
Proceedings of the 1
st
 Workshop on

Distributed and Multi-Agent Planning

Edited By:

Raz Nissim, Daniel L. Kovacs, Ronen Brafman

Rome, Italy - June 11, 2013

Organizing Commitee

Raz Nissim
Ben-Gurion University of the Negev, Israel

Daniel L. Kovacs

Budapest University of Technology and Economics, Hungary

Ronen Brafman

Ben-Gurion University of the Negev, Israel

Program Committee

Bradley J. Clement, NASA Jet Propulsion Laboratory

Amanda Coles, King’s College London, UK

Andrew Coles, King’s College London, UK

Carmel Domshlak, Technion, Israel Institute of Technology

Naoki Fukuta, Shizuoka University, Japan

Antonin Komenda, Czech Technical University

Roman van der Krogt, University College Cork

Alejandro Torreno Lerma, Universidad Politecnica de Valencia

Scott Sanner, National ICT Australia (NICTA)

Matthijs Spaan, Delft University of Technology

Roni Stern, Harvard University

Mathijs de Weerdt, Delft University of Technology

Shlomo Zilberstein, University of Massachusetts, Amherst

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

i

The workshop is organized in cooperation with COST Action IC1205 on Computational Social Choice.

Foreword

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

ii

T his volume contains the papers accepted for
presentation at DMAP 2013, the First

Distributed and Multi-Agent Planning
workshop, held in Rome, Italy, June 11, 2013.
It continues the tradition of the "Multiagent
Planning and Scheduling" workshop series
held at ICAPS 2005 and 2008, and the joint
AAMAS-ICAPS session on multi-agent
planning in 2010.

The goal of this workshop is to bring researchers
working in the different subfields together in
order to bridge the gap between these
communities.

For DMAP 2013, we received 14 submissions
from 8 countries. From these submissions,
13 were full papers, and 1 was short. These
papers were all reviewed by a Program
Committee made up of 13 members,
coordinated by the three PC Chairs. As a result
of this evaluation, 11 papers were accepted: 10
full papers and 1 short paper. All these papers
will be presented orally at the workshop.

The papers accepted to the workshop cover
many of these subfileds and include work on
classical multi-agent planning, partial
observability, multi-agent replanning, heuristics
and planning by selfish agents. We thus hope to
offer attendees a view of the diverse work done
on multi-agent planning, and the progress
made in this area, fostering works that will
farther progress the field forward.

We thank all members of the Program Commit-
tee for their effort in the review process that is
critical for maintaining the level of the
workshop. We also thank the ICAPS workshop
chairs for their help in organization, and most
importantly, the multi-agent planning and
scheduling community who supported this
event by submitting their work and
participating actively in it.

– Raz Nissim, Daniel L. Kovacs,
 Ronen Brafman
 DMAP-2013 Chairs

There is growing interest in multi-agent
planning in recent years with much progress in
formalizing general models, algorithmic
techniques, and solution concepts for the multi-
agent planning problem. The majority of this
work has been published in the Autonomous
Agents and Multi-Agent Systems (AAMAS)
conferences and in general AI conferences such
as AAAI and IJCAI. However, this line of work
often builds upon planning and scheduling
models, techniques and applications that are
studied and developed in the ICAPS community.

Table of Contents

Cost-Optimal Planning by Self-Interested Agents . 1
Raz Nissim and Ronen Brafman

Optimizing distributed resource exchanges in multiagent systems under uncertainty. 8
Aurélie Beynier and Sylvia Estivie

Coordinating Stochastic Multi-Agent Planning in a Private Values Setting 17
Joris Scharpff, Matthijs T.J. Spaan, Leentje Volker and Mathijs de Weerdt

Session 2. Multi-agent planning techniques

Qualitative Planning under Partial Observability in Multi-Agent Domains 26
Guy Shani, Ronen Brafman and Shlomo Zilberstein

Multi-agent Planning based on the Dynamic Selection and Merging of Hierarchical Task
Networks . 34

Gonzalo Milla-Millán, Juan Fdez-Olivares and Inmaculada Sánchez-Garzón

Deterministic Multiagent Planning Techniques: Experimental Comparison (Short paper) 43
Karel Durkota and Antońın Komenda

Session 3. Plan sharing, repairing and replanning

A Theory of Intra-Agent Replanning . 48
Kartik Talamadupula, David Smith, William Cushing and Subbarao Kambhampati

Plan Sharing for Multi-Agent Planning . 57
Daniel Borrajo

How to Repair Multi-agent Plans: Experimental Approach . 66
Antońın Komenda, Peter Novák and Michal Pechoucek

Session 4. Heuristics for multi-agent planning

Fast-Forward Heuristic for Multiagent Planning . 75
Michal Štolba and Antońın Komenda

FMAP: a Heuristic Approach to Cooperative Multi-Agent Planning . 84
Alejandro Torreño, Eva Onaindia and Óscar Sapena

Author Index . 93

Keyword Index . 94

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

iii

Session 1. Self-interested agents

Cost-Optimal Planning by Self-Interested Agents

Raz Nissim and Ronen I. Brafman
Ben-Gurion University of the Negev

Be’er Sheva, Israel
raznis,brafman@cs.bgu.ac.il

Abstract

As our world becomes better connected and autonomous
agents no longer appear to be science fiction, a natural need
arises for enabling groups of selfish agents to cooperate in
generating plans for diverse tasks that none of them can per-
form alone in a cost-effective manner. While most work on
planning for/by selfish agents revolves around finding stable
solutions (e.g., Nash Equilibrium), this work combines tech-
niques from mechanism design with a recently introduced
method for distributed planning, in order to find cost opti-
mal (and, thus, social welfare maximizing) solutions. Based
on the Vickrey-Clarke-Groves mechanisms, we present both a
centralized, and a privacy-preserving distributed mechanism.

Introduction
As our world becomes better connected and more open
ended, production becomes more customized, and au-
tonomous agents no longer appear to be science fiction, a
natural need arises for enabling groups of selfish agents to
cooperate in generating plans for diverse tasks that none of
them can perform alone in a cost-effective manner. To build
a house, one requires workers with diverse skills, such as
architects, lawyers, construction workers, plumbers, electri-
cians, and more. Similarly, to organize a conference, one re-
quires caterers, speakers, AV technicians, publicity, hotel ne-
gotiations, program committees, etc. These are just two ex-
amples of tasks that require the combined actions of diverse
agents and careful planning, as one agent cannot act before
other agents have achieved the preconditions for its actions.
Agents involved in such tasks realize the need to collaborate
with other agents both in planning and execution in order to
succeed, but when doing so, they are usually motivated by
the desire to maximize their own profit/utility.

Fully cooperative agents can address this problem easily
by sending all information to a trusted party that will gen-
erate a plan, or by using a distributed planning algorithm,
and then employing some agreed upon scheme to share any
profit. Self-interested agents, on the other hand, are unlikely
to agree to such a scheme for a number of reasons. First, it is
easily manipulable – i.e., an agent may report incorrect in-
formation about its abilities or its costs in order to increase

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

its share of the profit, thereby decreasing the share of the
profit of agents that truthfully report their information. This
can lead to a globally sub-optimal plan, discouraging agents
from taking part in such a process. Second, many commer-
cial entities are reluctant to reveal certain information to
third parties. Whereas an agent must advertise in some way
its public capabilities, so others will ask for its services, it
prefers not to reveal its inner workings – its private state,
how it manipulates it, and the cost of such private actions.

Conceptually, the issue of manipulation can be addressed
using existing ideas. Semantically, optimal planning algo-
rithms seek a shortest path from the initial state to a goal
state in a graph that describes a transition system. In our
context, edges in this graph – which correspond to actions –
are controlled by different agents. A similar situation arises
in network routing, where we seek to route a packet from
its source to its destination using a network controlled by
different agents, via a shortest path. There, Vickrey-Clarke-
Groves (VCG) type mechanisms using distributed imple-
mentations of classical shortest path algorithms, such as
Dijkstra’s (1959), have been developed (Nisan and Ronen
2001; Feigenbaum et al. 2002). These methods provide an
attractive distributed solution to this problem, which ide-
ally, we could apply in planning problems. There is a funda-
mental difference, however: In planning, the transition graph
is implicitly defined because the explicit graph is exponen-
tial, and thus never constructed explicitly by planning algo-
rithms. Thus, despite their attractiveness, these methods are
inapplicable in planning problems.

In this paper we present a mechanism that offers sim-
ilar properties, thus addressing the problem of manipula-
tion, maintains the privacy of information pertaining to the
agents’ private state, and is practically efficient. More specif-
ically, our mechanism is distributed, strategy-proof, socially
efficient, and privacy preserving. To the best of our knowl-
edge, it is the first mechanism for planning to offer even just
the first three properties. Moreover, it is based on state-of-
the-art planning technology– making it relatively practical:
while there is a price to selfishness, we are still able to opti-
mally solve most solvable benchmark planning problems.

Background
We begin by describing the model used for multi-agent
(MA) planning and an overview of mechanism design and

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

1

VCG mechanisms.

Planning for Self-Interested Agents
The framework we chose for our work is the MA-STRIPS
model (Brafman and Domshlak 2008). This framework min-
imally extends the classical STRIPS problem to MA plan-
ning for cooperative agents. The main benefits of using this
model are its simplicity, and the fact that it is easily extended
to handle the case of non-cooperative agents.

Definition 1. A MA-STRIPS planning task for a set of fully
cooperative agents Φ = {ϕi}ki=1 is given by a 4-tuple Π =
(P, {A}ki=1, I, G) with the following components:

• P is a finite set of atomic propositions, I ⊆ P encodes
the initial state and G ⊆ P encodes the goal conditions.
• For 1 ≤ i ≤ k, Ai is the set of actions that the agent ϕi is

capable of performing, and each action a ∈ A =
⋃
Ai is

given by its preconditions and effects, as well as its cost.

A solution to a planning task is a legal plan π =
(a1, . . . , ak) which transforms the initial state into a state
satisfying the goal conditions. A solution is optimal if it has
minimal cost (sum of action costs) over all solutions.

Given the partitioning of the actions, we can now distin-
guish between private and public atoms and actions. A pri-
vate atom of agent ϕ is required and affected only by the
actions of ϕ. An action is private if all its preconditions and
effects are private. All other actions are classified as public.
That is, ϕ’s private actions affect and are affected only by
ϕ, while its public actions may require or affect the actions
of other agents. Note that this implies the public action of
an agent may have private preconditions and/or effects. For
ease of the presentation of our algorithms and their proofs,
we assume all goal conditions are public, thus all actions that
achieve a goal condition are considered public as well. Our
methods are easily modified to remove this assumption.

Extending MA-STRIPS from fully-cooperative agents to
self-interested agents does not require changing the model
itself, but rather changing how it is used, and how informa-
tion is distributed to different agents. We think of the public
part of public actions (i.e., public preconditions and effects)
as the interface of the agent to the external world – the in-
formation it advertises to the external world. The private as-
pects of public actions, the private variables, and the private
actions and their cost is information that agents do not adver-
tise, e.g., because it reveals information about their internal
operation that may be useful to competitors, or because of
other privacy issues.

Since the self-interest of agents requires defining their
utility functions, we make the standard assumption of quasi-
linear utility functions, where agent ϕi’s net utility, given
plan π and payments P , is

ui(π,P) = Pi − costi(π)

where Pi is the payment given to agent ϕi for its participa-
tion and costi(π) denotes the sum of the costs of all actions
by agent ϕi in π. Finally, we assume that no collusion be-
tween agents occurs. This also implies that an agent cannot
pretend to be several independent agents.

Mechanism Design and the VCG Mechanism
Mechanism design deals with the problem of optimiz-
ing some criteria (e.g. social welfare), when self-interested
agents having private information are involved. In the stan-
dard (centralized) setting, agents report their private infor-
mation to a “center”, which solves the optimization problem
and enforces the outcome.

The Vickery-Clarke-Groves (VCG) mechanism (Vickrey
1961; Clarke 1971; Groves 1973) is one of the most cele-
brated results of mechanism design. Very generally, given
the agents’ report of their private information, the center
computes an optimal solution and the payments to be made
to each of the agents. These payments reflect the impact each
agent’s participation has on other agents, and are computed
based on the solutions to the marginal problems Π−ϕi , in
which agent ϕi is completely ignored. VCG is strategyproof,
meaning that each agent’s utility-maximizing strategy re-
gardless of other agents’ strategies and private information is
to truthfully reveal its private information to the center. Strat-
egyproofness implies that the agents don’t need to model
the behavior of others in order to compute their equilibrium
strategy – truth telling is a weakly dominant strategy. VCG
is also efficient, meaning that the outputted solution maxi-
mizes the total utility to agents over all possible solutions to
Π. Both these properties prove useful when applying VCG
to our setting of cost-optimal MA planning.

Related Work
Our work relates to two research areas: Multi-agent/
distributed planning and mechanism design for decision
making in systems of self-interested agents. We now survey
relevant results in both areas.

Recently, several methods for planning in the cooperative
setting of MA-STRIPS have been presented. Planning-First
(Nissim, Brafman, and Domshlak 2010), a distributed MA
planner based on the Planning as CSP+Planning method-
ology (Brafman and Domshlak 2008), showed scalability in
problems having loosely coupled agents. More recently, an
approach which uses plan refinement (Torreño, Onaindia,
and Sapena 2012), showed state-of-the-art performance in
more tightly coupled problems. We note that both methods
are privacy preserving, but do not guarantee cost-optimal so-
lutions (Planning-First minimizes the maximal number of
public actions in an agent’s plan).

Tackling the strategic side of MA planning, work has
been done on achieving equilibria by a strategic diagnosis
of the planning scenario by the agents (Bowling, Jensen,
and Veloso 2003; Ben Larbi, Konieczny, and Marquis 2007).
This work attempts to find strategies (plans) for the agents
which constitute a Nash Equilibrium, by performing strate-
gic analysis of all possible agent plans. This analysis, where
every strategy of every agent must be evaluated against all
other strategies, makes these methods ineffective for plan-
ning, since even if plan length is bounded polynomially
(not the case for many planning benchmarks), the number
of available strategies is exponential. This problem pertains
to all such “pure” game-theoretic approaches requiring the
agents to perform some strategic evaluation of other agents.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

2

In light of this, further work has been done on feasibil-
ity conditions of MA planning for selfish agents, aiming
to find stable solutions in problems exhibiting certain struc-
ture – acyclic agent interaction graph (Brafman et al. 2009;
2010), and safe interaction, where no agent benefits from in-
validating another agent’s plan (Crosby and Rovatsos 2011).
Furthermore, work has been done on using single-agent
planners in order to perform plan improvement using best-
response, in scenarios where an initial MA plan is available
(Jonsson and Rovatsos 2011). We note that all the mentioned
approaches do not aim to find an optimal solution.

In the field of mechanism design, much work has been
done on using centralized incentive mechanisms for dis-
tributed systems (Ephrati and Rosenschein 1991; Parkes,
Kalagnanam, and Eso 2001). The problem of lowest-cost
routing on the Internet provided the motivation for work
on distributed algorithmic mechanism design (Feigenbaum
et al. 2002; Feigenbaum and Shenker 2002). This work
presents distributed protocols for computing all-pairs least-
cost routes, where the links are associated to strategic agents.
The assumption here is that the graphs are given, and are
small (one node per agent), since the algorithms require
memory polynomial in graph size. This assumption means
these methods cannot be used in the planning setting, where
the graphs are implicit and exponentially large. The main
advantage of these works was that the agents could not ben-
efit by misreporting their costs, so no strategic analysis is
required by the agents. Later work (Parkes and Shneidman
2004) discussed the robustness of the algorithm itself to ma-
nipulation, and introduced the principles required for achiev-
ing an incentive compatible distributed mechanism. These
principles are discussed in further detail later on.

Based on these results, the first faithful distributed im-
plementation of efficient social choice problems (M-DPOP)
was presented (Petcu, Faltings, and Parkes 2008). M-DPOP
is a distributed constraint optimization algorithm imple-
menting the VCG mechanism. It ensures that no agent can
benefit by deviating from any part of the distributed proto-
col. While M-DPOP can be used to solve planning prob-
lems, which can be cast as DCOPs, previous work (Nis-
sim, Brafman, and Domshlak 2010; Nissim and Brafman
2012a) shows that distributed planning algorithms, espe-
cially ones using heuristic forward search, have strong com-
putational benefits, whereas CSP-based methods can barely
handle problems that require 3 or more actions per agent.

Centralized VCG Mechanism for Planning
To set the stage for our distributed mechanism, we now de-
scribe how to apply the VCG mechanism to our setting of
optimal MA planning, when a trusted center exists:
Definition 2 (VCG mechanism for optimal MA planning).
Given a MA planning problem Π in which agents are self-
interested and have private information, the mechanism is
as follows:

1. Agents report their private actions and all action costs to
the center.

2. Given the agents’ reports, the center finds an optimal so-
lution π? for Π, as well as π∗−ϕi

for each Π−ϕi
.

3. Each agent receives payment

Pi =
∑
j 6=i

(costj(π?
−ϕi

)− costj(π?))

In this setting, each agent reports its actions and their costs
to the center, which then computes the payment rule, i.e.
the payments made to each of the agents for participating in
the mechanism. The payment of each of the agents is deter-
mined by the center according to the agent’s social cost – the
aggregate impact its participation has on the utilities of other
agents. To compute the payments, the center needs to solve
Π, as well as the marginal problems Π−ϕi for each ϕi ∈ Φ.
Note that the payments are always non-negative, since an
agent’s presence may only have a positive effect on solu-
tion cost. Therefore, a pivotal agent ϕi, i.e. one which im-
proves solution cost by participating, will have Pi > 0 and
will be paid for its participation, whereas non-pivotal agents
will pay exactly 0. This means the center will run a budget-
deficit (i.e. will never make a profit), but no agent will lose
by participating. This deficit can be viewed as the agents’
profit from taking part in the plan. In a market where nu-
merous agents can perform similar actions at different costs,
e.g., due to efficiency differences, proximity, availability of
resources, etc., the profit is related to such advantages that
one agent may have over others. Note that in this schema,
an agent that is essential (i.e., no solution exists without it)
will receive a payment of∞, so the underlying assumption
is that no such agent exists.

As an example, consider the well-known logistics plan-
ning domain, which involves vehicles transporting packages
to their goal location. Each of the three agents ϕ1 . . . ϕ3 can
pickup/drop one of two packages p1, p2, and can drive be-
tween two locations A,B. Initially, both packages and the
three agents are at location A, and the goal is to move both
packages to location B. Action costs differ between agents:
ϕ1’s pickup/drop actions have cost 1 for p1, and cost 2 for
p2. ϕ2’s pickup/drop actions have cost 2 for p1, and cost 1
for p2. ϕ3’s pickup/drop actions have cost 2 for both p1, p2.
All drive actions have cost 1.

Given the report of actions costs, the center now finds an
optimal plan having cost 6, in which ϕ1, ϕ2 pickup, drive
and drop packages p1, p2, respectively. For the marginal
problems Π−ϕ1

and Π−ϕ2
, the optimal solution has cost 8.

Therefore, P1 = P2 = 8−3 = 5. This gives the two pivotal
agents the positive utility u1 = u2 = 5 − 3 = 2. For the
non-pivotal agent ϕ3, Π−ϕ3 has an optimal solution cost of
6, therefore its payment (and its utility) will be 0.

Distributed Implementation of VCG
While the centralized approach finds the optimal solution,
maximizes social welfare, and ensures truthfulness of the
agents, in many cases it will be impossible to find a trusted
central authority. Moreover, even if one exists, this central-
ized approach is not privacy preserving, as agents must re-
veal their private information to the center.

A desirable alternative is a distributed implementation of
the VCG mechanism that computes the payments, solves Π,
while maintaining some sense of VCG’s strategyproofness.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

3

However, such a distributed implementation introduces new
opportunities for agent manipulation, as in addition to re-
porting its private information untruthfully, an agent may
deviate from the distributed protocol, unless the right in-
centives for following the protocol are provided. We present
such an implementation next.

In describing our distributed implementation, we make
the following assumptions1, in addition to the ones made in
the background section:

1. There is a trusted bank which can communicate with the
agents and distribute payments.

2. The agents are rational but helpful, i.e. they are self-
interested, but will deviate from a protocol only if this
makes them strictly better off.

3. Every agent can communicate directly with all other
agents.

4. The bank may rescind payment if a legal, goal-achieving
plan is not found and executed.

Work by Parkes and Shneidman (2004) describes princi-
ples that guide the distribution of computation, focusing in
particular on the VCG mechanism. A distributed algorithm
(protocol) is said to be ex post faithful if it is in the best
interest of every agent to truthfully follow all aspects of the
algorithm (information revelation, message passing, compu-
tation, etc.) regardless of other agents’ private information,
given that all other agents follow the algorithm2. An algo-
rithm is said to satisfy the Partition Principle if (1) optimal
solutions are always obtained for Π and Π−ϕi

, given that
all agents fully comply with the suggested distributed pro-
tocol; (2) agent ϕi cannot affect the distributed computation
of the marginal problem Π−ϕi , nor its utility from the out-
come; (3) the solution found for Π is correctly executed and
the payments are made to the agents. Parkes and Shneidman
show that a distributed algorithm that satisfies the partition
principle is ex post faithful.

The MAD-A* Algorithm
We now describe the distributed protocol which we use
for the VCG computations. At its heart is a distributed
planning algorithm: MAD-A* (Nissim and Brafman 2012a;
2012b) is a distributed, privacy-preserving variation of A*,
which maintains a separate search space for each agent.
Each agent maintains an open list of states that are candi-
dates for expansion and a closed list of already expanded
states. It expands the state with the minimal f = g+h value
in its open list. When an agent expands state s, it uses its
own actions only. This means that two agents expanding the
same state will generate different successor states.

The messages sent between agents contain the full state
s, i.e., including both public and private variable values, as
well as the cost of the best plan from the initial state to s
found so far, the sending agent’s heuristic estimate of s and

1similar to the ones made by Petcu et al. (2008)
2The weakening of VCG’s strategyproofness in the centralized

case, to ex post faithful in the distributed case is often referred to
as the cost of decentralization.

the last action performed leading up to s3. When agent ϕ
receives a state via a message, it checks whether this state
exists in its open or closed lists. If it does not appear in these
lists, it is inserted into the open list. If a copy of this state
with higher g value exists, its g value is updated, and if it is
in the closed list, it is reopened. Otherwise, it is discarded.
Whenever a received state is (re)inserted into the open list,
the agent computes its local hϕ value for this state, and as-
signs the maximum of its hϕ value and the h value in the
received message.

Once an agent expands a solution state s, it sends s to all
agents and initiates the process of verifying its optimality.
When the solution is verified as optimal, the agent initiates
the trace-back of the solution plan. This is also a distributed
process, which involves all agents that perform some action
in the optimal plan. When the trace-back phase is done, a
terminating message is broadcasted.

Algorithms 1-3 depict the MAD-A* algorithm for agent
ϕi. Unlike in A*, expansion of a goal state in MAD-

Algorithm 1 MAD-A* for Agent ϕi

1: while did not receive true from a solution verification
procedure do

2: for all messages m in message queue do
3: process-message(m)
4: s← extract-min(open list)
5: expand(s)

Algorithm 2 process-message(m = 〈s, gϕj
(s), hϕj

(s)〉)
1: if s is not in open or closed list or gϕi

(s) > gϕj
(s)

then
2: add s to open list and calculate hϕi

(s)
3: gϕi

(s)← gϕj
(s)

4: hϕi(s)← max(hϕi(s), hϕj (s))

A* does not necessarily mean an optimal solution has been
found. Here, a solution is known to be optimal only if all
agents prove it so. Intuitively, a solution state s having solu-
tion cost f∗ is known to be optimal if there exists no state
s′ in the open list or the input channel of some agent, such
that f(s′) < f∗. In other words, solution state s is known to
be optimal if f(s) ≤ flower−bound, where flower−bound is a
lower bound on the f -value of the entire system, including
all states in open lists and states in unprocessed messages.

To detect this situation, MAD-A* uses Chandy and Lam-
port’s snapshot algorithm (Chandy and Lamport 1985),
which enables a process to create an approximation of the
global state of the system, without “freezing” the distributed
computation. Although there is no guarantee that the com-
puted global state actually occurred, the approximation is

3It may appear that agents are revealing their private data be-
cause they transmit their private state in their messages. However,
as will be apparent in the algorithm, other agents do not use this
information in any way, nor alter it. They simply copy it to future
states. Only the agent itself can change the value of its private state.
Consequently, this data can be encrypted arbitrarily – it is merely
used as an ID by other agents.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

4

Algorithm 3 expand(s)
1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: initiate verification of stable property flower−bound ≥

gϕi
(s)

5: return
6: for all agents ϕj ∈ Φ do
7: if the last action leading to s was public and ϕj has a

public action for which all public preconditions hold
in s then

8: send s to ϕj

9: apply ϕi’s successor operator to s
10: for all successors s′ do
11: update gϕi

(s′) and calculate hϕi
(s′)

12: if s′ is not in closed list or fϕi
(s′) is now smaller than

it was when s′ was moved to closed list then
13: move s′ to open list

good enough to determine whether a stable property cur-
rently holds in the system. A property of the system is stable
if it is a global predicate which remains true once it becomes
true. Specifically, properties of the form flower−bound ≥ c
for some fixed value c, are stable when h is a globally con-
sistent heuristic function. That is, when f values cannot de-
crease along a path. In our case, this path may involve a
number of agents, each with its h values. If each of the lo-
cal functions hϕ are consistent, and agents apply the max
operator when receiving a message, this property holds.

Distributed Implementation
Consider now our distributed implementation of VCG which
uses the MAD-A* algorithm, presented as Algorithm 4. In
this setting, the agents participate in |Φ|+1 sequential MAD-
A* searches, beginning with the original problem Π, and
continuing with the marginal problems Π−ϕi

for each i.
When solving the marginal problem Π−ϕi

, messages from
ϕi are ignored by all agents, and no messages are sent to it.
Once each of the marginal problems Π−ϕi

are solved, each
agent ϕj 6= ϕi knows its local cost in π∗ and in π∗−ϕi

. This
is sufficient in order to send the value Pij , that is, the cost
removing ϕi incurs on ϕj , to the bank. Upon receiving all
these messages, the bank is able to compute P . Since MAD-
A* does not require the agents to reveal their private infor-
mation, Algorithm 4 is automatically privacy preserving.

Algorithm 4 Selfish-MAD-A*
1: Run MAD-A* on Π with all agents in Φ to find π?

2: for all ϕi ∈ Φ do
3: Run MAD-A* on Π−ϕi

to find π∗−ϕi

4: Agents ϕj 6= ϕi compute Pij = costj(π?
−ϕi

) −
costj(π?) and send it to the bank.

5: The bank computes Pi =
∑

j 6=i Pij

6: Bank pays Pi to every agent ϕi, and broadcasts π? to all
agents.

Proof of Correctness
In order to prove the correctness of algorithm 4, we must
prove that it satisfies the partition principle (Parkes and
Shneidman 2004). Therefore, we must show that (1) MAD-
A* computes optimal solutions to Π and Π−ϕi

for all ϕi ∈
Φ, given that all agents comply with the protocol; (2) No
agent can affect the solution of its respective marginal prob-
lem, nor its utility from the outcome; (3) the optimal solution
of Π is correctly executed and all payments are made.

Condition (1) follows immediately from the correctness
and optimality of MAD-A*, which requires only that the
heuristic used by each of the agents is consistent. The first
part of condition (2) holds since agent ϕi does not even par-
ticipate in the solving of π∗−ϕi

, and therefore, cannot influ-
ence it in any way. For the second part, agent ϕi’s utility
ui(Π) is given by

Pi−costi(π
?) =

∑
j 6=i

(costj(π
?
−ϕi

)−costj(π
?))−costi(π

?)

= cost(π?
−ϕi

)− cost(π?)

Since ϕi cannot influence cost(π?
−ϕi

), it can have a posi-
tive influence on its utility only by decreasing cost(π?). As
π? is already optimal, any such decrease means either that
other agents’ costs have been decreased, which will cause
the plan to fail (some agent will not agree to such a solution)
and the payments to be rescinded, or that ϕi misreported
its own costs, which does not change its actual utility. Con-
dition (3) follows directly from our assumption that there
exists a trusted bank, which can rescind payments if a legal
plan is not executed.

We have shown that Selfish-MAD-A* satisfies the parti-
tion principle, and therefore, it is ex post faithful.

Optimizing Selfish-MAD-A* by Multigoal Search
In the distributed implementation presented in the previous
section, each of the |Φ| + 1 problems is solved in isolation.
It is clear that when these problems are solved, the gener-
ated search spaces overlap, causing some states to be gener-
ated (and evaluated) multiple times. For example, in Π−ϕi

,
all reachable states s having f(s) ≤ cost(π?

−ϕi
) must be

expanded. In Π, all these states are reachable, and will be
expanded as well.

In order to prevent the duplication of effort Selfish-MAD-
A* entails, we propose a multigoal variation of MAD-A*,
which finds optimal solutions to all |Φ| + 1 problems in a
single run and on a single (distributed) search space. The
main idea is to additionally identify each state s with the set
of agents participating in the (currently) best plan leading
up to s. If s can be reached via two paths having differ-
ent participating agents sets, s is duplicated. When a goal
state s? is reached, it is treated as a candidate solution for
Π−ϕi if ϕi does not participate in the path leading to s?.
Termination detection remains unchanged, except that it is
performed for each marginal problem, as well as for Π.
s? is known to be optimal for marginal problem Π−ϕi

, if
f(s?) ≤ f ilower−bound, where f ilower−bound is a lower bound
on the f -value of all states for which ϕi does not participate

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

5

Table 1: Comparison of centralized A*, centralized VCG,
and two versions of distributed VCG. Running time (in sec.)
and the number of generated states are shown.

Time (sec.) Generated states
Problem A* Cen Dis OptDis A* Cen Dis OptDis
rovers6 (2) 278 282.5 324 290 34M 35M 114M 102M
rovers7 (3) 0.7 2.78 6.62 5.1 62271 316553 2262129 2104573
rovers12 (4) 1 16.7 102.1 67.2 55783 1306970 29412049 24506767
satellite5 (3) 0.06 0.06 2.78 1.1 2817 2961 1928245 932233
satellite6 (3) 0.4 0.4 4.67 2.16 39182 39384 3311637 1763072
satellite7 (4) 2.96 2.98 31.9 11.04 246762 246902 25675038 10208671
transport2 (2) 0.01 0.02 0.2 0.12 166 290 10626 8874
transport3 (2) 3.68 12.1 42.7 33.2 27354 120256 2583063 2207614
transport4 (2) 40.4 52.2 1036 712 112824 154469 24543906 22787598
zenotravel8 (3) 0.06 0.08 0.66 0.32 725 1009 46282 26560
zenotravel9 (3) 20.8 45.4 835.7 611 227670 538352 44768124 35520708
zenotravel10 (3) 56.8 375 X X 539895 4287493 X X
zenotravel11 (3) 2.22 2.4 22.4 14.8 24094 26332 1490640 1126475

in their currently best plan. Once all |Φ| + 1 solutions are
verified, the algorithm terminates. To further optimize the
algorithm, states that are irrelevant for remaining marginal
searches can be pruned, reducing computational effort.

Since all |Φ| + 1 are now solved on a single, albeit dis-
tributed, search space, this presents a new possibility of ma-
nipulation, having ϕi influencing the solution of Π−ϕi

. To
avoid this, and to retain property (2) of the partition prin-
ciple, a state arriving via message from ϕi is automatically
considered to have ϕi in its participating agents, and thus
never to be considered as a candidate solution for Π−ϕi .

Empirical Evaluation
We performed an empirical evaluation on several MA plan-
ning benchmark domains taken from the International Plan-
ning Competition . We compare the computational effort re-
quired by centralized A* and our two mechanisms (central-
ized and distributed). We refer to the overhead of computing
the centralized mechanism (compared to centralized A*) as
the cost of selfishness, and to the computational overhead of
distributing the mechanism as the cost of privacy. We show
that empirically, these costs are not high, providing evidence
of the feasibility of our methods.

Table 1 depicts the running time and the number of gener-
ated states of A* (solving the underlying classical planning
problems with full knowledge) and the 3 VCG mechanisms
– Centralized (Cen), Selfish-MAD-A* (Dis), and optimized
multigoal Selfish-MAD-A* (OptDis). All planners were im-
plemented on top of the Fast-Downward planning system
(Helmert 2006) and use the state-of-the-art LM-cut heuris-
tic (Helmert and Domshlak 2009). The number of agents is
given in parentheses in the Problem column. We note that
the two centralized configurations use the pruning method
described by Nissim et al. (2012), which simulates the com-
putational benefits of MAD-A* in centralized search. This
is done so MAD-A* wouldn’t have an advantage, giving an
accurate view of the costs of selfishness and privacy. Run-
ning time was limited to 30 minutes and memory to 4GB.

In most cases, the cost of selfishness (overhead incurred
by the centralized computation of the VCG payments) is not

high – most problems are solved in roughly the same time,
with a few exceptions solved 4 and 16 times slower. This is
because solving the marginal problems is fairly easy once
an optimal solution has been found. However, the cost of
privacy is much higher – most problems are solved 4 times
slower than centralized VCG, with one problem solved 18
times slower. This is mainly because the privacy of infor-
mation hurts the heuristic quality, an important factor in the
effectiveness of forward search (heuristic) algorithms. How-
ever, given that the distributed configurations solve a more
difficult problem than the centralized ones, this slowdown
is expected and acceptable. Comparing the two distributed
approaches, we see that the optimized multigoal version
dominates Selfish-MA-A* w.r.t. both runtime and generated
nodes. It is clear that elimination of the duplicate effort has
a positive effect computation-wise.

Discussion
We described a distributed, strategy-proof, socially efficient,
and privacy preserving mechanism for planning by a group
of self-interested agents. This result contributes to a small,
but growing body of research on this topic. One important
advantage of our mechanism is its efficiency. Although there
is a clear computational cost to selfishness, we can optimally
solve the same order of problems as state-of-the-art opti-
mal planning algorithms. This is in stark contrast to most
alternatives: work on stable planning relies on CSP-based
algorithms discussed by Nissim, Brafman and Domshlak
(2010), that have difficulty handling plans that require more
than 3 public actions per agent and do not generate opti-
mal plans, whereas work that seeks equilibria either does not
consider the issue of privacy, assumes truthfulness ignoring
the issue of manipulation, or requires costly computations.

The VCG mechanism is not without faults. Its main weak-
ness is the the fact that the side payments that the plan ben-
eficiary has to pay the agents can be very substantial in the-
ory. This makes the mechanism suitable in two contexts: 1)
Competitive environments where there are a number of dif-
ferent agents with similar capabilities and similar costs, in
which case the payments agents receive are not significantly
beyond their true cost. Thus, in the example of building con-
struction, there is a large number of providers for every pos-
sible task, some more efficient or appropriate (e.g., because
their proximity to the site lowers their costs), but all in the
same ball park. 2) Plan beneficiary for which the benefit of
optimality far outweighs the cost paid. For example, road
construction by local government, where the time to com-
plete the project outweighs other considerations. How to ad-
dress the issue of overcharging is the subject of much current
work on related problems (Elkind, Sahai, and Steiglitz 2004;
Karlin, Kempe, and Tamir 2005; Singer 2010), although
none of the current results are applicable to the planning set-
tings. We hope to examine this question in future work.

Acknowledgments
The authors were partly supported by the Paul Ivanier Center
for Robotics Research and Production Management, and the
Lynn and William Frankel Center for Computer Science.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

6

References
Ben Larbi, R.; Konieczny, S.; and Marquis, P. 2007. Ex-
tending classical planning to the multi-agent case: A game-
theoretic approach. In European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncer-
tainty, ECSQARU, 731–742.
Bowling, M. H.; Jensen, R. M.; and Veloso, M. M. 2003.
A formalization of equilibria for multiagent planning. In
IJCAI, 1460–1462.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In IJCAI, 73–78.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2010. Transferable utility planning games. In AAAI.
Chandy, K. M., and Lamport, L. 1985. Distributed snap-
shots: Determining global states of distributed systems.
ACM Trans. Comput. Syst. 3(1):63–75.
Clarke, E. H. 1971. Multipart pricing of public goods. Pub-
lic Choice 2:19–33.
Crosby, M., and Rovatsos, M. 2011. Heuristic multiagent
planning with self-interested agents. In AAMAS, 1213–1214.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Elkind, E.; Sahai, A.; and Steiglitz, K. 2004. Frugality in
path auctions. In SODA, 701–709.
Ephrati, E., and Rosenschein, J. S. 1991. The Clarke Tax as
a consensus mechanism among automated agents. In AAAI,
173–178.
Feigenbaum, J., and Shenker, S. 2002. Distributed algorith-
mic mechanism design: recent results and future directions.
In DIAL-M, 1–13. ACM.
Feigenbaum, J.; Papadimitriou, C. H.; Sami, R.; and
Shenker, S. 2002. A BGP-based mechanism for lowest-cost
routing. In PODC, 173–182. ACM.
Groves, T. 1973. Incentives in Teams. Econometrica
41:617–631.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
ICAPS. The International Planning Competition.
http://www.plg.inf.uc3m.es/ipc2011-deterministic/.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In ICAPS.
Karlin, A. R.; Kempe, D.; and Tamir, T. 2005. Beyond
VCG: Frugality of truthful mechanisms. In FOCS, 615–
626.
Nisan, N., and Ronen, A. 2001. Algorithmic mechanism
design. Games and Economic Behavior 35(1-2):166–196.
Nissim, R., and Brafman, R. I. 2012a. Multi-agent A* for
parallel and distributed systems. In AAMAS, 1265–1266.

Nissim, R., and Brafman, R. I. 2012b. Multi-agent A* for
parallel and distributed systems. In ICAPS Workshop on
Heuristics and Search for Domain-Independent Planning,
43–51.
Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In ECAI, 624–629.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
AAMAS, 1323–1330.
Parkes, D. C., and Shneidman, J. 2004. Distributed imple-
mentations of Vickrey-Clarke-Groves mechanism. In AA-
MAS, 261–268. IEEE Computer Society.
Parkes, D. C.; Kalagnanam, J.; and Eso, M. 2001. Achiev-
ing budget-balance with Vickrey-based payment schemes in
exchanges. In IJCAI, 1161–1168. Morgan Kaufmann.
Petcu, A.; Faltings, B.; and Parkes, D. C. 2008. M-DPOP:
Faithful distributed implementation of efficient social choice
problems. J. Artif. Intell. Res. (JAIR) 32:705–755.
Singer, Y. 2010. Budget feasible mechanisms. In FOCS,
765–774.
Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In ECAI, volume 242, 762–767. IOS Press.
Vickrey, W. 1961. Counterspeculation, Auctions and Com-
petitive Sealed Tenders. Journal of Finance 8–37.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

7

Optimizing distributed resource exchanges in
multiagent systems under uncertainty

Aurélie Beynier
aurelie.beynier@lip6.fr

LIP6, University Pierre and Marie Curie
4 place Jussieu

75005 Paris, France

Sylvia Estivie
sylvia.estivie@univ-valenciennes.fr

Univ Lille Nord de France, F-59000 Lille, France
UVHC, LAMIH, F-59313 Valenciennes, France

CNRS, UMR 8201, F-59313 Valenciennes, France

Abstract

A resource allocation problem is a problem in which a
set of agents - cooperative or not - must find an assign-
ment of a set of resources. This allocation must match,
as best as possible, with the agents’ preferences, which
are often antagonist. In most allocation problems, the
solution space has a combinatorial structure that cre-
ates difficulties with the preference formal representa-
tion and the optimal choice calculation. Furthermore,
agents must frequently make a decision with an incom-
plete knowledge of the system state while exogenous
factors may affect this state after the decision. There is
thus a need for the agents to handle uncertainty about
the system in order to maximize their satisfaction. How-
ever, the allocation problem gets more complicated in
case of uncertainty and usual models of collective re-
source allocation are not appropriate for this context.
Whereas resource allocation models for combinatorial
domains are the subject of studies, none of these mod-
els consider uncertainty aspects in a distributed context.
In this paper, we propose a decision-theoretic approach
that allows a set of agents to solve, in a distributed way,
resource allocation problems under uncertainty. We rep-
resent possible interactions and limited observability as
an interaction graph and we propose an MDP based ap-
proach to compute exchange strategies taking into ac-
count future interaction opportunities.

Introduction
In multiagent systems, the problem of the allocation of a set
of resources over a set of agents is major issue. This prob-
lem consists in finding an assignment of a finite set of re-
sources over a finite set of agents where the agents’ welfare
depends on the resources they own. Many application frame-
works deal with the problematic of resource sharing such as
networks, robotics, logistic, ambient intelligence, security,...
For example, in networks (Internet, sensor networks, social
networks) agents (users, softwares) must share a set of lim-
ited amounts of resources (sensors, computational resources,
bandwidth, services) across the network.
In this paper, we focus on the problem of resource sharing
under uncertainty. It must be recognized that very little work
deals with this problematic despite the fact that it is very

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

fundamental in many multiagent systems. Indeed, due to the
topology of the system, each agent has limited observability
of its environment and of the others agents. In the resource
allocation framework, the agents often have a partial observ-
ability over resources owned by the others agents and they
have incomplete knowledge of the valuation of the resources
owned by the other agents. This limited observability leads
to uncertainty over the state of the system and over its evo-
lution, that must be taken into account while deciding how
to act.
When it is not possible to have a central entity which de-
cides of the resource allocation between the agents, the pro-
cess of resource allocation must be fulfilled in a distributed
way. For the agents, this process consists in computing indi-
vidual policies for resource exchanges considering the other
agents’ states and strategies which are partially observable.
In this paper, we propose an approach that allows resource
exchanges between the agents with limited observability.
Given an initial resource allocation, agents will try to ex-
change resources in order to maximize their personal wel-
fare considering future possible opportunities of resource
exchanges. We propose to model the observation capaci-
ties of each agent as an interaction graph defining for each
agent agi, the set of agents observed by agi and with whom
agi can interact. In applicative contexts like sensor networks
or social networks, this graph formalizes direct connections
between the agents. In order to take into account uncer-
tainty about the system state and evolution, we formalize
each individual decision problem as a Markov Decision Pro-
cess (MDP). This mathematical model has been successfully
used in many domains to solve sequential decision making
problems under uncertainty. In our approach, MDPs are used
to compute resource exchange strategies taking into account
future resource opportunities.
The remainder of the paper is organized as follows. We first
introduce the MultiAgent Resource Allocation (MARA)
framework. Next, we discuss issues dealing with uncer-
tainty and MARA problems and we present Markov Deci-
sion Processes. We then propose an MDP based approach to
model the problem of distributed resource allocation under
uncertainty. We address the problem of policy computation
and detail how each agent can anticipate resource moves to
determine its best proposal at each time step. Finally, we
present experiments and conclude the paper.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

8

Problem statement
Let Ag = {ag0 · · · agn−1} be a finite set of (at least 2)
agents and let R be a finite set of indivisible resources
(which we also refer to as goods). An allocation A is a parti-
tioning of the items inR amongst the agents inAg (i.e. each
good must be owned by exactly one agent). For instance, an
allocationA, defined viaR(i) = {r1} andR(j) = {r2, r3},
would allocate r1 to agent agi, and r2 and r3 to agent agj .
Each agent agi ∈ Ag is equipped with a valuation function
vi mapping bundles of resources (subsets of R) to rational
numbers. These valuation functions denote the interests of
individual agents agi ∈ Ag.
Agents’ valuation functions may be represented in different
ways. In this paper, we choose to use an intuitive representa-
tion of valuation functions which is the k-additive functions.
They are frequently used because they are simple, compact
and very expressive. These functions have been studied in
the context of fuzzy measure theory (Grabisch 1997). A val-
uation function is called k-additive iff the utility assigned to
a bundle of resources R(i) hold by agi can be represented
as the sum of basic utilities associated to subsets T of R(i)
with cardinality 6 k, k ∈ N. The valuation function vi of an
agent agi is thus defined as:

vi(R(i)) =
∑

T∈R(i)

αT
i

The agent agi enjoys an increase in utility of αT
i when it

owns all the items in T together. We say that bundle T be-
comes active for agent agi. For example, let’s assume agi’s
valuation function is vi = 5r1 + 10r1r2. If agi only owns
r2, its utility is 0. But, if it owns r1 and r2, it activates both
bundles r1 and r1r2 and its utility is 5 + 10 = 15. We shall
make the assumption that all valuations are normalised in
the sense that vi({}) = 0.

Deals and monetary payments
Given a particular allocation of resources, agents may agree
on deals to exchange some of the resources they currently
hold in order to improve their own welfare. A deal δ =
(A,A′) is a pair of allocations (with A 6= A′), specifying
the situation before and afterwards. It transforms an alloca-
tion of resources A into a new allocation A′. In general, a
single deal δ may involve the reassignment of any number
of goods amongst any number of agents (Sandholm 1998).
In this work, we focus on one-deals which involve only a
single resource and hence only two agents.
We assume that agents are rational in the sense of aiming
to maximise their individual welfare. According with (Es-
tivie et al. 2006), we call a deal rational iff it results in a
gain in utility (or money) that strictly outweighs a possible
loss in money (or utility) for each of the agents involved in
that deal. So, agents are assumed to only negotiate individu-
ally rational deals. Deals may be accompanied by monetary
side payments to allow agents to compensate others for oth-
erwise disadvantageous deals. If an agent receives several
propositions for a same resource, it chooses the most ad-
vantageous rational deal for it, i.e. the rational deal with the
highest value for this resource.

