stentz 2008), dis-
cussed in Section 4. Work on probabilistic roadmaps such
as (Kavraki et al. 1996) is superficially similar, but works in

configuration space for holonomic robots, rather than terrain
traversal. Finally, our work can be differentiated from previ-
ous work on map learning such as SLAM7 in several ways.
Notably, we start with a map, albeit one that may contain
errors of various kinds, and localization is not part of the
problem.

7 Discussion and Future Work

Figure 5: Older GPS tracks along a straight road.

We have presented G2I2 as an instance of “iterative plan-
ning,” in which planning performance improves over time
specifically because of the results of executing previous
plans. There are other ways in which we can view plans
as objects subject to manipulation, rather than the end result
of the process. For example, in work left out of this paper
for reasons of both space and focus, we have implemented a
capability for generating multiple plans, either as a set of op-
tions roughly following a Pareto frontier in a multi-attribute
value space, or in the generation of interestingly different
plans against the same objective function.

Figure 6: Tracks filtered by time, removing outdated paths
from the map.

In this paper, we have shown that even a simple form of
learning will lead to improved route planning performance
over time, even in the presence of confounds such as un-
modeled local errors. However, the work presented here

7Simultaneous Localization And Mapping
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uses only a fraction of the available map features. We have
shown nothing regarding costs associated with slope, or with
computed meta-data such as “concealment.” More signif-
icant and of more interest for future research is the use of
meta-data associated with routes that is not directly associ-
ated with the map. In particular, there is a temporal dimen-
sion: the prevailing conditions when the route was executed
are relevant, and provide an additional source of data for
learning to improve planning.

A simple example of the use of temporal meta-data is il-
lustrated in Figures 5 and 6, both showing a set of GPS
tracks in Olathe, KS, gathered over a period of several
months. In Figure 5, there is a straight, vertical track through
the center of the map, showing the presence of tracks that
took that route. Figure 6 shows the same area, with tracks fil-
tered to exclude those before a specified date. In this figure,
the vertical feature is missing. The explanation is visible in
the satellite image on which the tracks are overlaid: There is
a curving road through the area in question, which was only
recently completed. Previously, the road ran straight north
and south.

As the number of features increases, the difficulty of the
learning problem increases rapidly. Correlations among fea-
tures may provide a means of reducing this complexity.8
Principal Component Analysis (PCA), and sparse variants
such as DSPCA (d’Aspremont et al. 2007), may be used to
reduce the dimensionality of the problem. These methods
are limited to linear combination of variables, but can be
extended to non-linear combinations through the use of ker-
nel methods (Schlkopf, Smola, and Mller 1996). Another
means of dealing with high dimensional problems would be
to use support vector machines. Specifically, support vec-
tor regression machines (Drucker et al. 1997) may support
finding a non-linear mapping of features to the underlying
cost function. At this early stage, the kinds of correlations
among features that may be required for effective dimen-
sionality reduction are unknown, which is why such a wide
range of techniques are potentially relevant.
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Abstract

An existential optimal landmark is a set of actions, one of
which must be used in some optimal plan. Recently, Karpas
and Domshlak (2012) introduced a technique for deriving
such existential optimal landmarks, which is based on using
shortcut rules — rules which take a path, and attempt to find
a cheaper path that achieves some of the propositions that the
original path achieved. The shortcut rules that were originally
used were of a limited form, and only attempted to remove
parts of the given path. One would expect that using more
sophisticated shortcut rules would result in a more informa-
tive heuristic, although possibly at the cost of increased com-
putation time. We show that, somewhat surprisingly, more
sophisticated shortcut rules, which are learned online, dur-
ing search, result in a very small increase in informativeness
on IPC benchmarks. Together with the increased computa-
tional cost, this leads to a decrease in the number of problems
solved, and leaves finding efficient, informative shortcut rules
as a standing challenge.

Introduction
Until not long ago, admissible heuristics were perceived as a
necessary component of optimal heuristic search. However,
recently, Karpas and Domshlak (2012) defined the notions
of global admissibility and global path-admissibility of a
heuristic. We denote the cost of an optimal path from s to the
closest goal by h∗(s). A heuristic h is globally admissible
if there exists some optimal solution ρ, such that for every
state s along ρ, h(s) ≤ h∗(s). A path-dependent heuristic h
is globally path-admissible if there exists some optimal solu-
tion ρ, such that for every prefix π of ρ, h(π) ≤ h∗(s0JπK),
where s0JπK is the state reached by path π. Both of these
properties are weaker than admissibility, but are still enough
to guarantee optimality of the solution. Karpas and Domsh-
lak described a globally path-admissible heuristic, based
upon existential optimal landmarks (∃-opt landmarks, for
short). An ∃-opt landmark is a set of actions, one of which
must be used in some optimal plan. These ∃-opt landmarks
are derived using the notion of intended effects of a path π
— the possible justifications for why π might be a prefix of
an optimal solution.

Because finding the exact set of intended effects is com-
putationally infeasible, a sound approximation of the in-
tended effects was used, which is based upon shortcut rules.

A shortcut rule can be viewed as a function that takes as its
input a path π, and attempts to find a cheaper path π′, which
achieves some of the facts that π achieves. Any subset of
facts that is achieved by π′ can not be an intended effect
of π, because there is a cheaper way to achieve it. There-
fore, any continuation of π into an optimal plan must use
some fact which was achieved by π, but not by π′. Thus,
Φ = s0JπK \ s0Jπ′K describes an ∃-opt landmark for π, con-
sisting of all actions which have a precondition in Φ.

While any type of shortcut rule can be used to derive ∃-opt
landmarks, Karpas and Domshlak implemented only short-
cut rules of a limited form, which attempt to remove some
actions from π, without trying to add any new actions to
replace them. One would expect that using more sophis-
ticated shortcut rules, which combine action removal with
adding actions, would result in a more informative heuristic.
Similarly to our work, the planning by rewriting paradigm
(Ambite and Knoblock 2001) is also based on shortcut rules.
However the rules considered by Ambite and Knoblock are
manually specified, while we attempt to learn these short-
cut rules automatically, online. One possible source for new
shortcut rules are plan improvement methods (Nakhost and
Müller 2010; Chrpa, McCluskey, and Osborne 2012). How-
ever, these are designed to be used as a post-processing step,
and are too slow to be used on every evaluated state. Addi-
tionally, these methods are based on a specified goal, while
shortcut rules try to find shortcuts which lead to some ∃-opt
landmark, without any specific goal to guide them.

We note that there is an interesting similarity between
shortcut rules in planning and learned conflict clauses in
SAT problems (Marques-Silva and Sakallah 1996). A short-
cut rule can be seen as a “proof of suboptimality”, demon-
strating why some path can never be a prefix of an optimal
solution, or, more generally, pose some constraints about the
continuation of some path into an optimal solution. Sim-
ilarly, a learned conflict clause can prune a partial assign-
ment (that is, a path) in a SAT problem, or pose additional
constraints on it. In SAT planning, online clause learning
has increased the effectiveness of SAT solvers significantly
(Marques-Silva and Sakallah 1996). Thus, we would ex-
pect that online learning of shortcut rules will, at the very
least, result in a significant increase in the informativeness
of a heuristic that is based upon the ∃-opt landmarks derived
from them.
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In this paper, we propose and examine three new types of
shortcut rules, which are based upon online learning, dur-
ing search. Our learning procedure exploits the fact that
search often discovers several paths leading to the same
state. When this occurs, we attempt to extract some rele-
vant information about where these paths differ, and learn
a shortcut rule for deriving more existential optimal land-
marks from that information.