Interaction graph
In this paper, we consider problems where agents exchange
resources in a distributed way: there is no central entity
to coordinate resource allocation amongst the agents. Each
agent is assumed to have limited observations about its en-
vironment, especially concerning the other agents. We con-
sider that the agents are organized as an interaction graph
G = {Ag, E}. Vertices represent the agents and edges for-
malized possible interactions between the agents. An edge
e(i, j) ∈ E links two agents agi and agj , if agent agi (re-
spectively agj) observes agent agj (respectively agi) and
can interact with agj . It means that agi and agj both observe
the resources they own and can exchange some resources
(we do not consider asymmetric situations where agi ob-
serves agj but agj does not observe agi). All the agents
agj such as ∃ e(i, j) ∈ E are called the neighbours of agi
and denoted N (i). This interaction graph enables to repre-
sent situations where agents have limited sensing capabili-
ties i.e. we assume that an agent only observes and interacts
with the agents that are in its range of perception. However,
each agent is assumed to know the whole topology of the in-
teraction graph (or at least its neighbourhood and the num-
ber of neighbours of its neighbours). This assumption holds
in many applicative frameworks where spatial organization
is common knowledge. For instance, in robotics system for
multi-robot exploration, each robot is able to know which
robots are closed to it and can obtain the information about
the neighbours of its neighbours via wifi communication. In
Web Services, each service interacts with a closed list of
preferred and well-known services but it knows the whole
list of services (through a yellow pages service for exam-
ple). In these examples, agents only interact with a subset of
favourite and well-known agents.
In our framework, it is assumed that each agent observes the
resources owned by its neighbours and their valuation func-
tions. In the case where each agent also knows the policies
of its neighbours and of the neighbours of its neighbours, it
can infer possible competing proposals. Otherwise, heuris-
tics can be used to make up for the lack of knowledge about
other agents’ preferences and strategies. Possible heuristics
are discussed in the section dealing with policy computation.
Figure 1 represents a system involving 10 agents. In this
graph, agent ag0 can only observe the resources of ag1, ag2
and ag3 and only interacts with these three agents. So, agent
ag0 could see and could propose a bid for the resources r1,
r3 and r5, but not for r7, r8 and r9.

Figure 1: Graph and knowledge of agent ag0

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

9

MARA and uncertainty
Since an agent agi has limited observations about the other
agents (it does not observe agents agj such that agj /∈
N (i)), it is uncertain about the proposals of the other agents.
In fact, the agent does not know exactly which resources are
owned and wanted by the other agents. When it makes a
proposal for a deal, agent agi is not sure that it will get the
resource: it obtains the resource if it makes the highest pro-
posal but it has uncertainty about the other agents’ proposals.
In this paper, we propose an approach that allows each agent
to deal with the uncertainty about the other agents’ propos-
als and to compute a policy that dictates which proposal to
make and when. Due to k-additive utility functions it may
be interesting to anticipate future opportunities. Indeed, an
agent may not benefit immediately from getting a resource
rj but, it may get a high reward in steps further ahead once
it will activate a bundle with rj . Let’s consider the graph of
Figure 1 and let’s assume agent ag0 has the valuation func-
tion v0 = 5r2 + 10r8r3r4. When it owns {r2, r4}, ag0 has
no immediate interest to propose a deal in order to obtain r3.
Indeed, ag0 cannot activate a new bundle when it only ob-
tains r3: its valuation remains the same whether it owns r3 or
not (valuation equals to 5). However, if the agent anticipates
that it could use r3 later to activate on more bundle once it
will obtain r8, the agent has interest to make a proposal for
r3. Its interest has to be balanced with the probability r8 be-
comes reachable in the next steps. Our approach allows each
agent to anticipate future resource exchanges and to make
proposals at the best price and time. In order to model the
uncertainty about the other agents’ proposals, we propose to
formalise each agent’s decision problem as a Markov Deci-
sion Process.

MDP and resource allocation
Markov Decision Processes (Puterman 2005) propose a rich
mathematical framework to formalize and solve sequential
decision problems in stochastic environments. A Markov
Decision Process (MDP) is defined as a tuple 〈S,A, P,R〉
where: S denotes the finite set of possible agent states ;
A is the finite set of actions which can be executed ; P :
S ×A× S → [0, 1] is a transition function which describes
the dynamics of the system: P (s, a, s′) gives the probability
the system moves to state s′ when action a is executed from
s ; R : S × A → R is a reward function: R(s, a) is the
reward obtained by the system while executing a from s.
Optimally solving an MDP consists in finding a policy func-
tion π which maps each possible system state s to an action
a and which maximizes the expected cumulative sum of re-
ward.

Markov Decision Processes have been used to solve
centralized multiagent task allocation problems where a
set of tasks or resources must be allocated over a set of
agents (Hanna and Mouaddib 2002; Dibangoye, Mouad-
dib, and Chaib-Draa 2007; Beynier and Mouaddib 2009): at
each decision step, a decision maker must decide to which
agents a task or a resource must be allocated. Plamondon
and Chaib-Draa (Plamondon and Chaib-Draa 2006) describe
an MDP-based approach for allocating a set of resources

among a set of tasks: an MDP is defined for each resource
and a central agent coordinates the MDPs considering re-
source interactions.

Dolgov and Durfee (Dolgov and Durfee 2004) tackle the
problem of computing an optimal strategy for a set of agents
that have to share limited resources to execute their actions
under uncertainty. The agents are assumed to be independent
except for the limited resources they share. The optimization
problem is reduced to a mixed integer linear program which
computes policies that ensure the limited shared resources
are not over-consumed. In (Dolgov and Durfee 2006), Dol-
gov and Durfee tackle the problem of decentralized multia-
gent resource allocation using combinatorial auctions where
bids are defined using MDPs: instead of sending a bid for
each possible bundle, each agent sends to the auctioneer a
resource-parametrized MDP as bids.

However, to our knowledge, there is no existing approach
dealing with distributed system under uncertainty where
agents must exchange resources through one-deal to opti-
mize their satisfaction. In fact, very few approaches have
been proposed to solve decentralized resource allocation un-
der uncertainty. Recently, Lumet et al. (Lumet, Bouveret,
and Lematre 2011) studied the problem of fair allocation of
indivisible goods under risk. The preferences of the agents
are assumed to be additive i.e. the utility of an agent is the
sum of the utility of the resource it owns. Although their
approach allows for considering uncertainty on the value of
each resource, allocation is centralized.

Distributed MDPs for resource allocation
In the last decade, many attention has been paied to De-
centralized Markov Decision Processes (DEC-MDPs) which
extends MDPs to distributed multiagent decision mak-
ing (Goldman and Zilberstein 2004). DEC-MDPs describe
a framework to model mutiagent sequential decision prob-
lems where each agent has to make decisions based on
its own partial view of the system such as to maximize a
common reward function. DEC-MDPs could provide a use-
ful tool to formalize distributed allocation problems. How-
ever, they suffer from a high complexity (Bernstein, Zil-
berstein, and Immerman 2002). Approximate approaches
have been proposed to overcome this complexity (Amato,
Dibangoye, and Zilberstein 2009; Wu, Zilberstein, and Chen
2010). However, most of them propose centralized policy
computation (while we focus on decentralized policy gen-
eration) and do no exploit locality of interactions - except
Networked Distributed POMDPs (ND-POMDP). Although,
our work share many characteristics with the ND-POMDP
framework (Nair et al. 2005), our approach considers more
general problems since we do not make the assumption of
observation and transition independence. Indeed, in MARA
framework, there are strong dependences between neigh-
bour agents’ transition functions.
Partially Observable Stochastic Games (POISG) (Hansen
2004) generalize DEC-POMDPs to represent problems
where the agents may not share the same reward function
like our context. Indeed, in the problems we consider, each
agent tries to maximize its own welfare.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

10

In our approach, we propose to decompose the problem as
a set of MDPs. It has been proved that such an approach al-
lows to solve larger sizes of problems (Beynier and Mouad-
dib 2009; Scott and Prasad 2009) than the ones which rep-
resent the decision problem as a single multiagent MDP. An
MDP is defined to formalize each agent’s individual deci-
sion problem: it models the problem facing the agent about
deal proposals and deal acceptances. Note that a valuation
function vi is assumed to be known by each agent agi to
value the set of resourcesR(i) it owns. Unlike (Dolgov and
Durfee 2006), MDPs are not used to compute the value of
each resource or set of resources.

At each decision step, an agent must decide whether to
make a proposal for a resource or not, which proposal to
make and to which agent. A proposal consists of an agent
(the receiver of the proposal), a resource and a price for this
resource. We develop the following protocol to structure re-
source exchange between the agents: Agents are assumed
to be synchronized, i.e. at each decision step, each agent can
send a proposal to another agent. At the end of the step, each
agent examines the proposals it has received and decides, for
each proposal, to accept it or not. The senders of the propos-
als are then notify of the acceptance or not of their proposals.
When a proposal is accepted, the agents proceed to the ex-
change. It is assumed that an agent cannot retract a proposal
once it has sent it.
The decision problem of an agent agi can be formalized as
an MDP where the components of the tuple 〈Si,Ai, Pi, Ri〉
are defined as follows:

States Each state si of the agent agi describes the observa-
tions of the agent about resource owners. For each resource
owned by an agent agj ∈ {N (i) ∪ agi}, the state gives the
agent which owns the resource. Obviously, some resources
are not in the observation range of the agent, so the agent
may have no information for some of the resources. Since
the set of resources and neighbours of each agent is finite,
the state space is finite.

Actions At each decision step, the agent agi must choose
between two kinds of actions: do nothing (denoted by ∅) or
make a proposal to an agent agk ∈ N (i) for a resource rm
at price ϕ (the price the agent is willing to pay rm) . Such
a proposal is denoted ρ(rm, ϕ, agk). An agent makes pro-
posals for the resources owned by its neighbours that could
increase its welfare.
Several prices can be considered for a resource rm. Possi-
ble prices ϕ, are computing using valuation functions vl of
the agents agl ∈ Ag (agent may have different valuation
functions). In fact, the coefficients of the bundles, in the val-
uation functions, which contain rm are considered as possi-
ble prices ϕ. Beside, for each price ϕ (except the maximum
price), we add an ε which is a very small value that ensures
the owner of rm will accept the deal if it values rm at ϕ.
Price 0 + ε is also considered as a possible price for deal-
ing with situations where the owner of rm has no interest
towards rm.
Let’s consider the possible actions of agent ag0 on Figure
2. The system involves 5 agents and 3 resources r1, r2, r3.
Resource r3 is hold by ag4 or ag3 (ag0 does not observe the

owner of r3 which is represented by the character ? on the
Figure). The valuation function of all the agents is assumed
to be vi = 5r1 + 10r1r2 except for ag4 whose valuation
function is v4 = 6r1r3. Possible prices for r1 are deduced
from these functions. For each bundle containing r1, agent
ag0 will propose for r1 the coefficient values associated to
these bundles and also 0. So in this example, agent ag0 may
propose for r1: 0 + ε, 5 + ε, 6 + ε, 10 + ε. These different
prices imply different probabilities for agent ag0 to obtain
r1. Note that coefficients of other agents’ valuation functions
allow agent ag0 to deduce competing price. Nevertheless, to
deduce possible prices, the agent only needs to know the val-
uation functions of its neighbours and of the neighbours of
its neighbours (i.e. all the valuation functions on Figure 2, a
subset of the valuation functions in the general case).

Transition function The transition function gives the
probability agent agi moves from a state si to a state s′i .
Next state s′i depends of the deals fulfilled by agent agi and
by its neighbours agj ∈ N (i). Since agent agi only ob-
serves the resources and utility functions of its neighbours, it
cannot predict with certainty which proposals will be made
to its neighbours by the agents agk /∈ N (i) to the agents
agj ∈ N (i). For instance, on Figure 2, agent ag0 cannot
predict with certainty the proposals agents ag4 will make to
agent ag1. Given a state si and an action ai, it thus difficult
to predict which resources will be owned by agent agi and
by its neighbours at the next decision step. However, when
probabilities on resource moves and locations can be esti-
mated, transition probabilities can be deduced. Next section
presents heuristic approaches to estimate these probabilities.

Reward function The reward function is defined over
states using the utility function vi of the agent agi. The re-
ward for being in a final state si is thus the sum of valuations
of the bundles that agi owns in si. A final state is a state
where there is no more possible exchange. Other states have
a reward of 0.

Figure 2: Graph and knowledge of ag0

Distributed policies for resource exchanges
Two kinds of information are crucial for an agent agi to
compute its strategy:
• which proposals made by the other agents would compete

with its proposals i.e. which is the best price to offer for a
resource rj in order to obtain this resource,

• how resources would move in the interaction graph i.e.
which resources could not be available any more at the
next decision step and which resources could appear in
the neighbourhood in the next decision steps.

Therefore, an agent must decide which proposals (an agent,
resource and price) it should make and in which order to

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

11

maximize its performance criterion. Although an agent agi
knows which resources are owned by its neighbours N (i),
it does not know which resources are owned by each agent
j /∈ {N (i) ∪ agi} and which resources are desired by these
agents. In Figure 1, agent ag0 knows that agent ag1 has r1,
agent ag2 has r3 and agent ag3 has r5. Nonetheless, agent
ag0 does not know which resources are owned by agents agk
with k ∈ [4, 10] and it cannot easily predict which propos-
als could be made by these agents to its neighbours. More-
over, it is uncertain about the resources that would be owned
by its neighbours at the next steps. In this section, we pro-
pose heuristic approaches that allow an agent to compute
probabilities on resource moves and other agents’ propos-
als. These probabilities are then used to define the transition
function of the previously presented MDP.

Heuristics for estimating transition probabilities
From its observations, an agent agi knows which resources
are not owned by its neighbours and can deduce which re-
sources rk are owned by the agents agj /∈ {N (i)∪agi}. For
each resource rk whose position is unknown, agent agi as-
sumes that rk has uniform probability to be owned by each
agent agj /∈ {N (i)∪agi}, that is for each agj , the probabil-
ity agent agj has rk is 1

|Ag−{N (i)∪agi}| . Let’s consider the
interaction graph of Figure 1. From its observations, agent
ag0 knows the positions of r1, r2, r3, r4 and r5. The position
of r7 is unknown and ag0 deduces that r7 has a probability
of 1

7 to be owned by agent ag4.
Once probabilities on resource positions are estimated, it

is possible to deduce probabilities on resource moves. Since
an agent only makes deals with its neighbours, a resource
can only move on an edge in the interaction graph. Moves
depend of the agents’ valuation functions (i.e. the prefer-
ences of the agents) and their individual policy. Indeed, even
if an agent knows the valuation functions of the other agents,
it may not be able to determine whether its proposals will be
accepted or not. For instance a neighbour agent which ap-
plies a myopic strategy will accept different proposals from
an agent which uses an MDP-based policy (myopic agents
only consider immediate gain whereas MDP-based policies
consider future opportunities).
If each agent knows the other agents’ utility functions and
policies, it will be able to deduce all the other agents’ pro-
posals. However, an agent only needs to anticipate compet-
ing proposals, i.e. proposals made by the neighbours of its
neighbours. Thus, knowing the utility functions and policies
of these agents is sufficient1.
When an agent agi has not this knowledge, the following
heuristics can be used:
h1) agent agi assumes that each resource moves to a neigh-
bour agent with uniform probability (probabilities indepen-
dent of valuation functions and policies). The probability a
resource ri owned by agi moves to an agent agk is 1

|N (i)|
if agk ∈ N (i), 0 otherwise. However, probabilities on re-
source moves computed using this method are poor quality
and do not allow the agents to compute efficient policies of

1It is realistic to know valuation functions but policies are
hardly ever known

actions (see experimental section).
h2) agent agi assumes all the other agents have the same
valuation function as its valuation and the other agents are
myopic i.e. they only expect immediate gain and do not con-
sider long term effect of their actions (and possibly future
higher gain). Thus, a myopic agent agj would accept a pro-
posal ρ(rm, ϕ, agj) from an agent agk if its loss of utility
(difference between its utility when it has rm and its utility
when it has not rm) is less than ϕ.
h3) When agi knows the valuation functions but does not
know the policies of the other agents, it can be assumed that
all the other agents are myopic.

Let’s consider the point of view of agent ag0 in the in-
teraction graph of Figure 1. Agents are assumed to have
the valuation function 50r1r2r3r4 + 25r1r8 + 30r1r2r4 +
10r1r3 + 40r3r7. We exemplify how probabilities can be
inferred from the point of view of agent ag0 when all the
agents are assumed to be myopic (except ag0) and to have
the same valuation function (heuristic h2). In order to max-
imize its performance, agent ag0 desires to get r1 and r3.
Agent ag0 assumes that all the other agents have the same
utility function and deduces that r1 could be desired by the
agents which own r8. If r8 is owned by agents ag5 or ag4,
these agents won’t try to obtain r1 since r1 is not in their
neighbourhoods. If r8 is owned by one of the agents ag6 to
ag10, one of these agents will certainly make a bid to agent
1 for r1. Since having r1 and r8 allows an agent to get a
satisfaction of 10 and r8 does not belong to another bundle,
agent ag0 knows that agents ag6 to ag10 highest proposal for
r8 would be 10. Moreover, agent ag0 can deduce, from the
common valuation function, that agent ag1 will not receive
other proposals for r1 (there is no other agent that needs r1
to achieve a bundle). Given a state s, agent ag0 can therefore
deduce, for each possible proposal (action), the probability
to obtain the resource and to move to a next state s′.

These heuristics allow us to compute probabilities on re-
source moves and other agents’ proposals. We can therefore
deduce transition probabilities of the previously presented
MDP model. This individual MDP can then be solved using
classical methods for finite-horizon MDPs (Puterman 2005).
An optimal solution is obtained if the others agents are my-
opic and the range-2 (neighbours and neighbours of neigh-
bours) valuation functions are well known, i.e. heuristics ac-
curately formalize the strategies of competing agents. Other-
wise, an approximation of the optimal solution is computed.
The quality of this solution depend of the distance between
the heuristics that are used and the other agent’s policies.

Elimination of dominated strategies
Note that time performance of optimal policy computation
can be improved by eliminating dominated strategies. Let’s
consider an agent agi that can propose 3 different prices ϕ1,
ϕ2 and ϕ3 (such as ϕ1 < ϕ2 < ϕ3) for a resource rj . If the
agent is sure to get the resource for ϕ1 (probability equal to 1
to obtain the resource), it is useless to develop strategies that
propose to pay ϕ2 or ϕ3 for the resource: these strategies
get worse results than the one which proposes rj for ϕ1.
Elimination of dominated strategies and policy computation
is exemplified below.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

12

Illustrative example
In this section, we detail on a example how an agent com-
putes its MDP-based strategy. Let’s consider the interac-
tion graph presented in Figure 2. The system involves 5
agents where ag0 to ag3 have the same valuation function
vi∈[0,3] = 5r1 + 10r1r2 and ag4 has the valuation func-
tion v4 = 6r1r3. We consider the point of view of agent
ag0. Agent ag0 only observes the resources of agent ag1 and
agent ag2, it does not know which resources are owned by
agent ag3 and agent ag4. Initially, we assume that agent ag0
is in a state where it has no resource and it observes that
agent ag2 has r2 and agent ag1 has r1. Agent ag0 has not
information on the owner of r3, so it does not know whether
the initial state of the system is H1 or H2. To develop our
example, we consider the case where ag0 knows all the val-
uation functions of the other agents and assumes that other
agents are myopic (heuristic h3).

Figure 3: Feasible configurations
Figure 4 shows the possible executions of the agent from

its initial state considering the possible system statesH1 and
H2. Heuristics on resource locations presented previously
make the assumption that these configurations have uniform
probability. While computing its optimal policy, ag0 selects
the policy with the highest expected utility. Expected utility
is defined by the gain of the final states that can be reached
weighted by the probability to reach these states.

The agent ag0 can try first to obtain r1 and r2. From the
observations of the value functions, the agent deduces that r1
and r2 would allow it to activate 2 bundles: 5r1 and 10r1r2.
Agent ag1 would therefore be interested in getting these re-
sources. Note that agent ag2 does not know where is r1 so it
won’t try to obtain it for the moment and it cannot activate
any bundle having just r2. Agent ag1 activates only one bun-
dle with r1 (bundle 5r1), so agent ag0 should propose more
than 5 to obtain r1.

Agent ag0 must decide whether to first make a proposal
for r1 or r2 and it must decide which price to propose. As
explained previously, possible prices for a resource ri are
deduced from the values of the bundles where ri appears
(valuation functions of ag0, of neighbours of ag0 and of
neighbours of neighbours of ag0 are considered in this case).
Thus, agent ag0 can propose 0 + ε, 5 + ε, 6 + ε or 10 + ε
for r1, and it can propose 0 + ε or 10 + ε for r2. The ac-
tion set of the agent is thus: {∅, ρ(r1, 0 + ε, ag1), ρ(r1, 5 +
ε, ag1), ρ(r1, 6+ε, ag1), ρ(r1, 10+ε, ag1), ρ(r2, 0+ε, ag2),
ρ(r2, 10+ ε, ag2)}. Figure 4 describes the different possible
actions of the agent and their possible outcomes:
• If agent ag0 decides to do nothing, it neither obtains r1

nor r2.

• If it proposes 0 + ε for r1 it does not obtain r1. Indeed,
agent ag1 obtains a value of 5 with the bundle 5r1 so such
a deal would lead to a loss in value for agent ag1.

• If agent ag0 proposes 5 + ε for r1 (Ê on Figure 4) it is
sure to obtain r1 if there is no competing offers sent to
ag1 (agent ag1 is assumed to be myopic and obtains a
gain of ε with this exchange). Nonetheless, if r3 is hold
by ag4, ag4 will make a proposal for r1 at 6 and ag0 will
not obtain the resource. If r3 is hold by ag3, no competing
offers will be made. The probability ag4 has r3 is 0.5 so
ag0 has probability 0.5 to obtain r1 with an offer at 5+ ε.

• If agent ag0 proposes 6 + ε for r1 (Ë on Figure 4), it is
sure to obtain the resource even if ag4 holds r3.

• Proposing 10+ ε for r1 (Ì on Figure 4) also allows agent
ag0 to obtain r1 (but this strategy is dominated by Ë).

• Agent ag0 can also propose 0 + ε for r2 (Í) or 10 + ε
(Î). When it proposes 0 + ε, it is sure to obtain r2 since
agent ag2 does not have r1 and cannot obtain it from its
neighbourhood. Exchanging r2 for 0+ε thus increases the
satisfaction of agent ag2 by ε.

• If agent ag0 proposes 10+ ε for r2, it is sure to obtain the
resource (dominated strategy).

Once agent ag0 has executed its first action, it can move to
different system configurations which are illustrated in Fig-
ure 5. If agent ag0 chooses action ρ(r1, 5+ ε, ag1), it moves
to configurations C1 or C5 (depending of the owner of r3).
If it proposes 6 + ε for r1, it always obtains the resource (it
moves to configurations C1 or C6 whose observations are
similar for ag0). If it chooses ρ(r2, 0+ ε, ag2), two cases are
possible: C3 and C4. The agent moves to C4 if ag4 holds
r3 (ag4 has made an offer for r1 at the first decision step
and obtained r1). The agent ag0 moves to C3 if ag4 does not
hold r3 and thus no offer was made at the first decision step
for r1. Cases C3 and C4 are assumed to have uniform prob-
ability (due to heuristic on resource locations and heuristic
h3). Note that observing all value functions allows agent ag0
to deduce that case C2 described on Figure 5 is impossible
since agent ag3 has no interest to get r2. For each possible
next configuration, a second action is performed.
Once it has obtained r1, agent ag0 can try to obtain r2 (for
0+ ε or 10+ ε). If it has r2, it can try to obtain r1 if it is still
reachable (case C3). In case C4, r1 is no more reachable and
the only possible action for the agent is “do nothing”.

Then, ag0 moves to terminal states, i.e. states where it has
no more offers to make. From terminal states, the value of
each strategy can be computed by applying Bellman Equa-
tion.The best strategy therefore consists in first proposing
6+ε for r1 and then proposing 0+ε for r2. In fact, it is more
valuable to first try to obtain r1 since this resource could be
unreachable at the next step. Then, the agent can obtain r2
which will still be reachable (no neighbour of ag1 -except
ag0- has interest to make a proposal for r2 at the first step2).

2This proposition holds since the agents are not competitive. In
competitive settings, one agent can try to obtain a resource rj to
prevent a competitive agent from owning rj .

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

13

Figure 4: Possible policies of agent ag0

Figure 5: Possible system configurations at the second time
step

Policy computation and execution
In this section, we briefly describe policy computation al-
gorithms and action execution protocol used by the agents
while exchanging resources. Before execution, each agent
computes its exchange policy. For each agent using our ap-
proach, its decision problem from an initial state s0 is au-
tomatically formalized with an MDP. This MDP is solved
using value iteration algorithm (Puterman 2005). The state
and action spaces are defined by listing all reachable states
from s0 and computing the set of available actions from each
state. The transition function is computed using heuristics
on resource locations and moves. The reward function is de-
fined from the valuation function of the agent ag0.

Once each agent has computed its policy, policies are
executed (Algorithm 1). During the execution, agents are
assumed to be synchronized. At each step of the deci-

Algorithm 1 AgentBehaviour
1: strategy← ComputeStrategy();
2: end← 0
3: while (end 6= null) do
4: currentState← Observation(system)
5: Execute(action(currentState, strategy))
6: ρ∗ ← Select Best rational offer from the mailbox
7: Exchange resources following ρ∗
8: end← ValueEnd()
9: end while

sion process, each agent chooses, from its policy, an action
to execute i.e. an offer make or “do nothing”. Each offer
ρ(rm, ϕ, agk) is sent to the receiver (agk) of ρ. For the agent
using our approach, this action is selected from the optimal
policy given by the MDP of the agent. Other kinds of agents
follow their offer policy (for instance, myopic strategy).
Each agent has a mailbox where it receives the offers from
the others agents. Once all the offers are made, each agent
selects the best rational offer received i.e. the best offer re-
sulting in an increase of utility. Deals for best offers are con-
cluded and resources are exchanged. Then, the agents move
to the next decision step and make new offers,... This process
repeats until there is no more exchange of resources.

Experiments
We describe experiments on the problem of Figure 2. We
developed algorithms to deduce transition probabilities from
observations and valuation functions. MDPs were solved us-
ing value iteration algorithm (Puterman 2005) with γ = 0.8.
ε was fixed to 0.02 (this value does not influence the results
if it is strictly positive). We tested our approach in the fol-
lowing settings:

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

14

• E1: Agent ag0 uses our MDP-based approach to compute
its strategy assuming uniform probabilities on resource
moves. During the execution, ag0 follows its MDP strat-
egy and all the other agents are myopic.

• E2: Agent ag0 uses our MDP-based approach to com-
pute its strategy assuming the other agents are myopic.
ag0 knows all the other agents valuation functions. Dur-
ing the execution, ag0 follows its MDP strategy and all
the other agents are myopic.

• E3: Agent ag0 uses our MDP-based approach to com-
pute its strategy assuming the other agents are myopic.
ag0 knows the valuation function of its neighbours and
assumes all the other agents have the same valuation func-
tions as itself. During the execution, ag0 follows its MDP
strategy and all the other agents are myopic.

• E4: Agent ag0 and all the other agents are myopic.
• E5: All the agents follow an MDP-based strategy.

For each case of experiments, we registered the average
gain of ag0 (valuation of its final state) and its average profit
(final gain minus the amount of money spent during ex-
changes to obtain resources) (see Table 1).

Gain Profit
E1 0 0
E2 15 9-ε
E3 0 0
E4 0 0
E5 5 -1 -ε

Table 1: Gain and profit on example of Figure 2

While assuming uniform probability on resources moves
(experiments E1), agent ag0 never gets r1. Since probabil-
ities on resource moves are assumed to be uniform, transi-
tion probabilities are uniform whatever the price proposed
for a resource. ag0 thus chooses to propose 0 + ε for r1
(higher prices are assumed to lead to the same result) and
never obtains the resource. This case of experiments repre-
sents situations where the agent has no knowledge on the
other agents valuation function. It can thus deduce nothing
on other agents preferences towards resources.

When the agent has no knowledge about valuation func-
tions of the others, it could assume that all the other agents
have the same valuation function as its function. This is
the case in experiments E3. If the other agents do have the
same valuation functions, gain and profit are the same as the
ones obtained in E2. Otherwise, performances are related to
the difference between assumed valuation functions and real
valuation functions. On our example, if ag4 has the valua-
tion function v4 = 5r1 + 10r1r2, ag0 gains 15 and its profit
is 10 − ε. If ag4 has the valuation function v4 = 6r1r3, the
gain and the profit of ag0 are 0.

Best results are obtained when ag0 applies the policy
computed by our approach (experiments E2). Its optimal
policy dictates to first propose 6+ε for r1 (it is sure to obtain
the resource whatever the location of r3), and then propose
0+ε for r2. This policy guarantees ag0 to obtain both r1 and

r2 whatever the initial configuration (H1 or H2). Thus, the
agent always obtains a final gain of 15 and always spends
(6 + ε). Note that the optimal policy of ag0 dictates to first
make a proposal for r1 (not r2). Indeed, policy computation
takes into account the fact that ag4 may make a proposal for
r1 at the first decision step and this resource will become un-
reachable if ag0 does not make a competing proposal. Since,
there is no risk r2 moves, ag0 starts with an offer for r1.

Finally, we experimented our approach assuming all the
agents compute an MDP-based strategy. While computing
its strategy, each agent assumes that the others follow a my-
opic strategy (which is not the case during policy execution).
Agent ag0 starts with an offer for r1 at 6 + ε to ag1 and al-
ways get the resource since ag4 has no interest in making
a higher proposal and ag1 values r1 at 5. Then, ag0 pro-
poses 0+ε to ag2. While making this proposal, ag0 assumes
ag2 is myopic. But, ag2 follows a similar MDP-based strat-
egy which dictates it to make a proposal to ag0 for r1. That
leads to a deadlock between the two selfish agents ag0 and
ag1 which both want the resource owned by the other. One
way to solve this problem is to use negotiation during ex-
change execution while detecting deadlocks from the offers
received and the offer made. However, negotiation phases
would not be taken into account during off-line policy op-
timization. Another solution we are currently considering,
consists in coordinating the agents during policy computa-
tion and allowing the agents to exchange value of interest.

Conclusion

In this paper, we tackled the problem of distributed resource
allocation under uncertainty. We first formalized possible
agent interactions as a graph. This graph is generic and al-
lows us to represent problems where each agent can ex-
change with all the other agents, as well as problems with
restricted interactions. We proposed to formalize the deci-
sion problem of an agent as an MDP and we defined each
component of the model. We formalized possible interac-
tions between the agents in the transition function using
some heuristics on possible resource locations and moves.
These heuristics are used to tackle the lack of observability
about resources and valuation functions of the other agents.

We described experimental results obtained on the prob-
lem of Figure 2. When an agent agi applies our method and
all the other agents follow myopic strategies, agi is able to
obtain optimal gain. Experiments show that our approach al-
lows to anticipate resource moves and to decide which is the
best proposal to make at the best time. Future works will
consist in solving deadlock situations and coordinating the
agents when all of them follow an MDP strategy. We expect
that off-line communication of values of interest would al-
low the agents to avoid such situations and to obtain higher
profits. We also plan to study connections with combinato-
rial auctions thus allowing an agent to make an offer for a set
of resources instead of making an offer for a single resource
at a time.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

15

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incre-
mental policy generation for finite-horizon DEC-POMDPs.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 2–9.
Bernstein, D.; Zilberstein, S.; and Immerman, N. 2002. The
complexity of decentralized control of mdps. In Mathemat-
ics of Operations Research, 27(4):819–840.
Beynier, A., and Mouaddib, A. 2009. Decentralized decision
making process for document server networks. In Proceed-
ings of the International Conference on Game Theory and
Networks.
Dibangoye, J. S.; Mouaddib, A.; and Chaib-Draa, B. 2007.
Periodic real-time resource allocation for teams of progres-
sive processing agents. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 07), 115.
Dolgov, D. A., and Durfee, E. H. 2004. Optimal resource al-
location and policy formulation in loosely-coupled Markov
decision processes. In Proceedings of the Fourteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 04), 315–324.
Dolgov, D. A., and Durfee, E. H. 2006. Resource alloca-
tion among agents with mdp-induced preferences. Journal
of Artificial Intelligence in Research (JAIR) 27:505–549.
Estivie, S.; Chevaleyre, Y.; Endriss, U.; and Maudet, N.
2006. How equitable is rational negotiation? In Proc.
AAMAS-2006. ACM Press.
Goldman, C., and Zilberstein, S. 2004. Decentralized con-
trol of cooperative systems: Categorization and complexity
analysis. Journal of Artificial Intelligence Research 22:143–
174.
Grabisch, M. 1997. k-order additive discrete fuzzy measures
and their representation. Fuzzy Sets and Systems 92:167–
189.
Hanna, H., and Mouaddib, A. 2002. Task selection as de-
cision making in multiagent system. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 02), 616–623.
Hansen, E. A. 2004. Dynamic programming for partially ob-
servable stochastic games. In Proceedings of the ninetheenth
national conference on Artificial Intelligence (AAAI), 709–
715.
Lumet, C.; Bouveret, S.; and Lematre, M. 2011. Fair divi-
sion of indivisible goods under risk. In Proceedings of the
IJCAI-2011 Workshop on Social Choice and Artificial Intel-
ligence.
Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M. 2005.
Networked distributed pomdps: a synthesis of distributed
constraint optimization and pomdps. In Proceedings of the
20th national conference on Artificial intelligence - Volume
1, AAAI’05, 133–139.
Plamondon, P., and Chaib-Draa, B. 2006. A multiagent
task associated mdp (mtamdp) approach to resource alloca-
tion. In Proceedings of AAAI 2006 Spring Symposium on
Distributed Plan and Schedule Management.

Puterman, M. L. 2005. Markov Decision processes : dis-
crete stochastic dynamic programming. New York: Wiley-
Interscience.
Sandholm, T. W. 1998. Contract types for satisficing task
allocation: I Theoretical results. In Proceedings of the AAAI
Spring Symposium: Satisficing Models.
Scott, P., and Prasad, T. 2009. Solving multiagent assign-
ment markov decision processes. In Proceedings of The 8th
International Conference on Autonomous Agents and Multi-
agent Systems - Volume 1, AAMAS ’09, 681–688.
Wu, F.; Zilberstein, S.; and Chen, X. 2010. Point-based
policy generation for decentralized POMDPs. In Proceed-
ings of the Ninth International Conference on Autonomous
Agents and Multiagent Systems, 1307–1314.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

16

Coordinating Stochastic Multi-Agent Planning in a Private Values Setting∗

Joris Scharpff and Matthijs T.J. Spaan and Leentje Volker and Mathijs de Weerdt
{j.c.d.scharpff, m.t.j.spaan, l.volker, m.m.deweerdt}@tudelft.nl

Delft University of Technology, The Netherlands

Abstract

Coordinating multi-agent planning in contingent environ-
ments, in which a center seeks to optimise the joint plan while
considering the (contradicting) preferences of autonomous
agents, poses a difficult challenge. A typical approach in such
a setting models the planning problem of each agent as a
Markov Decision Process and solve the joint problem to ob-
tain a socially efficient policy, in which no agent can be better
off without harming others. Nevertheless this approach relies
on the assumption that the agent preferences (rewards) are
public knowledge. We consider settings in which the agents
are selfish and their preferences are private knowledge.
Illustrated by the real-world use-case of infrastructural main-
tenance planning, we propose a combination of stochastic
planning and dynamic mechanism design to find efficient
joint policies when agent preferences are private knowledge.
Through the use of a payment mechanism we motivate agents
to report their preferences truthfully such that we can develop
socially optimal policies.
The main contributions of this work are: 1) multi-agent coor-
dination on a network level through a novel combination of
planning under uncertainty and dynamic mechanism design,
applied to real-world problems, 2) accurate modelling and
solving of maintenance-planning problems and 3) empirical
exploration of the complexities that arise in these problems.
We introduce a formal model of the problem domain, present
experimental insights and identify open challenges for both
the planning and scheduling as well as the mechanism design
communities.

1 Introduction
The planning of maintenance activities on large infrastruc-
tural networks, such as a national highway network, is a
challenging real-world problem. While improving the qual-
ity of the infrastructure, maintenance causes temporary ca-
pacity reductions of the network. Given the huge impact of
time lost in traffic on the economic output of a society, plan-
ning maintenance activities in a way that minimises the dis-
ruption of traffic flows (commonly referred to as social cost)
is an important challenge for the planning and scheduling

∗This paper is a slightly adapted workshop version of the one to
be presented at the Novel Applications track of the ICAPS confer-
ence.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

field. In this paper, we address this challenge by a novel
combination of stochastic multi-agent planning, captured in
Markov Decision Processes (MDPs), and dynamic mecha-
nism design.

A powerful real-world example of the benefits of care-
ful maintenance planning is the summer 2012 closure of the
A40 highway in Essen, Germany. Instead of choosing for the
default option of restricting traffic to fewer lanes for 2 years,
authorities fully closed off a road segment for 3 months
and diverted traffic to parallel highways. Traffic conditions
on the other highways hardly worsened, while an estimated
¤3.5M in social costs due to traffic jams were avoided (be-
sides lowering building costs) (Der Spiegel 2012).

As maintenance activities often have an uncertain dura-
tion due to delays in construction, it is important to take un-
certainty into account while planning. Also, there may be
multiple ways to perform a certain maintenance action by
varying the amount of resources dedicated to it, leading to
options that have different duration, cost, risk and quality
impact. Furthermore, long-term planning is required to en-
sure overall network quality. Assuming these uncertainties
are known beforehand, as in this work, Markov Decision
Processes (MDP) provide a suitable framework to model
and solve these types of planning-under-uncertainty prob-
lems (Puterman 1994). A complicating factor, however, is
that while a single public road authority is responsible for
the quality, throughput and costs of the network, the ac-
tual maintenance is performed by autonomous agents (the
contractors), typically third-party companies interested pri-
marily in maximising their profits. Road authorities face the
problem of aligning objectives; we introduce monetary in-
centives for the contractors to consider global objectives.
Nonetheless, an agent servicing one part of the network also
influences agents in other parts as its work has a negative im-
pact on the traffic flow. As a consequence, such congestion
based payments may lead to very high throughput penalties
for all agents if their maintenance plans are not coordinated
on a network level.

In this work we focus on socially optimal joint mainte-
nance planning that maximises the sum of contractor utili-
ties, in the presence of such monetary incentives, and there-
fore we have chosen a centralised coordination approach.
The authority is given the responsibility to develop socially
optimal plans, while considering the individual interests of

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

17

all contractors expressed through cost functions. However,
as these cost functions are private information, optimal co-
ordination and hence outcomes can only be achieved if the
contractors report these costs truthfully. Ensuring this truth-
fulness is the key motivation to combine stochastic planning
with mechanism design.

Our main contribution is the application of a combina-
tion of stochastic planning and dynamic mechanism design
to realise truthful coordination of autonomous contractors in
a contingent, private-values setting. We focus on dynamic
mechanisms that define payments over all expected out-
comes such that in expectation it is in the agent’s best in-
terest to be truthful during the entire plan period. Applying
dynamic mechanism design to (real-world) settings is rela-
tively unexplored territory (Cavallo 2008).

Related Work Other approaches towards solving the
problems discussed here have been considered, although
they can not be applied to our setting for various rea-
sons. Multi-agent MDP (Boutilier 1996) assumes cooper-
ative agents that are willing to disclose private informa-
tion and share the same utility function. In decentralised
MDPs (Bernstein et al. 2002), although execution is de-
centralised, agents are still assumed to be cooperative and
solving Dec-MDPs requires knowledge of all utility func-
tions. Both methods are not suitable when agents misre-
port their private information to ‘cheat’ the center into dif-
ferent outcomes. Non-cooperative settings have been stud-
ied in the classical planning literature (Brafman et al. 2009;
Jonsson and Rovatsos 2011; van der Krogt, de Weerdt, and
Zhang 2008), but uncertainty is not addressed.

Multi-machine scheduling has also been considered for
the planning of maintenance activities, but we found this in-
feasible for our contingent setting. The only work we are
aware of in this area is by (Detienne, Dauzère-Pérès, and
Yugma 2009), in which only non-decreasing regular step
functions are considered. In our problem agents could both
profit as well as suffer from concurrent maintenance, there-
fore cost functions do not have the non-decreasing property.

Another interesting related approach is that of reinforce-
ment learning (Kok et al. 2005; Melo and Veloso 2009) and
in particular Collective Intelligence (Wolpert, Tumer, and
Frank 1999). In this approach agents learn how and when to
coordinate and, in the case of collective intelligence, strive to
optimise a global goal, without substantial knowledge of the
domain model. Nevertheless, as these methods cannot pro-
vide theoretical guarantees concerning the incentives, they
are not adequate in the presence of strategic behaviour, i.e.,
agents deliberately trying to manipulating the system.

Although stochastic planning has been well studied, only
a handful of papers address dynamic mechanism design
and/or a combination of the two. Bergemann and Valimaki
(2006) proposed a dynamic variant of the VCG mecha-
nism for repeated allocation, implementing the mechanism
desiderata in a within-period, ex-post Nash equilibrium.
Athey and Segal (2007) studied a dynamic variant of the
AGV mechanism (d’Aspremont and Gérard-Varet 1979) that
is budget-balanced in the weaker Bayes-Nash equilibrium
solution concept. Highly related is the work by Cavallo,

Parkes, and Singh (2006), in which the authors also study
dynamic mechanism design to obtain desirable outcomes
in multi-agent planning with private valuations. However,
the focus is on allocation problems that can be modelled as
multi-armed bandit problems, instead of the richer problem
domains with dynamic states that we consider. Considering
the complexity of the stochastic planning problem we study
here, approximation of the planning also seems a viable ap-
proach. When resorting to approximate solutions, however,
standard theory for strategy-proof mechanisms does not im-
mediately apply (Procaccia and Tennenholtz 2009).

Outline In the next section, we present a theoretical
framework for maintenance planning obtained and refined
through interviews and discussions with public road and rail
network authorities, as well as several of the larger con-
tractors. We then introduce the theoretical background of
both stochastic planning and mechanism design (Section 3),
and show how to combine work on planning with uncer-
tainty and dynamic mechanism design to solve two exam-
ple applications, derived from practice (in Section 4). We
present experimental insights where we compare this ap-
proach with uncoordinated agents and best-response playing
agents (Section 5). We conclude with a summary of our find-
ings and we present open challenges for both the planning
and scheduling as well as the mechanism design communi-
ties (Section 6).

2 Maintenance Planning
Commonly in infrastructural maintenance planning there is
one (public) institution responsible for the network on behalf
of the network users. This road authority is given the task to
maintain a high (i) network quality and (ii) throughput (iii) at
low costs (although other objectives are also possible, e.g.,
environmental concerns, robustness). To this end, network
maintenance has to be performed with minimal nuisance.
However, the actual maintenance is performed by several au-
tonomous, independent contractors and therefore some coor-
dination of maintenance activities is required.

In the infrastructural maintenance planning problem
(Volker et al. 2012) we are given a network of roads E. On
this network we have a set N of agents (the contractors),
with each agent i ∈ N responsible for the maintenance of a
disjoint subset Ei ⊆ E of roads over a set of discrete peri-
ods T . An edge ek ∈ E has a quality level qek ∈ [0, 1] and a
function q̂ : q × T → q that models the quality degradation
of a road given the current state and time (new roads degrade
less quickly, seasons influence degradation, etc.).

For each edge ek ∈ Ei, an agent i has a set of pos-
sible maintenance activities Ak that have been identified
and assigned in the aforementioned procurement phase. We
write Ai to denote all possible activities by an agent i, i.e.,
Ai = ∪{k|ek∈Ei}Ak. Each of the activities k ∈ Ak has a du-
ration dk ∈ Z+, a quality impact function ∆qk : qek × T →
qek that depends on the current road quality and time, and a
constant revenue wk ∈ R that is obtained upon completion
of the activity. Moreover, the agent has a (private) cost func-
tion ci : Ai × T → R that represents the cost of performing
an activity k ∈ Ai at time t ∈ T . The dependency on time

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

18

enables modelling of different costs for example for differ-
ent seasons, or for periods in which the agent has fewer re-
sources available. We model the limited resources (machin-
ery, employees, etc.) available to an agent by allowing at
most one activity at a time. This restriction does not have
much impact on the model we propose here but does greatly
simplify resource reasoning and therefore the complexity of
finding optimal maintenance plans.

Each agent strives to plan their maintenance activities in
such a way that its profits are maximised, but plan execu-
tion is unlikely to be perfect. Uncertainties in various forms
– for example delays, unknown asset states, failures – may
be encountered during execution and and hence fixed plans
might lead to rather poor results. To this end we focus on
contingent plans, or policies, that dictate the best action to
take in expectation for all possible agent states. Note that
actions here are operations available to the contractors (e.g.,
start activity, do nothing) and states contain all relevant in-
formation for its planning problem. We formalise these con-
cepts in Section 3.1, for now it is sufficient to know that
we can always observe what activity has been performed by
each contractor. We denote the observed activities by Pi and
use Pi(t) = k to denote that activity k was performed at
time t. Each activity has to be completed before another can
be started, therefore there must be exactly dk time steps for
which Pi returns k. Note that an agent can also choose to
perform no activity during a time step, which we denote by
P (t) = ◦ and we assume ∀t ∈ T : ci(◦, t) = 0.

Given performed activities Pi, the total revenue Wi

agent i will receive is the sum of all wk for all completed ac-
tivities k. The total maintenance cost for agent i is given by
Ci(Pi) =

∑
t∈T ci(Pi(t), t). Note that we do not explicitly

require all activities of an agent to be planned or that they
can be completed within the period T , but because agents
will not receive revenue wk for each uncompleted activity k
they will be stimulated to complete them.

For the agents to also consider the global objectives, we
introduce payments such that their profits depend on the de-
livered quality and additional congestion caused by their
presence. The quality payment Qi for each agent i can be
both a reward as well as a penalty, depending on the final
quality state of its roads (e.g., based on contracted demands).
Again given performed activities Pi, we can determine the
resulting quality state qTe at the end of the period T using the
recursive formula

qt+1
ek

=

{
∆qk(qtek , t) if Pi(t) = k

q̂ek(qtek , t) otherwise
(1)

with (given) initial quality q0
ek

. We define the quality pay-
ment for agent i after performing activities Pi by Qi(Pi) =∑
e∈Ei

Qi(q
|Pi|
e) where |Pi| = T if all performed activities

have been observed.
Congestion payments, i.e., social costs, cannot be consid-

ered from just the single-agent perspective because network
throughput depends on the planning choices of all agents.
Let P t denote the set of activities performed by all agents
at time t, then the social cost of this combination is cap-
tured by `(P t). The impact of an individual agent, given

the choices made by others, can be determined by `i(P t) =
`(P t) − `(P t−i) in which P t−i denotes the set of activities
performed at time t minus any activity by agent i. The so-
cial cost function can for example capture the costs of traffic
jams due to maintenance activities, possibly based on em-
pirical data.

Recapitulating the above, each agent i is trivially inter-
ested in maximising its revenue and minimising its main-
tenance costs. In order to stimulate agents to plan mainte-
nance in favour of global objectives, we introduce quality
and throughput payments such that their profit ui, given the
performed activities P by all players, is given by:

ui(P) = Wi(Pi)−
(
Ci(Pi) +Qi(Pi) + `i(P)

)
(2)

in which `i(P) =
∑
t∈T `i(P

t). As activity revenues fol-
low directly from the procurement, we assume that agents in
expectation are always able to achieve a positive profit for
completing their activities, otherwise they would not have
bid on the activity during procurement.

Recall from the introduction that we are interested in find-
ing socially optimal solutions, but given the individual agent
utility of Eq. 2, how should we define these payments such
that the right balance is made between these costs and the
agents’ private costs, which are not known to the road au-
thority? Moreover, how can we ensure truthful reporting of
these private costs? We tackle these questions using dynamic
mechanism design.

In the next section we start by discussing how to compute
optimal solutions, required to guarantee mechanism truth-
fulness, to the problem variants introduced in this section,
followed by a summary of how this can be combined with a
dynamic mechanism.

3 Background
We briefly introduce the two concepts our work builds on,
planning under uncertainty and dynamic mechanism design.

3.1 Planning under Uncertainty
To deal with uncertainties we model the planning problem
using Markov Decision Processes (MDPs), which capture
this type of uncertainty rather naturally (Puterman 1994).
For each agent i ∈ N we have an MDPMi = 〈Si,Ai, τi, ri〉
that defines its local planning problem. In this definition, Si
is the set of states and Ai a set of available actions. The cur-
rent state of an agent contains all activities that still remain
to be performed and its actions are operations to start or con-
tinue an activity (explained in detail in Sections 4.3 and 4.4).
Important to keep in mind is that the MDP actionsAi are not
equivalent to the agent activities Ai (although in the case of
unit-time actions these sets are almost similar).

The function τi : Si × Ai → ∆(Si) describes the transi-
tion probabilities where τi(si,Ai, s′i) denotes the probabil-
ity of transitioning to state s′ if the current state is si and
action Ai is taken. Finally, ri : Si × Ai → R is the reward
function where ri(si, a) denotes the reward that the agent
will receive when action a ∈ Ai is taken in state si (e.g., the
utility of Eq. 2). We formalise the rewards and actions for

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

19

the agents in Section 4, as they depend on the encoding used
to solve the MDP.

Solutions to MDPs are policies π : S → A that dictate
the best action to take in expectation, given the current state
it is in. Formally, the optimal policy π∗ is defined such that
for all start states s ∈ S: π∗(s) = arg maxπ∈Π V 0(π, s)
with

V t0(π, s) = E
[∞∑
t=t0

γtr(st, π(st))) | st0 = s
]

(3)

in which st is the state at time t and γ ∈ [0, 1) is a shared
discount factor commonly used to solve problems with infi-
nite horizons.

We can obtain the individual policies πi for each agent by
solving its MDP Mi. However, in order to develop an (op-
timal) joint policy π∗, required to consider throughput pay-
ments, we need to solve the multi-agent MDP that results
from combining all individual MDPs. Formally, the joint
MDP is defined by M = 〈S,A, r, τ〉 where S = ×i∈NSi
is the joint state space containing in each state s ∈ S a lo-
cal state si for all agents i ∈ N , A is the set of combined
actions, r the reward function defined as ∀s ∈ S, a ∈ A :
r(s, a) =

∑
i∈N ri(si, ai) and τ the combined transition

probability function. The joint action set can always be ob-
tained by including an action for each element of the Carte-
sian product set of all individual action spaces but smarter
construction can greatly reduce the joint action set. For plan-
ning problems (at least) we have developed a two-stage
MDP encoding that effectively reduces the joint action set
size from exponential to linear in the number of players and
their action sets. This is discussed in detail in Section 4.2.

3.2 Dynamic Mechanism Design
Although MDPs facilitate optimal planning under uncer-
tainty, they assume global knowledge of all costs and re-
wards. As the maintenance activities are performed by dif-
ferent, usually competing companies, we cannot assume that
this knowledge is globally available. We therefore aim to de-
sign a game such that utility-maximising companies behave
in a way that (also) maximises the global reward. This is ex-
actly the field of mechanism design, sometimes referred to
as inverse game theory.

Formally, in a static or one-shot game, each agent i ∈ N
has some private information θi known as its type. In so-
called direct mechanisms, players are asked for their type,
and then a decision is made based on this elicited informa-
tion. Groves mechanisms (Groves 1973) take the optimal de-
cision (π∗) and define payments T such that each player’s
utility is maximised when it declares its type truthfully.

Dynamic mechanisms extend ‘static’ mechanisms to deal
with games in which the outcome of actions is uncertain and
private information of players may evolve over time. In each
time step t, players need to determine the best action to take
(in expectation) while considering current private informa-
tion and possible future outcomes. Private rewards are there-
fore defined depending on the state and the policy, given by
ri(s

t, π(st))), in which the state contains the player’s type.
This type is denoted by θti to express the possibility of this

changing over time. With θt we denote the type of all players
at time t which are encoded in the state st.

An extension of Groves mechanisms for such a dynamic
and uncertain setting is dynamic-VCG (Bergemann and Val-
imaki 2006; Cavallo 2008). For dynamic-VCG the decision
policy is required to be optimal, i.e., the one maximising the
reward of all players, when the types θt are encoded into the
state st. We denote this optimal policy for time step t given
the reported types θt encoded in state st by π∗(st). A policy
optimised for the game with all players except i is denoted
by π∗−i(s

t) and we define ri(sti, π
∗
−i(s

t
i)) = 0.

In every time step each player i pays the expected
marginal cost it incurs to other players j for the current time
step. This is defined as the difference between the reward
of the other players for the socially optimal decision for the
current time step t, i.e.,

∑
j 6=i rj(s

t, π∗(st)) and their ex-
pected reward optimised for just them in future time steps,
i.e., V t+1(π∗−i, s

t+1) (Eq. 3) minus the expected reward of
the other players for a policy optimised for them for all time
steps including the current one, i.e., V t(π∗−i, s

t). Summaris-
ing, the payment Ti(θt) for an agent i at time step t given
that reports θt are encoded in state st is thus is defined as∑
j 6=i

rj(s
t, π∗(st)) + V t+1(π∗−i, s

t+1)− V t(π∗−i, st) (4)

The dynamic-VCG mechanism yields maximum revenue
among all mechanisms that satisfy efficiency, incentive com-
patibility and individual rationality in within-period, ex-post
Nash equilibrium. This means that at all times for each
player the sum of its expected reward and its expected pay-
ments is never more than when declaring its true type.

4 Coordinating Maintenance Planning
In this work we combine existing work on planning un-
der uncertainty and dynamic mechanism design to solve the
complex problem of maintenance planning where agents are
selfish and execution is uncertain. Using the dynamic-VCG
mechanism we ensure that agents are truthful in reporting
their costs. Then, using these reports to model agent rewards,
we apply planning-under-uncertainty techniques to find op-
timal policies and finally we determine the payments of the
mechanism, as discussed in the previous section.

An important condition for the dynamic VCG mechanism
is that the chosen policy is optimal. If it is not, the payments
are not guaranteed to achieve truthful cost reports and agents
may want to deviate. Therefore we focus on exact solving
methods in our approach.

We implemented our mechanism using the SPUDD solver
(Hoey et al. 1999) to determine optimal policies. The
SPUDD solver allows for a very compact but expressive for-
mulation of MDPs in terms of algebraic decision diagrams
(ADDs) and uses a structured policy iteration algorithm to
maximally exploit this structure. This allows it to find opti-
mal solutions to moderately sized problems. We note, how-
ever, that our mechanism is independent of the particular
MDP solver used, as long as it returns optimal solutions.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

20

4.1 MDP Models for Maintenance Planning
Finding an efficient joint policy π∗ that maximises the sum
of all agent utilities ui (Eq. 2) cannot be directly translated
into an equivalent MDP encoding. Although in our model
C, Q and ` can be general functions, encoding general func-
tions in the MDP formulation potentially requires exponen-
tial space. Hence to be able to use the SPUDD solver in our
experiments, we necessarily restricted ourselves to only lin-
ear functions.

The current state of the network, i.e., the quality levels qe,
are modelled using a 5 star classification (from (0) very
bad to (5) excellent) are encoded as discrete variables [0, 5].
Road degradation functions q̂ are modelled using decision
diagrams that probabilistically decrease the road quality in
each time slot by one state. Completing an activity k′ in-
creases the corresponding road quality q′k by a specified
number of states (additive), corresponding to its effect ∆q′k.

Encoding the social cost ` can be cumbersome, depend-
ing on the complexity of the chosen cost model. Again, gen-
eral cost models could result in exponential MDP encoding
sizes. Using only unary and binary rules to express social
cost, we can overcome this exponential growth (at the cost
of losing some expressiveness). The unary rules l : A → R
express the marginal latency introduced by each activity in-
dependently. Dependencies between activities are expressed
using binary relations l : Ai × Aj → R that specify the
additional social cost when both activities are planned con-
currently. The costs incurred by the set of chosen activi-
ties At can then be computed using `(At) =

∑
k∈At l(k) +∑

k1∈At

∑
k2 6=k1∈At l(k1, k2).

4.2 Avoiding Exponentially-Sized Action Spaces
Factored MDP solvers are typically geared towards exploit-
ing structure in transition and reward models, but scale lin-
early with the number of actions. In multi-agent problem
domains such as ours, however, a naive construction of the
joint action set – such as enumerating all elements of the
Cartesian product of individual action sets – can be expo-
nential in the number of agents. To overcome this issue,
we model each time step in the real world by two stages
in the multi-agent MDP, resulting in a larger number of
backups due to additional variables, but crucially avoiding
exponentially-sized action spaces. Note that the encoding
technique we discuss in this section is not restricted to our
problem; they can be applied to any multi-agent decision
problem MDP formulation in which agent actions are de-
pendent only through their rewards.

In our MDP encoding we have used a two-stage approach
for each time step in the plan problem length T . In the first
step agents decide on the activity to perform (or continue)
and this activity is then ‘executed’ in the second stage (il-
lustrated in Sections 4.3 and 4.4 for two example scenarios).
We implement this separation through the use of additional
variables that for each agent state the activity to perform in
the current time step. Crucial is that these variables can be
set independently from the actions available to other play-
ers (unlike the Cartesian product action space). The second
stage then encodes the ‘execution’ of their choices using one

repeat duration success
prob.

delay
duration

delay
prob.

dk αk hk βk
1 yes 1 [0, 1] 0 0
2 no Z+ 1 Z+ [0, 1]

Table 1: The differences between scenario 1 and 2. These
parameters are explained in Section 4.3 and 4.4.

additional action. Still there are multiple ways in which this
first-stage activity selection can be implemented. Again enu-
meration is possible (although obliterating the purpose of the
two-stage approach) but we have developed two smarter en-
codings: action chains and activity chains.

The action chain encoding exploits the fact that we can
decide on an action for each player sequentially, instead of
having to decide on them all at once (as with enumeration).
Through the use of a player token, each agent gets a ‘turn’
to determine its action within a single time step. Therefore
we require only |Ai| actions for each agent i, one for each
activity it can choose, and hence a total of

∑
i∈N |Ai| states

(and one additional variable), instead of the
∏
i∈N |Ai| ac-

tions needed for enumerating the Cartesian product.
For activity chains we exploit a similar idea. We group

the activities of agents into activity sets to obtain an even
smaller set of joint MDP actions. Let D = maxi∈N |Ai|
be the size of the largest activity set of any player, then the
activity chains are defined as ACm =

⋃
i∈N km ∈ Ai for

m = 1, 2, . . . , D. Hence we group allm-th activities of each
player into set ACm. If a player i has no m-th activity, i.e.,
m > |Ai|, we exclude the player from this activity chain
using a high penalty. Through the player token we enforce
that each player sequentially chooses an activity from one
of these chains. This encoding requires exactly D actions in
the joint MDP for the first stage and is therefore often more
compact than action chains.

In the second stage we model the execution of these
choices, i.e., apply maintenance effects, and compute the
sum of utilities (Eq. 2) for this time step as the reward. Note
that we only proceed in time after the second stage, hence
both stages are effectively within one time slot t ∈ T .

So far we have introduced a general encoding for main-
tenance scheduling problems. Now we will go into the
specifics for two real-world application we have chosen to
study in this paper: one with unit-time activities that may
fail, and one where activities always succeed, but possibly
have a much longer duration. A summary of the main differ-
ences can be found in Table 1.

4.3 Scenario 1: Activities with Failures
As a step towards network maintenance, we first focus on
scheduling repeatable unit-time activities with possible fail-
ures. Although this problem is conceptually rather simple,
it captures essential parts of real-world applications such as
factory scheduling and supply chain planning problems. In
this scenario, activities k ∈ Ai are repeatable, of unit-time
(dk = 1) and succeed with probability αk ∈ [0, 1]. It is
possible for any activity k ∈ Ai to fail with probability

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

21

1 − αk. Whether an activity fails will become apparent at
its actual execution time. When an activity fails, it has no
positive effect on the quality but its associated maintenance
and throughput costs are still charged. If the agent still wants
to perform the maintenance it has to include the activity in
its plan again at a later time.

Because activities in this scenario are unit-time and re-
peatable, we can directly translate these into actions of the
single-agent MDPs. For each activity k ∈ Ai of agent i we
create an action ak with reward c(k, t, 1). This action im-
proves the quality level qk by the number of levels corre-
sponding to ∆qk with probability αk. Thus with probabil-
ity 1−αk the maintenance fails and the quality level remains
unchanged.

4.4 Scenario 2: Portfolio Management
Portfolio management is a second variant of our model. In-
spired by real-world consequences of signing a maintenance
contract, in this setting agents have to perform each activ-
ity exactly once, although multiple alternatives exists for the
activity, and instead of activity failure we consider delays.
More formally, for each activity k we now additionally have
a delay duration hk and delay probability βk.

Encoding the portfolio management planning in an MDP
requires a substantially greater effort as we can no longer
translate activities directly to actions. This problem is more
complex because of (1) possible non-unit activity durations,
(2) activities can be delayed, (3) for each road we can only
choose one activity to perform, and (4) each road can be
serviced only once. The latter two are easily resolved by in-
troducing a variable that flags whether a road has been ser-
viced and using corresponding penalties to prohibit planning
of these activities later; the first two require more work.

From the single-agent MDP perspective, non-unit activity
durations (including possible delay) do not pose any diffi-
culties. We could use actions that update the time variable t
according to the activity duration. For the joint MDP how-
ever, this time variable is shared by all the agents. Increas-
ing the time by the activity duration makes it impossible for
other agents to start their activities in this time period. Our
solution is to decompose each activity k into unit-time MDP
actions {startk, dok, delayk, donek} and use a timer vari-
able to keep track of the remaining activity duration and its
delay status (pending, no or yes). The startk action marks
the beginning of the activity. This action sets the delay sta-
tus to pending and the activity timer to the duration dk. In
subsequent time steps, the agent has to perform a dok action
until the activity timer reaches zero. At this point, the activ-
ity delay status is pending and the activity is delayed with
probability βk (also updating the delay status).

If the activity is not delayed, the donek action is executed
and the associated road ek is flagged as serviced. When an
activity is delayed however, we set the activity timer to the
delay duration hk and continue with dok actions until again
the timer reaches zero, at which point the stopk action is ex-
ecuted (not delayk again because of the delay status value).

Important to keep in mind is that during the search for
optimal policies, a solver might decide on any order of these
actions. Hence we need to constrain the actions such that

only feasible action sequences are considered. For example,
the dok action can only be chosen if the activity timer is
greater than zero, otherwise a high penalty results.

Rewards are encoded using the two-stage approach as be-
fore. In the first stage, each agent chooses a start, do, delay
or stop action. Then the second stage implements these ac-
tions and incurs maintenance, quality and social costs for the
current time step t.

4.5 Planning Methods
Using the encodings we discussed, we can find the optimal
policy π∗ that minimises costs over all three objectives. In
the experiments, we then compare this centralised compu-
tation that relies on truthful reporting to (1) the approach
where each agent plans its own actions optimally individu-
ally, i.e., disregarding other agents, and (2) a best-response
approach (Jonsson and Rovatsos 2011).

In the best-response approach, agents alternatingly com-
pute their best plan (in expectation) in response to the current
(joint) plan of the others. This approach allows us to solve
much easier single agent problems but still consider agent
dependencies (e.g., social cost). Of course, the downsides of
this approach are that we will have to settle for Nash equi-
libria (if they exist) and the ordering of agents matters.

5 Evaluation
We have performed a substantial number of experiments to
gain insight into this previously uncharted area. For both
problem scenarios we have generated large benchmark sets
on which we tested the various planning approaches and
their encodings discussed in the previous section. These ex-
periments are mainly of an exploratory nature in which we
study the effect of each of the problem variables. The solver
used in these experiments has been implemented in Java,
using SPUDD as its internal MDP solver. All experiments
have been run on a system with an 1.60 Ghz Intel i7 pro-
cessor with a time limit of 3 hours per instance, except for
the experiments of Section 5.2 which had a time limit of one
day.1

5.1 Activities with Failures
In the first series of experiments we have been mainly in-
terested in exploring the computational limits of solving the
problem centrally using an exact algorithm. To this end we
generated a set of simple instances that vary in both the
number of players N (2-5) and activity set Ai sizes (1-15).
We solved these instances using different planning period
lengths T (1-46). From these experiments we identify the
parameters that contribute the most to the difficulty of the
problem.

Activity sets are generated using random, linear, time-
dependent cost functions and always increase the quality
level of the associated road by one. Quality cost functions
are also generated for each road. Road quality is decreas-
ing linearly in the quality with a random factor from [1, 3],

1The testset is available at http://www.alg.ewi.tudelft.nl/
fileadmin/alg/homepages/scharpff/icaps-testset.rar

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

22

2 3 4 5
100

102

104
Runtime

Number of players

R
un

tim
e

(s
)

2 3 4 5
104

106

108
Memory usage

Number of players

N
um

be
ro

fn
od

es

Enumeration
Action chain
Activity chain

Figure 1: Comparison of runtime (left) and memory use
(right) for different encoding methods and player set sizes,
|Ai| = 3, |T | = 46, |Q| = 6 (both log scale).

0 5 10
10−2

100

102

104

Activity set size

R
un

tim
e

(s
)

0 10 20 30 40 50
10−2

100

102

104

Period length

R
un

tim
e

(s
)

|N| = 2
|N| = 3
|N| = 4
|N| = 5

Figure 2: Runtimes for different activity set sizes |Ai| with
plan period length |T | = 46 (left), and different |T | with
|Ai| = 10 (right) using activity chains (both log scale).

which is fixed per road. Recall from Section 4.1 that linear-
ity of this and other cost functions is a restriction not im-
posed by our model but is required to combat a potential
exponential MDP encoding size. For the social costs ` we
study the worst-case where all activities always interfere and
define these costs using randomly chosen (marginal) cost
l(k1, k2) ∈ [1, 10] for each k1 ∈ Ai and k2 ∈ Aj where
i 6= j. We do not consider the marginal cost for individual
actions, i.e., l(k) = 0.

In Figure 1 we have depicted both the runtime (left) and
the memory (right) required to solve each of these instances,
under different encoding methods. The memory required is
expressed in the number of nodes SPUDD generates. Not
surprisingly this figure illustrates that the performance of the
solver is exponential in both time and memory, and greatly
depends on the structure of its input. By exploiting the prob-
lem structure, the activity chain encoding is able to greatly
reduce the required runtime. With it we have been able to
solve instances with 5 players and 3 activities per player
within the time limit of 3 hours, whereas the other two failed
on such instances. Observe that activity chain encoding re-
quires slightly more memory. For the reasons stated above,
we have illustrated the results of the remaining experiments
only using the activity chain encoding (which indeed outper-
formed the others in all tests).

In Figure 2 we have plotted the required runtime for solv-
ing instances using activity chains for various activity set
sizes and period lengths. From the figure we can conclude
that the runtime is only linearly affected by the number of
activities each player has. The plan period length shows
almost the same: although the required runtime increases

100

200

300

400

Activity success probability

C
os

t

β = 0.2 β = 0.6β = 0.4 β = 0.8 β = 1

Individual

Best-response

Centralised

Figure 3: Total cost using different planning approaches for
the activities with failure problems (lower is better).

rapidly at first, for larger plan horizons the increase is again
almost linear. It is expected that instances with small plan
lengths are easily solvable because only a small number of
plans is possible. Increasing the plan length introduces an
exponential number of new possible plans and therefore the
computation time increases rapidly, up to the point where
the roads reach maximum quality. From this time on, agents
have to consider planning an activity only when the quality
degrades.

Having identified the computational boundaries of the
centralised problem, we compared the performance of dif-
ferent planning approaches discussed in Section 4.5 in terms
of total reward obtained. For these experiments we have used
60 generated two-player instances in which each player is re-
sponsible for one road. The activity set of each player con-
tains the no-operation and 1, 2 or 3 available maintenance
operations that improve the quality of the road by 1, 2 or 3
levels respectively. The cost of each action k ∈ Ai is drawn
randomly from [1, 3∗∆qk] and is therefore independent from
its execution time. In each instance, the activities share the
same success rate α = [0.2, 0.4, 0.6, 0.8, 1] for all activities.
For the best-response algorithm we have used 3 iterations
with random agent orderings. Smaller experiments support
our choice for 3 iterations: less iterations result in far worse
results while more iterations only slightly improve the qual-
ity but increase the runtime substantially. Note that we have
no guarantee that the best-response approach will converge
to an equilibrium at this point, however early experiments
have shown that best-response almost always improves the
initial solution.

Figure 3 illustrates the total cost obtained for each of the
methods under different levels of uncertainty with a box
plot. In the plot, the box contains the upper and lower quar-
tile of the result values with the mean shown by the horizon-
tal line. The whiskers show the smallest and largest values
and outliers are plotted as crosses.

The centralised algorithm always computes the social op-
timal solution in which the total cost is minimal. As to be ex-
pected, the individual planning method perform much worse
on these instances. Because in this approach the dependen-
cies between agents are ignored, the resulting plan may suf-
fer from high social cost. Indeed this figure shows that the

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

23

0 5 10 15 20
100

102

104

106

Plan period length

R
un

tim
e

(s
)

|A| = 1

|A| = 2

|A| = 3

|Ei| = 3

|Ei| = 2

|Ei| = 1

Figure 4: Runtimes of best-response planning for portfolio
management for various road set sizes |Ei|, activities per
road |A| and plan length |T | (log scale). The cut-off for
|Ei| = 3 at |T | = 6 is due to the time limit of 1 day.

total costs are much higher on average, compared to the cen-
tral solution. Using only 3 iterations, the best-response al-
gorithm produces fairly acceptable plans. As we have men-
tioned before, best-response can been seen as a compromise
between individual and central planning. Indeed our experi-
ments show that the total cost is lower on average than when
using individual planning, but higher than the centralised
method.

5.2 Portfolio Management
For portfolio management we have performed similar exper-
iments. We have generated a set of 5 games for each com-
bination of |N | ∈ [2, 5], |Ei| ∈ [1, 5], |Ai| ∈ [1, 3] and
β ∈ [0.2, 0.4, 0.6, 0.8, 1.0] (delay risk is the same for all
activities in these instances). We ran our solver on these in-
stances for different values of T . Again we study the worst
case in which players are tightly coupled (all activities inter-
fere with at least one of another agent), and we strive to gain
insight in the factors contributing to the complexity.

Although exact solving for multiple agents poses a diffi-
cult challenge at this point, we have been able to develop
joint plans for several non-trivial instances using the best-
response approach. Figure 4 illustrates the runtime required
for finding an optimal response, given the planning choices
made by others, for various road set, activity and plan pe-
riod sizes. These early experiments show that best-responses
can be computed in the order of a few minutes for problems
where agents are responsible for multiple roads with several
activities to choose from, but also that it quickly becomes
intractable for larger plan horizons and road set sizes.

6 Conclusions and Challenges
This paper introduces the practically very relevant problem
of infrastructural maintenance planning under uncertainty
for selfish agents in a private-values setting. With the help
of experts in the field of maintenance planning we devel-
oped a model that captures the essence of this coordination
problem. Dynamic mechanism design combined with opti-
mally solving MDPs theoretically solves this modelled prob-
lem but might be difficult in practical scenarios. Through

experimental analysis with different encodings in an existing
solver, we found that we can solve practical examples of sce-
nario 1 within reasonable time. For scenario 2, run times for
best-response can be computed for multiple agents in a small
network. We have thus made an important step towards this
practical planning problem, and identified challenges for our
community.

In this paper, we used scalar weighting to balance the dif-
ferent objectives in the system. However, asset maintenance
planning for infrastructures is inherently a multi-objective
problem, even though this has not been acknowledged in
procurements until recently. The weighting model has two
difficulties. Firstly, it requires accurate and exhaustive op-
erationalisation of objectives in terms of monetary rewards
schemes. Secondly, in any practical application, human de-
cision makers are more likely to prefer insight into possible
solutions trade-offs over a single black-box solution. In this
context, the work by Grandoni et al. (2010) is relevant, in
which the authors study approximation techniques for mech-
anism design on multi-objective problems. Nevertheless,
their work has only been applied to static mechanisms. De-
veloping methods combining multi-objective planning un-
der uncertainty with dynamic mechanism design is a hard
challenge for the community, but with high potential pay-
offs in terms of real-world relevance.

Scaling MDP solvers in terms of number of actions has
received relatively little attention, but is crucial for solv-
ing multi-agent problems that suffer from exponential blow
up of their action space. Furthermore, the best-response ap-
proach that we employed is not guaranteed to converge to
the optimal solution, except for special cases such as po-
tential games (Jonsson and Rovatsos 2011). Bounding the
loss, e.g., by building on those special cases, will provide
benefits to the adoption of best-response methods. Finally,
as mentioned in the related work section, approximate so-
lutions often preclude many of the theoretical mechanism-
design results to apply. A major challenge here is to identify
mechanisms that are more robust to such approximations.

With respect to the implications of our work, it is clear
that the planning and coordination of (maintenance) activ-
ities in the presence of uncertainty is a complex problem.
However, applications exist in several other domains such
as bandwidth allocation or smart power grids, and hence the
need for a practical solution is high.

The concept of traffic time loss can also be used to stim-
ulate market parties in rethinking current working meth-
ods. By adjusting tendering criteria to specific needs on
certain areas of the network, bidders can distinguish them-
selves by offering innovative proposals with limited traffic
loss hours. The Dutch road authority and several provinces
of The Netherlands are currently experimenting with this
method in the Netherlands.

Acknowledgements
This research is part of the Dynamic Contracting in Infras-
tructures project and is supported by Next Generation In-
frastructures and Almende BV. Matthijs Spaan is funded by
the FP7 Marie Curie Actions Individual Fellowship #275217
(FP7-PEOPLE-2010-IEF).

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

24

References
d’Aspremont, C., and Gérard-Varet, L. 1979. Incentives
and incomplete information. Journal of Public Economics
11(1):25–45.
Athey, S., and Segal, I. 2007. An efficient dynamic mecha-
nism. Technical report, UCLA Department of Economics.
Bergemann, D., and Valimaki, J. 2006. Efficient dynamic
auctions. Cowles Foundation Discussion Papers.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.
Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. In Proc. of 6th Conf. on The-
oretical Aspects of Rationality and Knowledge, 195–201.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Proc. Int. Joint Conf. on
Artificial Intelligence, 73–78.
Cavallo, R.; Parkes, D. C.; and Singh, S. 2006. Optimal co-
ordinated planning amongst self-interested agents with pri-
vate state. In Proc. of Conf. on Uncertainty in Artificial In-
telligence, 55–62.
Cavallo, R. 2008. Efficiency and redistribution in dynamic
mechanism design. In Proc. of 9th ACM conference on Elec-
tronic commerce, 220–229. ACM.
Der Spiegel. 2012. A40: Autobahn nach dreimonatiger
sperre freigegeben. Online, Sep 30.
Detienne, B.; Dauzère-Pérès, S.; and Yugma, C. 2009.
Scheduling jobs on parallel machines to minimize a regular
step total cost function. Journal of Scheduling 1–16.
Grandoni, F.; Krysta, P.; Leonardi, S.; and Ventre, C. 2010.
Utilitarian mechanism design for multi-objective optimiza-
tion. In Proc. of 21st Annual ACM-SIAM Symposium on
Discrete Algorithms, 573–584. Society for Industrial and
Applied Mathematics.
Groves, T. 1973. Incentives in teams. Econometrica: Jour-
nal of the Econometric Society 617–631.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In
Proc. of Conf. on Uncertainty in Artificial Intelligence, 279–
288.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multia-
gent planning: A best-response approach. In Int. Conf. on
Automated Planning and Scheduling, 114–121.
Kok, J. R.; Hoen, P.; Bakker, B.; and Vlassis, N. 2005. Utile
coordination: Learning interdependencies among coopera-
tive agents. In Proc. Symp. on Computational Intelligence
and Games, 29–36.
van der Krogt, R. P.; de Weerdt, M.; and Zhang, Y. 2008.
Of mechanism design and multiagent planning. In Ghallab,
M.; Spyropoulos, C. D.; Fakotakis, N.; and Avouris, N., eds.,
European Conf. on Artificial Intelligence, 423–427.
Melo, F. S., and Veloso, M. 2009. Learning of coordina-
tion: Exploiting sparse interactions in multiagent systems.

In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, 773–
780. International Foundation for Autonomous Agents and
Multiagent Systems.
Procaccia, D., and Tennenholtz, M. 2009. Approximate
mechanism design without money. In Proc. of ACM Conf.
on Electronic Commerce, 177–186.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York, NY:
John Wiley & Sons, Inc.
Volker, L.; Scharpff, J.; De Weerdt, M.; and Herder, P. 2012.
Designing a dynamic network based approach for asset man-
agement activities. In Proc. of 28th Annual Conference
of Association of Researchers in Construction Management
(ARCOM).
Wolpert, D. H.; Tumer, K.; and Frank, J. 1999. Using col-
lective intelligence to route internet traffic. In Proceedings
of the 1998 conference on Advances in neural information
processing systems II, 952–958. MIT Press.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

25

Qualitative Planning under Partial Observability in Multi-Agent Domains

Ronen I. Brafman
Ben-Gurion University

Beer-Sheva 84105, Israel
brafman@cs.bgu.ac.il

Guy Shani
Ben-Gurion University

Beer-Sheva 84105, Israel
shanigu@cs.bgu.ac.il

Shlomo Zilberstein
University of Massachusetts
Amherst, MA 01003, USA

shlomo@cs.umass.edu

Abstract

Decentralized POMDPs (Dec-POMDPs) provide a rich, at-
tractive model for planning under uncertainty and partial ob-
servability in cooperative multi-agent domains with a grow-
ing body of research. In this paper we formulate a qualita-
tive, propositional model for multi-agent planning under un-
certainty with partial observability, which we call Qualitative
Dec-POMDP (QDec-POMDP). We show that the worst-case
complexity of planning in QDec-POMDPs is similar to that
of Dec-POMDPs. Still, because the model is more “classical”
in nature, it is more compact and easier to specify. Further-
more, it eases the adaptation of methods used in classical and
contingent planning to solve problems that challenge current
Dec-POMDPs solvers. In particular, in this paper we describe
a method based on compilation to classical planning, which
handles multi-agent planning problems significantly larger
than those handled by current Dec-POMDP algorithms.

Introduction
Many problems of practical importance call for the use of
multiple autonomous agents that work together to achieve a
common goal. For example, disaster response teams typ-
ically consist of multiple agents that have multiple tasks
to perform, some of which require or can benefit from the
cooperation of multiple agents. In such domains, agents
typically have partial information, as they can sense their
immediate surroundings only. And because agents are of-
ten located in different positions and may even have differ-
ent sensing abilities, their runtime information states differ.
Sometimes, this can be overcome using communication, but
communication infrastructure can be damaged, and even if
it exists, communication may be costly (in terms of time and
resources) and should be reasoned about explicitly.

Decentralized POMDPs (Dec-POMDPs) offer a rich
model for capturing such multi-agent planning prob-
lem (Bernstein et al. 2002; Seuken and Zilberstein 2008).
Dec-POMDPs extend the single agent POMDP model to ac-
count for multiple agents with possibly different information
states, but the complexity of the Dec-POMDP model has
limited its applicability. In this paper we define and study
a conceptually simpler model for multi-agent planning that

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extends the single-agent contingent planning model. We call
this new model Qualitative Dec-POMDP (QDec-POMDP).

In terms of worst-case complexity, we show that QDec-
POMDPs are no easier than Dec-POMDPs. Nevertheless, a
multi-agent contingent planning formalism offers two main
advantages. First, being geared to propositional (a.k.a. fac-
tored) state models, it allows for more convenient model
specification, as opposed to flat state models that character-
ize much of the work on Dec-POMDPs. Second, much like
contingent planning, it is more amenable to the use of cur-
rent classical planning methods, which are quite powerful.
Thus, it could allow us to solve much larger problems. In-
deed, one of our main contributions is a compilation method
from QDec-POMDPs to classical planning, allowing us to
tackle domains larger than those that can be solved by cur-
rent Dec-POMDP algorithms.

Of course, the qualitative contingent planning model is
less expressive in that it specifies the possible outcome states
without their likelihood. But this is an advantage in cases
where it is difficult to specify a richer, quantitative model,
or when such models are too complex to solve. Further-
more, a solution to a qualitative model can provide guid-
ance and heuristics for methods that operate on the quanti-
tative model. Alternatively, one could use information from
the quantitative model to bias choices made by a qualitative
counterpart, e.g., when state sampling techniques are used,
thus gradually moving from qualitative to quantitative.

In the next section we introduce the formal QDec-
POMDP model. We start with an analysis of the com-
plexity of solving a flat state-space qualitative model. This
makes clear the impact of the move from a quantitative Dec-
POMDP model, for which complexity results exist in that
form. Next, we take a closer look at the issue of belief state
representation, which is much more complex than in the sin-
gle agent case. Here we still consider a flat state space model
for semantic clarity. Next, we introduce a factored model,
in the spirit of contingent planning models. Focusing on
a deterministic variant of this model, we suggest an offline
compilation method for its solution, and describe its empir-
ical performance. The earlier discussion of belief states will
help us understand an essential simplification made by this
model. We end by discussing some of the challenges faced
in designing an online algorithm.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

26

Model Definition
We start with the basic definition of a flat-space QDec-
POMDP.

Definition 1. A qualitative decentralized partially observ-
able Markov decision process (QDec-POMDP) is a tuple
Q = 〈I, S, b0, {Ai}, δ, {Ωi}, O,G, T 〉 where

• I is a finite set of agents indexed 1, ...,m.
• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.
• Ai is a finite set of actions available to agent i and ~A =
⊗i∈IAi is the set of joint actions, where ~a = 〈a1, ..., am〉
denotes a particular joint action.

• δ : S × ~A→ 2S is a non-deterministic Markovian transi-
tion function. δ(s,~a) denotes the set of possible outcome
states after taking joint action ~a in state s.

• Ωi is a finite set of observations available to agent i and
~Ω = ⊗i∈IΩi is the set of joint observation, where ~o =
〈o1, ..., om〉 denotes a particular joint observation.
• ω : ~A× S → 2

~Ω is a non-deterministic observation func-
tion. ω(~a, s) denotes the set of possible joint observations
~o given that joint action ~a was taken and led to outcome
state s. Here s ∈ S, ~a ∈ ~A, ~o ∈ ~Ω.

• G ⊂ S is a set of goal states.
• T is a positive integer representing the horizon.

Our model allows for non-deterministic action effects as
well as non-deterministic observations. That is, we allow a
set of possible global states to result from a single joint ac-
tion, and we also allow multiple possible observations per
outcome state. Additionally, our model assumes a shared
initial belief state, as most Dec-POMDP models. The case
where agents have different initial belief states is very im-
portant, as it corresponds to the situation in on-line planning,
but is also very challenging.

We represent the local plan of each agent using a policy
tree q, which is a tree with branching factor |Ω| and depth
T . Each node of the tree is labeled with an action and each
branch is labeled with an observation. To execute the plan,
each agent performs the action at the root of the tree and
then uses the subtree labeled with the observation it obtains
for future action selection. If qi is a policy tree for agent i
and oi is a possible observation for agent i, then qioi denotes
the subtree that corresponds to the branch labeled by oi.

Let ~q = 〈q1, q2, · · · , qm〉 be a vector of policy trees.
~q is also called a joint policy. We denote the joint ac-
tion at the root of ~q by ~a~q , and for an observation vector
~o = o1, . . . , om, we define ~q~o = 〈q1o1

, . . . qmom
〉.

We later suggest algorithms to compute a joint policy that
solves a given QDec-POMDP (guarantee goal reachability).

Complexity of QDec-POMDP
We now analyze the complexity of generating plans in our
proposed model, compared with policy generation in the tra-
ditional Dec-POMDP model.

We first characterize the set of states reachable via a joint
policy ~q. Intuitively, if all states reached by time T are goal
states, the joint policy is a solution to the QDec-POMDP. To
do so, we define the set of pairs of the form (global state,

joint policy) that are reachable, denoted by β. The base
case, β0, corresponds to initially possible states and the full
depth-T joint policy ~q: β0 = {(s, ~q)|s ∈ b0}. We define βt
inductively:

βt = {(s′, ~q~o) | (s, ~q) ∈ βt−1, s
′ ∈ δ(s,~a~q), ~o ∈ ω(~a, s′)}

We can now formally define a solution to a QDec-
POMDP using our β notation:

Definition 2. A given depth-T joint policy ~q is a solution to
a QDec-POMDP Q iff ∀s : (s, ∅) ∈ βT ⇒ s ∈ G.

Note that at time T the remaining policy trees are empty.

Definition 3. Let QDec-POMDPm denote the problem of
finding a joint policy ~q that is a solution of a given m-
agent QDec-POMDP Q = 〈I, S, {Ai}, δ, {Ωi}, O,G, T 〉
(i.e., |I| = m).

We now analyze the complexity of finding such solutions.

Theorem 1. For all m ≥ 2, if |T | ≤ S, then
QDec-POMDPm ∈ NEXP.

Proof. We show that a nondeterministic machine can solve
an instance of QDec-POMDPm using at most exponential
time. To start, we guess a joint policy ~q. A joint policy
includes m policy trees, each of size O(|Ω|T). Overall, the
size is O(m|Ω|T), and because T < |S|, the joint policy can
be generated in exponential time. Given a joint policy, the
update of the belief state βt can be performed in exponential
time: βt can be larger than βt−1 by at most a multiplicative
factor of |S|, and the update takes polynomial time in the
size of βt. Thus repeating this process T times may require
at most exponential time. Finally, all we need is to verify
that ∀s : (s, ∅) ∈ βT ⇒ s ∈ G.

Theorem 2. For all m ≥ 2, QDec-POMDPm is NEXP-
Hard.

Proof. The proof is similar to the one presented by (Bern-
stein et al. 2002) for Dec-POMDPs. It follows a reduction
of the TILING problem (Lewis 1978; Papadimitriou 1994),
which is NEXP-complete, to the QDec-POMDP2 problem.
We only sketch the argument here.

TILING involves a given board size n (represented in
binary), a set of tile types L = {tile0, ..., tilek}, and a
set of binary horizontal and vertical compatibility relations
H,V ∈ L×L. A tiling f is consistent iff (a) f(0, 0) =
tile0, and (b) for all x, y 〈f(x, y), f(x + 1, y)〉 ∈ H and
〈f(x, y), f(x, y + 1)〉 ∈ V . That is, adjacent tiles satisfy
the compatibility relations. The decision problem is to de-
termine, given n,L,H, V , whether a consistent tiling exists.

The basic idea is to create a two-agent QDec-POMDP
that randomly selects two tiling locations bit by bit, inform-
ing one agent of the first location and the other agent of the
second location. The agents’ local policies are observation-
history based, so the agents can base their future actions on
the tiling locations given to them. After generating the lo-
cations, the agents are simultaneously queried to place tiles
at some locations. The QDec-POMDP problem is designed
such that the agents reach the goal iff their answers to the
query are based on some agreed upon solution of the tiling

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

27

problem. Here is a brief discussion of the phases of the
original proof from (Bernstein et al. 2002) and the relevant
changes needed for the QDec-POMDP model.

Select Phase Using nondeterminism, the system generates
two random bit positions and values. They are memorized
as part of the state and not observed by the agents.

Generate Phase Using nondeterminism, the system gener-
ates two tile locations and reveals one to each agent via
their observation streams.

Query Phase Each agent is queried for a tile type to place
in the location specified to it.

Echo Phase The agents are now required to echo their tile
locations. Only one position (not known to the agents) is
verified by the system per observation stream. Making an
error in the echo phase leads to a dead-end, from which
the goal cannot be reached. During the echo phase, the
system tracks the adjacency relationship between the tile
locations.

Test Phase The system checks whether the tile types pro-
vided in the query phase come from a single consistent
tiling. If the tile types violate any of the constraints, a
dead-end state is reached. Otherwise, the goal is reached.

Similar to the original proof, if there exists a consistent
tiling, then there must exist a joint policy for the constructed
QDec-POMDP2 that reaches the goal state. Likewise, there
is no way to guarantee goal reachability without the agents
being faithful to a single consistent tiling.

Note that the QDec-POMDP constructed for the proof is
in fact a QDec-MDP (i.e., the observations of the two agents
combined provide full information on the state of the sys-
tem). Therefore, QDec-MDP2 is NEXP-Hard as well.

Corollary 1. For all m ≥ 2, both QDec-POMDPm and
QDEC-MDPm are NEXP-complete.

It is somewhat surprising that the qualitative model with
its different objective (goal reachability versus maximizing
expected reward) has the same complexity as the standard
Dec-POMDP model. In some sense, this confirms the in-
tuition that the main source of complexity is decentralized
operation with partial information, not stochastic actions.

Belief States and Joint Policies
The notion of the agent’s belief state plays a central role in
algorithms for solving problems with partial observability
and in the representation and computation of policies. In
this section, we seek to understand belief states in QDec-
POMDPs, explain some simplification we make, and use
this to provide an alternative representation for a joint policy.

Online Local Belief States
We begin with a definition of a local belief state of an agent
in the context of a known joint-policy tree. This definition is
useful for reasoning about the information state of an agent
online. However, it is not useful for the generation of a joint-
policy, as it assumes a fixed policy.

Each agent can maintain a belief state βti at time t that
reflects its own experience. The belief state includes all

the possible pairs of the form system state and joint policy.
Agent i knows its own policy tree, so all joint policies con-
sidered possible in its belief state must agree with its own,
actual, policy tree.