Surprisingly, our empirical results show that these more
sophisticated shortcut rules result in a very small improve-
ment in search guidance. Furthermore, and not that surpris-
ingly, the overall number of problems solved under a time
limit decreases, due to the increased computational cost per
search node. However, we believe that additional work can
place online shortcut learning at the state-of-the-art of cost-
optimal planning, and leave our findings as a basis for future
research.

Preliminaries

We consider planning tasks formulated in STRIPS with ac-
tion costs; our notation mostly follows that of Helmert and
Domshlak (2009). A planning task is described by a 5-
tuple Π = 〈P,A, C, s0, G〉, where P is a set of propo-
sitions, A is a set of actions, each of which is a triple
a = 〈pre(a), add(a), del(a)〉, C : A → R0+ is a cost func-
tion on actions, s0 ⊆ P is the initial state, and G ⊆ P is the
goal.

An action a is applicable in state s if pre(a) ⊆ s, and if
applied in s, results in the state s′ = (s\del(a))∪add(a). A
sequence of actions 〈a0, a1, . . . , an〉 is applicable in state s0
if a0 is applicable in s0 and results in state s1, a1 is applica-
ble in s1 and results in s2, and so on. The cost of action se-
quence π = 〈a0, a1, . . . , an〉 is

∑n
i=0 C(ai), and is denoted

by C(π). The state resulting from applying action sequence
π in state s is denoted by sJπK. If π1 and π2 are action se-
quences, by π1 · π2 we denote the concatenation of π1 and
π2. Action sequence π is an s-path if it is applicable in state
s, and it is also an s-plan if G ⊆ sJπK. Optimal plans for Π
are its cheapest s0-plans, and the objective of cost-optimal
planning is to find such an optimal plan for Π. We denote
the cost of a cheapest s-plan by h∗(s).

Let π = 〈a0, a1, . . . an〉 be an s-path. The triple
〈ai, p, aj〉 forms a causal link (Tate 1977) in π if i < j,
p ∈ add(ai), p ∈ pre(aj), and for i < k < j, p 6∈
del(ak) ∪ add(ak). In other words, ai is the actual provider
of precondition p for aj . In such a causal link, ai is called
the provider, and aj is called the consumer.

The causal structure of a given path π is a graph whose
nodes are the action occurrences in π, and which has an
edge from ai to aj if there is a causal link where ai sup-
ports aj . Figure 1 illustrates this, by showing the causal
structure of the path 〈drive(t1, A,B), load(t1, p1, B),
drive(t1, B,A)〉. The shortcut rules of Karpas and Domsh-
lak (2012) look for certain patterns in the causal structure,
and attempt to remove actions which fit these patterns.

drive(t1, A,B)

START

drive(t1, B,A) load(t1, p1, B)

Figure 1: Causal structure of path 〈drive(t1, A,B),
load(t1, p1, B), drive(t1, B,A)〉.

Learning Shortcut Rules
We now turn our attention to learning shortcut rules online.
We begin by discussing when learning takes place, and then
describe how the learning is actually done.

When to Learn
The purpose of a shortcut rule is to take a given path π, and
produce a different path π′, or several such paths, that are
(a) cheaper than π, and (b) achieve at least one of the propo-
sitions that π achieves. Because each such path π′ generates
an ∃-opt landmark that consists of the facts that π achieved
and π′ did not, a good shortcut rule should generate a short-
cut π′ that achieves “almost all of” s0JπK. One extreme ex-
ample of such a pair of paths is two paths π, π′ that reach
the same state.

We exploit the fact that pairs of paths that reach the same
state are discovered during search, and we use these occa-
sions to learn new shortcut rules. Recall that A∗ handles the
case of a cheaper path to a closed state s being discovered
by reopening s, and this is one occasion when learning takes
place. However, we can also learn whenever a more expen-
sive path to a known state is discovered.

Algorithm 1 shows the pseudo-code of a slightly modified
version of A∗. The notations ĥ and ĝ refer to the currently
known heuristic estimate and cost-to-go, respectively, and
f̂ := ĝ + ĥ. Pa(s) is the current parent (state and action)
of s, and trace(s) is the currently best known path to s, ob-
tained by following the parent pointers back until the initial
state. Finally, h refers to the function which performs the
actual computation of the heuristic estimate given a path.

The difference between path-A∗ (Karpas and Domshlak
2012) and A∗ is that path-A∗ reevaluates the heuristic value
of a state s, whenever a cheaper path to s is discovered (line
20). This is necessary to ensure optimality with a globally
path-admissible heuristic. On top of that, learning path-A∗

attempts to learn a new shortcut rule whenever a new path to
a known state is discovered (line 17), regardless of whether
the new path is cheaper or not.

How to Learn
Having seen the context in which learning takes place, we
now turn our attention to how learning works. The input to
the LEARN method is a pair of different paths, π and π′,
from s0 to the same state s. LEARN begins by building
the causal structures of the two paths. Then, for each fact
that holds in s, only the causally relevant part of the causal
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Algorithm 1 Learning path-A∗

1 Closed← ∅, Open← ∅
2 ĝ(s0)← 0, ĥ(s0)← h(trace(s0)), f̂(s0)← ĝ(s0) + ĥ(s0)
3 Open.insert(s0)
4 while Open 6= ∅ do
5 remove s with minimum f̂(s) from Open
6 if is goal(s) then
7 return trace(s)
8 end if
9 Closed.insert(s)
10 for 〈a, s′〉 ∈ succ(s) do
11 if s′ 6∈ Closed ∪Open then
12 ĝ(s′)← ĝ(s) + C(a), Pa(s′)← 〈s, a〉
13 ĥ(s′)← h(trace(s′))
14 f̂(s′)← ĝ(s′) + ĥ(s′)
15 Open.insert(s′)
16 else
17 LEARN(trace(s) · 〈a〉, trace(s′))
18 if ĝ(s) + C(a) < ĝ(s′) then
19 ĝ(s′)← ĝ(s) + C(a), Pa(s′)← 〈s, a〉
20 ĥ(s′)← h(trace(s′))
21 f̂(s′)← ĝ(s′) + ĥ(s′)
22 Open.insert(s′)
23 end if
24 end if
25 end for
26 end while
27 return NO SOLUTION

structure is extracted; this is easily obtained by the transitive
closure of edges, going backwards from the last action to
achieve each fact.

Now we have, for each fact p in s, two causal structures
which achieve p. These causal structures are similar to par-
tially ordered plans, consisting of actions with causal links.
However, we can not guarantee that all orderings that are
consistent with these causal links will be valid plans, be-
cause causal structures do not account for threats — an ac-
tion which could delete some precondition of another action,
if applied in the wrong order. Nevertheless, we can guaran-
tee that applying these actions according to the original order
of the plan will generate a valid plan achieving p.

The simplest type of shortcut rule we consider, called con-
crete shortcut rule, exploits this fact. A concrete shortcut
rule consists of a pair of action sequences, the head and the
tail. Given two partial causal structures which achieve the
same fact, we construct the two corresponding actions se-
quences, according to the order of the actions in the original
plan. The cheaper action sequence π′ becomes the tail, and
the more expensive action sequence π becomes the head. In
order for our shortcut rules to be more general, we trim the
common prefix and suffix from the head and tail of the rule.