The initial belief state of agent i is β0
i = {(s0, ~q)|s0 ∈ b0}

where ~q is the initial vector of policy trees for all the agents.
Let ati be the action agent i executes at time t, and oti the
observation it obtains. We define βt inductively as follows:

βti = {(st, ~q~o) | (st−1, ~q) ∈ βt−1
i , (1)

st ∈ δ(st−1,~a~q),

~o ∈ ω(~a~q, st), ~o[i] = oti}
The only difference between the global update of βt and the
local update is the added condition ~o[i] = oti, which means
that we only include outcome states st that produce the ac-
tual observation that agent i obtained. That is, we use the
local information of agent i to filter states that are inconsis-
tent with its knowledge.

This belief state update scheme is valid when the joint
policy is fixed in advance in the form of policy trees. But
if we want to have policies that depend on these local belief
states we run into a problem. The actions of the other agents
depend on their beliefs that in turn depend on their actions.
Without resolving this circularity, it is hard to generate plans
conditioned on local beliefs.

Offline, Policy Independent Belief States
Most existing methods for planning under partial observabil-
ity rely on a “nice-to-manage”, policy-independent notion of
belief state. These methods include, for example, search in
belief state space, the computation of a real-valued function
over belief states, as in POMDPs, and the generation of a
policy that maps belief states to actions.

In the multi-agent case there is no longer a single
belief state, but we can replace that with the notion
of a history. A history is a sequence of states and
actions, of the form (s0, a1, s1, . . . , an, sn), denoting
the initial state, the initial action, the resulting state,
etc. If h = (s0, a1, s1, . . . , an, sn), let hs(k) = sk
and ha(k) = ak. Initially, every agent’s belief state is
β0
i = {(s0)|s0 ∈ b0}. We define βtβt−1,ai,oi

, the new belief
state of agent i at time t after executing ai and observing oi
in belief state βt−1, as follows:

βtβt−1,ai,oi
= {(h ◦ (~at, st)) | h ∈ βt−1, (2)

st ∈ δ(hs(t− 1),~at), ~at[i] = ai,

~o ∈ ω(~at, st), ~o[i] = oi}
That is, those histories that extend current histories with a

joint action that is consistent with the local action executed
by the agent, and with a state which is the result of applying
that joint action to the last state of the history, such that this
last state and action can induce a joint-observation consistent
with an agent’s local observation.

In the (qualitative) single agent case, due to the Marko-
vian assumption, one can simply maintain the set of last
states of the above histories, rather than the entire history,
i.e., maintaining the set of currently possible states. Unfor-
tunately, to the best of our knowledge, such a “truncation” is

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

28

not possible in the multi-agent case without sacrificing com-
pleteness. The reason is that different histories that led one
agent to the same state, lead to different states of informa-
tion for other agents. Thus, the set of last states in histories
considered possible by an agent only approximates its state
of knowledge. We will employ this approximation in the
planning algorithm introduced later, referring to it as set-of-
possible-states approximation.

Initially, every agent’s belief state is β0
i = {(s0)|s0 ∈ b0}.

The estimated set of possible states for agent i at time t
given the estimated belief state at time t − 1, action ai by
the agent, and observation oi is defined as follows:

βtβt−1,ai,oi
= {st : st−1 ∈ βt−1, (3)

st ∈ δ(st−1,~at),~at[i] = ai,

~o ∈ ω(~at, st), ~o[i] = oi}

Global Policy Tree
To describe a joint policy, we used a vector ~q of individual
policy trees. An alternative description is a global policy
tree, which we denote by qg . Its definition is identical to that
of an individual policy tree, except that nodes are labeled by
joint actions, and edges are labeled by joint observations.

Unfortunately, some general policy trees do not corre-
spond to any joint policy. If two nodes in the global pol-
icy tree correspond to branches that would yield the same
history for agent i, i.e., agent i cannot distinguish between
these branches, the action assigned to i in these nodes must
be identical.

Thus, let qg be a policy tree, and let b0 be the initial be-
lief state. For every node n, let ~b(n) = b1(n), . . . , bm(n)
be the vector of agents’ belief states given the history that
corresponds to the path to this node. qg is executable if for
every agent i = 1, . . . ,m and every two nodes n, n′ in gp,
if bi(n) = bi(n

′) then the ith component of the joint actions
associated with n and n′ must be identical.

Although joint policies are easier to execute – they con-
tain an explicit policy for each agent – global policy trees
are a better fit for the compilation approach that we describe
below, because they are closer in form to (single-agent) clas-
sical plans over joint actions: Instead of generating joint
policy trees consisting of m local policies, our translation
method will seek a single executable global policy tree. To
ensure that the global tree is executable, we will enforce the
constraint described above while using the set-of-possible-
states approximation for agents’ state of knowledge. Be-
cause this approximation is sound, i.e., two histories that the
agent cannot distinguish with will always yield two identical
sets of possible states (but not vice versa), we are guaranteed
that the global policy tree is indeed executable.

Factored Representation of QDec-POMDP
A factored representation of a planning problem makes it
more compact and facilitates development of efficient algo-
rithms that leverage the factored structure. With a few ex-
ceptions (Oliehoek et al. 2008; Kumar, Zilberstein, and Tou-
ssaint 2011), little work has focused on exploiting such fac-
tored models for Dec-POMDPs. Moreover, existing factored

Dec-POMDPs use a “flat” state representation per agent
(one state variable per agent) as opposed to multiple generic
state variables that describe compactly the entire state space.

In this section we describe a factored specification of a
QDec-POMDP model, motivated by the classical STRIPS
and PDDL languages. We propose a PDDL-like representa-
tion that is much more compact than the SPUDD-like repre-
sentation used in some factored Dec-POMDPs. At present,
our language does not support non-deterministic observa-
tions. Although conceptually simple and easy to define in
multi-valued settings, formalizing non-deterministic obser-
vations in the boolean STRIPS setting was not straightfor-
ward, and is left for future work. In what follows we slightly
abuse notation by overloading terms previously defined.
Definition 4. A factored QDec-POMDP is a tuple
〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 where I is a set of agents,
P is a set of propositions, ~A is a vector of individual ac-
tion sets, Pre is the precondition function, Eff is the effects
function, b0 is the set of initially possible states, and G is
a set (conjunction) of goal propositions. The state space S
consists of all truth assignments to P , and each state can be
viewed as a set of literals.

The precondition function Pre maps each individual ac-
tion ai ∈ Ai to its set of preconditions, i.e., a set of literals
that must hold whenever agent i executes ai. Preconditions
are local, i.e., defined over ai rather than ~a, because each
agent must ensure that the relevant preconditions hold prior
to executing its part of the joint action. We extend Pre to
be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

The effects function Eff maps joint actions into a set of
pairs (c, e) of conditional effects, where c is a conjunction
of literals and e is a single literal, such that if c holds before
the execution of the action e holds after its execution. Thus,
effects are a function of the joint action rather than of the
local actions, as can be expected, due to possible interactions
between local actions. For the sake of semantic clarity, we
assume that if (c, e) and (c′, e′) are conditional effects of
the same joint action, then c and c′ are inconsistent. Here
we focus on deterministic effects, but one can model non-
deterministic effects simply by allowing for multiple pairs
of the form (c, e), (c, e′) representing alternative outcomes
of the action under the same conditions. The preconditions
and effects functions, taken together, define the transition
function from one state to another given actions.

For every joint action ~a and agent i, Obs(~a, i) =
{p1, . . . , pk}, where p1, ..., pk are the propositions whose
value agent i observes after the joint execution of ~a. The
observation is private – i.e., each agent may observe differ-
ent aspects of the world, and we assume that the observed
value is correct and corresponds to the post-action value of
these variables.

A solution to the factored model is identical to that used
for the flat model. We can use joint policy trees or executable
global policy trees, as discussed earlier.
Example 1. We now illustrate the factored QDec-POMDP
model using a simple box pushing domain (Figure 1). In this
example there is a one dimensional grid of size 3, with cells

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

29

Figure 1: Illustration of Example 1 showing the box pushing
domain with 2 agents and a possible joint policy tree with
nodes labeled by joint actions. Possible agent actions are
sensing a box at the current agent location (denoted SB),
moving (denoted by arrows), pushing a box up (denoted P),
and no-op (denoted N). On the second level of the tree,
nodes marked 1 and 2 must have the same action for agent
1 (push up in this case), because agent 1 cannot distinguish
between these two nodes. Likewise for nodes 2 and 4 with
respect to agent 2 that cannot distinguish between them.

marked 1-3, and two agents, starting in cells 1 and 3. In each
cell there may be a box, which needs to be pushed upwards.
The left and right boxes are light, and a single agent may
push them alone. The middle box is heavy, and requires that
the two agents push it together.

We can hence define I = {1, 2} and P =
{AgentAt i,pos,BoxAtj,pos} where pos ∈ {1, 2, 3} is a
possible position in the grid, i ∈ {1, 2} is the agent in-
dex, and j ∈ {1, 2, 3} is a box index. In the initial state
each box may or may not be in its corresponding cell —
b0 = AgentAt1,1∧AgentAt2,3∧ (BoxAtj,j ∨¬BoxAtj,j)
for j = 1, 2, 3. There are therefore 8 possible initial states.

The allowed actions for the agents are to move left and
right, and to push a give box up. There are no preconditions
for moving left and right, i.e. Pre(Left) = Pre(Right) =
φ. To push up box j, agent imust be in the same place as the
box. That is, Pre(PushUpi,j) = {AgentAt i,j ,BoxAtj,j}.
The moving actions transition the agent from one position
to the other, and are independent of the effects of other
agent actions, e.g., Right i = {(AgentAt i,1,¬AgentAt i,1 ∧
AgentAt i,2), (AgentAt i,2,¬AgentAt i,2 ∧ AgentAt i,3)}.
The only truly joint effect is for the actions that contain
a component PushUpi,2, where box 2 is the heavy box
— Eff (PushUp1,2, a2) where a2 is some other action, are
identical to the independent effects of action a2, while
Eff (PushUp1,2,PushUp2,2) = {(φ,¬BoxAt2,2)}, that is,
if and only if the two agents push the heavy box jointly, it

(unconditionally) gets moved out of the grid.
We define sensing actions for boxes — SenseBoxi,j , with

precondition Pre(SenseBoxi,j) = AgentAti,j , no effects,
and Obs(SenseBoxi,j) = BoxAtj,j . The goal is to move
all boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

Compilation-Based Method
We now present a method for solving QDec-POMDP prob-
lems using a compilation approach to classical planning.
Our approach generates a planning problem whose solution
corresponds to an executable global plan tree, branching on
agent observations. It relies on the approximate, sound, but
incomplete notion of belief state, as discussed earlier.

The compilation method is currently designed for deter-
ministic QDec-POMDPs, i.e., ones where actions have de-
terministic effects. The method could in principal be ex-
panded to handle non-determinism by embedding the un-
certainty of action effects into the uncertainty of the initial
belief (Yoon et al. 2008), but this will clearly impact the so-
lution time and size. We hence leave discussion of efficient
handling of non-deterministic effects to future research.

A classical planning problem is a tuple π = 〈P,A, s0, G〉
where P is a set of propositions, A is a set of actions, s0 is
the initial state, and G is a set of goal propositions. We use a
translation method inspired by the MPSR translation method
(Brafman and Shani 2012) and improves upon it. An impor-
tant concept in this translation is distinguishability between
states. We say that we can distinguish at runtime between
two states s, s′, denoted ¬s/s′, if we observed the value of
some proposition p which is true in s and false in s′. In our
translation we have two types of distinguishability — when
a single agent can distinguish between states based on its
own observations, denoted ¬s/s′|i, and when the combined
observations of the agents can distinguish between observa-
tions, denoted ¬s/s′, as in MPSR.

Given a factored QDec-POMDP problem π = 〈I, P, ~A =
{Ai},Pre,Eff ,Obs, b0, G〉 defined as in the previous sec-
tion we create the following classical planning problem
πc = 〈Pc, Ac, s0c

, Gc〉:
Propositions Pc = {p/s : p ∈ P, s ∈ S} ∪ {¬s/s′ :

s, s′ ∈ S} ∪ {¬s/s′|i : s, s′ ∈ S, i ∈ I}. Propositions of
the form p/s capture the value at run time of p when s is
the true initial state. Propositions of the form ¬s′/s|i denote
that at run-time, if s is the true initial state, then agent i has
gathered sufficient data to conclude that s′ cannot be the true
initial state, i.e., to distinguish between state s and s′. These
propositions allow us to define the agent-specific belief state
during execution. These will be used later to enforce the
constraint on actions at the same level explained in the pre-
vious section. Propositions of the form ¬s′/s allow us to
distinguish between states that at least one of the agents can
distinguish between. These propositions allow us to define
the joint belief state during plan construction.

Actions For every joint action ~a and every subset of
S′ ⊆ b0, Ac contains an action aS′ . This action denotes
the execution of ~a when the set of possible states is S′. aS′
has no effect on states outside S′! It is defined as follows:
pre(~aS′) = {p/s : s ∈ S′, p ∈ pre(~a)} ∪ {¬s′/s : s′ ∈

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

30

Table 1: Execution time (seconds) for different box pushing domains, comparing our translation-based QDec-POMDP ap-
proach, and two Dec-POMDP solvers, IPG and GMAA-ICE with the QMDP heuristic. A model is defined by its width (W),
length (L), and number of boxes (B). Average depth denotes the average depth of leaves in the policy tree. Expected cost was
reported by the GMAA-ICE solver.

Domain |S| |b0| QDec- Avg IPG GMAA- Expected
W,L,B POMDP depth IPG ICE cost
2 , 2 , 2 256 4 12.79 2 450 15.32 2
2 , 3 , 2 1296 4 25.39 2 × 59.67 2
2 , 3 , 3 7776 8 48.42 5 × 732.59 5
3 , 3 , 3 59049 8 66.47 6 × × ×

S′, s ∈ b0\S′}. That is, the preconditions must hold prior to
applying the action in all states for which this action applies,
and the joint knowledge of the agents must be sufficient to
distinguish between any state in S′ and every state not in S′.
Thus, the plan can choose action aS′ only when the current
belief state is S′, and all action preconditions are known to
hold in S′.

For every (c, e) ∈ effects(a), effects(aS′) contains the fol-
lowing conditional effects:

• For each s ∈ S′, (c/s, e/s) — the effect applied to every
state in S′.

• {(p/s ∧ ¬p/s′,¬s/s′|i)} — for every p observable by
agent i, and every two states s, s′ ∈ S′, if the states dis-
agree on p, then agent i can distinguish between the states
following the observation of the value of p.

Initial State s0c =
∧
s∈b0,s|=l l/s — for every literal we

specify its value in all possible initial states.
Goal Gc = {

∧
s∈b0 G/s}— we require that the goal will

be achieved in all states.
In addition we must explicitly enforce the constraints on

nodes at the same depth or level, as explained in the previous
section. To avoid the dependency on the depth, which is a
numeric variable, unsupported by the planners that we use,
we enforce the plan construction to proceed in a breadth-
first-search (BFS). That is, each level in the tree must be
fully constructed before the next level can be started. To
achieve that we add for each state s in the initial belief a
proposition LevelDones. For each compiled action ~aS′
we add preconditions

∧
s∈S′ ¬LevelDones, and uncondi-

tional effects
∧
s∈S′ LevelDones. Thus, once a state has

been handled at the current level of the tree, no action
that applies to it can be executed at the current level. To
move to the next level, we add an action ResetLevel with
preconditions

∧
s∈b0 LevelDones and unconditional effects∧

s∈b0 ¬LevelDones. That is, once all states have been
taken care for the current level, the LevelDone propositions
are reset and the next level begins. Our method adds only
|b0| additional propositions to the translation.

After enforcing a BSF plan construction, we enforce that
all agent actions at the current level in different states can
be different only if the agent can distinguish between the
states. As the ability to distinguish between states is a re-
sult of a different observation, this achieves the validity con-
straint required for global policy trees to become executable,
as discussed in the previous section. We add for each agent

i and action ai ∈ {Ai} predicates constraintai,s, modeling
which states are constrained on ai. For every action ~aS′ we
add preconditions:∧
i∈I,s/∈S′

¬LevelDones∧(constraintai,s∨(∧s′∈S′¬s/s′|i))

where ai is the action assigned to agent i in ~aS′ . That is,
for each agent i and state s which is not handled by the
action, either s has not yet been handled by any other ac-
tion, and is hence unconstrained, or there is a constraint of s
and it matches ai, or we can distinguish between s and any
other state s′ ∈ S′ for which the action does apply. We also
add unconditional effects

∧
i∈I,s∈S′ constraintai,s, speci-

fying the new constraint induced when selecting the joint
action. When a level is done, we remove all constraints in
the ResetLevel action, i.e., we add to ResetLevel uncon-
ditional effects

∧
i∈I,ai∈Ai,s∈b0 ¬constraintai,s.

The solution to the classical problem above is a lineariza-
tion of a joint plan tree (Brafman and Shani 2012).

Example 2. We now describe a portion of the compilation
of the box pushing domain described in Example 1. The set
of possible initial state can be described as sb1b2b3 where bi
denotes whether bi is initially in the grid and must be pushed
up. For example, stft denotes that box 1 and 3 are in the
grid, and box 2 is not. The propositions are conditioned on
the initial states, and we thus have, e.g., BoxAtj,pos/sftf ,
and AgentAt i,pos/sttf .

For each subset of states we define one instance
of an action. For example, for S′ = {sttt , sfff },
and action Lefti we will define an action Lefti,S ′
with preconditions

∧
s/∈{sttt ,sfff } ¬sttt/s ∧ ¬sfff /s. We

also need to ensure the BFS expansion, by adding
¬LevelDonesttt

∧ ¬LevelDonesfff
. Finally, we ensure

that the proper execution tree structure holds by adding∧
s/∈{sttt ,sfff } constraintLefti,s ∨ (¬sttt/s

′|i ∧ ¬sfff /s
′|i).

The effects of the action are specified only for sttt and sfff :
(AgentAt i,3/sttt ,¬AgentAt i,3/sttt ∧ AgentAt i,3/sttt),
(AgentAt i,3/sfff ,¬AgentAt i,3/sfff ∧ AgentAt i,3/sfff).
In addition, we add to the effects LevelDonesttt ∧
LevelDonesfff

so that these states will not be handled again
at the current depth. Next, we add the resulting constraint
effect constraintLefti,sttt

∧ constraintLefti,sfff
ensuring

that all states undistinguishable from {sttt , sfff } must also
use Left i at the current tree depth.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

31

Experimental Results
We now provide some proof-of-concept experimental re-
sults showing that our algorithm can solve considerable size
QDec-POMDP problems. We experiment with a variant
of the box pushing problem (Seuken and Zilberstein 2007)
where a set of boxes are spread in a grid, and the agents
must push each box to a designated location at the edge of
the grid (the end of the column it appears in). Each box may
be either in a pre-specified location, or at its goal location
to begin with, and the agent must be in the same location as
the box in order to observe where it is. Agents may move
in the 4 primary directions, and can push boxes in these 4
primary directions, if they occupy the same location as the
box. Some boxes are heavy and must be pushed by a few
agents jointly (in our example, heavy boxes are pushed by 2
agents). Agents can also only observe the location of other
agents when they are in the same location. All transitions
and observations are deterministic.

We experimented with four box pushing domains. The
smallest example that we tried was a 2 × 2 grid, with 2
boxes and 2 agents and the largest had a 3 × 3 grid with
3 boxes. Each Ai has 11 possible actions (4 move actions,
4 push actions, observing the other agent, and observing
each box), and hence there are 121 joint actions. We ran
two Dec-POMDP solvers on this fully deterministic Dec-
POMDP problem — the GMAA-ICE algorithm with the
QMDP search heuristic (Oliehoek, Spaan, and Vlassis 2008)
using the MADP package1, and Incremental Policy Genera-
tion (IPG) (Amato, Dibangoye, and Zilberstein 2009). The
results are presented in Table 1. Our compilation approach
solves all the problems using the Fast Downward (FD) clas-
sical planner (Helmert 2006), while IPG solves only the
smallest instance, and GMAA-ICE solves the smaller in-
stances but not the larger one. Manually observing the trees,
we saw that the planner computed the intuitive plan tree.

We acknowledge that this comparison is not entirely fair,
because Dec-POMDP solvers try to optimize solution qual-
ity, whereas we only seek a satisfying solution. Thus, Dec-
POMDP solvers may need to explore many more branches
of the search graph, at a much greater computational cost.
Furthermore, many Dec-POMDP solvers are naturally any-
time, and can possibly produce a good policy even when
stopped before termination. It may well be that solvers
may reach a satisfying policy, which is the goal in a QDec-
POMDP, well before they terminate their execution. That
being said, our experiments demonstrate that our approach
can provide solutions to decentralized problems and may be
competitive with current Dec-POMDP solvers.

Our experiments investigate scaling up in terms of states
and the horizon, yet another source of complexity in Dec-
POMDP problems is the number of agents. It would be in-
teresting to examine in future work how our approach scales
with the number of agents.

An interesting aspect of our approach is the ability to
compactly represent large problems. For example, the 3× 3
box pushing example that we describe above, required a
model size of over 1GB (specifying only non-zero probabil-

1staff.science.uva.nl/˜faolieho/madp

ities) in the traditional Cassandra format for Dec-POMDPs,
while our factored representation required less than 15KB.

Conclusion
We presented a new model for multi-agent planning prob-
lems, called QDec-POMDP, which emphasizes valid, rather
than optimal solutions, that achieve a given goal, in the spirit
of classical and contingent planning. We analyzed the com-
plexity of the new model, concluding that it is as hard as
the standard Dec-POMDP model for a given horizon. Then,
we presented a factored version of this model, motivated by
similar representations used in classical and contingent plan-
ning. Our representation is compact and can describe mod-
els with tens of thousands of states and about 150 joint ac-
tions using file sizes of less than 15KB. We intend to inves-
tigate even more compact methods for specifying the effects
of joint actions. Next, we described a solution method for
deterministic QDec-POMDPs, based on a compilation ap-
proach to classical planning. Our method creates a classical
planning problem whose solution is a linearized joint plan
tree. We demonstrated the advantage of this compilation
method over Dec-POMDP solvers using a number of exam-
ples. Our approach solves small problems much faster and
scales to larger problems compared to existing Dec-POMDP
solvers.

In this paper, our focus was on providing an exposition
of the model, its properties, and potential. Of course, this is
only the first step towards developing more scalable solvers
for QDec-POMDP domains. In particular, we know well
from contingent planning that it is much harder to scale up
offline solution methods. Hence, we intend to explore online
planning in QDec-POMDPs. This raises some non-trivial
challenges as we will need some mechanism that will al-
low different agents with different belief states to jointly
plan (Wu, Zilberstein, and Chen 2011), unlike the offline
case in which a global plan is generated for a group of agents
that share an initial belief state. The advantage, however,
is that agents can focus on the relevant part of the state
space at each planning phase, requiring smaller encodings
and smaller plans. In addition, online methods are likely to
better deal with non-deterministic effects. A second possible
direction for scaling up would allow agents to plan indepen-
dently, enforcing certain constraints on the joint solution.

Finally, it would be interesting to study variants of the
QDec-POMDP model in more detail to identify the sources
of its complexity, and, in particular, variants that have lower
complexity. For example, we suspect that solving QDec-
POMDPs with deterministic transitions might belong to a
lower complexity class. Additional insights concerning be-
lief state representation may also help yield more efficient
algorithms.

Acknowledgments
Support for this work was provided in part by the Na-
tional Science Foundation under grants IIS-0915071 and
IIS-1116917, the Paul Ivanier Center for Robotics Research
and Production Management and the Lynn and William
Frankel Center for CS Research.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

32

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incre-
mental policy generation for finite-horizon DEC-POMDPs.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 2–9.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27:819–840.
Brafman, R. I., and Shani, G. 2012. A multi-path compila-
tion approach to contingent planning. In Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence, 1868–
1874.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scal-
able multiagent planning using probabilistic inference. In
Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence, 2140–2146.
Lewis, H. R. 1978. Complexity of solvable cases of the de-
cision problem for the predicate calculus. In Proceedings of
the Nineteenth Annual Symposium on Foundations of Com-
puter Science, 35–47.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlassis,
N. 2008. Exploiting locality of interaction in factored DEC-
POMDPs. In Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems,
517–524.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. A. 2008.
Optimal and approximate Q-value functions for decentral-
ized POMDPs. Journal of Artificial Intelligence Research
32:289–353.
Papadimitriou, C. H. 1994. Computational Complexity.
Reading, MA: Addison-Wesley.
Seuken, S., and Zilberstein, S. 2007. Improved memory-
bounded dynamic programming for decentralized POMDPs.
In Proceedings of the Twenty-Third Conference on Uncer-
tainty in Artificial Intelligence, 344–351.
Seuken, S., and Zilberstein, S. 2008. Formal models
and algorithms for decentralized decision making under un-
certainty. Autonomous Agents and Multi-Agent Systems
17(2):190–250.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In Proceedings of the Twenty-Third Conference on
Artificial Intelligence, 1010–1016.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

33

Multi-agent Planning based on the Dynamic Selection and Merging of
Hierarchical Task Networks

Gonzalo Milla-Millán and Juan Fdez-Olivares and Inmaculada Sánchez-Garzón
Dpto. de Ciencias de la Computación e I.A., Universidad de Granada, Spain

c/. Daniel Saucedo Aranda, s/n 18071 Granada, Spain
{gmillamillan, faro, isanchez}@decsai.ugr.es

Abstract

In this work we present a Multi-Agent Planning (MAP) ap-
proach which uses Hierarchical Task Networks (HTN) plan-
ning as the base of a conflict solving process between the
local solutions from different local HTN planning problems.
Several planning agents encoding the local problems (related
to distinct planning domains) cooperate to that end exchang-
ing a selection of the HTNs used to obtain valid local solution
plans. A conflict solving agent is in charge of dynamically
merging these local HTNs into a new global HTN planning
domain, and using it to build and solve a new global HTN
planning problem. This global problem contains also exclu-
sive information - not known by any of the local planning
agents - about the potential interactions between the local so-
lutions and how to manage them. A preliminary experiment
gives results demonstrating the validity of this approach.

1 Motivation
Planning for many real-world problems requires plans to
comply with a set of domain-specific operating procedures.
That is the case of detailing the steps of a care plan (the
strategy to treat a patient) in the medical domain, where a
Clinical Guideline (CG) encapsulates the knowledge to as-
sist clinicians about appropriate health care for managing a
single disease (Field and Lohr 1993). This knowledge in-
volves operating procedures that can be encoded in a formal
CG using a representation based on “Task-Network Models”
(Peleg et al. 2003), from which care plans must be tailored to
specific patients. Implementing these formal CGs requires
of a language with the ability to express a significant amount
of domain-specific knowledge (including ordering and time
constraints, as well as high-level tasks comprising sequen-
tial and parallel control flow patterns), for which the classi-
cal planning paradigm is inadequate due to its constrained-
action representation (Kambhampati et al. 1991; Miksch
1999). However, HTN planning (Erol, Hendler, and Nau
1996) has already been demonstrated to be a suitable ap-
proach for it thanks to (1) the possibility of using an HTN
planning domain as a formal CG (Gonzalez-Ferrer et al.
2012), and (2) the ability of HTN planning algorithms to
tailor this knowledge to the context data (i.e., the patient fea-
tures and available resources) (Fdez-Olivares et al. 2011).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On the other hand, single-disease CGs can not be directly
reused for patients suffering from more than one disease,
which is known as the comorbidities problem (Boyd et al.
2005). That is because each CG encapsulates the knowledge
about a single disease and may give recommendations which
contradict those in other CGs, so interactions among the lo-
cal care plans may arise when they must be simultaneously
applied to a comorbid patient (a patient suffering from more
than one disease). The work in (Tu et al. 2011) presents
an ontology with these potential interactions including, for
instance, drug interactions (two different drugs which must
not be administered to the same patient may be prescribed
by different CGs). Thus, the required knowledge for solv-
ing the global problem of treating a comorbid patient is dis-
tributed in (1) several single-disease CGs (one for each of
the diseases that she/he suffers from), and (2) other sources
of information with the potential interactions between them
(e.g. an external database). Therefore, in order for a global
care plan to be valid, it must (1) comply with the local con-
straints in every involved CG, and (2) avoid the potential
interactions between different CG recommendations.

We present in this work a cooperative MAP approach to
tackle this issue, which comprises several planning agents
and a conflict solving agent. Each planning agent repre-
sents a single-disease specialist and is responsible for a local
HTN planning problem encapsulating the knowledge about
a single-disease CG (encoded as a formal CG in a local HTN
planning domain). This partitioning allows for the distribu-
tion of the search for valid local solutions. The planning
agents send the HTNs used to obtain their local solutions to
the conflict solving agent. Using the local HTNs allows the
conflict solving process (which is also based in HTN plan-
ning) to comply with all the single-disease constraints. The
conflict solving agent has knowledge about the potential in-
teractions between local solutions, and uses this knowledge
together with the local HTNs to build a global HTN plan-
ning problem, whose solutions are free of interactions and
comply with the local constraints. If such a global solution
does not exist, the conflict solving agent asks the planning
agents for alternative local proposals. The whole process is
repeated until a global solution is found or no more local
proposals can be given by any of the planning agents.

In the next section, a problem example is introduced to
guide the explanation through the rest of the paper.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

34

2 Problem Example
In this section a problem example is introduced to guide the
explanation. This example is very simple and not intended
to represent a real clinical case. However, it contains key
elements involved in the problem of tailoring a care plan to
a comorbid patient. Due to its simplicity (most of the plans
comprise a single action), it could seem that classical plan-
ning could be a valid approach to afford it. However, a real
CG comprises much more expert knowledge (including or-
dering and time constraints, as well as high-level tasks with
sequential and parallel control flow patterns) which prevents
classical planning to be used due to its constrained-action
representation (Kambhampati et al. 1991).

Patient John (a 15 years old boy who weighs 35 kilos)
has been diagnosed with both diseases X and Y . Two sep-
arated CGs exist, which encapsulate the local knowledge
about each disease (guideline-X and guideline-Y, respec-
tively). For the specific case of John, guideline-X has knowl-
edge about two potential drugs to be administered: X1 and
X2, from which only one of them must be selected (prefer-
ably in the given order). Same happens for guideline-Y,
which has knowledge about three possible drugs for treat-
ing disease Y in John: Y 1, Y 2, and Y 3, from which only
one of them must be selected (preferably also in the given
order). Applying the knowledge of each guideline, X1 and
Y 1 would be the local treatments for diseases X and Y re-
spectively.

However, X1 and Y 1 are known to interact between
them, which means that they must not be administered to
the same patient in simultaneous treatments. This is known
as a drug-drug interaction (Tu et al. 2011). Each separated
guideline encapsulates the knowledge about only one of the
diseases, so none of them knows anything about this inter-
action or how to manage it. This knowledge is in an external
source out of the guidelines (e.g., an external database).

This example will guide the explanation through the rest
of the work. Next section gives the required notions of HTN
planning and describes how it can be used to obtain care
plans from single-disease CGs. Section 4 follows with a
description of the global problem faced in this work in terms
of several other local HTN problems. Then our approach
to tackle this global problem is presented in section 5. A
preliminary experiment is presented together with its results
in section 6. Section 7 gathers the related work and section
8 presents our conclusions and plans for future work.

3 HTN Planning for Single-Agent Problem
Solving

A single-agent HTN planning problem is composed of a do-
main, an initial state and a set of goals1. The initial state is
a set of literals that describes the facts that are true at the be-
ginning of the problem. The domain is designed in terms of
a hierarchy of compositional activities which can be prim-
itive or non-primitive. Primitive activities are named op-
erators and are similar to those in classical planning, with

1Following (Ghallab, Nau, and Traverso 2004), we use the term
“problem” to make reference not only to the initial state and the
goals, but also to the domain which they relate to.

related preconditions and effects. Non-primitive activities
are symbolic activities named compound tasks which need
to be decomposed into simpler activities. Decomposition
methods encode how compound tasks can be decomposed
and are defined as m = (t, Cond, Subacts), being t a
compound task; Cond a set of applicability conditions; and
Subacts a partially-ordered set of activities. Subacts
represents the way that t should be decomposed accord-
ing to m if Cond hold in the current state. Unlike classi-
cal planners, goals in HTN planning are not specified as a
well formed formula that must be made true by the planner
from the initial state, but in terms of an initial task net-
work, which consists of a partially ordered set of ground
compound tasks that need to be decomposed applying the
decomposition methods until a plan formed of only actions
- ground operators - is found.

The problem of tailoring care plans to patients from a
single-disease CG using HTN planning has already been
studied in (Fdez-Olivares et al. 2011; Gonzalez-Ferrer et al.
2012). Figures 1, 2, and 3 illustrate how this can be done for
disease X and patient John (assuming that he doesn’t suf-
fer from any other disease). They represent a single-agent
setting where figures 1 and 2 are the initial state and the
basic knowledge of the domain respectively. This informa-
tion is shown in HPDL code (Castillo et al. 2006), which is
based on PDDL 2.2 (Edelkamp and Hoffmann 2004) and is
able also to manage HTN planning specific features. HPDL
has already been shown to be as expressive as standard lan-
guages for representing formal CGs (Gonzalez-Ferrer et al.
2012), which makes it an ideal tool for the comorbidities
problem which will guide the explanation. Figure 3 uses a
graphical notation to depict the hierarchy of activities which
formalizes the expert knowledge of the CG. The planning
goal for the problem of tailoring a care plan for John from
guideline-X can be represented with the initial task network:
(Treat-X john).

4 Global Problem Definition
The global problem must be tackled through several local
HTN planning problems for which (1) initial states have
some common parts and (2) their local solution plans must
be executed in parallel. However, interactions between the
local plans may arise due to their parallel execution and the
common parts in the initial states. The encapsulated knowl-
edge in any of the local problems does not know anything
about these potential interactions. That is the case of the
comorbidities example where the local HTN planning prob-
lems are those encoding the local management of diseasesX
and Y respectively; the local solution plans are the separated
treatments for each disease; and the common part of the ini-
tial states is that relating to patient John. Figures 1, 2 and
3 reflect the local problem for disease X , and so do figures
4, 5 and 6 for disease Y . However, the interaction among
drugs X1 and Y 1, prevent them to be prescribed together
in a global plan for John, who suffers from both diseases.
None of the local formal guidelines knows anything about
this potential interaction. So the global problem consists of
obtaining a global plan which solves all the local problems
and avoids all the potential interactions among them.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

35

(:objects

john - patient X1 X2 - drug)

(:init

(male john) (= (age john) 15)

(drugclass X1 boy) (drugclass X2 boy))

Figure 1: Single-agent initial state for managing disease X

(:types

patient drug class - object)

(:constants

boy man girl woman - class)

(:predicates

(male ?p - patient)

(female ?p - patient)

(drugclass ?d - drug ?c - class))

(:functions

(age ?p - patient))

(:action administer

:parameters (?p - patient ?d - drug ?c - class)

:precondition (drugclass ?d ?c)

:effect ())

Figure 2: Single-agent basic knowledge of the domain for
guideline-X

5 Using HTNs for cooperative conflict solving
The main reason to use HTN planning as the base for the
conflict solving process is that this process must be aware
of and comply with the local constraints imposed by the lo-
cal domains (the single-disease formal CGs), which are al-
ready encoded in the local HTNs. The main reason to use
a cooperative MAP approach is to distribute the search for
valid local solutions between different planning agents, each
one representing a single-disease specialist. Thus, the HTN-
based conflict solving process gathers the local HTNs used
by each specialist to find a valid local solution and merge
them with information about the potential interactions. The
result of this merging process is a new HTN planning prob-
lem (with a new related HTN planning domain) ready to
manage conflict-solving information. Using the local HTNs
to build the global HTN planning domain guarantees that the
global solutions comply with the local constraints.

Furthermore, designing and implementing a new plan-
ning domain for the global problem is not possible due to
complexity and privacy reasons. For instance, in the co-
morbidities problem, it would be all but realistic to create
a new planning domain for every potential combination of
diseases. Real CGs are much more complex than the ones
presented in sections 3 and 4, and joining them in a single
domain would be a thorough and complex task. Further-
more, the approach here presented is intended for combina-
tions of an arbitrary number of diseases (not only two) which
would make that implementation task even harder. Regard-
ing the privacy issues, they refer mainly to the requirement
of not disclosing the local operating procedures, which are
represented in the HTNs. Though this privacy aspect could
not seem so relevant in the comorbidities problem, we ex-
pect our approach to be domain independent and think that

(Treat-X ?p)

(TreatMale-X ?p) (TreatFemale-X ?p)

(male ?p) (female ?p)

(TreatFemale-X ?p)

(administer ?p ?d "girl") (administer ?p ?d "woman")

(< (age ?p) 18) (>= (age ?p) 18)

(TreatMale-X ?p)

(< (age ?p) 18) (>= (age ?p) 18)

(administer ?p ?d "boy") (administer ?p ?d "man")

Figure 3: Single-agent HTNs of the domain for guideline-X.
Activities are surrounded by a rectangle. Compound tasks
are in bold font and operators in regular font. Decompo-
sition methods are depicted with a line hanging from their
related compound task to their Subacts network. The ap-
plicability conditions of each method are at one side of it.

(:objects

john - patient Y1 Y2 Y3 - drug)

(:init

(= (weight john) 35)

(drugclass Y1 thin) (drugclass Y2 thin)

(drugclass Y3 regular))

Figure 4: Single-agent initial state for managing disease Y

this feature can be useful in some other domains.
Nevertheless, instead of designing and implementing a

new domain, the global problem can be tackled via the local
problems plus the information about potential interactions
among them. In this section we present our proposal for
achieving it, which consists of dynamically creating a new
global HTN planning problem and using it to solve the po-
tential conflicts among the local solutions via standard HTN
planning techniques. This global problem has its own re-
lated global initial state, global domain and global goals, in
terms of which we explain how to build it up.

5.1 Global Initial State
The global initial state is built joining the local initial states
and adding the information about potential interactions. Fig-
ure 7 depicts the global initial state for the example of sec-
tion 2. It gathers the information from the local initial states
(figures 1 and 4) and adds the drug interaction among X1
and Y 1 with the predicate (interact X1 Y1).

At a first glance, it could seem that using this global initial
state in the local problems could help somehow in detecting
the interactions, but that is not the case. For instance, Y
drugs can not be prescribed using the local knowledge of
diseaseX , so interactions will never happen though they are
added to the local initial state. Moreover, the privacy issues
commented above prevent the inclusion of expert knowledge
from guideline-Y in guideline-X and vice-versa.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

36

(:types

patient drug class - object)

(:constants

thin regular overweight - class)

(:predicates

(drugclass ?d - drug ?c - class))

(:functions

(weight ?p - patient))

(:action administer

:parameters (?p - patient ?d - drug ?c - class)

:precondition (drugclass ?d ?c)

:effect ())

Figure 5: Single-agent basic knowledge of the domain for
guideline-Y

(< (weight ?p) 40)

(< (weight ?p) 100)

(Treat-Y ?p)

(TreatThin-Y ?p)

(TreatRegular-Y ?p)

(>= (weight ?p) 100)

(TreatOverW-Y ?p)

(TreatThin-Y ?p)

(administer ?p ?d "thin")

(TreatRegular-Y ?p)

(administer ?p ?d "regular")

(TreatOverW-Y ?p)

(administer ?p ?d "overweight")

Figure 6: Single-agent HTNs of the domain for guideline-Y.

5.2 Global Domain
Broadly speaking, an HTN planning domain can be divided
in two main parts: the operators and the HTNs.

The operators of the global domain are created extend-
ing the local ones to properly manage information about
the interactions. For instance, a possibility to manage drug
interactions is shown in figure 8. There, a new operator
cooperative-administer is created in the global do-
main, extending the common operator administer of the
local ones2. cooperative-administer reflects in the
state (through its effects) the drugs prescribed to a patient,
and checks in its preconditions that the drug to be prescribed
does not interact with any of the drugs already administered
to the patient. Looking now at figure 7 it can be seen how the
constant representing drug Y 1 will never be used to instanti-
ate the parameter ?d of cooperative-administer if
X1 has been already administered to the same patient. The
:derived predicate reflects the fact that interactions work
in both directions (ifX1 interacts with Y 1, then Y 1 interacts
with X1).

The other main part of an HTN planning domain are the

2For ease of explanation, local problems are assumed to have
the same basic operators (as for administer in figures 2 and 5).

(:objects

john - patient X1 X2 Y1 Y2 Y3 - drug)

(:init

(male john)

(= (age john) 15) (= (weight john) 35)

(drugclass X1 boy) (drugclass Y1 thin)

(drugclass X2 boy) (drugclass Y2 thin)

(drugclass Y3 regular)

(interact X1 Y1))

Figure 7: Global initial state

(:predicates

(interact ?d1 ?d2 - drug)

(administered ?p - patient ?d - drug))

(:action cooperative-administer

:parameters (?p - patient ?d - drug ?c - class)

:precondition (and (drugclass ?d ?c)

(forall (?d2 - drug)

(not (and (administered ?p ?d2))

(interaction ?d ?d2))))

:effect (administered ?p ?d))

(:derived (interaction ?d1 ?d2 - drug)

(or (interact ?d1 ?d2) (interact ?d2 ?d1)))

Figure 8: Operators in the global domain

Hierarchical Task Networks, which encode the hierarchy of
activities representing the expert knowledge of the domain.
The HTNs of the global domain are built from HTNs subsets
of the local domains, being each one of these subsets suffi-
cient to obtain a local solution for its related local problem.
Being sufficient means that a local solution can be obtained
using only the methods contained in one of these subsets.
These local subsets of HTNs are (1) dynamically selected
by the planning agents from their local domains, (2) sent
by the planning agents to the conflict solving agent, and (3)
dynamically merged into the global domain by the conflict
solving agent.

The reason to communicate HTNs instead of ground in-
formation is twofold: (1) the local HTNs make the conflict
solving process aware of the local constraints, and (2) they
allow to reduce the communication overload. If a planning
agent sends a local (ground) solution and it is not valid for
a global one, she must propose another (ground) local solu-
tion. However, a set of HTNs may represent several solution
plans (e.g. with a different resource assignment), so they can
be used together with the global initial state and operators
explained above in the global planning problem to reassign
conflicting resources.

Dynamic Selection of HTNs In order to compute a lo-
cal subset of HTNs which is sufficient to obtain a lo-
cal solution, it can be done bottom-up from the decom-
position tree of a local solution plan. The decomposi-
tion tree of a plan is formed by the ground decomposi-
tion methods applied to the initial task network to obtain
the plan. Figure 9 depicts decomposition trees for the
local plans (administer john X1 boy) (left) and
(administer john Y1 thin) (right) of our exam-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

37

(male john)

(Treat-X john)

(TreatMale-X john)

(< (age john) 18)

(administer john X1 "boy")

(Treat-Y john)

(TreatThin-Y john)

(< (weight john) 40)

(administer john Y1 "thin")

Figure 9: Decomposition trees.

Algorithm 1: Selection of HTNs
Input: HTN planning problem P = (s,G,O,M),

solution plan π for P , decomposition tree Tree
of π for P

Output: A subset of HTNs Ms which is sufficient to
solve P

Data: Stack of pending (ground) activities
Pending = ∅

1 Ms = ∅;
2 Add all actions in π to Pending;
3 while Pending 6= ∅ do
4 CurrentAct = Pending.pop();
5 ParentMethod = parent of CurrentAct in Tree;
6 Add ParentMethod to Ms;
7 if CurrentAct 6= G then
8 ParentAct = task of ParentMethod;
9 Add ParentAct to Pending;

10 return Ms;

ple. Algorithm 1 shows how to compute a sufficient sub-
set of HTNs from a planning problem P , a solution plan
π and its related decomposition tree. In the notation P =
(s,G,O,M), s is the initial state, G is the initial task net-
work, O is the set of basic operators, and M is the set of
decomposition methods. The HTNs are given by the meth-
ods in M . Without loss of generality and for ease of expla-
nation, the initial task network G is assumed to consist of
a single ground compound task. Firstly in algorithm 1, all
actions in the plan are added to a stack of pending (ground)
activities to process (line 2). Then, the parent method of
each pending activity is taken from the decomposition tree
and added to the subset of HTNs (lines 5 and 6). If the
current method does not relate to the goal task, the algo-
rithm looks up in the decomposition tree for the parent task
and adds it to the stack of pending activities (lines 7 to 9).
The algorithm ends when no more pending activities need
to be processed (line 3) and returns the selected subset of
HTNs (line 10). In figure 10 the corresponding local subsets
of HTNs for (administer john X1 boy) (top) and
(administer john Y1 thin) (bottom) can be seen.
Note that the HTNs not used to solve the local problems are
thrown away by the algorithm and that each local subset al-
lows for different solution plans (e.g. bothX1 andX2 drugs
could be prescribed for patient John from the HTNs on top
of figure 10).