When a concrete shortcut rule π ← π′ is applied to some
path ρ, it looks for π as a subsequence of ρ. Suppose
ρ = ρ1 · π · ρ2, for some prefix ρ1 and suffix ρ2. Then
the action sequence that is obtained from applying the con-

crete shortcut rule π ← π′ is simply ρ′ = ρ1 · π′ · ρ2. Since
C(π′) < C(π), we know that C(ρ′) < C(ρ). However ρ′
might not be applicable, because π′ might not achieve all the
facts necessary for ρ2. Therefore, we apply actions by fol-
lowing ρ′ as far as possible, until some action is no longer
applicable, resulting in path ρ′′. Clearly, C(ρ′′) < C(ρ′),
so ρ′′ is indeed a shortcut, allowing us to generate some ∃-
opt landmark. For example, if ρ achieved the propositions
{x, y} and ρ′′ achieves {x, z}, then we can deduce that the
possible consumers of {y} = {x, y} \ {x, z} form an ∃-opt
landmark of ρ.

The total order on the actions, however, might be too re-
strictive, as the actions in the shortcut rule might be appli-
cable even if the order of the actions changes. Therefore,
our second type of shortcut rule, called unordered shortcut
rule, relaxes this total order. While we would like to use
the partial order information from the causal structure, this
makes reasoning about these shortcut rules much more com-
plicated. Therefore, we completely ignore any information
about ordering between actions, and represent the head and
tail of an unordered shortcut rule as sets of actions. The
learning procedure for unordered shortcut rules is the same
as for concrete shortcut rules, except that we add a final
stage, where we convert the action sequences into sets of
actions.

When such an unordered shortcut rule A1 ← A2 is ap-
plied to path ρ, we first check whether A1 is a subset of the
actions in ρ. If so, we remove these actions from ρ, and
start applying the actions from ρ, in order, until we reach
the first action that was removed. From this point, we at-
tempt to apply either an action from A2 that was not applied
already, or, if no such action is applicable, the next action
from ρ. This process terminates when there are no more ap-
plicable actions, and generates the action sequence ρ′. Since
C(A1) < C(A2), ρ′ is a shortcut, generating an ∃-opt land-
mark. For example, assume that action a1 achieves {x}, a2
achieves {y}, and a3 achieves {x, y}. Then we could learn
the unordered shortcut rule {a1, a2} ← {a3}, and for any
action sequence containing both a1 and a2, in any order, we
would attempt to remove them, and add a3 instead.

While unordered shortcut rules are more general than
concrete shortcut rules, we can exploit the fact that plan-
ning problems are typically described concisely in PDDL,
and specifically the fact that actions are defined by an op-
erator type with a list of arguments. Our final shortcut
rule uses this structure, and attempts to generalize concrete
shortcut rules. Consider for example, the concrete shortcut
rule 〈drive(t1, A,B), drive(t1, B,C)〉 ← 〈drive(t1, A,C)〉,
learned when truck t1 drove the long way from locationA to
location C. This rule can be generalized to specify that any
truck should not drive the long way between any two loca-
tions, written here as: 〈drive(?t, ?X, ?Y ), drive(?t, ?Y, ?Z)〉
← 〈drive(?t, ?X, ?Z)〉.

Such generalized shortcut rules are learned the same way
as concrete shortcut rules. However, instead of treating the
action sequences as sequences of ground actions, we treat
them as sequences of terms, similar to terms in first-order
logic. When a generalized shortcut rule π ← π′ is applied
to path ρ, we look for a subsequence of ρ which matches the
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operator types in π, disregarding any action parameters. If
such a subsequence is found, we then attempt to unify π with
the subsequence. If this is not possible, the shortcut rule is
not applicable. Otherwise, we have a substitution θ, which
we apply to π′. Then, we attempt to apply actions from ρ
without the subsequence, and then from π′ and the rest of ρ,
in a similar manner to unordered shortcut rules.

Using the Learned Knowledge
Having described how and when shortcut rules are learned,
we must still use them. The learned shortcut rules are used
whenever a path is evaluated (lines 13 and 20 in Algorithm
1). For each such evaluated path, we test all learned shortcut
rules for applicability. However, this testing is fairly expen-
sive, and it is quite possible that the cost of testing whether
a shortcut rule is applicable could outweigh its benefits in
terms of increased accuracy — this is known as the utility
problem (Minton 1990).

Therefore, we keep track of how many times each shortcut
rule has been used, and of how many times each shortcut
rule produced a valid shortcut. If a rule has been tried many
times, but produced very few valid shortcuts, we erase this
low-utility rule. The exact numeric values controlling this
behavior are parameters of the learning method.

Empirical Evaluation
In order to evaluate how effective the learned shortcut rules
are, we implemented all three learning schemes on top of
the Fast Downward planner (Helmert 2006). We base all
of our experiments on the admissible landmarks heuristic
(Karpas and Domshlak 2009) using an optimal cost par-
titioning over all regular single fact landmarks (Keyder,
Richter, and Helmert 2010) and the ∃-opt landmarks de-
rived from the original shortcut rules (Karpas and Domshlak
2012). We compare four different variants of the landmarks
heuristic, differing in the type of learned shortcut rules they
employ.
• none — no online learning
• concrete — concrete shortcut rules
• unordered — unordered shortcut rules
• generalized — generalized shortcut rules
All of the experiments reported here were run on a single
core of an Intel E8400 CPU, with a time limit of 30 minutes
and a memory limit of 6 GB, on a 64-bit linux OS.

Table 1a shows the number of problems solved in each
domain by learning path-A∗ using each of the above heuris-
tics. These results show that, indeed, the overhead of learn-
ing shortcut rules online is significant, and using them re-
duces the number of problems solved in total. While there
is no clear winner between the concrete shortcut rules and
unordered shortcut rules, generalized shortcut rules fare the
worst, because the overhead of unification and substitution
is quite significant.

The reduction in the number of problems solved might be
due to an inefficient implementation of the shortcut rules.
We therefore examine a measure which is relatively inde-
pendent of such concerns — the number of states expanded
by the search algorithm. Here, we only consider the prob-
lems that were solved using all four heuristics.

Table 1b lists the total number of states expanded to solve
all the problems that were solved using all four heuristics in
each domain. While we would expect the more sophisticated
shortcut rules to lead to a substantial improvement in search
guidance, the results tell a different tale. Although there is
a small decrease in the number of expanded states, it is not
very significant. In many domains, the learned shortcut rules
do not increase informativeness at all, and on average, all of
the new shortcut rules reduce the number of expanded states
by about 1%. This slight increase in informativeness is not
enough to compensate for the increase in computation time,
thus partly explaining the results in Table 1a.

While these results are quite surprising, we believe that
it should be possible to learn effective shortcut rules online,
and that this could lead to state-of-the-art performance in op-
timal planning. However, at the moment, the simple short-
cut rules of Karpas and Domshlak (2012) appear to result
in the best trade-off between heuristic computation time and
heuristic guidance.
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coverage none concrete unordered generalized
airport (50) 26 26 26 25
blocks (35) 26 21 18 16
depot (22) 6 5 5 2
driverlog (20) 10 9 8 8
elevators-opt08-strips (30) 10 8 6 3
elevators-opt11-strips (20) 8 6 4 1
floortile-opt11-strips (20) 2 2 1 0
freecell (80) 50 48 47 34
grid (5) 2 2 1 1
gripper (20) 6 5 5 4
logistics00 (28) 20 20 20 20
logistics98 (35) 4 3 4 3
miconic (150) 141 141 140 140
mprime (35) 18 18 17 15
mystery (30) 15 15 15 15
nomystery-opt11-strips (20) 18 18 18 14
openstacks-opt08-strips (30) 14 11 14 6
openstacks-opt11-strips (20) 9 6 9 1
parcprinter-08-strips (30) 13 12 13 12
parcprinter-opt11-strips (20) 9 8 9 8
parking-opt11-strips (20) 1 1 1 0
pathways (30) 4 4 4 4
pegsol-08-strips (30) 26 26 19 9
pegsol-opt11-strips (20) 16 16 8 1
pipesworld-notankage (50) 14 13 13 11
pipesworld-tankage (50) 8 8 8 7
psr-small (50) 48 48 48 46
rovers (40) 6 5 6 5
scanalyzer-08-strips (30) 14 13 13 12
scanalyzer-opt11-strips (20) 11 10 10 9
sokoban-opt08-strips (30) 16 6 6 3
sokoban-opt11-strips (20) 13 3 3 1
storage (30) 14 14 12 11
tidybot-opt11-strips (20) 11 10 9 4
tpp (30) 6 6 6 5
transport-opt08-strips (30) 9 9 7 5
transport-opt11-strips (20) 4 4 2 0
visitall-opt11-strips (20) 12 12 11 9
woodworking-opt08-strips (30) 13 11 12 11
woodworking-opt11-strips (20) 8 6 7 6
SUM (1310) 661 609 585 487

expansions none concrete unordered generalized
airport (25) 50136 50136 50136 50136
blocks (16) 17712 16616 16203 16446
depot (2) 1016 1016 1016 1016
driverlog (8) 375488 372859 373260 375424
elevators-opt08-strips (3) 56436 56436 56436 56436
elevators-opt11-strips (1) 38125 38125 38125 38125
floortile-opt11-strips (0) N/A N/A N/A N/A
freecell (34) 10940 10940 10940 10940
grid (1) 141 141 126 133
gripper (4) 81988 81988 81988 81988
logistics00 (20) 816589 816589 816589 816589
logistics98 (3) 13227 13227 13227 13227
miconic (140) 48483 48483 48483 48483
mprime (15) 20694 17400 16662 20024
mystery (17) 96186 101899 92983 93873
nomystery-opt11-strips (14) 4778 4778 4778 4778
openstacks-opt08-strips (6) 31279 31279 31279 31279
openstacks-opt11-strips (1) 3658 3658 3658 3658
parcprinter-08-strips (12) 735545 732904 730269 735545
parcprinter-opt11-strips (8) 735473 732832 730197 735473
parking-opt11-strips (0) N/A N/A N/A N/A
pathways (4) 58156 58165 58089 58156
pegsol-08-strips (9) 9783 9783 9715 9783
pegsol-opt11-strips (1) 246 246 246 246
pipesworld-notankage (11) 33615 32772 32952 33408
pipesworld-tankage (7) 8875 7904 8285 8804
psr-small (46) 202184 192403 193633 198306
rovers (5) 98776 99474 99516 99566
scanalyzer-08-strips (12) 4564 4564 4564 4564
scanalyzer-opt11-strips (9) 4545 4545 4545 4545
sokoban-opt08-strips (3) 701 701 701 701
sokoban-opt11-strips (1) 51 51 51 51
storage (11) 20680 20548 20593 20644
tidybot-opt11-strips (4) 4827 4903 4867 4899
tpp (5) 4227 4227 4227 4227
transport-opt08-strips (5) 9510 9487 9464 9506
transport-opt11-strips (0) N/A N/A N/A N/A
visitall-opt11-strips (9) 4217 4217 4217 4217
woodworking-opt08-strips (11) 92184 87187 82786 92182
woodworking-opt11-strips (6) 90482 85559 81246 90482
SUM (489) 3785517 3758042 3736052 3777860

(a) Number of Problems Solved in Each Domain (b) Total Number of Expanded States
Over Problems Solved by All

Table 1: Empirical Results
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Abstract

Although current sequential satisficing planners are able to
find solutions for a wide range of problems, the generation of
good quality plans still remains a challenge. Anytime plan-
ners, which use the cost of the last plan found to prune the
next search episodes, have shown useful to improve the qual-
ity of the solutions. With this in mind this paper proposes
a method that exploits the solutions found by an anytime
planner to improve the quality of the subsequent ones. The
method extracts a set of causal links from the first plans, the
plans with worse quality, and creates a more constrained def-
inition of the planning task that rejects the creation of these
causal links. The performance of the proposed method is eval-
uated in domains in which optimization is particularly chal-
lenging.

Introduction
In this paper we are concerned with improving the quality of
solutions in sequential satisficing planning. The mainstream
approach for sequential satisficing planning is heuristic plan-
ning. Heuristic planners address the complexity of this plan-
ning task using search algorithms guided by heuristics com-
putable in polynomial time. Recent heuristics — such as
those based on relaxed plans (Hoffmann and Nebel 2001;
Bonet and Geffner 2001) or on the automatic extraction of
landmarks (Porteous and Sebastia 2004) — allow heuris-
tic planners to generate sequential satisficing plans in just a
few seconds on many different problems. However the gen-
eration of good quality plans is still challenging for current
heuristic planners and complicates their application to many
real-world problems.

In theory, sequential optimal planning is as complex as
sequential satisficing planning (Bylander 1994) but in prac-
tice, many planning tasks are harder to be solved optimally
(Helmert 2003). A notorious example are planning tasks
with goals reachable through multiple paths, typically be-
cause of symmetries or transpositions, whose search space
rapidly grow (Helmert and Röger 2008). This feature is
present in many scheduling and logistics domains like the
openstacks or the visitall domains from the last IPC, IPC-
2011.

Anytime heuristic planners, which iteratively refine the
quality of their solutions, have recently been shown use-
ful for optimization problems in sequential satisficing plan-

ning (Richter, Thayer, and Ruml 2010). In particular, this
is the approach followed by LAMA-2011, the winner of the
sequential satisficing track of the IPC-2011 (Coles et al.
2012). Planners taking this approach iteratively reduce the
search space of the planning task by pruning the nodes that
exceed the cost of the best solution found.

This paper proposes a new method to improve the quality
of solutions that exploits knowledge learned from the bad
plans found by an anytime planner. The method extracts a set
of causal links that appear in low quality solutions i.e., the
first solutions found by the anytime strategy, and creates a
new definition of the planning task that constrains the search
to reject causal links from this set. Since the method does
not alter the core elements that make the planner efficient,
other than indirectly as a consequence of the reduction of the
search space, the planner is expected to retain its efficiency
throughout this process.

The paper is organized as follows. The next section
gives the background necessary for presenting the proposed
method. The third section explains the method in detail. The
fourth section shows the empirical performance of the pro-
posed method in domains in which optimization is particu-
larly challenging and analyses the obtained results. The fifth
section reviews the related work and finally, the sixth section
poses conclusions and outlines future work.

Background
This section sets the scene for the method proposed in the
paper and presents the sequential satisficing planning task
and the concept of causal links in a given sequential plan.

Sequential satisficing planning
We consider the sequential satisficing planning task for-
mulated as a tuple Π = <S,A, s0, G> , where S
is the set of propositional state variables, A is a set
of ground actions, each of which is a tuple a =
<pre(a), del(a), add(a), cost(a)>, where: pre(a) are the
conditions for the action’s applicability, del(a) are the lit-
erals removed by application of the action, add(a) are the
literals added by application of the action and cost(a) is the
cost of applying the action. Last but not least s0 ⊆ S is the
initial state of the planing task andG is the set of literals that
defines the goal states.
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Applying an action a ∈ A in a state s produces a state s′
such that s′ = (s \ del(a)) ∪ add(a). A solution π to a se-
quential satisficing planning task Π is defined as a sequence
of actions π = [a1, . . . , an] corresponding to a sequence
of state transitions [s0, . . . , sn] such that, ai is applicable in
state si−1; applying action ai in si−1 produces state si; and
sn is a state that satisfies all the goal conditions defined inG.
The cost of the solution π is the sum of its action costs: for-
mally, cost(π) =

∑

ai∈π
cost(ai). An optimal solution is one

that minimizes this sum. Since we consider satisficing plan-
ning, we do not seek plans that are guaranteed to be optimal,
but we still try to minimize cost.