(Treat-X ?p)

(male ?p)

(TreatMale-X ?p)

(< (age ?p) 18)

(TreatMale-X ?p)

(administer ?p ?d "boy")

(< (weight ?p) 40)

(Treat-Y ?p)

(TreatThin-Y ?p)

(TreatThin-Y ?p)

(administer ?p ?d "thin")

Figure 10: Local subsets of selected HTNs

(C-Treat-X ?p)

(male ?p)

(C-TreatMale-X ?p)

(< (age ?p) 18)

(C-TreatMale-X ?p)

(cooperative-administer ?p ?d "boy")

(< (weight ?p) 40)

(C-Treat-Y ?p)

(C-TreatThin-Y ?p)

(C-TreatThin-Y ?p)

(cooperative-administer ?p ?d "thin")

Figure 11: Global HTNs. The prefix “C-” stands for “coop-
erative” and has been added to the compound tasks names
to differentiate them from the local ones.

Dynamic Merging of HTNs Once that the local sub-
sets of HTNs are built, they must be merged into the
global domain. The local HTNs refer to the basic oper-
ators of the local problems from which they were com-
puted (through the Subacts part of the decomposition
methods), but the HTNs of the global problem must refer
to the extended global operators which are able to man-
age the information about interactions between local so-
lutions. An example of this can be seen in figure 11
which depicts the global HTNs that are the objective of
this merging step. There it can be seen how the global
HTNs are similar to those of the local subsets (as in fig-
ure 10), but using the global operators instead of the lo-
cal ones (e.g. cooperative-administer instead of
administer). Therefore, the information of the local
HTNs must be assimilated in the global domain. Algo-
rithm 2 shows how this assimilation is done within the whole
merging process. The notation for decomposition methods
m = (t, Cond, Subacts) explained in section 3 is used
here. For ease of explanation, the HTNs are broken down
now in operators and methods (an HTN may refer to an op-
erator in the Subacts part of a method and it is needed
to know the local operator to find the corresponding global
one). This algorithm must be called iteratively for each lo-
cal subset of HTNs. Initially (before the first local subset
of HTNs is assimilated in the global domain), OG is the set
of global operators as explained above, and the set of global
methods MG = ∅. ActMap and MethMap are data struc-
tures which maps activities and methods of the incoming lo-
cal HTNs to the ones that are created in the global domain.
The algorithm can be divided in the following main parts:

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

38

1. Mapping of local to global operators (lines 1-3): Cor-
respondence between local (without interaction informa-
tion) and global (with information about interactions) op-
erators is added to ActMap.

2. Assimilation of global methods and compound tasks
(lines 4-11): Corresponding methods and tasks are cre-
ated in the global domain for the incoming local ones.
The “assimilation” steps of lines 7 and 9 do create them,
but referencing the global operators instead of the local
ones. The Subacts part of the methods created in this
step is always empty (line 10), because it may refer to an
activity that has not been assimilated yet in the global do-
main. These Subacts parts of the methods are copied
in the next main step.

3. Creation of Subacts partially ordered sets (lines 12-
17): Once that all the activities have been assimilated in
the global domain, the Subacts partially ordered sets of
each method are properly copied (lines 14-16). Once that
all the activities are added to the Subacts of a method,
order constraints between them are copied (line 17).

Figure 11 depicts the output of this algorithm after being
called for the local subsets of HTNs in figure 10 and the
global operator in figure 8.

Algorithm 2: Merging local HTNs into the global do-
main.

Input: HTNs in the global domain: OG (operators) and
MG (methods), HTNs from a local domain: Ol

(operators) and Ml (methods)
Output: HTNs in the global domain: OG (operators)

and MG (methods)
Data: Maps ActMap = ∅ and MethMap = ∅

1 foreach ol ∈ Ol do
2 Get global operator oG ∈ OG related to ol;
3 ActMap.add(ol, oG);
4 foreach ml = (tl, Condl, Subl) ∈Ml do
5 tG = ActMap.get(tl);
6 if tG = ∅ then
7 tG = Assimilate tl;
8 ActMap.add(tl, tG);
9 CondG = Assimilate Condl;

10 Add mG = (tG, CondG, ∅) to MG;
11 MethMap.add(ml, mG);
12 foreach ml = (tl, Condl, Subl) ∈Ml do
13 (tG, CondG, SubG) =MethMap.get(ml);
14 foreach ul ∈ Subl do
15 uG = ActMap.get(ul);
16 Add uG to SubG;
17 Copy order constraints from Subl to SubG;

5.3 Global Goals
One of the key requirements given for the global problem in
section 4 is that the local solution plans must be executed in
parallel. So the global goal (the initial task network) in the

global HTN planning problem is defined as the parallel plan-
ning for the local initial task networks. Thus, the global ini-
tial task network [(C-Treat-X john) (C-Treat-Y
john)] (referring the global HTNs in figure 11), where []
denote parallel order, would be the global goal in the exam-
ple of patient John.

The global goals refer to the global HTNs which make use
of the global operators. These global operators are ready to
detect and manage the interactions thanks to the information
included in the global initial state. So the global problem
constructed in this way is ready to be used for detecting and
managing interactions like the drug interaction between X1
and Y 1. To that end, standard HTN planning techniques can
be used to solve the global problem, which automatically
will change the resource assignment of Y 1 to Y 2 (or X1 to
X2) without need for further local proposals.

5.4 Life-cycle of the MAP Approach
There are several planning agents and a conflict solving
agent in our approach. Each planning agent encodes a lo-
cal HTN planning problem and is responsible for finding a
local solution, computing the related subset of HTNs and
sending information about them to the conflict solving agent.
The conflict solving agent encodes global knowledge - not
known by any of the planning agents - about the potential in-
teractions between local solutions and how to manage them,
and uses it together with the received local information from
the planning agents in order to build a new global HTN plan-
ning problem, whose solutions are free of interactions. In
this section a data structure called TreeStub is presented as
the local information that planning agents send to the con-
flict solving agent about their local solutions so she can built
the global problem. Afterward, the whole life-cycle of the
approach is detailed.

TreeStubs The planning agents send information to the
conflict solving agent in the form of TreeStubs, which are
data structures encapsulating all the required local informa-
tion about a local solution so this information can be used to
build a global HTN planning problem as explained above. A
TreeStub contains a set of HTNs and an initial task network
related to a solution of an HTN planning problem. The set of
HTNs contains those HTNs used to obtain the solution and
can be computed as in algorithm 1. The initial task network
is the one from which the solution was deduced. The HTNs
are needed by the conflict solving agent to be merged into
the global domain. The local initial task network is required
to build the global one as in section 5.3.

Life-cycle The life-cycle of our MAP approach consists of
the following steps:

1. Each planning agent selects a subset of HTNs: A lo-
cal HTN planning process is performed by each planning
agent over its local problem to that end. Each planning
agent uses its local solution plan together with its decom-
position tree for selecting HTNs as in algorithm 1.

2. Communication of TreeStubs to the conflict solving
agent: Each planning agent builds a TreeStub with the
HTNs selected in the previous step and her local initial

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

39

task network and sends it to the conflict solving agent. In
order to preserve privacy, TreeStubs can be communicated
in an encrypted way. The concept of obfuscation from
the field of software encryption (Collberg, Thomborson,
and Low 1997; Kirk and Jenkins 2004) can be taken and
adapted to that end.

3. The conflict solving agent builds and tries to solve a
new HTN global problem: The conflict solving agent
encodes the global initial state and global operators, and
uses them together with the information in the incoming
TreeStubs to build a global HTN planning problem. Al-
gorithm 2 is used to merge the incoming local HTNs into
the global domain. The global goal is built as explained
in section 5.3. The conflict solving agent tries then to
solve the so-built global problem using HTN planning
techniques. If a global solution is found, it is guaranteed
to (1) comply with the local constraints, thanks to the use
of the local HTNs which encode them, and (2) be free of
interactions, thanks to the fact that the global operators
are ready to detect and manage the interactions included
in the global initial state, as explained above.

4. Alternative proposals: in case that a global solution is
not found, the conflict solving agent asks the planning
agents for alternative proposals and the process from step
1 is repeated until a global solution is found or no more lo-
cal proposals can be given by any of the planning agents.
In the worst case, the conflict solving agent would ask
to every planning agent for all their possible local pro-
posals and would try every possible combination among
them (one proposal by planning agent in each combina-
tion). Being the proposals based on the HTNs instead
of on the ground plans, the planning agents do not need
to communicate all their local plans to the conflict solv-
ing agent, because she can use the local HTNs to explore
other valid local solutions herself (e.g. using a different
resource assignment and/or scheduling).

The key point for obtaining the new proposals referred in
step 4 is that the planning agents must not finish their lo-
cal planning processes when a local solution plan is found.
Instead of that, the local planning processes are kept in a
stand-by mode. When a new proposal is requested to a
planning agent (by the conflict solving agent), she triggers
a backtracking process from the point where the last solu-
tion was found. This backtracking process is controlled by
the planning agent to stop when a new local solution plan
is found and a not already discovered subset of HTNs has
been decomposed to obtain it. Thus, another TreeStub with
this new subset of HTNs can be sent as an alternative lo-
cal proposal to the conflict solving agent. For instance, if
the interactions (interact X1 Y2), (interact X2
Y1) and (interact X2 Y2) are added to the global
initial state in figure 7 then the local subsets of HTNs de-
picted in figure 10 can not be used to build a global problem
to avoid interactions (no drugs of class thin are compatible
with any drug of class boy). Then, it is the conflict solv-
ing agent who must ask for new proposals to the planning
agents. The agent in charge of guideline-X has not any
more valid proposals to make (no more different subsets of

(Treat-Y ?p)

(TreatRegular-Y ?p) (administer ?p ?d "regular")

(< (weight ?p) 100)

(TreatRegular-Y ?p)

Figure 12: Second proposal of agent in charge of
guideline-Y

HTNs valid for a local solution). However, the agent re-
sponsible for guideline-Y can find a new set of meth-
ods as in figure 12. This new proposal can be used by the
conflict solving agent to build a new global HTN problem
with the first proposal from guideline-X and to give the
global solution plan ((administer john X1 boy)
(administer john Y3 regular)), which in fact
solves all the local problems (manages every disease) and
is free of interactions.

6 Experiments and Results

In order to evaluate the cooperative MAP approach pro-
posed, a preliminary experiment has been carried out for the
example of drug-drug interactions in the comorbidities prob-
lem presented in section 2. Two different clinical guidelines
(guideline-X and guideline-Y) are represented in separated
HTN planning domains with a single but significant differ-
ence with figures 1 to 6: instead of directly using the opera-
tor administer, a more flexible recursive compound task
is used to allow for more complex drug dosages as in table
1. This recursive compound task is depicted in figure 13.
The global initial state and global set of operators have been
manually created as in figures 7 and 8, but reflecting also the
drug dosages as in table 1. Two planning agents X and Y
have been implemented, each one being responsible for the
local management of the disease with the same name. Thus,
each planning agent encodes an HTN local problem for one
of the diseases. A conflict solving agent has the knowledge
of the handcrafted global initial state and operators. The in-
teraction among X1 and Y 1 drugs and how to manage it
are not known by any of the planning agents but only by
the conflict solving agent. Table 2 shows the local solutions
found by agents X (left) and Y (right) respectively. Table 3
shows a global solution given by the conflict solving agent.
This global solution was found using the HTNs selected for
the local solutions of table 2. As it can be noted, the HTNs
subset including recursive compound tasks allow to the con-
flict solving agent not only to make a different resource as-
signment, but also to give alternative plans with a different
number of actions.

As shown in this experimental evaluation, the cooperative
MAP approach presented in this work seems to be a suitable
proposal for the automated generation of treatment plans for
comorbid patients. This approach avoids the appearance of
undesired drug interactions in global care plans. However,
the approach is domain independent and can be used there
where similar interactions may happen.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

40

(complex-admin ?p ?d ?c)

(administer ?p ?d ?c)

(<= (remaining-doses ?p ?d) 1) (> (remaining-doses ?p ?d) 1)

(complex-admin ?p ?d ?c)(administer ?p ?d ?c)

Figure 13: Compound task for a complex drug dosage.
The number of doses is decremented each time that an
administer action is added to the plan.

7 Related Work
Following the taxonomy of MAP approaches in (Durfee
2000), the work here presented can be categorized as Dis-
tributed Planning for Centralized Plans, same as those of
(Kambhampati et al. 1991; Durfee, Kenny, and Kluge 1998;
Conry et al. 1991). In (Kambhampati et al. 1991) the global
problem of process planning for machined parts is divided
into three different stages that must be managed in a sequen-
tial way. Those stages can not be distributed and tackled in
parallel. In our case the local planning processes are dis-
tributed among the planning agents and tackled in parallel
by them. (Durfee, Kenny, and Kluge 1998) use procedu-
ral knowledge to plan missions for a team of Unmanned
Ground Vehicles which must coordinate at execution time
to face possible context variances from expected. In our
approach, the interactions which need for coordination are
known a priori and must be managed at planning time to
obtain an interaction-free global plan for the long term. In
(Conry et al. 1991) the authors present a MAP approach for
a multistage negotiation for restoral of transmission paths in
a complex communication system. The impact of any lo-
cal decision is ultimately due to particular resources which
cannot be committed to different agents. In our case, the
use of one resource by one agent inhibits the use of another
(different) resource by other agent.

Different coordination techniques have also been pro-
posed for merging and gathering several individual plans
into a single joint plan, as for example the partial global
planning framework (Durfee and Lesser 1991; Lesser et al.
2004) which allows agents to communicate their local plans
to the rest of agents and merge this information into their
own partial global plan to improve it. Their approach is
more reactive than ours, which is focused on planning for
the long term. Instead of ground information, we show how
and why HTNs can be used.

Drug Drug Required Delay b/t
class doses doses

X1 boy 2 24h
X2 boy 4 12h
Y1 thin 2 24h
Y2 thin 6 8h
Y3 regular 4 12h

Table 1: Drug dosages.

Drug Date / Time Drug Date / Time
X1 25-Mar / 12:00 Y1 25-Mar / 12:00
X1 26-Mar / 12:00 Y1 26-Mar / 12:00

Table 2: Local treatments for diseasesX (left) and Y (right).

Drug Date / Time
X1 25-Mar / 12:00
X1 26-Mar / 12:00
Y2 25-Mar / 12:00
Y2 25-Mar / 20:00
Y2 26-Mar / 04:00
Y2 26-Mar / 12:00
Y2 26-Mar / 20:00
Y2 27-Mar / 04:00

Table 3: An interaction-free global care plan given by the
conflict solver

Regarding the problem of care planning for comorbid pa-
tients, it has already been addressed from different single-
agent perspectives in works as (Lozano et al. 2010; Abidi
2009; Hing et al. 2010). The strength of agent-based repre-
sentations has been exploited in projects like GLINDA (Tu
et al. 2011) for detecting and repairing interactions and con-
solidating treatment recommendations. Though there is not
much information about this last approach, it seems to not
allow for so many tailoring capabilities as HTN planning.

8 Conclusions and Future Work
A MAP approach has been presented which uses HTN plan-
ning as the base for a conflict solving process between local
planning problems. An experiment has been carried out and
gives promising results about the validity of the approach.
The approach is domain-independent and can be applied in
those application domains where resource interactions be-
tween different local plans may arise. The modeling capa-
bilities of temporal HTN planning are expected to serve for
solving other types of conflicts such as time constraints be-
tween actions in different local solutions (e.g., two labora-
tory tests recommended by two guidelines may be consoli-
dated on the same visit).

As for future work we plan to automatize those steps
which are currently handcrafted, namely the creation of the
initial global state and the global operators. On the other
hand, we are currently involved in the study and formaliza-
tion of CGs for real diseases which usually coexist in comor-
bid patients. These guidelines are much more complex than
the ones presented in the example of section 2, and comprise
a wider range of interactions (as those in the ontology of (Tu
et al. 2011)). Implementing them will allow us to carry out
a more thorough and extensive experimentation in order to
(1) test the validity of our approach in real scenarios, and (2)
make an study of its scalability.

Acknowledgments
This work is supported by the Spanish MICINN project
TIN2011-27652-C03-03.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

41

References
Abidi, S. 2009. A conceptual framework for ontology based
automating and merging of clinical pathways of comorbidi-
ties. Knowledge Management for Health Care Procedures
55–66.
Boyd, C. M.; Darer, J.; Boult, C.; Fried, L. P.; Boult, L.; and
Wu, A. W. 2005. Clinical practice guidelines and qual-
ity of care for older patients with multiple comorbid dis-
eases. JAMA: the journal of the American Medical Asso-
ciation 294(6):716–724.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, O.; and Palao,
F. 2006. Efficiently handling temporal knowledge in an htn
planner. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), 63–72.
Collberg, C.; Thomborson, C.; and Low, D. 1997. A taxon-
omy of obfuscating transformations. Technical report, De-
partment of Computer Science, The University of Auckland,
New Zealand.
Conry, S. E.; Kuwabara, K.; Lesser, V. R.; and Meyer, R. A.
1991. Multistage negotiation for distributed constraint satis-
faction. Systems, Man and Cybernetics, IEEE Transactions
on 21(6):1462–1477.
Durfee, E. H., and Lesser, V. 1991. Partial Global Planning:
A coordination framework for distributed hypothesis forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics,
Special Issue on Distributed Sensor Networks 21(5):1167–
1183.
Durfee, E. H.; Kenny, P. G.; and Kluge, K. C. 1998. In-
tegrated premission planning and execution for unmanned
ground vehicles. Autonomous Robots 5(1):97–110.
Durfee, E. H. 2000. Multiagent systems: a modern approach
to distributed artificial intelligence. MIT press. chapter 3,
121–164.
Edelkamp, S., and Hoffmann, J. 2004. Pddl2. 2: The lan-
guage for the classical part of the 4th international plan-
ning competition. 4th International Planning Competition
(IPC04), at ICAPS04.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning. Annals of
Mathematics and Artificial Intelligence 18:69–93.
Fdez-Olivares, J.; Castillo, L.; Cózar, J. A.; and
Garcı́a Pérez, O. 2011. Supporting clinical processes and
decisions by hierarchical planning and scheduling. Compu-
tational Intelligence 27:103–122.
Field, E. M., and Lohr, K. 1993. Guidelines for clinical
practice: From development to use. BMJ 306:17.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kauffman.
Gonzalez-Ferrer, A.; ten Teije, A.; Fdez-Olivares, J.; and
Milian, K. 2012. Automated generation of patient-
tailored electronic care pathways by translating computer-
interpretable guidelines into hierarchical task networks. Ar-
tificial Intelligence In Medicine.
Hing, M. M.; Michalowski, M.; Wilk, S.; Michalowski, W.;
and Farion, K. 2010. Identifying inconsistencies in multiple

clinical practice guidelines for a patient with co-morbidity.
In 2010 IEEE International Conference on Bioinformatics
and Biomedicine Workshops (BIBMW), 447–452. IEEE.
Kambhampati, S.; Cutkosky, M.; Tenenbaum, M.; and Lee,
S. H. 1991. Combining specialized reasoners and general
purpose planners: A case study. In Proceedings of the Ninth
National Conference on Artificial Intelligence, 199–205.
Kirk, S. R., and Jenkins, S. 2004. Information theory-based
software metrics and obfuscation. Journal of Systems and
Software 72(2):179–186.
Lesser, V. R.; Decker, K.; Wagner, T.; Carver, N.; Garvey,
A.; Horling, B.; Neiman, D. E.; Podorozhny, R. M.; Prasad,
M. V. N.; Raja, A.; Vincent, R.; Xuan, P.; and Zhang, X.
2004. Evolution of the gpgp/tæms domain-independent co-
ordination framework. Autonomous Agents and Multi-Agent
Systems 9(1-2):87–143.
Lozano, E.; Marcos, M.; Martnez-Salvador, B.; Alonso,
A.; and Alonso, J. 2010. Experiences in the development
of electronic care plans for the management of comorbidi-
ties. Knowledge Representation for Health-Care. Data, Pro-
cesses and Guidelines 113–123.
Miksch, S. 1999. Plan management in the medical domain.
AI communications 12(4):209–235.
Peleg, M.; Tu, S.; Bury, J.; Ciccarese, P.; Fox, J.; Greenes,
R. A.; Hall, R.; Johnson, P. D.; Jones, N.; Kumar, A.; et al.
2003. Comparing computer-interpretable guideline models:
a case-study approach. Journal of the American Medical
Informatics Association 10(1):52–68.
Tu, S. W.; Nyulus, C.; Martins, S. B.; Jung, H.; Kum,
P.; Goldner, J.; Goldstein, M. K.; and Musen, M. A.
2011. GLINDA: GuideLine INteraction detection architec-
ture. http://glinda-project.stanford.edu/.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

42

Deterministic Multiagent Planning Techniques: Experimental Comparison
(Short paper)

Karel Durkota1 and Antonı́n Komenda2

karel.durkota@gmail.com, komenda@agents.fel.cvut.cz
1Faculty of Electrical Engineering, Czech Technical University in Prague

2Dept. of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

Deterministic domain-independent planning techniques for
multiagent systems stem from principles of classical plan-
ning. Three most recently studied approaches comprise (i)
DisCSP+Planning utilizing Distributed Constraint Satisfac-
tion Problem solving for coordination of the agents and in-
dividual planning using local search, (ii) multiagent adapta-
tion of A* with local heuristics and (iii) distribution of the
GraphPlan approach based on merging of planning graphs.
In this work, we summarize the principles of these three ap-
proaches and describe a novel implementation and optimiza-
tion of the multiagent GraphPlan approach. We experimen-
tally validate the influence of parametrization of the inner ex-
traction phase of individual plans and compare the best results
with the former two multiagent planning techniques.

Introduction
The problem of multiagent planning as defined in (Brafman
and Domshlak 2008) is similarly important as classical plan-
ning, as it can provide generally usable techniques for in-
telligent agents, which are required to cooperatively come
up with distributed plans. Recently the research community
proposed both theoretical treatments and implementations of
such distributed multiagent planning (DMAP) techniques.

Similarly to the classical planning, the agents in DMAP
cooperatively search for the local sequences of actions,
which after execution transform the world from an ini-
tial state to a common goal state. The local sequences of
actions—the local plans—has to interleave appropriately, as
each particular agent cannot possibly solve the problem on
its own, but have to base its own actions on the results of
actions of the other agents. Furthermore, the agents are mo-
tivated to communicate as few information as possible not
to put load on the other agents if it is not needed.

Three recently theoretically treated approaches for
DMAP are (i) multiagent planning utilizing a solver for Dis-
tributed Constrain Satisfaction Problems (DisCSP) for the
coordination part and a classical planning for the individual
plans denoted as DisCSP+Planning (Brafman and Domsh-
lak 2008), (ii) extension of A* for multiagent systems coined
Multiagent Distributed A*, (MA-A*) (Nissim and Brafman

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2012a; 2012b) and (iii) Distributed Planning through Graph
Merging (DPGM) (Pellier 2010) which uses principally the
same factorization scheme for separation of parts of the orig-
inal planning to more agents as in the previous approaches,
defined originally in (Brafman and Domshlak 2008) together
with the MA-STRIPS formalization.

First two approaches, namely DisCSP+Planning and MA-
A*, were already implemented and experimentally vali-
dated. Works describing the implementation and experi-
ments are for DisCSP+Planning (Nissim, Brafman, and
Domshlak 2010) and for MA-A* the original papers (Nis-
sim and Brafman 2012a; 2012b). However, according to our
knowledge, the Pellier’s approach was not implemented and
experimentally verified yet. Therefore, our initial focus in
context of this work was the implementation of the approach
described by Pellier and comparing it with the other two ap-
proaches. Since this comparison was not done yet, it was
not clear if the GraphPlan (Blum and Furst 1997) approach
could be viable in multiagent setting, although the under-
lying approach in classical planning was outperformed al-
ready at (IPC 2004). Especially as in the multiagent setting
the communication complexity can be of much more impor-
tance than the computational complexity.

Multiagent planning
Planning in a multiagent (MA) systems is by (Brafman and
Domshlak 2008) a search for a plan for each agent, assuming
that agents have to cooperate in order to reach a global goal.
Formally, problem for a set of k agents AG = {agi}ki=1

is given by a quadruple Π = 〈P, {Aagi}ki=1, I, G〉, where
P is a finite set of propositions describing facts holding
in the world; I ⊆ P is a set of propositions that hold
in the initial state; G ⊆ P is a set of propositions that
must hold in a goal state; and Aagi is a set of actions
that an agent agi can perform. Each action has a standard
STRIPS syntax, i.e., a = 〈pre(a), add(a), del(a)〉, where
pre(a), add(a), del(a) ⊆ P and add(a) ∩ del(a) = ∅. An
action a can be performed only in a state s ⊆ P , which the
propositions form pre(a) hold in. Performing an action a
will add to the state s propositions from add(a) and remove
the propositions from del(a).

DisCSP+Planning-based planner The algorithm
from (Nissim, Brafman, and Domshlak 2010) can be

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

43

described as two interleaving components, a coordination
component and an individual planning component; both of
which require the separation of the public and individual
actions of each agent. An action a of an agent agi is public
if there exists an action b of an agent agj , i 6= j, such that
(pre(a)∪ add(a)∪ del(a))∩ (pre(b)∪ add(b)∪ del(b)) 6= ∅,
otherwise the action is considered individual. This separa-
tion defines the multiagent problem factorization.

The coordination component deals only with the public
actions. It searches for a sequence of the interaction points
between the agents’ plans. For a given length of the public
part of the plan δ, it tries to assign different public actions
of each agent in the different time-steps so that the global
goal is satisfied. This is the interaction part, so the result-
ing plan of each agent has to satisfy the requirements put by
the rest of the agents and vice versa. These requirements are
described in form of coordination constraints in the inner
DisCSP problem. Solving this problem effectively means
solving the multiagent planning problem. If some agent or
the team as a whole can not solve the DisCSP, then δ, the
length of the coordination public part of the plan is increased
by one and the whole process is repeated.

The individual planning component forms the other type
of constraints for the DisCSP process encoding the require-
ment of the local parts of the plan. The individual planning
constraints limits usage of the public actions in the coordi-
nation part of the plan such that the gaps between them can
be filled by sequences of individual actions of the agents.

Multiagent A* The algorithm proposed in (Nissim and
Brafman 2012b) is inspired by the well-known A* al-
gorithm. Similarly to centralized A* the Multiagent Dis-
tributed A* (MA-A*) maintains open lists for all agents, that
keep track of the so far unvisited states, and closed lists, that
keep track of the already visited states. Each agent also uses
a local heuristic to decide which state from the open list it
should expand as next. As stated in the paper, each agent can
use different heuristics.

In the MA-A*, similarly to the DisCSP+Planning, it is
firstly necessary to separate every agents’ public and indi-
vidual actions. The algorithm runs simultaneously for each
agent. During the search, the agents send messages to each
other to distribute the search at the points, where the other
agents can follow. Effectively, it means the messages are sent
only for states achieved by public actions. Each such mes-
sage consists of a state s, its cost value gagi(s) and a heuris-
tic estimate hagi(s). In decoupled problems, this principle
allows distribution of the knowledge about the entire search
space among the agents. When an agent receives a message
with a state s, it decides either to: visit the state (by adding
it to its open list), update its knowledge about s, or discard
it if it knows better path to the state.

The search terminates if an agent expands a state which
is compatible with the goal set G and the resulting plan is
ensured to be globally optimal.

Distributed Planning through Graph Merging The al-
gorithm DPGM presented in (Pellier 2010) uses as the main
data structure a planning graph together with the distributed
versions of algorithms for its building and for extraction

of the resulting plan. The distributed extraction consists
of a individual CSP and a distributed coordination mech-
anism. The planner as a whole can be described by fol-
lowing five phases: global goal decomposition, expansion,
planning graph merging, individual plan extraction, coor-
dination. The result is in form of a coordinated individual
solution plan.

In the first phase, the global goal decomposition, each
agent creates an individual goal, i.e., a subset of the propo-
sitions from the global goal that it can reach. Proposition
p ∈ G is in the individual goal Gagi of an agent agi if exists
an action a ∈ Aagi such that p ∈ add(a). If any proposition
from the global goal cannot be assigned to any agent, the
problem has no solution.

In the next two phases, the expansion and the planning
graph merging, every agent builds an individual planning
graph via GraphPlan algorithm (Blum and Furst 1997).
Firstly, every agent builds a new layer in their planning
graphs. Afterward, relevant actions from the new layer are
shared among the agents. The shared actions are included
into their respective planning graphs. An action aagi ∈ Aagi
is relevant to an agent agj in two cases: (i) pre(aagi) con-
tains a proposition that another action aagj ∈ Aagj uses in
del(aagj) or add(aagj), then the action aagi promotes the
action aagj or (ii) del(aagi) contains a proposition that an-
other action aagj ∈ Aagj uses in pre(aagj) or add(aagj),
then the action aagi threats the action aagj . The algorithm
alternates between the expansions, where all the agents build
new layers in their planning graphs and planning graph
merging, where all the agents share their actions until all
agents reach their individual goals in their planning graphs
or the fixed point is reached.

In the individual plan extraction phase, each agent ex-
tracts plan(s) from its planning graph. In the centralized
GraphPlan algorithm, this is done by compilation of the
problem into a CSP and solved by a CSP solver. Each result
from the solver is then one resulting plan as Kambhampati
showed in (Kambhampati 2000).

In the last two coordination phases, before an agent
agi generates an individual plan, it includes requirement
and commitment constraints—induced by the other agents’
plans—into its individual plan extraction CSP problem. The
requirement constraints are couples (a, l) which describe an
action a has to be performed in l-th layer. As req(πagi), we
will denote a set of requirement constraints induced by the
current partial plan πagi of the agent agi. A partial plan πagi
in this phase contains finished parts from agents 1, . . . , i
and future actions required by the agent agi (and possibly
from previous agents) for the following agents i+ 1, . . . , k.
The commitment constraints are again couples (a, l) denot-
ing that no action b, which is in mutex with action a, can be
performed in l-th layer. Let com(πagi) be a set of the com-
mitment constraints induced by the current partial plan πagi .

A couple c = (com(πagi), req(πagi)), besides represent-
ing the partial plan πagi in form of the action commitments
and requirements, describes which agents have already con-
tributed to the plan πagi with their individual plans (the per-
formers of the actions in com(πagi)) and which agents have
not (the performers of the actions in req(πagi) but not in

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

44

Figure 1: The DPGM plan search process.

com(πagi)). Such common partial plan in form of require-
ment couple c is passed from one agent to another. Each
agent extends it with its individual plan and possibly new
requirements for the following agents. After c passes all the
agents, it contains a global plan consisting of the individual
plans of all the agents.

Assume the agents are ordered ag1, ag2, . . . , agk, as il-
lustrated in Figure 1. The phase starts with an agent ag1
which generates its first plan πag1—lower index indicates
the owner of the individual plan. The agent computes the
commitment and requirement constraints, denoted as cag1 =
(com(πag1), req(πag1)) and sends them to the next agent
ag2. ag2 includes constraints cag1 into its CSP problem
as additional constraints and generates a plan πag2 which
is compatible with the plan πag1 . Next, ag2 derives new
constraints cag2 = (com(πag1) ∪ com(πag2), (req(πag1) ∪
req(πag2)), and passes them to the agent ag3, and so on.
In Figure 1, the search would actually end with generating
agk’s plan πagk which illustrates the ideal way of the solu-
tion, since no agent had to generate a variance of its plan
more than once to fulfill all the requirements from previous
agents. If agent ag3 could not generate plan πag3 , algorithm
would backtrack to agent ag2, who would generate an alter-
native plan π′

ag2 , as shown in the figure. If all agents ran out
of plans, algorithm return to expansion and planning graph
merging, and whole search repeats again.

Implementation
In (Pellier 2010), the author introduces theoretically the al-
gorithm, yet no experiments were carried out to verify its
efficiency. Besides the implementation of the algorithm in
Java programming language, we included some implemen-
tation improvements to speed up the algorithm.

Constraint cache To reduce the search tree, as illustrated
in Figure 1, each agent memorizes the constraints it passed
to the next agents. If the constraints caused one of the fol-
lowing agents is not able to generate any plan, the requesting
agent do not require such constraints for the next agents any
more.

For an instance depicted in Figure 1, at point when agent
ag2 generates plan πag2 together with its constraints cag2 , he
memorizes the constraints cag2 before passing them to ag3.
Let us assume that the constraints caused ag3 to be unable
to generate any individual plan depicted as ∅. The agent ag2
memorizes this information and introduces new constraint
into his CSP assignment that will eliminate generating of
plans that restricts the agent ag3 in future as cag2 did.

For an instance, cag2 = ({}, {(aag3 , 1), (aag4 , 2)}),
where (aag3 , 1) restricts ag3 to perform action aag3 in first
layer and (aag4 , 2) restricts ag4 to perform action aag4 in
second layer. Since ag3 could not find any plan that satis-
fies restriction (aag3 , 1), agent ag2 should not generate such
plans. Thus, ag2 introduces new constraint into its CSP as-
signment that will eliminate plans having action aag3 in first
layer. This will cause agent ag2 to eliminate generating of
the plans that agent ag3 cannot satisfy.

Ordering of agents Ordering of the agents turned out to
be crucial for the DPGM algorithm to work efficiently. It
is necessary to separate agents that have an individual goal
from those that have no goal, but whose cooperation might
be required somewhere during the plan. Let AGg be a set
of all agents having an individual goal and let AGs be a
set of all agents without their own goals. As the plan search
progresses, the actual agents’ ordering dynamically changes.
The ordering starts with a random agent agi from the set
AGg (the set cannot be empty at this point; if it was, we have
no goal, therefore the problem would be unsolvable). After-
ward, a plan πagi is generated together with constraints cagi .
Next, agent agj is selected by looking which cooperation is
required in cagi . If there are more such agents, they are prior-
itized fromAGg over the agents fromAGs. After generating
new πagj and cagj , the process is repeated. If cagj has no re-
quirements on the other agents at any point, although AGg

or AGs are not empty yet, it means that there exists a goal
reaching plan without cooperation of the agents remaining
in AGg and AGs sets. Notice that this may happen even for
AGg , although we said that these are the agents with goals,
if a goal proposition can be reached by more than one agent
and an agent outside AGg has reached it.

Removing unnecessary actions Since we used pure
PDDL parser to read the domain and the problem, we
could end up with useless actions. For example, in the
simplest LOGISTICS problem these actions are following:
(drive car1 place1 place1) or (fly plane1 airport1 air-
port1). These actions do not change the state in any way.
Preconditions of an action (drive car1 place1 place1) are
(at car1 place1), a positive effect is (at car1 place1) and
a negative effect is (at car1 place1). A result of this actions
is that the car will remain in the same place (so does the ac-
tion (fly plane1 airport1 airport1) with the plane). These
actions can be generalized as a = 〈pre(a), add(a), del(a)〉,
where add(a) = del(a). Moreover, actions (as STRIPS de-
fines them) have a requirement add(a) ∩ del(a) = ∅, but a
pure PDDL parser cannot hold this requirement while pars-
ing. Hence, these actions had to be removed by the algo-
rithm.

Experiments
The experiments were carried out on five different domains,
where three originated from the International Planning Com-
petition benchmarks adapted for the multiagent planning:
ROVERS, LOGISTICS, and SATELLITES. The additional two
are: LINEAR LOGISTICS (one package has to be transported
step-wise by all agents in a chain) and DECONFLICTION

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

45

domain-agents Minion Minion srf Choco comm.
rover-a2 8.9s 3.8s 11.7s 69kB
rover-a3 6.6s 20.3s 17.4s 234kB
log-a4 0.9s 0.3s 1.2s 34kB
log-a6 0.7s 0.6s 1.3s 136kB
log-lin-a6 0.5s 0.5s 0.3s 167kB
log-lin-a8 0.7s 0.7s 0.5s 417kB
log-lin-a10 0.9s 0.9s 0.7s 849kB
log-lin-a15 1.6s 1.6s 1.8s 2.9MB
deconf-a2 – 1.3s – 18kB
deconf-a3 0.2s 0.2s 0.1s 13kB
satellite-a6 1.6s 1.5s 4.6s 266kB
satellite-a8 5.0s 4.3s 24.8s 793kB
satellite-a10 14.3s 12.7s 101s 1.8MB

Table 1: Comparison of CSP solvers used in DPGM. The dash –
means that the time or memory limit was exceeded.

(robots on a grid are tasked to switch its positions with op-
posite ones, not colliding with each other). Each domain was
tested on several problems with various numbers of agents.
All experiments were run on 8-core processor at 3.6GHz
with 2.5GB limit on memory and 10 minutes time limit. We
used time and communicated bytes as metrics for the com-
parison of the algorithms.

Comparison of used CSP solvers in DPGM
As DPGM algorithm uses CSP solver for the local plan
extraction, we experimented which solver would serve the
best. Two CSP solvers were tested: Choco CSP Solver1

and Minion CSP Solver2. Choco solver was tested with its
basic setting, while Minion was tested with and without
smallest-ratio-first (srf) variable order. Table 1 shows the
times DPGM took to solve the problems using certain CSP
solvers and settings. Although Minion solver showed to be
sometimes unstable and did not return any result over the
longer period of time, DPGM was faster with it than with
the Choco solver. Another Minion’s disadvantage is that if
a problem is unsolvable, it is inefficiently detected, since it
has to go through all the possibilities in the search space.
Last column (comm.) in Table 1 shows the communicated
bytes among the agents. As the CSP solver is used only for
local extraction of a plan, the numbers are the same for all
the solvers. In the deconf-a3 problem, even the number of
agents is higher than in deconf-a2, the results are better.
This is caused by the particular problem instance, where the
agents in the a2 case has to pass by each other, and therefore
the solution is found not before 4th layer, however in a3 the
agents only rotates and therefore the solution is found in 2nd
layer.

Comparison of the multiagent planners
In the final experiment, the DPGM algorithm was com-
pared to other two cited algorithms. Table 2 shows the re-
sults. As the srf setting of Minion showed the best results—

1http://www.emn.fr/z-info/choco-solver/
2http://minion.sourceforge.net/

domain-agents DPGM DisCSP+Pl. MA-A*
rover-a2 3.8s/69kB 1.4s/0.8kB 22.4s/52kB
rover-a3 20.3s/234kB 7.9s/1.7kB 230s/2.5MB
rover-a4 – 62.3s/3.1kB –
log-a4 0.3s/34kB 0.6/15kB 0.8s/77kB
log-a6 0.6s/136kB 38.5/7.1MB 2.0s/320kB
log-lin-a6 0.5s/167kB – 1.7s/87kB
log-lin-a8 0.7s/417kB – 4.7s/254kB
log-lin-a10 0.9s/849kB – 15.4s/589kB
log-lin-a15 1.6s/2.9MB – 217s/4.2MB
deconf-a2 1.3s/18kB N/A 0.9s/15.3kB
deconf-a3 0.2s/13kB N/A 1.2s/187kB
deconf-a4 – N/A 3.8s/2.1MB
satellite-a6 1.5s/266kB 4.4/6.5kB 7.4s/270kB
satellite-a8 4.3s/793kB – 37.5s/964kB
satellite-a10 12.7s/1.8MB – 189s/2.5MB

Table 2: Results for DPGM, DisCSP+Planning and MA-A* with
set-additive heuristic. The dash – means the time or memory limit
was exceeded. N/A means the planner did not return a sound plan.

especially because of its ability to solve most of the pre-
sented problems—we chose it for comparison with the other
algorithms.

The results show the DPGM to be efficient in de-
coupled domains which are rather combinatorially easy
(LOGISTICS, LINEAR LOGISTICS and SATELLITES). The
DisCSP+Planning is efficient in problems which are com-
binatorially hard from perspective of individual planning
(ROVERS), as the internally used planner is highly efficient
FastForward. The used implementation of MA-A* with set-
additive heuristics was most effective in highly coupled do-
mains (DECONFLICTION).

Final remarks
DPGM showed its strength based on efficient factorization
of the problems. However problems as DECONFLICTION,
which are coupled and require high combinatorial search,
DPGM solves rather inefficiently if at all. An issue that hin-
dered the algorithm was the order how CSP generated the
plans. For instance, the first plan that the agent ag1 gener-
ated in the 4th layer of the deconf-a4 problem, consisted
of its own actions, leading him to the goal. Additionally,
agent generated requirements for the agent ag2 to prevent
future collisions. However, the requirements were unreason-
able: instead of requiring one action that would suffice for
agent ag1 to avoid the collision with agent ag2, he built a
whole plan for the agent ag2. And since ag1 did not know
the ag2’s goal, the plan was usually invalid. We tried to avoid
this, by stating to minimize requirements put on other agents
in the CSP solver. This approach helped to lower the num-
ber of the constraints; however, the solution of such CSP be-
came combinatorially more complex and therefore did not
bring much of improvement in the efficiency. Deeper study
of these phenomenons remains for future work.

Acknowledgments This work was supported by Czech
Science Foundation (GACR) under grant no. 13-22125S.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

46

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence 90(1):281–
300.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E. A., eds.,
Proceedings of ICAPS’08, 28–35. AAAI.
IPC. 2004. International planning competition (IPC) – Re-
sults. http://www.tzi.de/ edelkamp/ipc-4/results.html.
Kambhampati, S. 2000. Planning graph as a (dynamic) CSP:
Exploiting EBL, DDB and other CSP search techniques in
Graphplan. J. Artif. Intell. Res. (JAIR) 12:1–34.
Nissim, R., and Brafman, R. 2012a. Multi-agent A* for par-
allel and distributed systems. In Proceedings of 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 1265–1266.
Nissim, R., and Brafman, R. 2012b. Multi-agent A* for
parallel and distributed systems. 43–51.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
Proceedings of AAMAS’10, 1323–1330. IFAAMAS.
Pellier, D. 2010. Distributed planning through graph merg-
ing. In Filipe, J.; Fred, A. L. N.; and Sharp, B., eds., Pro-
ceedings of ICAART’10, volume 2, 128–134. IFAAMAS.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

47

A Theory of Intra-Agent Replanning

Kartik Talamadupula† and David E. Smith§ and William Cushing† and Subbarao Kambhampati†

†Dept. of Computer Science and Eng.
Arizona State University

Tempe, AZ 85287
{krt,rao}@ asu.edu, william.cushing @ gmail.com

§NASA Ames Research Center
Moffet Field
CA 94035

david.smith @ nasa.gov

Abstract

When autonomous agents execute in the real world, the world
state as well as the objectives may change from the agent’s
original conception of those things. In such cases, the agent’s
planning process must modify the existing plan to make it
amenable to the new conditions, and to resume execution.
The need for inter-agent replanning, in terms of commitments
to other agents, is understood in the multi-agent systems com-
munity. Such inter-agent replanning also motivates an intra-
agent replanning problem for each individual agent. How-
ever, the single-agent planning community has mostly limited
its view of replanning to reducing the computational effort in-
volved, by minimally perturbing the current plan structure to
replan. This is not very appropriate as a general model for
intra-agent replanning, which may consist of various tech-
niques that are employed according to the scenario at hand.
In this paper, we present a general replanning problem that is
built on various types of replanning constraints. We show that
these constraints can model different types of replanning, in-
cluding the similarity-based approaches used in the past and
sensitivity to commitments made to other agents. Finally, we
show that partial satisfaction planning provides a good sub-
strate for modeling this general replanning problem.

1 Introduction
Many tasks require handling dynamic objectives and en-
vironments. Such tasks are characterized by the presence
of highly complex, incomplete, and sometimes inaccurate
specifications of the world state, the problem objectives and
even the model of the domain dynamics. These discrepan-
cies may come up due to factors like plan executives or other
agents that are executing their own plans in the world. Due
to this divergence, even the most sophisticated planning al-
gorithms will eventually fail unless they offer some kind of
support for replanning. These dynamic scenarios are non-
trivial to handle even when planning for a single agent, but
the introduction of multiple agents – automated or otherwise
– introduces further complications. All these agents neces-
sarily operate in the same world, and the decisions made
and actions taken by an agent may change that world for all
the other agents as well. Moreover, the various agents’ pub-
lished plans may introduce commitments between them, due
to shared resources, goals or circumstances. The need for
inter-agent replanning in terms of these commitments is un-
derstood in the multi-agent systems (MAS) community (c.f.
Section 2). However, these inter-agent commitments may

evolve as the world itself changes, and may in turn affect a
single agent’s internal planning process.

Given the importance of replanning in dealing with all
these issues, one might assume that the single-agent plan-
ning community has studied the issues involved in depth.
This is particularly important given the difference between
agency and execution, and the real-world effectors of those
faculties: a single agent need not necessarily limit itself to
planning just for itself, but can generate plans that are car-
ried out by multiple executors in the world. Unfortunately,
most previous work in the single-agent planning community
has looked upon replanning as a technique whose goal is to
reduce the computational effort required in coming up with
a new plan, given changes to the world. The focus in such
work is to use the technique of minimally perturbing the cur-
rent plan structure as a solution to the replanning problem.
However, neither reducing replanning computation nor fo-
cusing on minimal perturbation are appropriate techniques
for intra-agent replanning in the context of multi-agent sce-
narios.