As an example, Figure 1 shows a solution plan for prob-
lem p01 from the Openstacks domain of the sequential sat-
isficing track of IPC-2008.

#stacks cost
(open-new-stack n0 n1) 1 1
(start-order o1 n1 n0) 0
(open-new-stack n0 n1) 1 1
(start-order o2 n1 n0) 0
(make-product p2)
(ship-order o1 n0 n1) 1
(make-product p1)
(ship-order o2 n1 n2) 2
(start-order o3 n2 n1) 1
(start-order o4 n1 n0) 0
(make-product p3)
(ship-order o3 n0 n1) 1
(make-product p4)
(ship-order o4 n1 n2) 2
(start-order o5 n2 n1) 1
(make-product p5)
(ship-order o5 n1 n2) 2

Figure 1: Example plan for problem p01 from the Open-
stacks domain of the sequential satisficing track of the IPC-
2008. Column “#stacks” shows the number of stacks avail-
able (free) after each action, where it changes. The last col-
umn shows (non-zero) action costs.

The Openstacks domain will be used as a running exam-
ple throughout the paper. In this domain, a manufacturer has
a number of orders to ship and each order requires the com-
bination of different products. The manufacturer can only
make one type of product at a time but the total quantity
required for one type of product is made at the same time.
From the time that the first product in an order is made to
the time that all products in the order are made, the order
is said to be open and during this time it requires a stack, a
temporary storage space. When the order is complete, it can
be shipped and at that time the stack it occupied becomes
free for use again. This is illustrated by the plan in Figure
1. The objective is to sequence the production of the orders
so as to minimize the maximum number of stacks simulta-
neously in use. The planning formulation of this problem
models this with an extra action, open-new-stack, which
increases the number of stacks available by one. This action

has a cost of 1, while all other actions have zero cost. Find-
ing any solution to this planning task is easy, because is is
always possible to open enough stacks for all the orders, but
finding plans of good quality is difficult since it depends on
the sequencing of the actions.

Extracting causal links from a sequential plan
Let π = [a1, . . . an] be a solution to a planning task Π. The
triple cl = <ai, aj , p> that comprises two actions from the
plan, ai, aj ∈ π, and one proposition p forms a causal link
in π if: (1) p is added by ai, (2) p is also a precondition of aj
and (3), p is not deleted or added by any action that occurs
between ai and aj . Formally, i<j, p ∈ add(ai), p ∈ pre(aj)
and @ak s.t., i < k < j, p ∈ (del(ak) ∪ add(ak)). In such
a causal link, ai is called the producer and aj is called the
consumer. Note that this definition restricts the producer in
a causal link to be the last achiever of a proposition, and also
that links from propositions provided by the initial state are
not considered.

Figure 2 shows the algorithm for extracting the set of
causal links CLπ in a given plan π for a planning task Π.
This algorithm traverses the plan forward, registering the
propositions added by its actions in a list of started causal
links. Each entry in this list is a pair of the producer action
and the proposition produced. When an action of the plan
deletes a proposition, or when the last achiever changes, the
algorithm removes from the list of started causal links any
entry with this proposition. For each proposition required by
the precondition of an action in the plan, a complete causal
link is created and added to the set of causal links of the plan
if there is a started causal link for that proposition.

For each proposition p, we denote by Athreat(p) ⊆ A the
subset of actions that delete p. These are the actions that can
threaten a given causal link for p.

Method
This section describes our method for finding plans of bet-
ter quality. The method is structured in three phases: First, a
learning phase that takes a set of plans, of different quality,
and extracts a set of causal links that appear in plans of worse
quality, but not in the best plan. This set is further filtered to
focus on causal links that appear early in the plan. The intu-
ition is that these are most important for the search to avoid.
Second, a compilation phase uses these causal links to gen-
erate a more constrained definition of the planning task, that
disallows the creation of these “bad” causal links. The third
phase is to apply a planner to the modified definition of the
planning task. Since the restrictions placed on the modified
planning task are not strong enough to make the first plan
found match the quality of the best plan, we use an anytime
planner to continue searching for better plans. The remain-
der of this section describes each of these three phases in
detail.

Phase I: Learning causal links to reject
Planning tasks, and particularly planning tasks in which op-
timization is the main difficulty, usually have many valid so-
lution plans with different quality. In practice solution plans
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extractCausalLinks(π,Π) :
Input: π, a plan, and Π, a planning task
Output: CLπ , the set of causal links of the plan
———————–

CLπ = ∅
CLstarted = ∅

for a ∈ π do
for p ∈ pre(a) do

if ∃<a′, p> ∈ CLstarted then
add(<a′, a, p>,CLπ)

end if
end for

for p ∈ add(a) do
if ∃<a′, p> ∈ CLstarted then

replace(<a′, p>,<a, p>,CLstarted)
else

add(<a, p>,CLstarted)
end if

end for
for p ∈ del(a) do

remove(<?, p>,CLstarted)
end for

end for

return CLπ

Figure 2: Algorithm for extracting the set of causal links
from a sequential plan

with different quality can be generated by adding some vari-
ation to the planner, for example varying choices normally
made arbitrarily, the weight of the heuristics or the cost
bound, and then running the planner several times. Since
current sequential satisficing planners tend to be fast, it is
often feasible to repeat this process, collect a wealth of in-
formation about the planning process and thus obtain a basis
for learning which choices impact on the quality of the gen-
erated plans.

The learning phase uses a state-of-the-art planner to gen-
erate a collection of solutions for a given planning task and
examines the decisions that led to different plan qualities
to discover knowledge that helps focusing next planning
episodes on solutions with better quality. Specifically, this
knowledge takes the form of causal links that appear only
in worse plans. The input to the learning phase is a plan-
ning task Π and a planner P that is able to generate different
solution plans πi, for example by implementing an anytime
strategy that iteratively bounds the cost of the solutions. The
output of this phase is the set of causal links to reject in the
following planning episodes, CLrej .

Figure 3 presents the algorithm that implements the learn-
ing phase. First the planner P is run, up to some time limit,
to generate diverse solution plans for the planning task Π.
After that the set of causal links CLπi

, is computed for each
solution plan πi, using the algorithm of Figure 2. The al-

gorithm identifies the plan with the best quality i.e., with
minimum cost, among all the generated plans. For each of
the other plans, πi 6= πbest, the algorithm filters its set of
causal links CLπi and creates a subset CL′πi

⊆ CLπi that
only includes the causal links contained in the prefix of πi
that does not exceed the cost of the best plan. In other words,
if the summed cost of the actions in the prefix a1, . . . , aj of
a plan πi is higher than the cost of the best plan, πbest, then
the causal link cl = <ai, aj , p> in CLπi

is not included
in CL′πi

. The purpose of this is to focus learning on bad
choices that appear early in the search process. The com-
pilation, described in the next subsection, prunes from the
problem plans that contain the rejected causal links, but this
pruning may not occur until the causal link has been com-
pleted, i.e., until the consumer action aj is added to a path in
the search space. If the cost of the prefix at this point already
exceeds the cost of the best plan, it will be pruned by the
much simpler mechanism of imposing a cost bound on the
planner. Thus, we reserve the compilation for those bad plan
prefixes that should be pruned earlier.

Finally the set of causal links to reject is computed as the
causal links present in the subsets, after filtering, extracted
from plans of worse quality that are not present in the best
plan. Formally,

CLrej = (
⋃

i 6=best
CL′πi

) \ CLΠbest

.

learningCausalLinks(Π, P ) :
Input: Π, a planning task and P , a planner able to find dif-
ferent solutions.
Output: CLrej , set of causal links to reject.
———————–
plans = Plan(P,Π)

for πi ∈ plans do
CLπi = extractCausalLinks(πi,Π)

end for

πbest = argmin
πi∈plans

cost(πi)

for πi ∈ plans and πi 6= πbest do
CL′πi

= filter(CLπi
, πbest)

end for

CLrej = (
⋃
i 6=best CL

′
πi

) \ CLΠbest

return CLrej

Figure 3: Algorithm for extracting the set of causal links to
reject from a set of solution plans.

Phase II: Compilation of the causal links to reject
Machine learning has been used to improve planning pro-
cesses since the early days of automated planning, and a
wide range of different mechanisms have been developed
to exploit the learned knowledge. Because we aspire for our
learning method to be as generally applicable as possible, it
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exploits the learned knowledge without introducing modifi-
cations to the planner. Instead, we create a new planning task
by compiling the learned knowledge into the original plan-
ning task. The new planning task resulting from the compi-
lation is more constrained because it prevents the creation
of the “bad” causal links learned in the previous phase. In
particular, the new planning task introduces extra precondi-
tions that only allow the application of actions when they are
not creating any of the learned causal links. The input to this
phase is the planning task to solve Π and the set of causal
links to reject CLrej . The output of this phase is the more
constrained planning task Π′.

In the new planning task Π′, the rejected causal links
are represented explicitly by objects of a new type
causalLink. The initial state and action definitions of Π′

are modified to monitor the state of each of these causal
links, whether they are started or not, and prevent their ap-
pearance in solution plans.

The new initial state The initial state s′0 of the new plan-
ning task Π′ is created by extending the initial state of
the original planning task with static facts that describe the
causal links to reject and their threats. Accordingly, for each
causal link clid = <ai, aj , p> such that clid ∈ CLrej the
initial state is extended with:

• A new static fact that describes the producer,
(isproducer-<n(ai)>-of-<n(p)> cl<id>
<arg(ai)>). The name of the predicate is the con-
catenation of the name of the producer action, n(ai),
and the name of the proposition of the causal link, n(p).
The arguments of the predicate are the object cl<id>
that represents the causal link, and the arguments of the
producer.

• A new static fact that describes the consumer,
(isconsumer-<n(aj)>-of-<n(p)> cl<id>
<arg(aj)>). As above, the name of the predicate
contains the name of the consumer, n(aj), and the name
of the proposition of the causal link. The arguments are
the object cl<id> that represents the causal link and the
arguments of the consumer action.

• New static facts describing each threat to the causal link.
That is, for each action ak ∈ Athreat(p) that threat-
ens the causal link, (isthreat-<n(ak)>-for-<n(p)>
cl<id> <arg(p)>). The name of the predicate is the con-
catenation of the name of the threatening action, n(ak),
and the name of the proposition of the causal link. The
arguments are the causal link object and the arguments of
the proposition.

An example of an extended initial state s′0 is shown
in Figure 4. The example illustrates the compilation
of two causal links on the planning task p01 from the
Openstacks domain of the sequential satisficing track of
the IPC-2008. The causal links compiled in the exam-
ple are cl1 and cl2, where cl1 = < (start-order o2
n1 n0), (open-new-stack n0 n1), (stacks-avail
n0) > and cl2 = < (open-new-stack n0 n1),
(start-order o10 n1 n0), (stacks-avail n1) >.

(:init

;;; Begin - Initial state from the original task

(next-count n0 n1) (next-count n1 n2) (next-count n2 n3)

(next-count n3 n4) ...

;;; End - Initial state from the original task

;;; Begin - Extension to the original initial state

;; for the causal link cl1

(isproducer-start-order-of-stacks-avail cl1 o2 n1 n0)

(isconsumer-open-new-stack-of-stacks-avail cl1 n0 n1)

(isthreat-ship-order-for-stacks-avail cl1 n0)

;; for the causal link cl2

(isproducer-open-new-stack-of-stacks-avail cl2 n0 n1)

(isconsumer-start-order-of-stacks-avail cl2 o10 n1 n0)

(isthreat-ship-order-for-stacks-avail cl2 n1)

;;; End - Extension to the original initial state

)

Figure 4: Example of the extensions introduced to the initial
state of a planning task to constrain the creation of learned
causal links.

The new action model The action model of the planning
task Π′ is also extended. In particular, for each causal link to
reject:

• A new literal (clstarted cl<id>) is added to the
positive effects of the action ai, the producer of the
causal link. Adding this literal makes the application
of the action ai modify the state of the causal link to
started. This is implemented by introducing a new
quantified conditional effect in the model of the pro-
ducer action. Figure 5 shows the new PDDL model of ac-
tion ship-order after compiling the causal link cl3 =
< (ship-order o9 n0 n1), (start-order o7 n1
n0), (stacks-avail n1) >. Although this implemen-
tation increases the size of the planing task, and may make
instantiation more expensive, it results in a more compact
and understandable model of the modified planning task.

(:action ship-order

:parameters (?o - order ?avail - count ?new-avail - count)

:precondition (and (started ?o) (stacks-avail ?avail)

(next-count ?avail ?new-avail))

(forall (?p - product)

(or (not (includes ?o ?p)) (made ?p)))

:effect (and (not (started ?o)) (shipped ?o)

(not (stacks-avail ?avail))

(stacks-avail ?new-avail)

;;; Begin - New quantified conditional effect

(forall (?clid - causalLink)

(when (isproducer-ship-order-of-stacks-avail

?clid ?o ?avail ?new-avail)

(clstarted ?clid)))

;;; End - New quantified conditional effect

))

Figure 5: Example of the extension to the PDDL model of
an action that is producer in a causal link to reject.

• A new precondition
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(or (not (clstarted cl<id>))
(not (isconsumer-<n(aj)>-of-<n(p)>

cl<id> <arg(aj)>)))

is added to the action aj , the consumer of the causal link.
This new precondition makes the action applicable only
when it is not creating the causal link. Similar to the pre-
vious, this extension is implemented with a quantified pre-
condition in the model of the consumer action. Figure 6
shows the new PDDL model of the action start-order
after compiling causal link cl3.

(:action start-order

:parameters (?o - order ?avail - count ?new-avail - count)

:precondition
(and (waiting ?o) (stacks-avail ?avail)

(next-count ?new-avail ?avail)

;;; Begin - New quantified precondition

(forall (?clid - causalLink)

(or (not (clstarted ?clid))

(not (isconsumer-start-order-of-stacks-avail

?clid ?o ?avail ?new-avail)))))

;;; End - New quantified precondition

:effect (and (not (waiting ?o)) (started ?o)

(not (stacks-avail ?avail))

(stacks-avail ?new-avail)))

Figure 6: Example of the extension to the PDDL model of
an action that is consumer in a causal link to reject.

• A new negative effect (not (clstarted cl<id>)) is
added to each action ak ∈ Athreat(p) that threatens the
causal link. The new delete effect makes the application
of action ak modify the state of the causal link. Again, in
order to make the compilation more compact, it is imple-
mented by introducing a new quantified conditional effect
in the model of the action is a threat. Figure 7 shows the
new PDDL model of the action open-new-stack after
compiling causal link cl3.

(:action open-new-stack

:parameters (?open - count ?new-open - count)

:precondition (and (stacks-avail ?open)

(next-count ?open ?new-open))

:effect (and (not (stacks-avail ?open))

(stacks-avail ?new-open)

;;; Begin - New quantified conditional effect

(forall (?clid - causalLink)

(when (isthreat-open-new-stack-for-stacks-avail

?clid ?open)

(not (clstarted ?clid))))

;;; End - New quantified conditional effect

(increase (total-cost) 1)))

Figure 7: Example of extension to the PDDL model of an
action that threatens a causal link to reject.