In this work, we argue for a better, more general, model
of the replanning problem. This model considers the central
components of a planning problem – the initial state, the set
of goals to be achieved, and the plan that does that, along
with constraints imposed by the execution of that plan in the
world – in creating the new replan. These replanning con-
straints take the form of commitments for an agent, either to
an earlier plan and its constituent actions, or to other agents
in its world. We will show that this general commitment sen-
sitive planning architecture subsumes past replanning tech-
niques that are only interested in minimal perturbation – the
“commitment” in such cases is to the structure of the previ-
ously executing plan. We will also show that partial satis-
faction planning (PSP) techniques provide a good substrate
for this general model of replanning.

In the next section, we discuss some prior and related
work from the multi-agent systems (MAS) and single-agent
planning communities in order to motivate our work. We
then present our formulation of the replanning problem in
terms of the problem instance (composed of the initial state
and the goals), the plan to solve that particular instance, and
the dependencies or constraints that are introduced into the
world by that plan, and three models associated with the han-
dling of these replanning constraints that are defined in that
formulation. Subsequently, we delve deeper into the compo-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

48

sition of those constraints, and discuss the various solution
techniques that can be used to satisfy these constraints while
synthesizing a new replan. We then describe our experimen-
tal setup and present our results.

2 Related Work
Replanning has been an early and integral part of automated
planning and problem solving work in AI. The STRIPS
robot problem-solving system (Fikes, Hart, and Nilsson
1972), one of the earliest applications of planning and AI,
used an execution monitoring system known as PLANEX
to recognize plan failures in the world, and replan if direct
re-execution was not an option. The replanning mechanism
worked by sending the change in state back to the STRIPS
system, which returned a sequence of actions that brought
the state back to one from which the execution of the orig-
inal plan could be resumed. This relatively simple proce-
dure encoded the idea that would come to dominate replan-
ning work within the planning community for the next few
decades – the notion of commitment to a plan. The prin-
ciple underlying the concept of minimally changing an ex-
isting plan is christened plan stability by Fox et al. (Fox et
al. 2006). In that work, two approaches – replanning from
scratch, and repairing the existing plan – and their respec-
tive impacts on plan stability are considered. Stability it-
self is defined as the measure of the difference a process
induces between an original plan and a new plan, and is
closely related to the idea of minimal perturbation plan-
ning (Kambhampati 1990) used in past replanning and plan
re-use (Nebel and Koehler 1995) work. Fox et al. argue that
plan stability as a property is desirable both from the stand-
point of measurable quantities like plan generation time and
plan quality, as well as intangibles like the cognitive load on
human observers of planned activity and the strain on the
plan executive.

Other work on replanning has taken a strong stand either
for or against the idea of plan repair. Van Der Krogt et al.
(Van Der Krogt and De Weerdt 2005) fall firmly into
the former category, as they outline a way to extend
state-of-the-art planning techniques to accommodate plan
repair. For the purposes of this paper, it suffices to note
that this work looks at the replanning problem as one of
commitment to and maintenance of a broken plan. This
work has a strong parallel (and precursor) in planning for
autonomous space exploration vehicles, a proven real world
application of plan-ning technology. The Casper system
(Knight et al. 2001), which was designed to autonomously
control a spacecraft and its activities, was designed as a
system with a high level of responsiveness, enabled through
a technique called itera-tive repair – an approach that fixes
flaws in an existing plan repeatedly until an acceptable
plan is found. At the other end of the spectrum, Fritz et
al. (Fritz and McIlraith 2007) deal with changes to the
state of the world by replanning from scratch. Their
approach provides execution monitor-ing capabilities by
formalizing notions of plan validity and optimality using
the situation calculus; prior to execution, each step in the
(optimal) plan is annotated with conditions that are
sufficient for the plan’s optimality to hold. When a
discrepancy or unexpected change occurs during execution,
these conditions are re-evaluated in order to determine the
optimality of the executing plan. When one of the condi-

tions is violated, the proposed solution is to come up with a
completely new plan that satisfies the optimality (or validity)
conditions.

In contrast, the MAS community has looked at replanning
issues more in terms of multiple agents and the conflicts that
can arise between these agents when they are execut-ing in
the same dynamic world. Wagner et al. (Wagner et al. 1999)
proposed the twin ideas of inter-agent and intra-agent
conflict resolution. In the former, agents exchange commit-
ments between each other in order to do team work. These
commitments in turn may affect an agent’s local controller,
and the feasibility of the agent’s individual plan – this brings
up the process of intra-agent conflict resolution. Inter-agent
commitments have been variously formalized in dif-ferent
work in the MAS community (Komenda et al. 2008; Bartold
and Durfee 2003; Wooldridge 2000), but the fo-cus has
always been on the interactions between the various agents,
and how changes to the world affect the declared
commitments. The impact that these changes have within an
agent’s internal planning process has not received signif-
icant study. The closest work in the multi-agent planning
community to ours is by (Komenda, Nov´ak, and
Pˇechouˇcek 2012), where the multi-agent plan repair
problem is intro-duced and reduced to the multi-agent
planning problem; and (Meneguzzi, Telang, and Singh
2013), where a first-order representation and reasoning
technique for modeling commitments is introduced.

In this work, we propose to bring these two approaches
from two different communities – single-agent planning,
and multi-agent systems – together in a unified theory of
agent replanning. Our central argument is that it should
be the single-agent planning community’s brief to heed the
changes to the world state and inter-agent commitments, and
to generate a new (single-agent) plan that remains consistent
with the larger multi-agent commitments in the world. The
first step in this endeavor is to re-define the replanning prob-
lem such that both single and multi-agent commitments can
be represented under a unified framework.

3 The Replanning Problem
We posit that replanning should be viewed not as a tech-
nique, but as a problem in its own right – one that is distinct
from the classical planning problem. Formally, this idea can
be stated as follows. Consider a plan ΠP that is synthesized
in order to solve the planning problem P = 〈I,G〉, where
I is the initial state and G, the goal description. The world
then changes such that we now have to solve the problem
P ′ = 〈I ′, G′〉, where I ′ represents the changed state of the
world, andG′ a changed set of goals (possibly different from
G). We then define the replanning problem as one of find-
ing a new plan Π′

P that solves the problem P ′ subject to a
set of constraints ψΠP . This model is depicted in Figure 1.
The composition of the constraint set ψΠP , and the way it
is handled, can be described in terms of specific models of
this newly formulated replanning problem. Here, we present
three such models based on the manner in which the set ψΠP

is populated.

1. M1 | Replanning as Restart: This model treats replan-
ning as ‘planning from restart’ – i.e., given changes in the
world P = 〈I,G〉 → P ′ = 〈I ′, G′〉, the old plan ΠP is

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

49

completely abandoned in favor of a new plan Π′
P which

solves P ′. Thus the previous plan induces no constraints
that must be respected, meaning that the set ψΠP is empty.

PLANNER
<I, G>

PLAN

Present for
Assessment

CONSTRAINT
PROCESSING

W
O

R
LD

 Publicize to
Other Agents

MONITORING
EVENT

<I’, G’, ψ>

Similarity
Constraints

Commitment
Constraints

SENSING

ψ

EXECUTION

Figure 1: A model of replanning

2. M2 | Replanning to Reduce Computation: When the
state of the world forces a change from a plan ΠP to a
new one Π′

P , in the extreme case, Π′
P may bear no rela-

tion to ΠP . However, it is most desirable that the cost of
comparing the differences between the two plans with re-
spect to execution in the world be reduced as far as possi-
ble. The problem of minimizing this cost can be re-cast as
one of minimizing the differences between the two plans
Π′

P and ΠP using syntactic constraints on the form of the
new plan. These syntactic constraints are added to the set
ψΠP .

3. M3 | Replanning for Multi-agent Scenarios: In many
real world scenarios, there are multiple agents A1 . . . An

that share an environment and hence a world state.1 The
individual plans of these agents, Π1 . . .Πn respectively,
affect the common world state that the agents share and
must plan in. This leads to the formation of dependencies,
or commitments, by other agents on an agent’s plan. These
commitments can be seen as special types of constraints
that are induced by an executing plan, and that must be
obeyed when creating a new plan as a result of replanning.
The aggregation of these commitments forms the set ψΠP

for this model.

In the following section, we explore the composition of
the constraint set ψΠ (for any given plan Π) in more de-
tail. First, however, we consider a real world application
scenario and the application of the three replanning models
described above to it, in order to illustrate that these models
are broad enough to capture the various kinds of replanning
techniques.

3.1 Example: Planetary Rovers
Planning for planetary rovers is a scenario that serves as a
great overarching application domain for describing the mo-
tivations behind the various models of replanning that we
propose in this work. Automating the planning process is
central to this application for three reasons: (1) the complex
checks and procedures that are part of large-scale or critical

1Note that this is the case regardless of whether the planner
models these agents explicitly or chooses to implicitly model them
in the form of a dynamic world.

applications can often only be fully and correctly satisfied
by automation; (2) there are limited communication oppor-
tunities between the rover and and the control station; and
(3) the distances involved rule out immediate tele-operation,
since there is a considerable communication lag between a
rover operating on the surface of a distant planet and the
control center.

1. M1: This model is frequently used by planning algo-
rithms that create path and motion plans for the rover’s
operation. Often, changes to the environment (e.g. the
detection of an obstacle such as a rock ahead) will ren-
der the currently executing plan useless; in cases where
the system needs to react immediately and produce a new
plan, creating a completely new plan works better than
trying to salvage some version of an existing plan.

2. M2: In the case of planetary rovers, both computational
and cognitive costs are present when it comes to compar-
ing Π and Π′. Changes to an executing plan Π must pass
muster with human mission controllers on Earth as well
as mechanical and electrical checks on-board the rover it-
self. It is thus imperative that the replanning model is
aware of the twin objectives of minimizing cognitive load
on the mission controllers as well as minimizing the com-
putation required on board the rover when vetting a new
plan Π′ that replaces Π. In this case, the set ψΠP will con-
tain constraints that try to minimize the effort needed to
reconcile Π′ with Π, and the metric used in the reconcilia-
tion determines the contents of ψΠP . These can be seen as
a syntactic version of plan stability constraints, as against
the semantic stability constraints (based on commitments)
that we go on to propose.

3. M3: In a typical scenario, it is also possible that there may
be multiple rovers working in the same environment, with
knowledge (complete or partial) of the other rovers’ plans.
This knowledge in turn leads to dependencies which must
be preserved when the plans of one (or more) of the rovers
change – for example, rover Spirit might depend on rover
Opportunity to transmit (back to base) the results of a sci-
entific experiment that it plans to complete. If Opportu-
nity now wishes to modify its current plan ΠO, it must
pay heed to the commitment to communicate with Spirit
– and pass on the data that results from that communica-
tion – when devising its new plan Π′

O.

4 Replanning Constraints
As outlined in the previous section, the replanning problem
can be decomposed into various models that are defined by
the constraints that must be respected while transitioning
from the old plan Π to the new plan Π′. In this section,
we define those constraints, and explore the composition of
the set ψ for each of the models defined previously.

4.1 Replanning as Restart
By the definition of this model, the old plan ΠP is com-
pletely abandoned in favor of a new one. There are no con-
straints induced by the previous plan that must be respected,
and thus the set ψΠP is empty. Instead, what we have is a
new problem instance P ′ whose composition is completely
independent of the set ψΠP .

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

50

4.2 Replanning to Reduce Computation
It is often desirable that the replan for the new problem in-
stance P ′ resemble the previous plan ΠP in order to reduce
the computational effort associated with verifying that it still
meets the objectives, and to ensure that it can be carried
out in the world. We name the effort expended in this en-
deavor as the reverification complexity associated with a pair
of plans ΠP and Π′

P , and informally define it as the amount
of effort that an agent has to expend on comparing the dif-
ferences between an old plan ΠP and a new candidate plan
Π′

P with respect to execution in the world.
This effort can either be computational, as is the case

with automated agents like rovers and robots; or cognitive,
when the executor of the plans is a human. Real world ex-
amples where reverification complexity is of utmost impor-
tance abound, including machine-shop or factory-floor plan-
ning; planning for assistive robots and teaming; and plane-
tary rovers (see Section 3.1). Past work on replanning has
addressed this problem via the idea of plan stability (Fox et
al. 2006). The general idea behind this approach is to
preserve the stability of the replan Π′

P by minimizing some
notion of difference with the original plan ΠP . In the fol-
lowing, we examine two such ways of measuring the differ-
ence between pairs of plans, and how these can contribute
constraints to the set ψΠP that will minimize reverification
complexity.

Action Similarity Plans are defined, first and foremost, as
sequences of actions that achieve specified objectives. The
most obvious way to compute the difference between a
given pair of plans then is to compare the actions that make
up those plans. (Fox et al. 2006) defines a way of doing this
-given an original plan Π and a new plan Π′, they define the
difference between those plans as the number of actions that
appear in Π and not in Π′ plus the number of actions that
appear in Π′ and not in Π. If the plans Π and Π′ are seen as
sets comprised of actions, then this is essentially the sym-
metric difference of those sets, and we have the following
constraint:2 min |Π 4 Π′|.

This method of gauging the similarity between a pair of
plans suffers from some obvious pitfalls; a very simple one
is that it does not take the ordering of actions in the plans
into account at all. Consider the simple plans Π : 〈a1, a2〉
and Π′ : 〈a2, a1〉; the difference between these two plans is
Π 4 Π′ = ∅. However, from a replanning perspective, it
seems obvious that these two plans are really quite different,
and may lead to different results if the actions are not com-
mutative. In order to account for such cases, we would need
to consider the ordering of actions within a plan, and more
generally, the causal structure of a plan.

Causal Link Similarity The next step in computing plan
similarity is to look not just at the actions that constitute
the plans under comparison, but to take the causal structure
of those plans into account as well. Work on partial or-
der planning (POP) has embedded a formal notion of causal
links quite strongly within the planning literature. Past par-
tial order planning systems (Penberthy and Weld 1992;

2Given this constraint, the similarity and difference of a pair of
plans are inverses, and hence the name ‘Action Similarity’.

Joslin and Pollack 1995) have looked at the idea of dif-
ferent serializations of the same partial order plan. Given
plans Π and Π′, and CL(Π) and CL(Π′) the sets of causal
links on those plans respectively, a simple constraint to en-
force causal similarity would be: min |CL(Π) 4 CL(Π′)|.
Note that this number may be non-zero even though the two
plans are completely similar in terms of action similarity;
i.e. (Π 4 Π′) = ∅. This analysis need not be restricted to
causal links alone, and can be extended to arbitrary ordering
constraints of a non-causal nature too, as long as they can be
extracted from the plans under consideration.

4.3 Replanning for Multi-agent Scenarios
In a multiperson situation, one man’s goals may be an-
other man’s constraints. – Herb Simon (Simon 1964)

In an ideal world, a given planning agent would be the sole
center of plan synthesis as well as execution, and replanning
would be necessitated only by those changes to the world
state that the agent cannot foresee. However, in the real
world, there exist multiple such agents, each with their own
disparate objectives but all bound together by the world that
they share. A plan ΠP that is made by a particular agent
affects the state of the world and hence the conditions un-
der which the other agents must plan – this is true for every
agent. In addition, the publication of a plan ΠA

P by an agent
A leads to other agents predicating the success of their own
plans on parts of ΠP

A, and complex dependencies are devel-
oped as a result. Full multi-agent planning can resolve the
issues that arise out of changing plans in such cases, but it is
far from a scalable solution for real world domains
currently. Instead, this multi-agent space filled with
dependencies can be projected down into a single-agent
space with the help of commitments as defined by (Cushing
and Kambhampati 2005). These commitments are related to
an agent’s current plan Π, and can describe different
requirements that come about:

1. when Π changes the world state that other agents have to
plan with

2. when the agent decides to execute Π, and other agents
predicate their own plans on certain aspects of it

3. due to cost or time based restrictions imposed on the agent
4. due to the agent having paid an up-front setup cost to en-

able the plan Π

A simple travel example serves to demonstrate these dif-
ferent types of commitments. Consider an agent A1 who
must travel from Phoenix (PHX) to Los Angeles (LAX). A
travel plan Π that is made for agent A1 contains actions that
take it from PHX to LAX with a long stopover at Las Vegas
(LAS). A1 is friends with agent A2, who lives in LAS, and
thus publicizes the plan of passing through LAS. A2 then
makes its own plan to meet A1 – this depends on A1’s pres-
ence at the airport in LAS. If there are changes to the world
(for e.g., a lower airfare becomes available), there are sev-
eral commitments that a planner must respect while creating
a new plan Π′ for A1. First, there are commitments to other
agents – in this case, the meeting with A2 in LAS. There are
also setup and reservation costs associated with the previous
plan; for example, A1 may have paid a non-refundable air-
fare as part of Π. Finally, there may be a deadline on getting

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

51

to LAX, and any new plan has to respect that commitment
as well.

At first blush, it seems that the same kinds of constraints
that seek to minimize reverification c omplexity between
plans Π and Π′ (minimizing action and causal link differ-
ence between plans) will also serve to preserve and keep the
most commitments in the world. Indeed, in extreme cases,
it might even be the case that keeping the structures of Π
and Π′ as similar as possible helps keep the maximum num-
ber of commitments made due to Π. However, this is cer-
tainly not the most natural way of keeping commitments.
In particular, this method fails when there is any significant
deviation in structure from Π to Π′; unfortunately, most un-
expected changes in real world scenarios are of a nature that
precludes retaining significant portions of the previous plan.
For example, in the (continuing) air travel example from
above, agent A1 has a commitment not to the plan Π itself,
but rather to the event of meeting A2. This suggests mod-
eling commitments natively as state conditions (as opposed
to casting them as extraneous constraints on plan structure)
as goals that must be either achieved or preserved by a plan
as a possible replanning constraint. We elaborate on this in
Section 5.3.

5 Solution Techniques
So far, we have looked at three different ways in which the
replanning problem can be represented, and delineated the
differences between these models via the constraints that
need to be considered when making new plans in a changed
world. We now turn our attention to the planning techniques
that are (or can be) used to solve these variants.

5.1 T1: Classical Planning
For the replanning as restart model, the problem is defined
as one of going from a plan ΠP that solves the problem in-
stance P = 〈I,G〉 to the best new plan Π′

P that is valid for
the new problem instance P ′ = 〈I ′, G′〉. I ′ is the state of
the world at which ΠP stops executing to account for the
change that triggered replanning; that is, replanning com-
mences from the current state of the world. G′ is the same
as G unless new goals are explicitly added as part of the
changes to the world. The replanning constraint set ψΠP

is empty, since replanning is being performed from scratch.
This new instance is then given to a standard classical plan-
ner to solve, and the resulting plan is designated Π′

P .

5.2 T2: Specialized Replanning Techniques
When it comes to replanning to reduce computation and
associated constraints, techniques that implement solutions
that conform to these constraints must necessarily be able to
compile them into the planning process in some way. This
can be achieved by implementing plan stability metrics –
either explicitly by comparing each synthesized plan candi-
date with the existing plan ΠP , or implicitly by embedding
these metrics within the search process. One way of doing
the latter is to use a planner such as LPG (Gerevini, Saetti,
and Serina 2003), which uses local search methods, and to
structure the evaluation function such that more syntactic
similarity between two plans – similar actions, for example
– is preferred. Such an approach is used by (Srivastava et al.

2007) in the generation of a set of diverse plans where the
constituent plans differ from each other by a defined metric;
for replanning where search re-use is of importance, the ob-
jective can instead be to produce minimally different plans
within that set. An earlier version of this approach can be
seen in the Casper system’s iterative repair approach (Knight
et al. 2001).

5.3 T3: Partial Satisfaction Planning
We now turn our attention to replanning techniques that can
be used when the dependencies or commitments towards
other agents due to an agent A’s original plan Π (solving
the problem instance P) must be maintained. The con-
straint set ψΠP

A
now contains all those commitments to other

agents that were made by the plan Π. We follow Cushing et
al. (Cushing and Kambhampati 2005) in modeling com-
mitments as soft constraints that an agent is not mandated to
necessarily achieve for plan success. More generally, com-
mitments – as reservations, prior dependencies or deadlines
– can be modeled as soft trajectory constraints on any new
plan Π′ that is synthesized. Modeling commitments as soft
constraints (instead of hard) is essential because not all com-
mitments are equal. A replan Π′ may be valid even if it
flouts a given commitment; indeed, it may be the only pos-
sible replan given the changed state of the world. Soft goals
allow for the specification of different priorities for different
commitments by allowing for the association of a reward for
achieving a given goal, and a penalty for non-achievement.
Both of these values are optional, and a commitment may
either be seen as an opportunity (accompanied by a reward)
or as a liabiity (when assigned a penalty). The quality of
a replan Π′ – in terms of the number of commitment con-
straints that it satisfies – can then be discussed in terms of
the net-benefit, which is a purely arithmetic value.

An added advantage of modeling commitments as soft
goals is that the constraints on plan structure discussed pre-
viously in Section 4.2 can be cast as commitments too.
These constraints are commitments to the structure of the
original plan Π, as against commitments to other agents or
to other extraneous phenomena like deadlines etc. The ad-
vantage in doing this is that new plans and their adherence
to commitments can be evaluated solely and completely in
terms of the net-benefit of t hose p lans; t his makes t he en-
forcement of the replanning constraints during the planning
process more amenable to existing planning methods. We
thus devise a natural way of combining two distinct quality
issues in replanning: (1) how good a replan Π′ is for solving
the changed problem instance 〈I ′, G′〉; and (2) how much
Π′ respects and balances the given replanning constraints,
which may be in service of completely different objectives
like reducing the computation involved in verifying a new
plan, or commitments to other agents in the world.

To obtain the new problem instance P ′ from the original
problem P , we perform the following transformations: I ′
is, as before, the state of the world at which execution is
stopped because of the changes that triggered replanning.
G′ consists of all outstanding goals in the set G as well as
any other explicit changes to the goal-set; in addition, the
constraints from the set ψΠA

P are added to G′ as soft goals,
using the compilations described below. The new problem

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

52

a

aas

a

acs

prec(a)

prec(a) prec(a)

prec(a)

eff(a)

eff(a) eff(a)

eff(a)

a-executed ∀ f ∈ eff(a), f-produced

ACTION SIMILARITY CAUSAL SIMILARITY

(i) (ii)

Figure 2: Compiling action and causal similarity to PSP by
creating new effects, actions that house those effects, and
soft goals on those effects.

instance is then given to a PSP planner to solve for the plan
with the best net-benefit, which is then designated Π′A

P .
The syntactic plan similarity constraints discussed at

length in Section 4.2 can be cast as PSP constraints, in the
form of soft goals. In the following, we describe a general
compilation of the constraints in ψΠP

A
to a partial satisfac-

tion planning problem instance. We follow (van den Briel et
al. 2004) in defining a PSP Net Benefit problem as a plan-
ning problem P = (F, O, I, Gs) (where F is a finite set
of fluents, O i s a finite se t of operators and I ⊆ F is the
initial state as defined e arlier i n o ur p aper) s uch t hat each
action a ∈ O has a “cost” value Ca ≥ 0 and, for each goal
specification g ∈ G there exists a “utility” value U g ≥ 0.
Additionally, for every goal g ∈ G, a ‘soft’ goal gs with re-
ward rg and penalty pg is created; the set of all soft goals
thus created is added to a new set Gs.

The intuition behind casting these constraints as goals is
that a new plan (replan) must be constrained in some way
towards being similar to the earlier plan. However, mak-
ing these goals hard would over-constrain the problem – the
change in the world from I to I ′ may have rendered some of
the earlier actions (or causal links) impossible to preserve.
Therefore the similarity constraints are instead cast as soft
goals, with rewards or penalties for preserving or breaking
(respectively) the commitment to similarity with the earlier
plan. In order to support these goals, new fluents need to be
added to the domain description that indicate the execution
of an action, or achievement of a fluent respectively. Fur-
ther, new copies of the existing actions in the domain must
be added to house these effects. Making copies of the ac-
tions from the previous plan is necessary in order to allow
these actions to have different costs from any new actions
added to the plan.

Compiling Action Similarity to PSP The first step in the
compilation is converting the action similarity constraints in
ψΠA

P to soft goals to be added to Gs. Before this, we exam-
ine the structure of the constraint set ψΠA

P ; for every ground
action ā (with the names of the objects that parameterize it)
in the old plan Π, the corresponding action similarity con-
straint is Ψā ∈ ψΠA

P , and that constraint stores the name of
the action as well as the objects that parameterize it.

Next, a copy of the set of operators O is created and
named Oas; similarly, a copy of F is created and named
Fas. For each (lifted) action a ∈ Oas that has an instance in
the original plan Π, a new fluent named “a-executed” (along

-400

0

400

800

1200

1600

P1 P2 P3

N
et

 B
e

n
ef

it

Problems

Old (Comm.)

New (Comm.)

New (Comm.+Sim)

Figure 3: Net-benefit of plans for zenotravel problems, Ex-
periment 1.

0

100

200

300

400

P1 P2 P3

N
et

 B
e

n
ef

it

Problems

Old (Comm.)

New (Comm.)

New (Comm.+Sim)

Figure 4: Net-benefit of plans for driverlog problems, Ex-
periment 1.

with all the parameters of a) is added to the fluent set Fas.
Then, for each action a ∈ Oas, a new action aas which is
a copy of the action a that additionally also gives the predi-
cate a-executed as an effect, is created. The process of go-
ing from the original action a to the new one aas is depicted
graphically in Figure 2(i). In the worst case, the number of
actions in each Oas could be twice the number in O.

Finally, for each constraint Ψā ∈ ψΠA
P , a new soft goal

gā is created with corresponding reward and penalty values
rgā and pgā respectively, and the predicate used in gā is ā-
executed (parameterized with the same objects that ā con-
tains) from Oas. All the gā goals thus created are added to
Gs. In order to obtain the new compiled replanning instance
P ′ from P , the initial state I is replaced with the state at
which execution was terminated, I ′; the set of operators O
is replaced withOas; and the set of fluentsF is replaced with
Fas. The new instance P ′ = (Fas, Oas, I

′, Gs) is given to a
PSP planner to solve.

Compiling Causal Similarity to PSP Causal similarity
constraints can be compiled to PSP in a manner that is very
similar to the above compilation. The difference that now
needs to be considered is that the constraints are no longer
on actions, but on the grounded fluents that comprise the
causal links between the actions in a plan instead.

The first s tep i s to augment the set of fl uents; a copy of
F is created and named Fcs. For every fluent f ∈ F , a new
fluent named “f -produced” is added to F cs, along with all
the original parameters of f . A copy of the set of operators
O is created and named Ocs. Then, for each action in a ∈
Ocs, a new action acs is added; acs is a copy of action a,
with the additional effects that for every fluent f a that is in
the add effects of the original a, acs contains the effect fa-
produced – this process is shown in Figure 2(ii). Thus in the
worst case, the number of effects of every action acs is twice
the number of effects of the original action a, and the size of
Ocs is twice that of O.

Finally, the causal constraints in ψΠA
P must be converted

to soft goals that can be added to Gs. The constraints Ψ ∈

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

53

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

1 2 3 4 6

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

1 2 3 4 6

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

Figure 5: Net-benefit of plans for zenotravel problems, Experiment 2.

ψΠA
P are obtained by simulating the execution of Π from I

using the operators in O. Each ground add-effect f̄e of each
ground action āΠ in Π is added as a new constraint Ψf̄e .
Correspondingly, for each such new constraint added, a new
soft goal gf̄e is created whose fluent corresponds to f̄e, with

e e
reward and penalty values rgf¯ and pgf¯ respectively.3 All
the goals thus created are added to Gs. The new planning
instance to be provided to the PSP planner is thus given as
P ′ = (Fcs, Ocs, I

′, Gs), where I ′ is the state of the fluents
when execution was previously suspended.

6 Empirical Study
Generally, work on specialized (single-agent) replanning
techniques claims the support of experiments that exhibit ei-
ther: (1) an advantage over from-scratch replanning in terms
of speed or efficiency; or (2) greater plan stability when
compared to other techniques. Unfortunately, our improved
understanding of replanning as a general problem rather than
as any single technique renders such an evaluation unsatis-
factory. Since different kinds of replanning problems can
be realized from different instantiations of the constraint set
ψ, and these constraints can all be weighted as desired, one
thing that we should evaluate is whether our single general
model can model any problem (and technique) in the re-
planning spectrum. Given access to such a general model,
it is also rather straightforward to set up problem instances
that favor a specific technique over all other replanning tech-
niques. Such results can be attributed either to the fact that
the other techniques ignore the constraints that the first takes
into account, or that they use surrogate constraints in order to
mimic them. In the following, we describe the setup of three
such experiments, and present preliminary results from the
first two.

Setting Rewards & Penalties – The compilations outlined
in Section 5.3, as well as the results that follow, are sensitive
to the actual value of the rewards and the penalties that are
assigned to the goals that the planner must achieve. We are
currently in the process of conducting a theoretical as well as
empirical analysis of the effect of these values on the plans
that are produced, as well as the time taken to replan. For the
experiments outlined below, we assign a reward of 500 units
and a penalty of 1000 units to the regular, state space goals.

3Note that in the general case, we would need to consider con-
sumers – i.e., actions that consume the causal link – apart from the
producers of those links, in order to avoid over-constraining the
new problem. However, we assume here that the original plan does
not contain any superfluous actions.

Similarity goals are given a reward of 0 units, and a penalty
of 1000 units (since they can be seen as commitments to the
form of the previous plan).

6.1 Planning System
Since PSP is key to the success of our approach, we used the
planner Sapa Replan (Talamadupula et al. 2010), a planner
that has been used previously to support applications that
require replanning. Sapa Replan additionally handles tem-
poral planning and partial satisfaction. The system contains
an execution monitor that oversees the execution of the cur-
rent plan in the world, which focuses the planner’s attention
by performing objective (goal) selection, while the planner
in turn generates a plan using heuristics that are extracted by
supporting some subset of those objectives. Unfortunately,
Sapa Replan’s support for all of these varied functionalities
renders it less scalable to an increase in the number of soft
goals that must concurrently be pursued by the planner. This
rules out extensive experimentation, as well as the testing of
theories such as the one proposed in Experiment 4 (see Sec-
tion 6.2). We are currently working on using faster planners
that can handle larger numbers of soft goals for our experi-
ments.

6.2 Experiments
For our experiments, we compared similarity based replan-
ning against commitment sensitive replanning (Experiment
1) and against replanning from scratch (Experiment 2). In
order to set up a compilation from similarity based replan-
ning into PSP, we followed the procedure outlined in
Section 5.3 to alter the IPC domains that we considered, and
obtain the respective Oas operator sets and the P ′ problems
(which we denote Pa for the experiments). We then ran all
the prob-lem instances for all our experiments on the same
planner.
Experiment 1 – We ran the planner with Oas and Pa, and
recorded the net-benefit values of the resulting plan π a. We
then created two different versions of this problem, Pb and
Pc respectively, to simulate the effect of changes in the
world (and hence force “replanning”). The perturbations
used to generate Pb from Pa involved deleting facts from
the initial state, deleting goals, or both. Pc was a copy of
Pa that additionally contained new “similarity” goals on the
execution predicates of every action o ∈ πa. Each of these
similarity goals carried a penalty with it – one that is levied
for every action in πc that deviates from πa (and hence low-
ers πc’s similarity to πa). We ran the problem on Pb and Pc
as well and recorded the net-benefit a nd m akespan values
from these runs.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

54

-30000.00

-25000.00

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

10000.00

1 3 5 7 10

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

-30000.00

-25000.00

-20000.00

-15000.00

-10000.00

-5000.00

0.00

5000.00

10000.00

1 3 5 7 10

a_netben b1_pert_netben c1_netben b2_pert_netben

c2_netben b3_pert_netben c3_netben

Figure 6: Net-benefit of plans for driverlog problems, Experiment 2.

Experiment 2 – For this experiment, we generated more
perturbations to each Pa in a randomized fashion. These
perturbations involved deleting facts from the initial state,
deleting goals, or both. From each problem instance Pa we
produced three perturbed instances Pb1

. . . Pb3
by deleting

(at random) up to a maximum of 4 facts from the original
initial state, and a maximum of 2 goals from the original
set of goals to be achieved. Then, once the perturbed in-
stances were generated, we generated three corresponding
“similarity” instances Pc1

. . . Pc3
by copying Pb1

. . . Pb3
re-

spectively, to force the planner to adopt a minimal perturba-
tion approach. This was achieved by adding an additional
set of “similarity” soft goals to the instances Pci ; these sim-
ilarity goals were generated using the same process as for
Experiment 1. The addition of a penalty ensured that the
planning process tried, as far as possible, to include the ac-
tions from the previous plan in the new plan. Due to the
way the IPC problem instances are set up, even the smallest
random perturbation to the initial state can render the per-
turbed problem unsolvable. To account for this problem, we
created copies of all the Pbi and Pci instances with only the
goals deleted; that is, the initial state was unchanged, and
only goal perturbations were introduced.

The resulting net-benefit values are plotted in Figure 5
and Figure 6; the plot on the left denotes those instances
where the perturbation was performed on both the initial
state as well as the goals, whereas the plot on the right
represents those with only goal perturbations. The numbers
along the X-axis are the IPC problem number, and the
columns (from left to right) denote the instance that
produced that value –respectively, Pa, Pb1 , Pc1 , Pb2 , Pc2 ,
Pb3 and Pc3 . Every pair of columns after the first one (there
are three such pairs) signifies a direct comparison between
the net-benefit for the perturbed problem, and the perturbed
problem with similar-ity constraints added. Since the net-
benefit values of many of the resulting plans are negative,
the X-axis is shifted fur-ther up along the Y-axis. Due to
this, smaller columns in-dicate better plan quality, since
those net-benefit values are higher. We preserve the same
axes for a given domain, so direct comparisons may be
made between the plots on the left and the right.

Experiment 3 – Experiment 2 can also be modified in order
to induce a direct comparison between similarity and com-
mitment based replanning. Such an experiment would re-
quire a component that extracts commitments from a given
plan π in an automated and unbiased manner; these commit-
ments (or some randomized subset therein) would then be
added in as goals for the perturbed version of the commit-

ment based problem. The similarity based problem would be
perturbed as before, and similarity goals added to it based on
the actions in the original plan. Both of these instances can
then be run on the same planning system, and the net-benefit
values returned may then be compared directly. We have
constructed a preliminary version of such a module, and are
in the process of collecting results for this experiment.

Experiment 4 – Another experiment that can be performed
is to contrast replanning methods that preserve similarity (ei-
ther action or causal) against methods that instead preserve
(state space) commitments. This can be done by fixing the
number of commitments C that must be adhered to when
transitioning from the original plan Π to a new plan Π′. Sup-
pose that the state space of the original plan Π is given by
S, where each element s ∈ S is a state that results from the
execution of actions a ∈ Π starting from the initial state I .
When the value of C is zero – that is, no commitments need
be preserved when replanning – the net benefit of the new
plan Π′ will be at its highest value. Then, as the value of C
tends toward |S|, the net benefit of the plan generated by the
commitment preserving approach will steadily change, until
at C = |S| it is the same as the previous plan Π (indeed, at
this stage, the new plan Π′ is the same as Π). We are cur-
rently evaluating this experiment across various domains.

7 Conclusion
In this paper, we presented a general model of the single-
agent replanning problem, and described three replanning
paradigms that are distinguished by the constraints that they
are bound to satisfy during the replanning process: replan-
ning as restart, replanning to reduce computation, and re-
planning for multi-agent scenarios. In particular, we showed
how commitment to certain constraints – whether they be
from the structure of the previous plan, or understandings
with other agents – can influence replanning. We then
looked at solution techniques from the single-agent planning
community for these three paradigms. Finally, we presented
an evaluation of our main claims based on a compilation of
the previously defined replanning constraints into a partial
satisfaction planning framework.

8 Acknowledgements
We wish to thank anonymous reviewers for helpful com-
ments and suggestions on past versions of this paper. Kamb-
hampati’s research is supported in part by the ARO grant
W911NF-13-1-0023, the ONR grants N00014-13-1-0176,
N00014-09-1-0017 and N00014-07-1-1049, and the NSF
grant IIS201330813.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

55

References
[Bartold and Durfee 2003] Bartold, T., and Durfee, E. 2003.
Limiting disruption in multiagent replanning. In Proceed-
ings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 49–56. ACM.

[Cushing and Kambhampati 2005] Cushing, W., and Kamb-
hampati, S. 2005. Replanning: A New Perspective. In Proc.
of ICAPS 2005.

[Fikes, Hart, and Nilsson 1972] Fikes, R.; Hart, P.; and Nils-
son, N. 1972. Learning and executing generalized robot
plans. Artificial intelligence 3:251–288.

[Fox et al. 2006] Fox, M.; Gerevini, A.; Long, D.; and Se-
rina, I. 2006. Plan stability: Replanning versus plan repair.
In Proc. of ICAPS 2006.

[Fritz and McIlraith 2007] Fritz, C., and McIlraith, S. 2007.
Monitoring plan optimality during execution. In Proc. of
ICAPS 2007, 144–151.

[Gerevini, Saetti, and Serina 2003] Gerevini, A.; Saetti, A.;
and Serina, I. 2003. Planning through stochastic local search
and temporal action graphs in lpg. J. Artif. Intell. Res. (JAIR)
20:239–290.

[Joslin and Pollack 1995] Joslin, D., and Pollack, M. E.
1995. Least-cost flaw repair: A plan refinement strategy
for partial-order planning. In Proceedings of the National
Conference on Artificial Intelligence, 1004–1009.

[Kambhampati 1990] Kambhampati, S. 1990. Mapping and
retrieval during plan reuse: a validation structure based ap-
proach. In Proceedings of the Eighth National Conference
on Artificial Intelligence, 170–175.

[Knight et al. 2001] Knight, S.; Rabideau, G.; Chien, S.; En-
gelhardt, B.; and Sherwood, R. 2001. Casper: Space ex-
ploration through continuous planning. Intelligent Systems,
IEEE 16(5):70–75.

[Komenda et al. 2008] Komenda, A.; Pechoucek, M.; Biba,
J.; and Vokrinek, J. 2008. Planning and re-planning in multi-
actors scenarios by means of social commitments. In Com-
puter Science and Information Technology, 2008. IMCSIT
2008. International Multiconference on, 39–45. IEEE.

[Komenda, Novák, and Pěchouček 2012] Komenda, A.;
Novák, P.; and Pěchouček, M. 2012. Decentralized multi-
agent plan repair in dynamic environments. In Proceedings
of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 3, 1239–1240. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Meneguzzi, Telang, and Singh 2013] Meneguzzi, F.;
Telang, P. R.; and Singh, M. P. 2013. A first-order
formalization of commitments and goals for planning.

[Nebel and Koehler 1995] Nebel, B., and Koehler, J. 1995.
Plan reuse versus plan generation: a complexity-theoretic
perspective. Artificial Intelligence 76:427–454.

[Penberthy and Weld 1992] Penberthy, J., and Weld, D.
1992. UCPOP: A sound, complete, partial order planner
for ADL. In Proceedings of the Third International Con-
ference on Knowledge Representation and Reasoning, 103–
114. Citeseer.

[Simon 1964] Simon, H. 1964. On the concept of organiza-
tional goal. Administrative Science Quarterly 1–22.

[Srivastava et al. 2007] Srivastava, B.; Nguyen, T.; Gerevini,
A.; Kambhampati, S.; Do, M.; and Serina, I. 2007. Domain
independent approaches for finding diverse plans. In Proc.
of IJCAI, volume 7, 2016–2022.

[Talamadupula et al. 2010] Talamadupula, K.; Benton, J.;
Kambhampati, S.; Schermerhorn, P.; and Scheutz, M. 2010.
Planning for human-robot teaming in open worlds. ACM
Transactions on Intelligent Systems and Technology (TIST)
1(2):14.

[van den Briel et al. 2004] van den Briel, M.; Sanchez, R.;
Do, M.; and Kambhampati, S. 2004. Effective approaches
for partial satisfaction (over-subscription) planning. In Pro-
ceedings of the National Conference on Artificial Intelli-
gence, 562–569.

[Van Der Krogt and De Weerdt 2005] Van Der Krogt, R.,
and De Weerdt, M. 2005. Plan repair as an extension of
planning. In Proc. of ICAPS 2005.

[Wagner et al. 1999] Wagner, T.; Shapiro, J.; Xuan, P.; and
Lesser, V. 1999. Multi-level conflict in multi-agent systems.
In Proc. of AAAI Workshop on Negotiation in Multi-Agent
Systems.

[Wooldridge 2000] Wooldridge, M. 2000. Reasoning about
rational agents. MIT press.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

56

Plan Sharing for Multi-Agent Planning

Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
dborrajo@ia.uc3m.es

Abstract

Multi-agent planning has been shown to be harder than
single-agent planning. There have been mainly two al-
ternative approaches: centralized, where a single planner
computes a plan for multiple agents; and distributed,
where each agent computes a plan, and then plans are
merged or coordinated. The centralized approach is not
possible in many applications where agents have pri-
vate goals, actions or states. We describe in this paper
an approach to solve deterministic multi-agent planning
problems with private information. Our approach first
assigns a subset of the public goals to each agent that are
added to the private ones. Then, agents iteratively solve
problems by receiving plans, goals and states from the
previous agents. After generating new plans by reusing
previous agents plans, they share the new plans and some
obfuscated private information with the following agents.
Experiments show that this approach outperforms state-
of-the-art techniques in the tested domains.

Introduction
Automated planning deals with the task of finding sequences
of actions that achieve a set of goals from an initial state.
We are interested on a deterministic multi-agent planning
(MAP) setting, where we have a set of agents for which
we have to find a solution to a collaborative multi-agent
planning problem with private information (de Weerdt &
Clement 2009). Generally, there have been two reasons to
pose a planning task as a multi-agent planning task: being
able to solve problems involving a high number of agents
(scaling up); or when privacy matters (agents cannot, or
are not willing to, share private information in the form of
goals, actions or states). In this paper, we deal with both
by decomposing the planning task, and maintaining agents
privacy.

One of the most relevant characteristic when analyzing
complexity of multi-agent planning tasks is the coupling
level among different agents tasks and a key concept is in-
teraction between agents plans. Interaction can be either
positive (one agent achieves a (sub)goal that is also achieved
by another agent) or negative (an agent deletes at least one
(sub)goal achieved by another). The coupling level depends

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the amount of interaction. If agents can achieve their goals
without creating positive/negative interactions with the rest
of agents plans, the tasks are loosely-coupled. As we find
more interactions, the tasks become less loosely-coupled and
more tightly-coupled.

There have been two main approaches to solve multi-agent
planning tasks: centralized or distributed. The centralized ap-
proach aims at generating the complete plan for all agents in
the same common search episode. But, the complexity grows
exponentially with the number of agents in general. Also,
the centralized approach cannot be used in some applications.
A common case is when agents have relevant private infor-
mation. This private information can refer to all planning
components: goals, actions, types, and/or predicates. For
instance, in a transportation logistics application, a company
might have divided its operation in several branches. Each
branch might receive its list of specific services (goals) to be
addressed. The central branch might as well receive some
common services to be planned for by any branch. So, there
is a mixture of public and private goals.

Distributed planning consists of each agent solving its
own planning task. However, given that there are public
interacting goals, it might be that one agent, φi, gener-
ates a solution that invalidates another agent solution, φj ,
since it did not take into account φj private and public
goals and actions to solve them. Potential solutions are
plan merging (Foulser, Li, & Yang 1992) or plan coordi-
nation (Cox & Durfee 2005), that can be as hard as cen-
tralized planning and are usually only useful for loosely-
coupled tasks (Cox & Durfee 2004). Among the recent
deterministic distributed planning approaches we find the
ones that use iterative plan refinement (Jonsson & Rovat-
sos 2011), distributed CSP (Brafman & Domshlak 2008;
Nissim, Brafman, & Domshlak 2010), A∗ (Nissim & Braf-
man 2012), SAT approaches (Dimopoulos, Hashmi, &
Moraitis 2012), or partial-order planning (Torreño, Onaindı́a,
& Sapena 2012). A related body of work can be found on
non-deterministic approaches using MDP or POMDP (Szer,
Charpillet, & Zilberstein 2012).

We describe in this paper MAPR (Multi-Agent Planning
by plan Reuse) that occupies a middle ground between dis-
tributed and centralized planning. MAPR considers both the
agents private and public information. We have been inspired
by iterative multi-agent planning techniques as the one pre-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

57

sented in (Jonsson & Rovatsos 2011). MAPR first assigns a
subset of public goals to each agent, while each agent might
have a set of private goals also. Then, MAPR calls the first
agent to provide a solution (plan) that takes into account its
private and public goals. MAPR iteratively calls each agent
with the solutions provided by previous agents. Each agent
receives its own goals plus the goals of the previous agents.
Thus, each agent solves its own problem, but taking into ac-
count the previous agents solutions. Since previous solutions
might consider private data, all private information from an
agent is obfuscated for the next ones.

We have called it planning by reuse given that each agent
reuses information from previous agents. They reuse the
goals, and can reuse (or not) the actions in their plans. So,
since each agent receives the plan from the previous agent
that implicitly considers the solutions to all previous agents,
instead of starting the search from scratch, it can also reuse
the previous whole plan or only a subset of the actions. We
base our approach on recent work on plan by reuse (Fox et al.
2006). Experiments show that MAPR outperforms in several
orders of magnitude state-of-the-art techniques in the tested
domains.

The next section presents the multi-agent planning task we
are dealing with. The third section describes MAPR approach.
The following section shows the experimental setup and re-
sults. The fifth section compares MAPR with state of the art
techniques. And the last section draws some conclusions and
presents some future work.

Multi-Agent Planning Task
A single-agent STRIPS planning task can formally defined as
a tuple Π = {F,A, I,G}, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state, and
G ⊆ F is a set of goals. Each action a ∈ A is described by a
set of preconditions (pre(ai)), that represent literals that must
be true in a state to execute the action and a set of effects
(eff(ai)), literals that are expected to be added (add effects)
or removed (delete effects) from the state after execution
of the action. Actions definition might also include a cost
c(a) (default is one). In order to compactly represent plan-
ning tasks, automated planning uses the standard language
PDDL (Planning Domain Description Language). Thus, a
planning task Π is automatically generated from the PDDL
description of a domain and a problem. The domain contains
a definition of a set of generalized actions (defined using
variables – parameters, par(a) – whose instantiations with
problem objects will lead to actions in A), a set of predi-
cates (whose instantiations will generate facts in F), and a
set of types (to characterize the problem objects). A planning
problem defines a set of objects (instantiations of types in
the domain), an initial state (I), and a set of goals (G). The
planning task should generate as output a sequence of actions
π = (a1, . . . , an) such that if applied in order would result in
a state s, where goals are true, G ⊆ s. Plan cost is commonly
defined as: C(π) =

∑
ai∈π c(ai).

We consider a multi-agent setting, so we have to plan
for a set of m agents, Φ = {φ1, . . . , φm}. We define the
MAP task as a set of planning subtasks, one for each agent,
M = {Π1, . . . ,Πm}. Each planning subtask can be defined

as a single-agent planning task, Πi = {Ai, Fi, Ii, Gi}. All
these components have a public part, that can be shared with
the rest of agents, and a private part. In order to differentiate
those parts, we provide each agent with the list of predicates
and types that are private. Thus,

• all actions of each agent will have a private and a public
part. An action can be totally public, totally private or a
mixture (some literals public and some private)

• propositions in Fi and Ii can be either private, if their
corresponding predicate is private, or public otherwise.
Those that are private to a specific agent, will be obfuscated
when shared among agents

• similarly, goals in Gi can also be either private or pub-
lic. Again, both will be shared, but private ones will be
obfuscated.

As an example, in the Satellite domain of the International
Planning Competition (IPC)1 several satellites must take im-
ages from different directions in space. The private types
are instrument and mode, since they are only handled by
each satellite. And private predicates are: supports, calibra-
tion target, on board, pointing, power avail, calibrated and
power on, since they only relate arguments that are private
to the satellite; the arguments of those predicates belong to
either a private type or the agents type (satellite). Since in
MAPR information on other agents is shared, MAPR obfus-
cates the private information of each agent when sharing it
with the rest of agents (details on obfuscation come in the
next section).

Multi-Agent Planning in MAPR

The main steps of the MAPR algorithm are to first assign
common goals to agents and then iteratively solve each agent
problem. Once an agent solves a problem, it obfuscates the
private components of the solution and communicates them
to the next agent. In turn, the next agent should solve its own
problem augmented with the obfuscated private part of the
solution of the previous agents and the public part of those
solutions. Therefore, MAPR sees multi-agent planning as
plan reuse. An important aspect of the algorithm consists
on how to assign public goals to agents. As we will explain
below, we have used several standard strategies. Figure 1
shows a high-level description of the algorithm. As we will
explain later, we use @ to express obfuscated information. It
takes as input a multi-agent planning task (domain, problem
and agents description as explained in the previous section),
a goal assignment strategy, the planner to be used by the first
agent, and a second planner (it might be the same one) to be
used by the following agents. The reason to use two planners
(that could be different) is that the second planner might
be a replanning system. Since all inputs and outputs are in
PDDL, we can use any state-of-the-art planner. The algorithm
is then composed of seven main steps: goal assignment;
ordering of agents; first planning episode; obfuscation of the
private part of a plan and communicating information to the
next agent; merging of a prior agents plan with a planning

1http://ipc.icaps-conference.org/

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

58

problem; subsequent planning episodes; and termination. As
a side comment on the algorithm, in the second and following
iterations, when j = 1, then j− 1 means j = m. So, the first
agent, instead of generating a new plan using the first planner,
it takes as input the obfuscated solution from the last agent
on the previous iteration. Next, we will describe in more
detail all of these steps except for ordering of agents. In this
paper, we left out all analysis of the influence of orderings
(of agents, goals, . . .). We just chose to use the ones provided
in the PDDL files. Next subsections describe in more detail
each component.

Function MAPR (M,GA,FP, SP): plan

M : multi-agent planning task
GA: goal assignment strategy
FP : first planner
SP : second planner

Assign subset of public goals to each agent φi using GA
Order agents
π1 ←First-Plan(FP, φ1)
j ← 1
Repeat until Termination
j ← j + 1
If j > m Then j ← 1
φj−1 Obfuscates its private information, S@

j−1:
• the plan π@

j−1 and
• the problem Π@

j−1 = {F@
j−1, A

@
j−1, I

@
j−1, G

@
j−1}

φj−1 Communicates S@
j−1 to agent φj

φj creates a new planning task, φ′j :
• it Merges its assigned problem Πj and S@

j−1

πj ←Second-plan(SP, φj)
If solved, return last plan

Figure 1: High level description of MAPR planning algorithm.

Goal Assignment
Given the total set of public goals G and a set of agents Φ,
MAPR first has to assign a subset of goals to each agent to
lower the planning complexity of each individual planning
episode.2 For each goal in g ∈ G and agent in φ ∈ Φ,
MAPR computes a relaxed plan from the initial state of each
agent, Ii, following the well known relaxed plan heuristic of
FF (Hoffmann & Nebel 2001).3 If the relaxed plan heuristic
detects a dead-end, then c(g, φ) = ∞. This will define
a cost matrix, c(G,Φ). Next, we have devised four goals
assignment schemes.

all-achievable: MAPR assigns each goal g to all agents φi
such that c(g, φi) <∞; that is, if the relaxed plan heuristic

2There could be in principle many alternatives to implement goal
assignment ranging from a coordinator agent who decides without
asking the rest of agents, to a model where agents negotiate goals.
We opted here for the first approach for implementation simplicity.

3The relaxed plan heuristic computes the cost of a plan that
could reach the goals from the initial state without considering the
deletes of actions.

estimates g could be reached from the initial state of φi, g is
assigned to φi.

rest-achievable: MAPR assigns goals iteratively. It first
assigns to the first agent φ1 all goals that it can reach (cost
less than∞). Then, it removes those goals from the goals
set, and assigns to the second agent all goals that it can reach
from the remaining set of goals. It continues until the goals
set is empty.

best-cost: MAPR assigns each goal g to the agent
that can potentially achieve it with the least cost,
arg minφi∈Φ c(g, φi)

load-balance: MAPR tries to keep a good work balance
among agents. It first computes the average number of goals
per agent, k = |G|

m . Then, it starts assigning goals to agents
as in best cost. When it has assigned k goals to an agent, it
stops assigning goals to that agent. The next goals that could
be assigned to this agent will be redirected to the second best
agent for each goal. At the end, agents will have either all k
goals, or m− 1 agents will have k goals and one agent will
have the remaining goals, | G | −k × (m− 1).

In configurations rest-achievable and best-cost, there can
be agents for which MAPR does not assign goals.

Planning
Once goals have been assigned to a subset of agents Φ′ ⊆ Φ,
planning starts by calling the first agent to solve its planning
task. The task will be composed of its private planning task
and its assigned public goals. If it does not solve the problem,
it just passes the empty plan to the next agent. It could
be either because there is no such plan, or because its plan
needs some propositions to be achieved by the rest of agents
plans. So, it will wait until, eventually, it will be called again
to solve again the planning problem, but with some extra
information coming from the other agents planning episodes.
The following planning episodes can either use a planner or
a replanner. In the latter case, apart from the domain and
problem definitions, replanners take a previous solution as
input (Fox et al. 2006).

Obfuscation
If the first agent solves the problem, then it cannot pass the
private information directly to the rest of agents. So, it ob-
fuscates (we will use obfuscate indistinctly of encrypt) the
private parts and outputs an augmented obfuscated planning
problem. There can be potentially many algorithms for en-
crypting/obfuscating the information. In this paper, we have
considered a simple version of this procedure. Depending
on the privacy commitment of the planning task, more com-
plex obfuscating algorithms could be used and the difference
will be: more time devoted to the obfuscating algorithm
(their time complexity is usually much less than the one
of planning); and potentially more space of the obfuscated
information (any obfuscating algorithm with a space polyno-
mial complexity could be used without affecting the overall
multi-agent planning complexity).

In our case, obfuscating is a two steps process. First,
a random substitution is generated for the names of all
private predicates, actions and objects. For instance, in

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

59

the Satellite domain, if a plan contains an instantiated ac-
tion as (calibrate sat1 inst1 Phen6), given that
calibrate and inst1 are private, MAPR would generate
a random substitution as:
σ ={(calibrate . g12) (inst1 . g23)}
The second step in obfuscation consists of applying the

substitution to the plan. An augmented obfuscated solution
S@
j consists of the obtained plan and the set of components

that are needed by the rest of agents to regenerate that solu-
tion. More specifically, if the plan of φj is πj = (a1, . . . , at),
it communicates S@

j = {π@
j , A

@
j , I

@
j , G

@
j } to φj+1:4

• the set of instantiated actions in the plan, after obfuscating
them, A@

j , by obfuscating the actions parameters (par(ai)),
preconditions (pre(ai)), and effects (eff(ai)):
A@
j = {a@i | ai ∈ πj , a@i = (par(ai) |σ, pre(ai) |σ, eff(ai) |σ)}

where we use the notation α |σ to represent the result of
applying substitution σ to formula α.

• the obfuscated plan, π@
j = {a@

1 , . . . , a
@
t }, since we can

use planning by reuse in the next iteration instead of plan-
ning from scratch.

• all goals (private and public, including goals of previous
agents), after obfuscating the private ones,5

G@
j = {g@ | g ∈ Gj , g@ = g |σ}

• initial state, after obfuscating the private information.
Since MAPR only needs to pass to φj+1 the relevant pri-
vate part of the state, it only considers the literals that are
preconditions of any action in the plan:

I@
j = {f@ | f ∈ Ij , ai ∈ πj , f ∈ pre(ai), f

@ = f |σ}

Communication
Each agent communicates S@

j to the next agent. We assume
there is no noise in the communication. The size of the
messages depends on: the plan size (number of actions in the
generated plans πi); the number of goals, where | G |≈| πi |;
and the size of the initial state. Thus, the size of messages is
linear with respect to the plan size and initial state size.

Merging
Each agent φj+1 receives S@

j and builds a new planning
problem by adding (appending) the instantiated actions to its
actions set, the goals to its own goals, the private previous
initial state to its own initial state and all new fluents to its
own fluents set. So:

Πj+1 = {F ′
j+1, Aj+1 ∪A@

j , Gj+1 ∪G@
j , Ij+1 ∪ I@j }

where L(A@
j) are all the literals in preconditions and ef-

fects of actions inA@
j and F ′j+1 = Fj+1∪G@

j ∪I@
j ∪L(A@

j).

Termination
Given that each planning task incorporates all previous goals,
including the private ones of the previous agents, as soon
as the last agent finds a plan achieving all goals, the whole

4Again, all ordering decisions are taken arbitrarily.
5Substitution only affects the private goals.

planning process finishes. If the last agent does not find a
plan and there is still time, we perform another iteration over
all agents again, but with the accumulation of goals. Starting
in the second iteration, as soon as an agent finds a solution,
then the whole planning task finishes, since it incorporates
all goals from all agents. The planning process will terminate
with failure only if the time or memory bounds are reached
or there is no solution.

Properties
As we mentioned before, our framework is suboptimal plan-
ning, so our approach is not optimal. Also, as in the case of
MAP-POP, our approach is incomplete (for a different reason).
In our case, take for instance the Logistics domain, where
each agent has to partially contribute to the solution. For
instance, in the standard agentification of the domain, trucks
and airplanes are agents. If a package has to be delivered
to a different city from a post-office of another city, we first
need a truck to move it from the source post-office to the
airport of that city and then use an airplane to move it to the
other city. Thus, the goal of having the package on another
city cannot be achieved only by any of these two agents in
isolation. So, they return no solution when executed. We
need to study in more depth the type of domains for which
MAPR is incomplete. Intuitively, MAPR will not work in any
domain where achieving one goal needs achieving a set of
subgoals (including it) and there is no single agent that is
able to achieve all subgoals in isolation.

Finally, MAPR is sound if the first and second planners
are. Intuitively, given that all goals (public and private) are
propagated, if the last agent solves the problem (in the first
round) or any agent solves the problem (in the next rounds),
the plan must be applicable from the initial state of the prop-
agated initial state and its application must result in a state
that achieves all goals.

Centralized vs. distributed planning
MAPR uses a decomposition scheme for multi-agent planning.
Thus, as explained in the introduction, it takes into account
two aspects of multi-agent planning: privacy and problem de-
composition. An alternative way of using the ideas presented
in this paper would be to let each agent initially obfuscate
all its private information, send it to a centralized planning
agent, and let that agent perform a centralized planning step
with all the obfuscated information.6 This approach would
certainly take into account the privacy issue, but would not
benefit from the problem decomposition directly (one could
always include a problem decomposition approach to the
centralized planning task). In the experiments, we include
comparison with a simpler centralized approach that takes the
original domain and problem, without the initial obfuscation
of information by agents. This can serve as a rough compari-
son between the two approaches (MAPR and an obfuscating
centralized approach) and also to analyze whether problem
decomposition helps on this kind of problems. We leave for
future work the exact comparison with such an approach,

6This has been noted by previous reviewers.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

60

including the initial obfuscating step, but results should be
similar to what we show.

Experiments and Results
In this section, we describe the experiments we have per-
formed to compare our work with similar work. From an
implementation point of view, our agents have been coded
as function calls, so there is no overhead due to communica-
tion delays. Since the information that is being exchanged
among agents is linear with respect to the size of plans and
initial states, we do not expect a big overhead in planning
time when transmitting it through a different communication
channel. We have used the following experimental setup for
comparison:

Comparing approaches. We compare against MAP-
POP (Torreño, Onaindı́a, & Sapena 2012), since it represents
the current state-of-the-art on suboptimal multi-agent plan-
ning. PLANNINGFIRST (Nissim, Brafman, & Domshlak
2010) could only solve the first two problems in the Rovers
domain and the first problem in the Satellite domain. Other
approaches, as the one presented in (Jonsson & Rovatsos
2011), deal with optimal planning. MAP-POP generates par-
tially ordered plans with the goal of minimizing makespan,
while MAPR generates totally ordered plans, with the goal of
minimizing plan quality. Thus, we only compare with respect
to planning time, since it is difficult to compare makespan
to plan cost. We have also included the results of running a
centralized approach (LAMA-FIRST). Given that in the IPC
there is no multi-agent track, problems do not have private
data, so there is no way to benefit from MAPR in those do-
mains compared against a centralized approach. We show
the results with LAMA-FIRST as a reference point that will
not be possible to use in case of private data, and a close
approximation to an obfuscating centralized approach, as
mentioned before.

Domains. We have used the domains presented in pre-
vious works (Torreño, Onaindı́a, & Sapena 2012): Rovers
and Satellite (we used the definitions of problems that they
built from the problems of the IPC). The Satellite domain is
loosely-coupled; satellites can operate without interaction.
The Rovers domain is more tightly-coupled given that a rover
might take a sample that is then unavailable to other rovers.
In (Torreño, Onaindı́a, & Sapena 2012), the authors also
report results in the Logistics domain. As explained in the
previous section, our agents are not able yet to provide par-
tial solutions to problems (incomplete plans) in this kind of
domain.

Finally, we have also defined a new domain, that we call
Port, to show how our approach works in a domain where
agents have private information (specially goals). It is in-
spired by a real world port where there is an area in the dock
with towers of containers with height of at most k containers
(we used k = 3 in the experiments) placed in a grid of n×m
(so, in comparison with the Blocksworld domain, there are
fixed positions in the table, and a max height of towers). The
port has a set of hoists, one for each ship that is waiting to
be loaded with containers. Initially, all containers are in the
dock, and the goals are to load all of them in the ships; the
goals establish to which ship each container should go and

on top of which other container. In this domain, we have
defined hoists to be the agents, and all the goals to be private.
Thus, each hoist has a set of containers that it has to load in
its corresponding ship forming towers also specified in the
goals. Given that all goals are private, there are no public
goals, and all goal assignment strategies obviously perform
the same assignment: a null assignment of public goals to
each hoist. Also, this domain is more tightly-coupled than the
other two, given that there is high interaction among private
goals of agents. In order for a hoist to load a container into a
ship, it might have to move around the containers in the dock
(the container might be the bottom container in a tower) and
those containers are the ones that have to be loaded in other
ships. So, there are both positive and negative interactions.

Goal assignment. We have used the four defined methods:
all-achievable (AA), rest-achievable (RA), load-balance (LB)
and best-cost (BC).

Planners. We have used FastDownward code for gen-
erating the plan for the first agent (Helmert 2006; Richter
& Westphal 2010). More specifically, we have used only
one run of lazy greedy best first search with actions costs,
and FF and LM-cut heuristics with preferred operators. We
call it LAMA-FIRST. We have used LAMA-FIRST and LPG-
ADAPT (Fox et al. 2006) for the successive planning episodes.
While LPG-ADAPT is a replanning technique, LAMA-FIRST
is not. We still call planning by reuse the configuration that
uses LAMA-FIRST, because it can reuse the actions in the pre-
vious plans, given that they are added to the domain model
and are needed to achieve private goals of other agents. LPG-
ADAPT uses stochastic local search. Currently, there is a
discussion on the planning community on how many times
should stochastic planners be executed for each problem. We
followed current practice (as in the IPC), making only one
execution per problem.

Time bound. We have used 600 seconds, given that we
wanted to compare with the results in (Torreño, Onaindı́a, &
Sapena 2012) and most problems were either solved in 600
seconds or not solved.

In Table 1 we show the results of time to compute a solu-
tion in Rovers. Rows represent IPC problems and number of
agents (rovers), #A. The next two columns are the planning
time of MAP-POP (MAP) as reported in (Torreño, Onaindı́a,
& Sapena 2012) and LAMA-FIRST (LF). The following four
columns are the planning time of the use of LAMA-FIRST
as the replanning system using the four different goal as-
signment strategies. The final four columns represent the
planning times using LPG-ADAPT as the replanning system.
The empty cells are unsolved problems by the corresponding
technique. We used a 2.6GHz Intel Core i7 with 16Gb of
RAM (though we run the experiments with a maximum of
4Gb and we did not run out of memory on any problem)
running MacOS X.

MAPR solves all IPC instances with almost all configura-
tions in up to three orders of magnitude less time. MAP-POP
solves 14 problems. The combination of a powerful plan-
ner, LAMA, with the assignment of goals and the handling
of private data makes MAPR much more effective than shar-
ing decisions on partial order plans (MAP-POP), or solving
the distributed CSP task (PLANNINGFIRST). A big advan-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

61

LF LPG-ADAPT
P (#A) MAP LF AA RA BC LB AA RA BC LB
1 (1) 0.44 0.00 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.15
2 (1) 0.34 0.00 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.16
3 (2) 0.8 0.00 0.36 0.36 0.36 0.35 0.37 0.36 0.37 0.37
4 (2) 0.9 0.00 0.36 0.35 0.35 0.35 0.38 0.36 0.39 0.38
5 (2) 2.15 0.00 0.40 0.41 0.38 0.38 0.40 0.39 0.38 0.39
6 (2) 2.17 0.00 0.44 0.43 0.43 0.43 0.43 0.41 0.41 0.42
7 (3) 3.75 0.00 0.69 0.18 0.39 0.62 0.65 0.18 0.40 0.59
8 (4) 60.35 0.01 1.01 0.42 0.64 0.90 0.92 0.40 0.64 0.90
9 (4) 15.77 0.01 1.01 0.69 0.96 0.90 0.94 0.65 0.89 0.89
10 (4) 0.01 1.09 0.46 0.45 0.96 0.96 0.43 0.43 0.90
11 (4) 10.39 0.01 1.08 0.47 0.72 0.97 0.96 0.44 0.67 0.90
12 (4) 3.17 0.00 1.01 0.65 0.92 0.90 0.95 0.66 0.90 0.92
13 (4) 0.02 1.18 0.54 0.55 1.17 1.03 0.47 0.51 0.98
14 (4) 47.10 0.01 1.14 0.52 0.51 0.98 1.17 0.47 0.48 0.93
15 (4) 20.68 0.01 1.24 0.59 0.54 1.14 1.06 0.51 0.48
16 (4) 195.97 0.02 1.32 0.28 0.56 1.18 1.12 0.27 0.50 0.99
17 (6) 0.03 2.17 1.23 1.64 2.06 1.66 1.03 1.38 1.63
18 (6) 0.04 2.63 1.21 1.51 2.28 1.84 0.93 1.18 1.71
19 (6) 0.13 2.60 1.54 1.52 3.83 1.79 1.12 1.02 1.87
20 (8) 0.14 5.12 1.34 5.14 3.99 2.76 0.86 2.46

Table 1: Planning time (in seconds) in the Rovers domain.

tage over MAP-POP and other approaches is that we require
much less communication. We only communicate after each
planning episode finishes. We also see that if we employ a
replanning system, as LPG-ADAPT, results improve over
using LAMA-FIRST. In relation to goal assignment strategies,
the rest-achievable alternative is the fastest one.

If we analyze plans cost, the reference system, LAMA-
FIRST, generates a total cost of all solutions equal to 704.7
For the configurations where we run LAMA-FIRST as the
replanning system, the total cost was: AA, 732; RA, 803;
LB, 763; and BC, 744. So, if we consider plan quality, the
best option consists of assigning every goal to all agents
that can achieve it, so they have a global view of all goals
and are able to obtain reasonably good costs. Given that
the problems are small, the time to compute them is only
a fraction longer than the one of the other alternatives. As
expected also, the second best option is to assign goals with
the best-cost alternative. In case we run LPG-ADAPT as the
replanning system, we had the total costs as: AA, 883; RA,
865; LB, 695 (*); and BC, 837 (*). Configurations LB and
BC are marked given that they solved one less problem, so the
total quality cannot be compared. In any case, LPG-ADAPT
most often provides worse solutions than LAMA-FIRST, as
expected, given that it performs stochastic local search, while
LAMA-FIRST performs best-first search.

Table 2 shows the results of planning time for the Satellite
domain. The analysis is similar to the one in the Rovers
domain. We obtain again an improvement in some cases
of one order of magnitude over MAP-POP. In this domain,
given that agents are loosely-coupled (there is nothing they

7In this domain, all actions costs are one, so cost is equivalent to
solution length.

delete that the rest of agents need for their plans), by using a
distributed approach we can even get slightly better perfor-
mance than the centralized approach on some configurations.
Each single-agent problem only focuses on the agents goals
and actions. Thus, the search space is much smaller and the
planner does not have to consider many more alternatives
as when it solves the whole problem with the centralized
configuration.

Table 3 shows the results in the Port domain. We do not
compare against MAP-POP because MAP-POP cannot handle
private goals. The first column shows the number of agents
(hoists), the second one the number of goals (containers). The
third column shows the results (time and quality - solution
length -) of a centralized approach, by using LAMA-FIRST,
and the next columns the results of our multi-agent approach.
Since all goal assignment strategies generate the same prob-
lems here (all are private goals), the table only shows results
for the best-cost strategy (the results in terms of time are
very similar among them, and number of nodes and solution
quality are the same). As one can see, the multi-agent ap-
proach is very competitive in this case against a centralized
approach. It solves the same number of problems (though not
the same ones), in some cases it generates solutions faster,
and many times even with better quality. Again, the central-
ized approach is only shown as a reference, since it could not
be applied in the real world, given that it is a problem with
only private goals.

Related Work
MAP has been approached from both the multi-agent and the
planning communities (de Weerdt & Clement 2009). Most
previous work in the planning community defined agents as

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

62

LF LPG-ADAPT
P (#A) MAP LF AA RA BC LB AA RA BC LB
1 (1) 0.25 0.00 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.14
2 (1) 1.18 0.00 0.14 0.14 0.14 0.13 0.14 0.14 0.13 0.15
3 (2) 0.71 0.00 0.36 0.35 0.32 0.33 0.39 0.36 0.37 0.37
4 (2) 0.96 0.00 0.38 0.16 0.16 0.35 0.38 0.16 0.15 0.38
5 (3) 1.72 0.02 0.62 0.60 0.58 0.59 0.59 0.58 0.61 0.62
6 (3) 1.62 0.00 0.58 0.37 0.57 0.58 0.61 0.37 0.60 0.61
7 (4) 2.94 0.01 0.88 0.63 0.58 0.84 0.89 0.63 0.61 0.87
8 (4) 4.21 0.02 0.96 0.43 0.64 0.92 0.91 0.41 0.64 0.90
9 (5) 7.51 0.02 1.27 0.72 0.88 1.16 1.25 0.67 0.89 1.14
10 (5) 5.71 0.16 1.34 0.48 0.68 1.21 1.34 0.45 0.65 1.16
11 (5) 5.27 0.03 1.38 1.35 1.23 1.31 1.22 1.16 1.13 1.19
12 (5) 8.25 0.64 1.62 0.62 0.93 1.54 1.33 0.54 0.77 1.29
13 (5) 17.87 7.33 2.30 1.84 1.35 2.32 1.46 1.14 1.05 1.36
14 (6) 11.93 0.34 1.98 1.59 1.51 1.83 1.55 1.26 1.24 1.56
15 (8) 33.47 0.10 2.68 2.65 2.38 2.14 2.09 2.05 2.11
16 (10) 0.10 3.55 1.28 1.52 3.23 2.63 1.02 1.26 2.70
17 (12) 0.11 4.08 2.16 2.11 3.74 3.18 1.54 1.78 3.21
18 (5) 6.57 0.30 1.51 1.20 1.55 1.53 1.23 0.95 1.23 1.24
19 (5) 1.88 2.18 1.29 2.11 1.46 0.86 1.29 1.40
20 (5) 1.62 2.22 0.86 1.28 2.35 1.60 0.71 0.90 1.46

Table 2: Planning time (in seconds) in the Satellite domain.

LAMA-FIRST MAPR (LAMA-FIRST) MAPR (LPG-ADAPT)
#A #Goals Time (Quality) Time (Quality) Time (Quality)
2 5 0.10 (16) 1.61 (18) 0.76 (12)
2 10 1.40 (28) 2.58 (20) 0.77 (28)
2 20 296.60 (94)
2 30 711.78 (152) 268.52 (128) 150.07 (242)
5 5 0.23 (12) 1.69 (12) 1.08 (12)
5 10 1.15 (20) 6.36 (20) 18.26 (20)
5 20 234.35 (74) 67.90 (64) 122.36 (58)
5 30 33.94 (92) 75.06 (62)
10 10 2.58 (30) 8.37 (20) 3.50 (26)
10 20 28.55 (48) 53.39 (40) 91.26 (48)
10 30 92.41 (76) 162.41 (66)
10 40 350.39 (84)
15 10 3.89 (24) 12.26 (36) 5.39 (46)
15 20 37.44 (44) 75.95 (42) 221.32 (48)
15 30 164.73 (60) 187.24 (60) 734.04 (90)
20 10 5.49 (24) 19.77 (20) 16.24 (22)
20 20 32.55 (42) 92.00 (42) 52.96 (58)
20 30 202.00 (68) 200.45 (60) 268.76 (82)
20 40 390.15 (80) 491.46 (80)

Table 3: Planning time (in seconds) and quality (solution length) in the Port domain. He have highlighted the results where
MAPR improves over LAMA-FIRST in either time or quality.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

63

resources and used centralized planning to solve multi-agent
planning tasks. Another line of work allowed each agent
to generate separate plans, and then tried to merge those
plans (Foulser, Li, & Yang 1992). Usually, there was no con-
sideration of private goals or actions. Recently, there has been
a renewed interest on developing multi-agent planning tech-
niques that explicitly consider the agents private information
in the suboptimal (Dimopoulos, Hashmi, & Moraitis 2012;
Nissim, Brafman, & Domshlak 2010; Torreño, Onaindı́a, &
Sapena 2012) and optimal settings (Nissim & Brafman 2012;
Jonsson & Rovatsos 2011).

In (Jonsson & Rovatsos 2011), its authors present a MAP
approach that is based on an iterative refinement process of
successive single-agent planning episodes. They start the
planning iterations using an arbitrary plan in the joint-actions
space. And then they perform successive single-agent cost-
optimal planning steps to obtain better plans. We perform
a similar iterative single-agent process, but MAPR differs in
that its plans are totally-ordered and suboptimal.

In (Dimopoulos, Hashmi, & Moraitis 2012), the authors
present µ-SAT, that uses SAT planning for generating indi-
vidual agents plans and combining the solutions. It focuses
on two agents problems, while we are not restricted to the
number of agents in the problem. µ-SAT also considers the
task of minimizing makespan, while we deal with totally-
ordered plans. In their experiments, though, they only report
on suboptimal planning. In (Nissim, Brafman, & Domshlak
2010), the authors implement ideas published in previous
papers on using distributed CSPs to solve the planning task.
MAP-POP (Torreño, Onaindı́a, & Sapena 2012) is based on
agents that share their public information when performing
partial-order planning. They also used an iterative refinement
process that is able to work on both loosely-coupled and
tightly-coupled domains.

A difference with these approaches is that they generate
either partial or parallel plans. In the case of MAPR, our
plans are totally-ordered (sequential) plans. In order to com-
pare them with respect to the quality of solutions, we would
have to transform totally-ordered plans into less constrained
plans. Computing the optimal partially-ordered plan from a
totally-ordered plan is NP-hard in general (Bäckström 1998).
However, there are suboptimal algorithms that take linear
time and have been shown adequate for this task (Veloso,
Pérez, & Carbonell 1990). The other approaches are able
to share incomplete plans, while MAPR in its current ver-
sion is only able to share complete plans. Thus, in domains
where agents cannot achieve goals just by themselves or com-
plete plans from the other agents, they will be able to solve
them. Another main difference with many of the previous
approaches is that they do not share the private information,
nor they can handle private goals.

While we focus on deterministic MAP, there has been
plenty of work on solving non-deterministic MAP tasks (Szer,
Charpillet, & Zilberstein 2012). The advantage of these
works over MAPR is that they can deal with uncertainty. But,
usually, they do not scale up as deterministic MAP.

Conclusions
We have presented in this paper MAPR, a multi-agent planning
technique for tasks where agents share public and relevant
private information (after obfuscating it for privacy). MAPR
calls each agent with the plans, goals and state literals from
previous agents in order to iteratively compose plans. Since
they can use the private information from previous agents,
they can re-achieve the private goals of other agents, while
reasoning at the same time on how to achieve the current
agent goals as well as the other agents public goals.

We have shown results where this approach improves in up
to three orders of magnitude the efficiency on planning time
over similar MAP approaches. In the experiments, we have
also compared four different strategies for assigning public
goals to agents. We have seen that their performance is quite
similar independently of the replanning technique we used,
though rest-achievable obtains better results in terms of plan-
ning time and all-achievable in terms of plan quality. We have
also used two different replanning alternatives: a determinis-
tic best-first approach (LAMA-FIRST) and a stochastic local
search replanning algorithm (LPG-ADAPT). LPG-ADAPT
is usually faster, while LAMA-FIRST provides better plan
quality.

As current and future work we are setting up subsets of
agents that together can achieve a subset of goals. We expect
to solve problems in domains where agents have to collabo-
rate in order to solve the complete problem, such as Logistics.
Also, we would like to perform an exact comparison with an
obfuscating centralized approach.

Acknowledgments
We would like to thank the help from Alejandro Torreño
and Raz Nissim. This work has been partially supported by
MICINN projects TIN2011-27652-C03-02 and INNPACTO
IPT-370000-2010-008.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

64

References
Bäckström, C. 1998. Computational Aspects of Reorder-
ing Plans. In Journal of Artificial Intelligence Research,
volume 9, 99–137. Morgan Kaufmann Pub. Inc.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems.
In Proceedings of ICAPS’08.
Cox, J. S., and Durfee, E. H. 2004. Efficient mechanisms
for multiagent plan merging. In International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS’04), 1342–1343. Los Alamitos, CA, USA: IEEE
Computer Society.
Cox, J. S., and Durfee, E. H. 2005. An efficient algorithm
for multiagent plan coordination. In International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS’05), 828–835. IEEE Computer Society.
de Weerdt, M., and Clement, B. 2009. Introduction to plan-
ning in multiagent systems. Multiagent and Grid Systems
5(4):345–355.
Dimopoulos, Y.; Hashmi, M. A.; and Moraitis, P. 2012. µ-
satplan: Multi-agent planning as satisfiability. Knowledge-
Based Systems 29:54–62.
Foulser, D.; Li, M.; and Yang, Q. 1992. Theory and algo-
rithms for plan merging. Artificial Intelligence 57(2-3):143–
181.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings
of the Sixteenth International Conference on Automated
Planning and Scheduling (ICAPS’06), 212–221.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS’11), 114–121.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A*
for parallel and distributed systems. In Proceedings of the
11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS).
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm.
In Proceedings of 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’10),
1323–1330.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2012. MAA*:
A heuristic search algorithm for solving decentralized
POMDPs. CoRR abs/1207.1359.
Torreño, A.; Onaindı́a, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete information.

In Proceedings of the European Conference on Artificial
Intelligence (ECAI’12).
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In Pro-
ceedings of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control, 207–212. San Diego,
CA: Morgan Kaufmann.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

65

How to Repair Multi-agent Plans: Experimental Approach

Antonín Komenda1 and Peter Novák2 and Michal Pěchouček1

{komenda|pechoucek}@agents.fel.cvut.cz, P.Novak@tudelft.nl
1Dept. of Computer Science and Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague, Czech Republic
2Dept. of Software and Computer Technology, Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, The Netherlands

Abstract

Deterministic domain-independent multi-agent planning is an
approach to coordination of cooperative agents with joint
goals. Provided that the agents act in an imperfect environ-
ment, such plans can fail. The straightforward approach to
recover from such situations is to compute a new plan from
scratch, that is to replan. Even though, in a worst case, plan
repair or plan re-use does not yield an advantage over replan-
ning from scratch, there is a sound evidence from practical
use that approaches trying to repair the failed original plan
can outperform replanning in selected problems. One of the
possible plan repairing techniques is based on preservation of
the older plans.
This work experimentally studies three aspects affecting ef-
ficiency of plan repairing approaches based on preservation
of fragments of the original plan in a multi-agent setting. We
focus both on the computational, as well as the communi-
cation efficiency of plan repair in comparison to replanning
from scratch. In our study, we report on the influence of the
following issues on the efficiency of plan repair: 1) the num-
ber of involved agents in the plan repairing process, 2) inter-
dependencies among the repaired actions, and finally 3) par-
ticular modes of re-use of the older plans.

Motivation
Consider a team of heterogeneous robots working together
so as to execute a mission in an environment. Since the
robots feature heterogeneous capabilities, it might well be
that none of them is able to complete the mission on its
own, however by a careful coordination and teamwork, they
should be able to reach the joint objective. The team of phys-
ical robots is embodied in a dynamic environment in which
various events and plan execution interruptions occur and
most importantly, in which actions of the agents can fail. To
execute their mission, the agents must be able to cope with
such a dynamics on both, the individual, as well as the coor-
dination level. Here we focus on the problem of multi-agent
plan repair which tackles such issue.

There are several approaches capable to drive multi-agent
team activities in an environment with an a priori unknown
dynamics. Firstly, there is a body of literature dealing with
and extending models of decentralized partially observable

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Markov decision processes (Dec-POMDPs) (Bernstein et al.
2002). A Dec-POMDP model leads to computation of a pol-
icy for the agents in the environment ensuring that by follow-
ing it, the team reaches the joint goal. The model assumes
only partial observability of the environment, a feature ca-
pable to capture various eventualities which could occur in
the environment. These, however, have to be known a pri-
ori, so that a probabilistic model of action outcomes can be
constructed before planning. Secondly, single-agent contin-
gency (Fu et al. 2011) and conformant (Palacios and Geffner
2009) planning techniques facilitate classical-style planning
for domains with non-probabilistic uncertainty in either ac-
tion outcomes or state the system happens to be in. How-
ever, again, in order to plan for actions in such domains,
the possible contingencies and action models in the environ-
ment must be known before the planning phase. The above
discussed approaches do not scale well to larger domains,
especially when the model of run-time action failures and
events which could occur is a priori unknown.

Recently, in (Komenda, Novák, and Pěchouček 2012) the
authors proposed an approach of multi-agent (MA) plan re-
pair (MA-REPAIR), based on multi-agent planning (MA-
STRIPS) as introduced in (Brafman and Domshlak 2008).
MA-STRIPS is an approach to planning for teamwork and
coordination extending the classical STRIPS-based planning
techniques. According to the MA-REPAIR approach, the
multi-agent team computes a team plan using a fully decen-
tralized MA-STRIPS planning algorithm, and subsequently
executes the plan, while at the same time monitoring of pos-
sible failures of plan execution. Upon an occurrence of such
a failure, the team stops execution and invokes a plan repair
algorithm and fixes the failed joint plan in order to reach a
joint goal state from the state in which the failure occurred.

It can be argued that plan re-use in a single-agent context
does not yield much advantage with respect to the compu-
tational complexity in the worst case (Nebel and Koehler
1995), since costly attempts to fix a failed plan sometimes
lead to replanning from scratch anyway. In multi-agent and
multi-robot settings, such as those involving teams of under-
water or aerial robots, where communication is unreliable
and costly, however, it is often the communication which is
of higher priority than the computational complexity.

In (Komenda, Novák, and Pěchouček 2013), the authors
proposed prefix and suffix-based approaches to MA plan re-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

66

pair. Their work showed that these repairing approaches
save communication in contrast to replanning from scratch
in tightly coupled problems with action failures, however a
research question which plan repairing techniques are more
appropriate for which planning domains and problems re-
mained unanswered. In this work, we generalize the prefix
and suffix-based approaches from their work and present a
study on how particular multi-agent plan repair techniques
and particular parametrizations perform in different plan-
ning domains.

Multi-agent planning & repair
The problem of multi-agent plan repair as defined
in (Komenda, Novák, and Pěchouček 2013) is a tuple Σ =
(Π,P, sf , k), where

1. Π = (L,A, s0, Sg) is a MA-STRIPS multi-agent planning
problem over

(a) a set of agents A = α1, . . . αn, each characterized
by a set of STRIPS actions (over a propositional lan-
guage L) it can perform in an environment the agents
operate in. I.e., αi =

{
〈pre(a), add(a), del(a)〉 |

pre(a), add(a), del(a) ⊆ L
}

; and
(b) an initial state s0 ∈ 2L the agents start to operate in,

together with a specification of a set of final states Sg ⊆
2L characterizing their joint objective(s).

2. an original multi-agent plan P solving the problem Π, ex-
ecution of which failed; and finally

3. a state sf ∈ 2L which the system happens to be in, unex-
pectedly after the plan execution failure occurrence of the
plan execution step k ∈ 1..|P|.

A solution to the MA plan repair problem Σ = (Π,P, sf , k)
is a multi-agent plan P ′ solving a modified planning prob-
lem Π′ = (L,A, sf , Sg). A multi-agent plan is a sequence
of n-tuples, joint actions, with n = |A| corresponding to
the number of agents in the team A. Thereby a multi-agent
plan is a sequence of synchronized actions of the individual
agents. In order to constitute a valid multi-agent plan for a
planning problem Π, firstly, each agent executing its corre-
sponding sub-sequence of primitive actions must be capable
to perform them, that is, ai ∈ αi ∈ A for each individ-
ual action in every joint action (a1, . . . , an) constituting the
k-th step of the plan. Secondly, synchronized execution of
the sequence of joint actions must lead from the initial state
to some final state prescribed by the planning problem def-
inition. That means all the inter-dependencies between the
actions of the individual agents imposed by their precondi-
tions must be satisfied along the plan execution.

In a case there are several plans repairing the original
failed plan P , the idea is to prefer those solutions, which
preserve, that is re-use, parts of the original plan as much as
possible. More formally, given two plans P1,P2 repairing
the same multi-agent plan P , we say that P1 is more pre-
serving than P2 iff diff (P1,P) ≤ diff (P2,P), where diff
denotes the edit distance, i.e., the Levensthein distance (Lev-
enshtein 1966) between the two plans given as arguments.
Edit distance of two strings equals the minimal number of

primitive edits. The adaptation to multi-agent plans corre-
sponds to primitive edits being joint action addition, joint ac-
tion deletion and a primitive action replacement operations.
For further details, refer to the original papers (Brafman and
Domshlak 2008; Komenda, Novák, and Pěchouček 2013).

Besides considering straightforward replanning from
scratch, that is invoking the underlying multi-agent planner
at the point of a failure and then executing the computed plan
right away, in (Komenda, Novák, and Pěchouček 2012), the
authors present two main approaches to solving multi-agent
plan repair problems coined back-on-track and lazy repair
respectively. Informally, the back-on-track approach tries to
fix the prefix of the failed plan by computing a plan from
the state in which the system happens to be right after the
detection of a plan execution failure to some state along an
ideal failure-free execution of the original plan. The result-
ing multi-agent plan re-uses some suffix of the original plan,
if possible, and extends the plan at its beginning. The idea
underlying the lazy repair is complementary. Lazy repair
takes the remainder of the original plan, re-uses all its ac-
tions which still can be executed according to their precon-
ditions regardless of the outcome and completes the plan to
some goal state of the planning problem. This way, the re-
sulting plan is composed of re-used prefix parts of the origi-
nal plan with an appended suffix of some new repaired plan.

They also experimentally show that in some domains,
these approaches lead to significant savings of communica-
tion, as well as computational resources in comparison to re-
planning from scratch in selected problems. Both algorithms
first formulate a modified multi-agent planning problem and
rely on the underlying multi-agent planner to compute a plan
fragment used for re-composition into a solution plan repair-
ing the original failed one.

A straightforward extension of the approach is to consider
re-use of different parts of the original failed plan by com-
bining parts of the prefix vs. suffix appending plan repair.
Consider e.g., a repairing strategy according to which the
back-on-track algorithm would not return back to an arbi-
trary state along the original plan’s failure-free execution,
but rather would consider only returning to the next few
states presumed after the point of failure—this is approxi-
mately the way GPS navigation devices tend to fix a route
after a missed junction point. Clearly, in some domains, this
can be a beneficial approach, however not in all. An alterna-
tive idea would be to select only a minimal relevant subset
of agents which should participate in the plan repair process,
thereby constraining the inter-agent communication only to
a subset of the agent team involved. In result, further reduc-
tion of communication needed for planning can be achieved.

Given the two above intuitions, we formulate first two hy-
potheses tackled in this paper.

Hypothesis 1 Repairing algorithms minimizing the number
of agents involved in the plan repairing process tend to gen-
erate lower computational and communication overheads
than other strategies.

Hypothesis 2 Repairing algorithms reusing the original
plan as a suffix generate lower computational and communi-
cation overheads than the repairing algorithms reusing the

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

67

Algorithm 1 MA plan execution process with generalized
multi-agent plan repairing algorithm.
Input: A MA planning problem Π = (L,A, s0, Sg).
Input: Parameters f and g bounding the maximal length for

reusing of the original plan as prefix and suffix.
1: P = MA-Plan(Π)
2: if P = ∅ then return fail
3: k = 1
4: repeat
5: agents perform P[k]
6: if failure detected then
7: retrieve the current state s from the environment
8: // begin: plan repairing Σ = (Π,P, s, k)
9: f∗ = f ; g∗ = g

10: repeat
11: Ppre = ExecReminder(P[k..(k + f∗)], s)
12: Psuf = P[(|P| − g∗)..|P|]
13: P∗ = MA-Plan((L,A,s⊕ Ppre, Sg	Psuf))
14: if P∗ 6= ∅ then
15: P = Ppre · P∗ · Psuf

16: break
17: end if
18: until tested all pairs of f∗ ∈ f..0 and g∗ ∈ g..0
19: if P = ∅ then return fail
20: // end
21: k = 1
22: else
23: k = k + 1
24: end if
25: until k > |P|

original plan as a prefix in domains featuring actions with
long-term dependencies.

A long-term dependency can be visualized as a tree of con-
secutively dependent actions. If an action in the root of such
tree has to be repaired, intuitively, it is a better idea to try to
fix it as soon as possible, because not doing so can cause a
snowball effect of increasing number of failing actions.

Further, we define the used algorithm, formulate last hy-
pothesis and treat the hypotheses with three experiments.

Generalized repair algorithm
As outlined in the previous section, the algorithm used

in the following experiments is a generalization of the lazy
and back-on-track approaches with a number of additional
modifications described in detail in the respective sections.
The algorithm with the complete plan execution, monitoring
and repair scheme is outlined in Algorithm 1.