Phase III: Planning rejecting bad causal links
The aim the modified planning task is to focus planners on
solutions with better quality, even planners that are not nec-
essarily good optimizers, like planners that ignore action
cost. Moreover, planners are expected to retain their effi-
ciency since that the core elements that make a planner ef-
ficient, particularly the heuristic, are not altered other than
indirectly as a consequence of the modification of the search
space. The inputs to this third phase are the new planning
task Π′ and a state-of-the-art sequential satisficing planner
P . The output is, if found, a solution plan that does not in-
clude causal links from the set CLrej .

Planning with the new planning task Π′ is correct in the
sense that any solution to Π′ is also a solution to the original
planning task Π. Briefly, this is because the new planning
task is a more constrained version of the original one. In
detail, both the initial state and goals from the original task
Π are also present in the new task Π′. Furthermore the new
predicates only serve to monitor the state of the causal links,
whether they are started or not. The new effects added to
the actions of Π′ that either work as producers or threats
in causal links from CLrej only modify the state of these
causal links. Examples of these new effects are shown in
Figures 5 and 7. Finally, the new preconditions added to
actions that are consumers of causal links from CLrej only
constrain the application of these actions, as shown in the
example in Figure 6.

Planning with the new planning task Π′ is not complete, in
the sense that optimal solutions for the original planning task
Π may be pruned by the new preconditions of the planning
task Π′. The explanation for this is that the set of plans used
in the learning phase may be only a subset of plans. The plan
identified as the plan with the best quality in the learning
phase, πbest, may not be optimal. In fact, an optimal plan
may include causal links that are rejected. Therefore, there
is no guarantee that optimal solutions are not pruned from
the new planning task.

Planning with the new planning task Π′ can be computa-
tionally more expensive than planning with the original task
Π. In particular, the size of the state space increases with the
introduction of the new predicate (clstarted cl<id>)
that monitors the state of the selected causal links. The com-
plexity of actions is also increased by including quantified
conditional effects in the actions that act as producers or
threats of the causal links in CLrej . However, the new pre-
conditions added to consumer actions are expected to re-
duce the size of the search space by constraining the states
in which these actions can be applied. Thus, the final im-
pact of the proposed compilation on planner performance
depends on this trade-off between the size of the new plan-
ning task and the benefits achieved by pruning causal links
from bad quality solutions. An experimental analysis of the
performance of the proposed method examining this trade-
off is provided along the next section.

Results
This section shows the experimental evaluation of the pro-
posed method. First it details the design of the experiments
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and next it analyses the performance of the proposed method
in its three phases: learning, compilation and planning.

Experimental setup
The presented evaluation is a direct comparison of the per-
formance of the winner of the last IPC, LAMA-2011 and
the proposed method. Like in the competition LAMA-2011
is run with a time bound of 1800 seconds per problem. On
the other hand the proposed method is run with the same
time bound which is distributed as follows: 300 seconds for
the learning phase, 100 seconds for the compilation phase,
despite in practice it is always completed in milliseconds
time, and 1400 secs for the planning phase. In more detail
the three phases of the proposed method are configured as
follows:

I. Learning causal links to reject.

(a) Run LAMA-2011 on the original planning task for 300
seconds.

(b) Compute the causal links to reject following the learn-
ing algorithm of Figure 3 and using the solution plans
generated by the anytime strategy of LAMA-2011 dur-
ing the 300 seconds.

II. Compilation of the causal links to reject.

(a) A maximum of 100 causal links is compiled to not
overload the size of the new planning task

(b) When the number of learned causal links for a given
problem is greater than 100, a subset is selected
that only comprises the most expensive causal links.
The cost of a given causal link is computed adding
the cost of its producer and its consumer. Formally,
cost(clid) = cost(ai) + cost(aj).

III. Planning rejecting bad causal links.

(a) Run LAMA-2011 on the new planning task for 1400
seconds.

(b) The anytime strategy of LAMA-2011 is initiated with
the cost bound of the best plan found in the learning
phase.

The proposed method is evaluated in the openstacks,
parking, nomystery and visitall domains from the IPC-2011.
These domains are selected because they are hard for opti-
mization. In particular all of them present symmetries and
transpositions that cause a rapid growth of their search
space.

Phase I: Learning causal links to reject
LAMA-2011 implements an anytime strategy that uses
the cost of the last plan found to prune, in the next
search episodes, the nodes exceeding this cost. The any-
time strategy of LAMA-2011 comprises the following search
episodes: two greedy best first searches, the first one qual-
ity blind, followed by a sequence of weighted A* searches
with decreasing weights 5, 3, 2 and 1. The Table 1 illus-
trates the outcome of the learning phase in the evaluation
domains showing, for each problem, two data: plans, the
number of solution plans found by LAMA-2011 during the

Openstacks Parking Nomystery VisitAll
Prob plans clinks
000 8 19 2 88 3 36 4 100
001 11 43 7 100 1 0 2 62
002 7 26 5 100 5 92 1 0
003 14 41 3 37 2 15 2 100
004 5 15 1 0 5 100 1 0
005 10 55 5 100 1 0 3 100
006 12 31 6 100 1 0 2 100
007 8 100 2 100 - - 3 100
008 4 13 1 0 1 0 3 100
009 12 86 1 0 3 49 1 0
010 15 86 2 41 2 21 3 100
011 5 1 4 100 1 0 2 100
012 5 25 4 100 - - 2 100
013 5 3 1 0 1 0 2 100
014 5 29 5 100 - - 1 0
015 4 1 50 100 - - 2 100
016 5 41 1 0 - - 2 100
017 4 0 1 0 - - 1 0
018 5 32 5 100 - - 1 0
019 5 2 3 69 2 17 1 0

Table 1: Number of solution plans found and number of
causal links to reject extracted from these solution plans.
Dashed lines indicates that no solution plan was found for
this problem during the learning phase.

learning phase and clinks, the number of causal links learned
from these solution plans.

The reported data show that the number of causal links
to reject is not directly related with the number of solu-
tions. A good example are problems 000 and 007 from the
openstack domain. In the learning phase of problem 000
eight solutions were found producing 19 causal links while
in problem 007, with the same number of solutions, the
learning phase produced more than 100 causal links. Pre-
cisely, the number of learned causal links for a given prob-
lem strongly depends on how different is the best plan found
with respect to the rest of generated plans and the length of
all these plans.

We can also observe that the learning time bound of 300
seconds is not enough for extracting a set of causal links to
reject for every problem in the evaluation domains. In par-
ticular, the cases marked with a dashed line, for example
problem 007 from the nomystery domain, indicate that no
solution plan was found for this problem during the learn-
ing phase. Likewise when the number of solutions is 1 no
causal link to reject can be extracted because our learning
algorithm requires at least two plans to compute the set of
causal links to reject, an example is problem 002 from the
visitall domain.

Phase II: Compilation of the causal links to reject
At this point we evaluate the drawbacks of the new plan-
ning task resulting from the compilation of the set of causal
links CLrej . In particular we evaluate the increase in the
size of the planning task resulting from the introduction of
the causal links to reject. Note that this increase is some-
how limited since only a maximum of 100 causal links is
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compiled into the new planning task to deal with the utility
problem (Minton 1988). For each problem the Table 2 illus-
trates the increase in memory and instantiation time caused
by the use of the new planning task.

Openstacks Parking Nomystery VisitAll
Prob Mem Time
000 0.96 0.26 0.91 0.03 0.95 0.07 0.74 0.03
001 0.94 0.09 - - * * 0.86 0.05
002 0.96 0.20 0.92 0.03 0.96 0.03 * *
003 0.95 0.10 0.96 0.07 0.99 0.19 0.86 0.03
004 0.98 0.32 * * 0.97 0.03 * *
005 0.94 0.07 0.90 0.03 * * 0.90 0.03
006 0.95 0.12 0.91 0.03 * * 0.92 0.03
007 0.93 0.05 - - * * 0.93 0.03
008 0.99 0.28 * * * * 0.94 0.03
009 0.93 0.05 * * 0.99 0.06 * *
010 0.94 0.05 0.96 0.07 0.95 0.11 0.95 0.04
011 0.99 0.9 0.93 0.03 * * 0.95 0.03
012 0.99 0.26 0.93 0.03 * * - -
013 0.98 0.76 * * * * 0.96 0.04
014 0.99 0.16 0.93 0.03 * * * *
015 0.99 0.87 0.93 0.03 * * - -
016 0.98 0.12 * * * * 0.97 0.04
017 - - * * * * * *
018 - - 0.94 0.03 * * * *
019 0.99 0.82 0.96 0.04 0.99 0.17 * *

Table 2: Ratios of the memory and instantiation time re-
quired by the original and the new planning task resulting
from the compilation. Stars indicate that no causal link was
learned for this problem. Dashed lines indicate that the in-
stantiation of the new planning task exceeded memory or
time bounds.

The increase is shown by the ratio of these two values,
memory and instantiation time, in the original planning task
with respect to the new one. The values of the ratio are
obtained with the prepossessing tools of the FAST DOWN-
WARD planning system (Helmert 2006). A value of 1 means
that there is no increase caused by using the new planning
task while a ratio under 1 means that the new task is more ex-
pensive, in terms of memory or instantiation time. The lower
the ratio the more expensive the new task is. Please note that
only the ratio of problems in which the learning phase ex-
tracted causal links is shown. Stars indicate that no causal
link was learned for this problem because less than two so-
lutions were found for this problem in the learning phase.
Dashed lines indicate that new planning task was not instan-
tiated successfully because it exceeded the memory or time
bounds.

As expected the increase in the size of the planning task
and the corresponding instantiation time depends on the
number of causal links compiled into the new task. This ef-
fect can be observed looking again to problems 000 and
007 from the openstack domain. The reported data also
shows that while the memory required by the new planning
task is not far from the required by the original one, the in-
stantiation time easily blows up growing, in most cases, in
one order of magnitude. This observation suggest the study
of further compilations of the learned causal links that hold

better the instantiation time in the new planning task.

Phase III: Planning rejecting bad causal links
Finally we compare the planning performance of the winner
of the last IPC, LAMA-2011 and our method for planning
with the task resulting from compiling the learned causal
links. Table 3 shows, for each problem, the quality of the
best plan found by the two approaches in the following for-
mat: LAMA-2011/our proposed method. The dashed lines
indicate that no causal link was learned for this particular
problem so no comparison is shown.

Prob Openstacks Parking Nomystery VisitAll
000 7/7 61/37 18/18 181/179
001 15/12 31/31 -/- 260/260
002 9/9 42/44 25/25 -/-
003 20/19 62/60 29/29 410/410
004 17/14 -/- 34/34 -/-
005 20/22 41/42 -/- 604/604
006 11/10 44/45 -/- 763/706
007 34/31 75/75 -/- 860/860
008 30/34 -/- -/- 1027/1027
009 32/33 -/- 52/50 -/-
010 32/31 67/67 18/18 1300/1300
011 100/100 50/66 -/- 1455/1455
012 48/47 62/62 -/- 1725/1769
013 128/128 -/- -/- 1887/1895
014 76/74 52/54 -/- -/-
015 155/155 47/50 -/- 2168/2168
016 107/105 -/- -/- 2387/2387
017 189/190 -/- -/- -/-
018 137/138 50/51 -/- -/-
019 221/221 74/74 48/48 -/-

Total 1388/1380 758/758 224/222 15027/15020

Table 3: Total cost of the best solution found by LAMA-2011
and our method, in the problems from the IPC-2011. Dashed
lines indicate that no causal link was learned for this prob-
lem.

Results show that the openstacks is the more promising
domain for the proposed method. In this domain our method
actually improves the best plan cost in 9 out of 20 prob-
lems getting worse only in 5. There is no guarantee to al-
ways achieve the quality of the plans found with the orig-
inal planning task. In some cases, like problem 005 from
this domain, the quality achieved by the proposed method
is worse that the one achieved by LAMA-2011. As we al-
ready observed the size of the planning task is increased by
the introduction of the causal links so if the learned causal
links are not effective for a particular problem this will cause
larger planning times that might prevent the planner to reach
the best plan cost achieved by the original planning task.

In the parking and visitall domains certain sets of learned
causal links are able to significantly deteriorate the quality
of the solutions found. In particular this is observed in prob-
lems in which the number of learned causal links is over
100. This observation suggests that better strategies for se-
lecting the causal links to compile should be studied. Finally,
despite the accumulated total cost is slightly better in the no-
mystery domain, in most of the problems of this domain the
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cost of the best plan found by the two planning approaches
is the same.

Related Work
Machine learning has been extensively used in planning to
learn heuristics for faster search, to learn rules for selecting
which planner from a given set to apply to a problem, and to
learn domain models, but very rarely with the explicit aim
of improving plan quality. The most significant work to our
method is related to the learning of control rules for guiding
the search of the PRODIGY planner towards good quality so-
lutions (Pérez 1996).

There are recent work that introduces control knowledge
into the domain model of a planning task. In particular
(Baier and McIlraith 2008) shows how to compile proce-
dural control knowledge, described in temporal logic, into
a classical planning domain model. However, unlike the
cited work, we propose a method not only to compile use-
ful knowledge but to learn it from examples of solutions to
the same problem. There are previous approaches that also
succeed performing intra-problem learning for example, to
automatically select the heuristic to compute (Domshlak,
Karpas, and Markovitch 2012) or for creating macros to es-
cape from plateaus (Coles and Smith 2007). Nevertheless
these works modify the planner to exploit the learned knowl-
edge while our method, based on a compilation of the plan-
ning task, does not need to modify the planner algorithms.

Finally, we also find previous works that enforce causal
links to generate justified plans, in the case of automatic
story telling (Haslum 2012) but again this knowledge is not
automatically learned from examples.

Conclusions and future work
In this paper we have proposed a method that exploits the so-
lutions found by an anytime planner to improve the quality
of the subsequent ones. The method extracts a set of causal
links from the first plans, the plans with worse quality, and
compiles them into a more constrained definition of the plan-
ning task that rejects the creation of these causal links.

Despite the reported results show slight improvements of
the quality of plans further research is needed to achieve
more conclusive results. In particular several aspects of the
three phases of the proposed method can be refined in or-
der to improve the results. We observed that in some prob-
lems the proposed method was not able to learn anything
because the anytime strategy was not able to find more than
one solution. However, anytime strategies are not the only
mechanism to produce a base of multiple plans with differ-
ent quality. In practice solution plans with different quality
can also be generated by introducing some randomization to
the planner.

In addition the proposed compilation still causes high in-
stantiation times when the number of learned causal links
is high, examples are various problems from the evaluated
openstack, parking and visitall domains. Further compila-
tions have to be studied in order to hold instantiation time in
these cases. Moreover, when the number of causal links is

high, algorithms for choosing an effective subset of causal
links to reject are necessary to improve the reported results.
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