The algorithm takes a multi-agent planning problem Π
and two integer parameters f and g limiting the number of
actions, which upon a detection of a failure can be reused
during plan repair process from the currently executed plan
P as a prefix or a suffix of the repairing plan. The process
starts with a computation of the initial plan, which is subse-
quently executed. k denotes the counter of the current step
in the plan execution. As the plan execution proceeds, in

each step, all the agents perform their individual actions pre-
scribed by the k-th joint action in the plan P , denoted P[k].

In the case a failure is detected by the team, current state
after the failure is retrieved and the plan repairing algorithm
for the plan repairing problem Σ = (Π,P, s, k) is invoked.
In each plan repairing attempt a modified multi-agent plan-
ning problem is formulated according to the current values
of f∗ and g∗ prescribing the length of the re-used prefix and
suffix of the original plan. In the case a repairing plan is
found, the repairing process finishes, otherwise another at-
tempt with a different combination of f∗ and g∗ is carried
out. The resulting repairing plan consists of three compo-
nents: the preserved prefix of the original plan Ppre reusing
P[k..(k + f∗)], a newly computed infix P∗ and suffix part
Psuf reusing P[(|P| − g∗)..|P|], again preserving a part of
the original plan P .

The preserved prefix part of the original plan cor-
responds to an executable reminder fragment of P ,
ExecReminder(P, s), a selection of still applicable joint
actions given the failure which occurred. The actions with
unmet preconditions are simply omitted. Additionally, the
prefix Ppre is based only on a part of the original plan effec-
tively re-using f∗ actions beginning after the k-th action of
the original plan P . The suffix part Psuf is obtained as the
last g∗ actions of the original plan P .

Finally, the infix part of the plan is computed by invoca-
tion of the underlying multi-agent planner algorithm MA-
Plan proposed by Nissim, et al. (Nissim, Brafman, and
Domshlak 2010). The initial state of the modified plan-
ning problem is the state in which a failure-free execution
of the repairing prefix Ppre would result in starting from
the state s and it is denoted as s ⊕ Ppre. The set of goal
states corresponds to a back-propagation of effects of the
preserved suffix component Psuf from the set of original
goals Sg . More formally, the back-propagation operator
	 : 2L ×

⋃
a∈α∈A

a → 2L for a single action is defined as

s 	 a = s ∪ del(a) \ add(a). It extends to sequences of
actions as follows.
Definition 1 (proposition back-propagation) Let S′ be a set
of propositions back-propagated from a set of propositions
S using a MA plan P denoted as	 operator extension S′ =
Sg	P iff S′ = (· · · ((S	P[m])	P[m−1])	· · ·)	P[0].
In the case a multi-agent planner finds a plan for the mod-
ified planning problem, the repairing plan takes the form
Ppre · P∗ · Psuf and gets executed from that point on. In
the case no repairing plan can be found, the algorithm at-
tempts the repair for a different combination of f∗ and g∗
until either a repairing plan is found, or it turns out that no
repair for the failure exists.

The parametrization of the repairing process based on
the f and g parameters opens an interesting research ques-
tion, how do different combinations of the prefix and suffix
preservation parameters influence the efficiency of the plan
repairing process. Let m be the length of the re-usable part
of the original plan P , i.e., m = |P| − k. Obviously, for
f + g < m there will be a gap, which has to be filled by a
result of the inner planning process, in other words the orig-
inal plan was underused. Reversely, for f + g > m there

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

68

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109 1010

C
om

m
un

ic
at

io
n

[B
]

Time [ms]

Relation of time and communication complexity

Coop. pathfinding
Logistics

Rovers
Satellites

Figure 1: Relation between communicated bytes and com-
putation time for solving the plan repairing problems.

will be an overlap, which has to be reverted, i.e., the origi-
nal plan was overused. Intuitively, these cases are in a sense
pathological. In a consequence, we propose the third, final
hypothesis of this paper.

Hypothesis 3 Repairing algorithms overusing or underus-
ing the original plan tend to generate higher computational
overheads than other algorithms.

Experimental setup
The experiments were conducted in a synthetic setting, a
simulated world with a group of agents using the plan ex-
ecution, monitoring and repair loop. The world is fully ob-
servable for the agents. All failures of plan execution were
generated by the simulator according to a uniform distribu-
tion over time and parametrized by a probability p of failure
occurrence in each step for each experiment. A failure is
generated only if there exists a plan to a goal state, which
obviates problems with irreversible actions. The failures are
handled by the agents immediately upon detection.

A failure is simulated by not-execution of some of the
agent actions from the actual plan step. The individual ac-
tion is chosen according to an uniform probability distribu-
tion over the individual actions within a joint action. As
showed in (Komenda, Novák, and Pěchouček 2013), failure
models with more radical impacts on the environment (e.g.,
state perturbations) decrease usability of the plan repairing
approaches. Our motivation in this work is to study types of
plan repairing, therefore we stick only to action failures.

For the implementation of the experimental setup and the
repairing algorithms, we used a centralized world simula-
tor integrating the multi-agent domain-independent planner
MA-Plan (Nissim, Brafman, and Domshlak 2010). Each
agent runs in its own thread and they deliberate asyn-
chronously. The experiments were executed on 8-core pro-
cessor at 3.6GHz with Java VM limited to 2.5GB of RAM.

For the experiments, we used four planning domains.
Three of them originate in the standard single-agent IPC

planning benchmarks. Similarly to the evaluation of the MA-
Plan algorithm in (Nissim, Brafman, and Domshlak 2010;
Komenda, Novák, and Pěchouček 2013), we chose domains,
which are straightforwardly modifiable to a multi-agent set-
ting: LOGISTICS, ROVERS, and SATELLITES. Additionally,
we have extended the set of benchmarks by COOPERATIVE
PATHFINDING coordination domain on a grid.

The experimental measurements were based on two met-
rics focusing on the target efficiencies: cumulative time con-
sumed by the particular plan repairing algorithms during a
single run of the simulation, i.e., the overall time spent in
the algorithm (incl. the underlying planning process) exclud-
ing the initial planning phase of the scheme (Algorithm 1).
The second metric was communication complexity of the
process, that is the volume of communicated information in
bytes among the involved agents during the plan repairing
processes. Those are mainly the messages generated by the
DisCSP solver in the MA-Plan planner and an additional
synchronization processes minimizing the number of agents
involved in the plan repairing process.

To account for differences in essential computational and
communication complexity of the domains, we conducted a
relationship experiment between these two measures. Fig-
ure 1 depicts the results and demonstrates that there is no
essential discrepancy between the computational and com-
munication complexity of the plan repairing solutions. That
means, the following results are not biased by problems ex-
tremely hard in time and simple in communication and vice
versa.

The number of repairing agents
Regardless of the theoretical results presented in (Brafman
and Domshlak 2008), showing that the computational com-
plexity of DisCSP-based multi-agent planning is not expo-
nentially dependent on the number of the agents, in practical
experiments, we faced a non-negligible dependence of the
this number and required communication and computational
effort. The first set of experiments analyzes this relation.

Used algorithms To validate Hypothesis 1, we have pre-
pared an extensive set of plan repairing algorithms stemming
from the Generalized repair algorithm. They can be divided
into three main groups: one without agent count minimiza-
tion, and two with agent minimization. First of the mini-
mization groups reuse the original plan as a suffix and the
other one as a prefix.

The difference among the algorithm instances within one
of the groups lies in preference between agent minimiza-
tion, size of preservation of the original plan and bound on
the maximal length of the newly generated repairing plan
component P∗. This approach restrain bias prospectively
caused by unbalanced influences of the agent minimization
on various types of plan repair.

The approach used to minimize the number of involved
agents was based on the notion of a set of supporting agents.
The iterative process from Algorithm 1 was extended with
an iteration starting only with a set of agents providing at
least one action, which can contribute to the repairing plan
by a required proposition(s), i.e., support part of Sg 	 Psuf .

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

69

Figure 2: Comparison of various plan repairing algorithms in proportion to replanning (black line at y = 1) with failure
probability p = 0.3. Each point represent a mean of several runs of one of the particular repairing algorithms. The red group
contains plan repairing algorithms using only the full set of agents involved in the original planning problem, the green group
contains algorithms using various techniques to minimize number of agents involved and preserving suffix of the original plan
and the blue group contains algorithms also minimizing number of agents and preserving prefix of the original plan.

If such team of agents is not able to solve the plan repair-
ing problem, the team is extended by additional agents sup-
porting any of the current agents in the team by means of
contributing to prepositions in their preconditions. If such
additional agent does not exist and the team is still not con-
taining all the agent from A, a random agent is added into
the team and the process continues.

Results and Discussion The experiments were conducted
in all presented experimental domains and for all combina-
tions of agent counts, i.e., two to four agents giving twelve
domain and problem instances. Each of the group contained
six variances of the algorithms giving with the problem in-
stances 216 experiments. Each of the experiments was aver-
aged over 5 measurements with different random seeds.

Figure 2 shows results of the first batch of experiments.
The first group of repairing algorithms not minimizing num-
ber of involved agents (red color) is in most measurements
in both computational and communication metrics worse
than the baseline replanning algorithm. The suffix preserv-
ing algorithms minimizing numbers of agents (green color)
is on the other hand nearly in all measurements better in
both metrics than the baseline algorithm with an exception
in the simplest COOPERATIVE PATHFINDING problems. The
group of plan repairing algorithms minimizing the number
of involved agents and preserving prefix part of the original
plan (blue color) is on tie or better with the replanning in
rather loosely coupled domains decreasing the communica-

tion and computational overheads with decreasing coupling
of the domains. However in tighter coupled domains the
algorithms fall behind the replanning baseline. In LOGIS-
TICS domain, only 33% of the algorithms are better by com-
munication overheads and only 18% by means of compu-
tational overheads. With increasing coupling the approach
lose more. These results support the first hypothesis.

Additionally, the results revealed that the prefix-based ap-
proaches, as not the best in all agent minimizing approaches,
in most of the experiments has one of the best approaches
outperforming the best suffix-based approach. In LOGIS-
TICS domain the separation between the best prefix-based
and best suffix-based plan repairing algorithm is about a half
an order of magnitude in favor of the one prefix preserving
approach. On the other hand, in COOPERATIVE PATHFIND-
ING, suffix-approaches gain an order and more.

Repairing of long-term dependencies
The intuition behind the second hypothesis can be rephrased
as follows: If an action fails and it has potentially a lot of
future dependencies, possibly of other agents or even in the
goal, trying to fix it as soon as possible is rather better idea,
than ignore it and try to repair it later. The experiments in
this section were conducted to validate this concept.

Used algorithms The most straightforward approach here
is to compare the two plan repairing algorithms re-using the
whole original plan either as a prefix or as a suffix. These

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

70

A :
T1 :
T2 :

 ε ε ε l(p, a1) f(a1, a2) u(p, a2) ε ε ε

l(p, d1) m(d1, a1) u(p, a1) ε ε ε ε ε ε

m(d2, a2) ε ε ε ε ε l(p, a2) m(a2, d2) u(p, d2)

8 7 6 5 4 3 2 1

Figure 3: A multi-agent plan solving the initial LOGISTICS problem used in the experiments. Empty actions are denoted as ε.
The overlines mark public actions. The numbers in the last row represent particular counts of steps, i.e., number of actions m,
to the end of the plan.

Figure 4: Comparison of success ratio against replanning between prefix-based (blue) and suffix-based (green) plan repairing.

algorithms are again modification of the plan repairing part
of Algorithm 1 such that there is no iteration over various f∗
and g∗, but only two fixed values. The pure prefix algorithm
uses fixation f∗ = m, g∗ = 0 and the pure suffix algorithm
uses only one parameter pair f∗ = 0, g∗ = m.

Furthermore, to be able to demonstrate the behavior and
to explain the results, we have to present more details on
LOGISTICS. The problem used in the experiments contains
three agents controlling two trucks T1 and T2 and one air-
plane A. There are two cities, each with one storage depot
(d1 and d2) and one airport (a1 and a2). The trucks can move
m(from, to) only within their cities, i.e., between one de-
pot and one airport. The airplane can fly f(from, to) among
all airports in the environment, but cannot land at the de-
pots. All vehicles can load l(package, location) and unload
u(package, location) a package at a location. Initially, there
is one package p at one of the depots and the goal is to trans-
port it to the other depot in the other city. The trucks start
at the depots and the airplane starts at one of the airports.
A typical multi-agent plan solving this particular instance
is depicted in the matrix form, see (Komenda, Novák, and
Pěchouček 2013) for more detail, in Figure 3.

Results and Discussion To validate Hypothesis 2, we run
the pure prefix-based and pure suffix-based repairing algo-
rithms in all the testing domains. We have measured ratio of
successful repairs of these two repairing algorithms against
replanning by means of computation time. In Figure 4, we
summarize the results of these experiments.

In the ROVERS and SATELLITE domains, the plans solving
the problem do not contain any significant actions by means
of number of future dependencies to the overall count of ac-
tions in the plan. In SATELLITES, all actions are private,
therefore actions of one agent depend only on other actions

of the same agent. Additionally, the individual plans of the
agents are relatively short (three to four actions), therefore
the private dependencies are never longer than four actions.

Multi-agent plans for the ROVER problems contain sev-
eral public actions at the end of the plan, representing al-
ways only one rover communicating at one time point. Al-
beit the plans solving the ROVERS problems contain pub-
lic actions, there are again no long dependencies among the
actions. The dependencies in the private part of the plan
contain three components, each containing three to four pri-
vate actions. Consequently, the private dependencies are,
similarly to the SATELLITE problems, maximally four ac-
tions long. The dependencies among the public actions are
even shorter, as there is the same number of public actions
as agents, which means maximally three-action public de-
pendencies for three agents. The dependency link between
one public action and one dependent private component in-
creases the maximal dependent length to maximally seven
actions (four private actions of the component bound to three
public actions successively dependent on each other).

In such repairing problem, even if one of the leading
actions in a private component fails, lazy approach solves
nearly the complete problem only by re-using the original
plan. More precisely, it re-uses the original solution for the
rest of the private components and all the public actions ex-
cept one of the failed agent. The results show, the prefix-
based repair is always better then the suffix-based and the
ratio between these two is stable over different points in the
plan. The situation changes in the LOGISTICS domain.

In LOGISTIC with three agents and one package, there is
a chain of dependent actions. Particularly, u(p, d2) depends
on l(p, a2), which depends on u(p, a2) and so on to the first
action of the plan l(p, d1). The dependency chain has six

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

71

Figure 5: Scheme of a two-dimensional space representing
plan repairing algorithms preserving different parts of the
original plan and reusing it in different ways. The blue seg-
ments represent prefix-based re-usage and the green ones the
suffix-based re-usage. The notable states are: initial state
s0, last achieved state sk induced by the original plan, ex-
ceptional state sf after a failure and the last anticipated state
sm ∈ SG, provided that the original plan would be executed
without a failure.

actions in the experimented plan and occupy the complete
length of it. As the results show in Figure 4, there are two
distinctive peaks where the suffix repair outperforms the pre-
fix repair, additionally with an increasing trend. The first one
is for repairing plans of lengthm = 3 and the other one is for
m = 6. As we can see in Figure 3, these lengths correspond
to the package hand-off points in the plan, more precisely
repair of failing unloads u(p, a1) and u(p, a2). Ignoring a
failure of unloading by a lazy approach causes the package
is left in the last vehicle and the rest of the team finishes the
executable remainder of the plan, which effectively means
the vehicles are moving, but they are not transporting the
package. Under such circumstances, the suffix repair only
repeats the unload action and successfully continues with
the rest of the original plan ending in a goal state.

One can argue that the complement load actions should
be repaired more efficiently using this same argumentation
as well. This is very true, however this phenomenon is not
captured in the results, because of a particular implemen-
tation of the MA-Plan planner. The explanation is based
on the fact the used planner efficiency is more dependent
on small differences in number of involved agents, than the
number of planned actions. In the case of m = 3, i.e., the
u(p, a2) action, we need 2 agents to do lazy repair, because
firstly we reuse executable reminder of the original plan to
the last state without the package and than we have to use the
planner to generate repairing plan P∗reverting all the moves
and planning again to one of the goal states. Such plan has
to firstly unload the package from the airplane A and then
transport it successfully by the truck T2 to the goal destina-
tion d2. On the other hand, the back-on-track algorithm only
generates a plan repeating the unload action u(p, a2) and af-
terward continues with the original plan as a suffix. This
planning problem involves only one agent, in particular, the
airplane A carrying out unload of the package. The same
principle can be applied to m = 6, but with all three agents
for pure lazy repair but only 2 agents for pure back-on-track.

In the last problem of COOPERATIVE PATHFINDING, the

length of a sequence of dependent actions correspond to the
length of the plan, as all the actions in such plan are pub-
lic and inter-dependent. Nevertheless, this is quite different
“order of dependency”, than in SATELLITES for example.
In SATTELITES, all the actions are dependent as well, but
only within one agent, whereas here, the actions are depen-
dent across the agents. In the experimental results of the
COOPERATIVE PATHFINDING a trend arises. In such dense
types of inter-dependent problems, the longer are the re-
paired plans, the more the suffix repairing algorithm gains
against the prefix one. Unfortunately with the current avail-
able implementation of the multi-agent planner, we were
not able to conduct experiments with bigger grid sizes, i.e.
longer repaired plans, thus the validation if the trend would
continue is left for future work at this point.

The results of these experiments, namely of LOGISTICS
and COOPERATIVE PATHFINDING, moderately support the
second hypothesis of the paper.

Repair appropriately reusing the original plan
A fundamental principle behind a large group for repairing
algorithms, firstly proposed in (Nebel and Koehler 1995),
can be described as action ordering preservation or, in other
words, re-usage of parts from former plans. This very prin-
ciple stands also behind the two multi-agent plan repairing
algorithms proposed in (Komenda, Novák, and Pěchouček
2013). It is not intuitively clear what is a good strategy for
reusing the original plan, moreover related to a particular
planning domain. The experiments conducted in these sec-
tions provide several insights into this issue.

Used algorithms A battery of plan repairing algorithms
was prepared to validate Hypothesis 3. We modify how and
how much the algorithms reuse the original plan. Such mod-
ifications lead to a two-dimensional discrete space of differ-
ent plan repairing algorithms, as depicted in Figure 5, repre-
senting a structure of the repaired plan.

Each of the nine diagrams in the figure describes a varia-
tion on a resulting plan repaired by one particular modifica-
tion of the algorithm in the context of execution of the origi-
nal plan. The execution starts with a world in the initial state
s0 and it is anticipated to continue with help of the original
plan to the last state sm, which is one of the goal states, i.e.,
sm ∈ SG. However during execution of an action following
a state sk, execution failed and the state of the world ends up
not in the state sk+1, but in a state sf , out of the anticipated
sequence of states and actions. To fulfill the goal, the agents
use one of the plan repairing algorithms, which under the
condition of perfect execution, would transform the world
from sf to a sm ∈ SG.

In Figure 5, there are two dimensions depicted. One of
the dimensions represent the number of actions which has
to be reused from beginning of the original plan as a prefix
corresponding to fixation of the iteration parameter f∗ =
f . The other dimension represents number of actions re-
used as suffix of the final repairing plan, i.e., fixed iteration
parameter g∗ = g. In the presented scheme, Ppre from the
Algorithm 1 is denoted as a blue line, Psuf as a green line
and P∗as a black thick arrow. Since both the dimensions

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

72

Figure 6: The maps present prefix (f on y-axis) vs. suffix (g on x-axis) preserving repairing algorithms by a success rate against
replanning in the repair time for all domains with three agents and p = 0.3. Red color represents algorithms more often faster
then replanning. The top-left to bottom-right diagonal represent algorithms neither overusing or underusing the original plan.

reuse the same original plan, the space is always a square
with a side of the length m.

There are four extremes in the algorithm space. The
algorithm at position (0, 0) effectively degenerates from
Ppre · P∗ · Psuf to P∗. Such process correspond to replan-
ning from the scratch. The algorithms at positions (m, 0)
and (0,m) represent pure repairs Ppre · P∗ and P · Psuf

respectively. The last extreme at (m,m) represent an al-
gorithm, which firstly uses the executable reminder of the
original plan, then using a newly generated plan P∗ returns
to the anticipated state after execution of the failed action
and than reuses the original plan again to get to the goal
state, i.e., the algorithm generates a full overlap of the prefix
and suffix plans.

Beside the extremes, also the (0,m), (1,m− 1), ..., (m−
1, 1), (m, 0) diagonal in the space is important from per-
spective of the ongoing discussion. All the algorithms lying
on this diagonal re-use exactly all the actions of the origi-
nal plan in the original order. Meaning, the original plan is
neither overused nor underused. Formally, we define:

Definition 2 (m-normal plan repair) Let Σ = (Π,P, sf , k)
be a multi-agent plan repairing problem, then an algorithm
R is a m-normal plan repair, iff R solves the problem Σ by a
multi-agent planP with decompositionPpre·P∗·Psuf and at
the same time (|Ppre|, |Psuf |) ∈{(0,m), (1,m−1), ..., (m−
1, 1), (m, 0)}.

Results and Discussion To validate the third and last hy-
pothesis, we used a randomized sampling of the algorithm
space and searched for more successful algorithms lying on
the m-normal repairing diagonal by the hypothesis. The re-
sults are present in Figure 6.

The sampling experimental process measured for each en-
countered repairing problem the computation time of the
replanning algorithm. After this base-line measurement, a
tested repairing algorithm was run with a bound on the com-
putation time based on the replanning run-time. If the al-
gorithm performed better, a cell in the result map was incre-
mented by one. In effect, this process rendered the presented
normalized results. During the experimental execution and
plan repairing, we used different lengths of the original plan,
i.e., the repair was done for various m. Therefore, the re-

sulting maps depict a continuous space, as the results with
higher and lower m values were merged into the most rep-
resentative m value corresponding to the initial multi-agent
plan generated.

As the maps show, the hypothesis clearly holds for cou-
pled domains with longer plans (LOGISTICS, and ROVERS).
In the coupled domain of COOPERATIVE PATHFINDING, the
diagonal is also present, but because of shorter repaired
plans, it degenerated considerably. In the experiment with
SATELLITES, the diagonal is not present.

These results support Hypothesis 3 with an auxiliary ob-
servation, that the effect is decreasing as the coupling of the
domain decreases.

Final remarks
Based on the experimental results, we can come up with
a summary of heuristic approaches in form of simply us-
able advices decreasing computation and/or communication
overheads during repairing of multi-agent plans. These ad-
vices can be used for various plan repairing approaches tar-
geting systems with planning agents. The results were ver-
ified for plan repairing techniques utilizing preservation of
the original plan and using an DisCSP-based multi-agent
planner to fill prospective discontinuities in the repairing
plan. The advices are:

1. Prefer smaller numbers of involved agents in the plan re-
pairing process.

2. Prefer prefix repairing techniques when repairing failures
with long dependencies among different agents.

3. Prefer m-normal plan repairing algorithms.

This work opens several interesting questions left for the fu-
ture work. Most notably, how would another implementa-
tion of the underlying multi-agent planner affect the results
and would it be possible to integrate principles from single-
agent search effort estimation approaches, e.g., as in (Korf,
Reid, and Edelkamp 2001) to provide more precise hints
how to repair during the execution and repairing process.

Acknowledgments This work was supported by the U.S.
Air Force EOARD grant no. FA8655-12-1-2096.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

73

References
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
Decision Processes. Math. Oper. Res. 27(4):819–840.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of ICAPS, 28–35.
Fu, J.; Ng, V.; Bastani, F. B.; and Yen, I.-L. 2011. Sim-
ple and fast strong cyclic planning for fully-observable non-
deterministic planning problems. In Proceedings of IJCAI,
1949–1954.
Komenda, A.; Novák, P.; and Pěchouček, M. 2012. De-
centralized multi-agent plan repair in dynamic environments
(Extended Abstract). In Proceedings of AAMAS, 1239–
1240.
Komenda, A.; Novák, P.; and Pěchouček, M. 2013. Domain-
independent multi-agent plan repair. Journal of Network and
Computer Applications. DOI: 10.1016/j.jnca.2012.12.011.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artif. Intell. 129(1-
2):199–218.
Levenshtein, V. I. 1966. Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet Physics
Doklady 10:707.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: a theoretical and empirical analysis. Artificial
Intelligence 76(1-2):427–454.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
Proceedings of AAMAS, 1323–1330.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
J. Artif. Int. Res. 35(1):623–675.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

74

Fast-Forward Heuristic for Multiagent Planning

Michal �tolba and Antonín Komenda
{stolba|komenda}@agents.fel.cvut.cz

Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

Use of heuristics in search-based domain-independent
deterministic multiagent planning is as important as
in classical planning. In this work we propose a formal
and an algorithmic adaptation of a well-known heuris-
tic Fast-Forward into multiagent planning. Such treat-
ment is important as it solves challenges in decentral-
ization of this and other heuristics based on relaxation
of the original planning problem. Such decentraliza-
tion enables global heuristic estimates to be computed
without exposing local information. Additionally, since
Fast-Forward heuristic is based on relaxed planning, we
propose a multiagent approach for building factored re-
laxed planning graphs among the agents. We sketch
proofs that the results of the distributed version of the
algorithm gives the same results as the centralized ver-
sion. Finally, we experimentally validate di�erent dis-
tribution strategies of the heuristic estimate.

Introduction

In recent years the landscape of multiagent planning
research has changed by Brafman and Domshlak's for-
mal treatment and promising complexity results of
domain-independent deterministic multiagent planning
(DMAP) (Brafman and Domshlak 2008) represented as
an extension of STRIPS for more agents. An important
piece of the puzzle was a decomposition of a planning
problem common for all the agents. In principle, the
ideas behind relate to the research of planning problem
factorization and utilization of such for more e�cient
solving of classical planning problems. Therefore even
for cooperative agents, it is reasonable to hide parts of
the information used during planning from other agents
as this helps (in loosely coupled problems) the agents
to focus only on their parts of the problem.
After this publication, the community started to de-

sign and implement �rst planners using the principles
of DMAP described in the Brafman and Domshlak's
paper. The �rst one from Nissim et al. (Nissim, Braf-
man, and Domshlak 2010) was built on distributed con-
straint satisfaction problem solver and a forward chain-
ing planner. This approach precisely followed the ideas

Copyright c© 2013, Association for the Advancement of Ar-
ti�cial Intelligence (www.aaai.org). All rights reserved.

in (Brafman and Domshlak 2008), however exposed a
couple of issues making the approach incomparable in
e�ciency with current state-of-the-art implementations
of classical planners. One of the issues was bad scalabil-
ity with growing length of the coordination part of the
resulting plans. Improvement of scalability was pro-
posed in (Nissim and Brafman 2012) by leaving the
DisCSP+Planning approach and moving to a princi-
ple which is currently the most successful in classical
planning�A* or variations on Best First Search (BFS)
with highly informed automatically derived heuristics.

Since the motivation of (Nissim and Brafman 2012)
was to propose an optimal planner (MA-A*), the
heuristics used were LM-cut (Helmert and Domsh-
lak 2009) with pathmax equation and merge-and-
shrink (Helmert, Haslum, and Ho�mann 2007). In the
distributed search approach, the heuristics were used
only with local information of the respective agent, i.e.,
with its internal actions, its public actions and pro-
jections of other agents' public actions. In discussion
of (Nissim and Brafman 2012), the authors state that
�the greatest practical challenge [. . .] is that of comput-
ing a global heuristic by a distributed system�, which
is precisely our focus in this work. According to our
knowledge, there is no work proposing e�cient plan-
ners for DMAP not focused on optimality of the result-
ing plans. In the �eld of classical planning, on the other
hand, the best performing planners as Fast Downward
and LAMA incorporate a fast, but suboptimal search
algorithm using non-admissible heuristics.

In this work we propose a formal and algorithmic
adaptation of a well-known relaxation heuristic Fast-
Forward hFF (Ho�mann and Nebel 2001) into multia-
gent planning. We argue that such treatment is im-
portant as it demonstrates algorithmic challenges in
decentralization of computation of hFF and other re-
lated heuristics. Additionally, since the hFF heuristic
is based on relaxed planning, we propose a multiagent
(MA) approach for building factored relaxed planning
graphs among the agents. We sketch proofs that the
results of the distributed version of the algorithm gives
the same results as the centralized version. Finally, we
experimentally validate two distribution strategies of
the heuristic estimate against the local estimate.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

75

Multiagent Planning

We consider a number of cooperative and coordinated
agents featuring distinct sets of capabilities (actions),
which concurrently plan and execute their local plans
in order to achieve a joint goal. The world wherein
the agents act is classical and the actions are deter-
ministic. The following formal preliminaries compactly
restate theMA-Strips problem (Brafman and Domsh-
lak 2008) required for the following sections.

A MA-Strips planning problem is a quadruple Π =
〈L,A, s0, Sg〉, where L is a set of propositions, A is a
set of agents α1, . . . , α|A|, s0 is an initial state and Sg
is a set of goal states. A state s ⊆ L is a set of atoms
from a �nite set of propositions L = {p1, . . . , pm} which
holds in s. An action an agent can perform is a tuple
a = 〈pre(a), add(a), del(a)〉, where a is a unique action
label and pre(a), add(a), del(a) respectively denote the
sets of preconditions, add e�ects and delete e�ects of a,
taken from L. Act denotes the set of all actions in the
multiagent planning problem Π, i.e., Act =

⋃
α∈A α.

An agent α = {a1, . . . , an} is characterized precisely
by its capabilities, a �nite repertoire of actions ai ∈ Act
it can preform in the environment. MA-Strips prob-
lems distinguish between the public and internal facts
and actions. Let atoms(a) = pre(a)∪add(a)∪del(a) and
similarly atoms(α) =

⋃
a∈α atoms(a). An α-internal

and public subset of all facts L will be denoted as Lα−int
and Lpub respectively, where Lα−int = atoms(α) \⋃
β∈A\α atoms(β) and Lpub = atoms(α) \ Lα−int. Facts

relevant only for one agent α are denoted as Lα =
Lα−int∪Lpub and a projection of a state sα to an agent
α is a subset of a global state s containing only pub-
lic facts and α-internal facts, formally sα = s ∩ Lα.
The set of public actions of agent α is de�ned as
αpub = {a | a ∈ α, atoms(a) ∩ Lpub 6= ∅} and inter-
nal actions as αint = α \ αpub. The symbol aα will
denote a projection of action a ∈ β, β 6= α for agent
α, i.e., action stripped of all other agents' propositions,
formally atoms(aα) = atoms(a) ∩ Lα.
Note that all actions of an agent α uses only agent's

facts, formally ∀a ∈ α : atoms(a) ⊆ Lα by de�nition
in (Brafman and Domshlak 2008). The goal set SG
of a multiagent planning problem will be treated as
public (Nissim and Brafman 2012), therefore all goal-
achieving actions are public. In the following sections,
as an algorithm for multiagent planning, we will assume
the MA-A∗ from (Nissim and Brafman 2012), but with
a novel distribution of the hFF heuristic.

As a running example, we will use a simple logistics
problem (see Figure 1) in a multiagent setting. There
are two cities each with two locations A,B and C,D
and one package p. A and D represent depots and B,C
airports. Three agents represent two cargo trucks t1,t2
(moving only within the cities) and one airplane a (mov-
ing only between airports B and C). The goal is to
transport the package from depot A to the other de-
pot D.

Figure 1: A running example is an instance of logis-
tics problem with three agents and one package.

Agent Relaxed Planning Graph

Relaxation is a way of simplifying a problem by re-
moving some constraints. In planning, a relaxation is
typically obtained by removing delete e�ect of actions.
Solution of such relaxed planning problem is a relaxed
plan, which can be used to estimate the cost of a plan
in the original problem, e.g., the Fast-Forward heuris-
tic estimation is based on the length of the relaxed
plan. A classical technique for �nding the relaxed plan
is to build a Relaxed Planning Graph (RPG). RPG is a
graph representing the reachability of facts and appli-
cability of actions in the relaxed problem.
Building distributed planning graphs (not relaxed)

was studied by (Pellier 2010), focusing on distribution
of the Graphplan algorithm. Relaxed MA Planning
Graphs were recently studied by (Torreño, Onaindia,
and Sapena 2012), but in the area of planning with in-
complete information and �uent cost estimation.
To obtain a more informed global heuristic estimate

in a MA planning problem using the estimation based
on a RPG, the RPG has to be decentralized. In this
work, we propose a distributed global RPG in form
of a set of distinct Agent RPGs. Such Agent RPG
(ARPG) contains only facts of its owner agent. The ini-
tial state is projection for that agent and since the goals
are treated as public, all agents have complete goals in
their ARPGs. The usage of actions is straightforward in
case of owner agent's internal and public actions which
are used equally as in a classical RPG. Additionally,
the Agent RPGs are extended by projections of other
agents' public actions which were reachable by their
particular owners. This extension enables the agents to
take other agents' capabilities into account, but only at
the time points, where their owners are able to reach
them. Similarly to relaxed problems in STRIPS, we
de�ne a relaxed multiagent planning problem in MA-
STRIPS as a problem stripped of delete e�ects in all
actions of all agents:

De�nition 1. An agent relaxed planning graph
(ARPG) is a directed, labeled and layered graph R′α =
(P ′ ∪ A′, E′) of one particular agent α for a relaxed
multiagent planning task. Let Π = (L,A, s0, SG) be
a MA planning task, then a relaxed MA planning task
Π′ = 〈L,A′, s0, SG〉 contains an altered set of agents A′,
s.t., ∀α ∈ A and α = {a1, . . . , a|A|} there exist a relaxed
agent α′ = {a′1, . . . , a′|A|} and all its actions are relaxed

versions of the regular actions a′i = 〈pre(ai), add(ai), ∅〉.
As in RPG, the nodes of the graph represent proposi-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

76

tions P ′ and actions A′. The arcs E′ represent linkup
of propositions and actions.

In the rest of the paper, the discussion will be only
about relaxed structures, therefore we will omit the
prime signs, which are by convention used to denote
relaxed structures.
ARPGs stem from the classical RPGs, therefore an

i -th proposition layer and action layer will be denoted
as Pi and Ai respectively. The layers alternate, so that
(P0, A0, P1, A1, . . . , An−1, Pn) and all layers Pi ⊆ P and
all layers Ai ⊆ A. The �rst proposition layer P0 con-
tains nodes labeled by propositions of the agent's pro-
jection of the initial state, formally

P0 = {p|p ∈ sα0 }.

Each action layer contains action nodes for all applica-
ble relaxed actions of the agent α in a state represented
by the previous fact layer and external projections of
other agents' public actions reachable in the same layer

Ai = {a|a ∈ α, pre(a) ⊆ Pi} ∪
⋃

β∈A,β 6=α

{bα|b ∈ P βi }.

In all successive fact layers, the nodes copy the previous
fact layer according to the frame axiom and transforms
the facts by actions in the previous action layer, since
for all relaxed actions del(a) = ∅, we can write

Pi = Pi−1 ∪ {p|p ∈ add(a), a ∈ Ai−1}.

At least one of the following terminating conditions has
to hold for the last fact layer Pn:

• the last fact layer ful�lls the goal SG ⊆ Pn,
• or Pn = Pn−1, meaning there are no additional ac-
tions which can extend further fact layers (a �xed-
point).

The arcs in ARPG represent applicability and applica-
tion of actions in relaxed states. We can split the arcs
between two fact layers Pi and Pi+1 into three groups.
The �rst one contains arcs among facts of layer Pi and
preconditions of actions in a layer Ai. The second one
contains relation between e�ects of actions and next in-
duced fact layer Pi+1. Additionally, there are arcs for
all facts from a previous layer e�ectively representing
the frame axioms of the closed world assumption. For-
mally,

Epre
i = {(pi, ai)|pi ∈ pre(ai), ai ∈ Ai},

Eadd
i = {(ai, pi+1)|ai ∈ Ai, pi+1 ∈ add(ai)},

Efrm
i = {(pi, pi+1)|pi ∈ Pi, pi+1 ∈ Pi+1, pi = pi+1}

and Ei = Epre
i ∪ Eadd

i ∪ Efrm
i . Now we will provide an

algorithm for distributed building of ARPGs.

Algorithm The algorithm starts with each agent
building an ARPG using only its own internal and pub-
lic actions. An iterative process is then initiated, in
which the agents exchange information about their pub-
lic actions and extends their ARPGs with projected

Algorithm 1 Distributed build of Agent Relaxed Plan-
ning Graphs

Input: An agent's factor of the relaxed MA planning
problem Πα = 〈Lα, α, sα0 , SG〉.

Output: Agent Relaxed Planning Graph R for α.

1: init():
2: R ←P0 = {p|p ∈ sα0 }
3: R ←build-RPG(R, α, SG)
4: S ←map

[
αpub, integer

]
5: ack-count←idle-count←0
6: check()

7: check():
8: for all a ∈ An−1 s.t. a is public do
9: if a /∈ S or S [a] > earliest layer of appearance

of a in R then
10: S [a]←earliest appearance of a in R
11: ack-count←ack-count+|A|
12: ∀β ∈ A \ α : send(ext-a

[
aβ ,S [a]

]
, to β)

13: end if
14: end for

15: receive(ext-a[aα, i ∈ N], from β ∈ A \ α):
16: ∀α ∈ A : send(not-idle, to α)
17: send(ack, to β)
18: R ←extend-RPG(R, [aα, i])
19: R ←build-RPG(R, α, SG)
20: check()
21: goal-reached()

22: receive(ack):
23: ack-count ← ack-count - 1
24: goal-reached()

25: receive(idle):
26: idle-count ← idle-count + 1
27: if idle-count = |A| then
28: return R
29: end if

30: receive(not-idle):
31: idle-count ← idle-count - 1

32: goal-reached():
33: if SG ∈ R and ack-count = 0 and message queue

is empty then
34: ∀α ∈ A : send(idle, to α)
35: end if

public actions of other agents. The algorithm ter-
minates when the goal (or a �xed-point) is globally
reached and there are no more messages to process.
The pseudo-code of the algorithm is given in Algo-

rithm 1 in an event-driven fashion. The events can
be caused either by receiving a message or internally
by the algorithm itself. We assume that messages sent
from one agent arrive in the same order as they were

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

77

fly-a-B-C fly-a-C-B

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

fly-a-B-C fly-a-C-B
unload-t1-B(t1)

load-t1-A
drive-t1-A-B

load-t1-A
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

drive-t2-D-C drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A

fly-a-C-B
unload-t1-B(t1)
load-a-B

fly-a-C-B
unload-t1-B(t1)
load-a-B
unload-a-B
unload-a-C

load-t1-A
load-t1-B
unload-t1-A
unload-t1-B
drive-t1-A-B
drive-t1-B-A
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B at-a-B
at-a-C

at-a-B
at-a-C
at-p-B

at-p-A
at-t1-A

at-p-A
at-t1-A
at-t1-B
in-p-t1

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D at-t2-D
at-t2-C

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-a-B
at-a-C
at-p-B
in-p-a

at-a-B
at-a-C
at-p-B
in-p-a

at-p-A
at-p-B
at-t1-A
at-t1-B
in-p-t1

at-t2-D
at-t2-C

at-t2-D
at-t2-C
at-p-C

at-t2-D
at-t2-C
at-p-C
in-p-t2

drive-t2-D-C
drive-t2-C-D
unload-t1-B(t1)
unload-a-C(a)
load-t2-C
unload-t2-D

a:

t2:

t1:

1)

2)

3)

a:

t2:

t1:

a:

t2:

t1:

at-t2-D
at-t2-C
at-p-C
at-p-D
in-p-t2

Figure 2: Distributed building of Agent Relaxed Planning Graphs decomposed into iterations.

sent, but we assume no ordering between messages sent
from di�erent agents. We will now explain each event
handling routine.

In the init phase a Relaxed Planning Graph R
is built using only agent's own actions by build-RPG
method from the initial state projection sα0 . A map
S used to store the earliest layer of appearance1 of the
agent's public actions is initialized along with other sup-
porting data structures used for synchronized termina-
tion of the algorithm. After the initialization phase,
reaching of the goal (or a �xed-point) is checked, and if
positive, all agents are informed that the agent is idle
now. Next, the executed check procedure is responsi-
ble for checking whether R contains any public actions.
If so, each action is sent to all other agents β ∈ A \ α
as a projection aβ with its earliest layer of appearance,
unless it was already broadcasted with equal or lower
number of layer (this can happen in future check calls).

1Earliest layer of appearance of an action a in (A)RPG
is the �rst action layer, where a is applicable.

In the next part of the algorithm, there are four mes-
sage handling receive procedures. The �rst one ext-a
is executed when a projection of other agent's public ac-
tion is received. After sending control messages, the ac-
tion is integrated intoR on the i-th layer by extend-RPG
method and the change is propagated by build-RPG, so
that all actions newly applicable in the following lay-
ers are applied accordingly. Then the built ARPG is
checked, whether new public actions (and public ac-
tions newly applicable on earlier layers) are reachable
and whether the goal or the �xed-point was reached.
The last three receive procedures maintain the control
information needed for distributed termination detec-
tion (Mattern 1987). The acks counter keeps track of
number of sent external actions and postpones termi-
nation until all sent actions are processed. If an idle
message is received, there are no pending acks and the
number of idle agents is equal to |A|, the algorithm ter-
minates and the resulting ARPG R is returned. Since
not-idle and ack messages are sent in this particular or-
der (lines 17 and 18) and the messages from one agent

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

78

are presumed to keep ordering, the algorithm termi-
nates synchronously when all external actions are pro-
cessed and no messages are pending.
In Figure 2, the Algorithm 1 is applied on the running

example depicted in Figure 1. Although the algorithm
is running asynchronously, we can decompose it for clar-
ity into several iterations. In the �rst iteration, the
ARPGs are built using only the actions of the respec-
tive agents a, t1 and t2 (airplane and two trucks). Notice
the bold green action unload-t1-B, which is a public ac-
tion of the truck t1, can be applied thanks to the initial
position of the package. In the next iteration, projec-
tion of the public action is broadcasted and received
by other agents. Upon receiving, their ARPGs are up-
dated, which for the airplane means that the ARPG
is expanded with further layers. Another public action
unload-a-C is applied and therefore broadcasted. In the
third iteration, the projection of the airplane's unload
action is added to the ARPGs of the trucks. For truck
t1 it has no e�ect, but it allows truck t2 to expand the
ARPG and reach goal at-p-D. Notice, that when the
projected unload-a-C(a) was received by truck t2, its
ARPG was �rst extended to have enough layers for the
action to be added to the correct layer.
Although not shown in Figure 2, the algorithm would

continue with one more iteration after broadcasting the
public action reached by truck t2, resulting in all agents
having ARPGs with the same number of layers and all
having reached the goal. Additionally, the algorithm
does not have to terminate when the goal is reached,
but can continue until the �xed-point, which can be
desirable in some situations and which is also the case
when the goal is not reachable.

Proof sketch In this section, we will sketch a proof
showing, that the Agent Relaxed Planning Graphs built
by Algorithm 1 are compatible with a global RPG,
meaning that they contain the same actions (with re-
spect to projections) and that the actions are in the
same layers. We will use this proven theorem further in
a proof of equality of the centralized FF and multiagent
FF (MAFF) heuristics.
Firstly, we will formally de�ne the concept of com-

patibility, then we will show that single iteration of the
algorithm does not violate the compatibility, and �nally
we will show that the algorithm terminates, i.e., the re-
sulting ARPGs are compatible with a centrally built
RPG and that no actions are missing or are super�u-
ous.
Let Π = 〈L,A, s0, SG〉 be a relaxed MA planning

task, Rα be an Agent Relaxed Planning Graph for
agent α built from Π using Algorithm 1, having al-
ternating layers (Pα0 , A

α
0 , P

α
1 , A

α
1 , . . . , A

α
n−1, P

α
n) and let

Aα =
⋃
i∈〈0,n−1〉A

α
i and AA =

⋃
α∈AA

α. Let Π̂ =

〈L,Act , s0, SG〉 be a classical relaxed planning task, R̂
be a classical Relaxed Planning Graph built from Π̂
having alternating layers (P̂0, Â0, P̂1, Â1, . . . , Ân−1, P̂n)

and let Â =
⋃
i∈〈0,n−1〉 Âi. Note that from the mono-

tonicity of (A)RPGs follows ∀i < j : Pi ⊆ Pj and
∀i < j : Ai ⊆ Aj .
De�nition 2. Let a B Ai denote that an action a
is �rst applicable in layer Ai (formally pre(a) ⊆ Pi ∧
pre(a) * Pi−1) regardless of whether the underlying
structure is RPG or ARPG.

De�nition 3. We de�ne that a set of ARPGs R =
{Rα|α ∈ A} is compatible with a RPG R̂ i� for each

action a ∈ AA for which a B Âi holds the following:
1) If a is an internal action of agent α, then a B Aαi .
2) If a is a public action of agent α, then a B Aαi and

∀β ∈ A \ α : aβ B Aβi , where a
β is the projection of

action a for agent β.

Lemma 4. A set of ARPGs R = {Rα|α ∈ A} compati-

ble with a RPG R̂ stays compatible with R̂ after applica-
tion of build-RPG by agent α and successive extend-RPG

by all other agents.

Proof. Let us have a RPG R̂ built from a relaxed plan-
ning task Π̂ and a set of ARPGs R = {Rα|α ∈ A}
being built from relaxed MA planning task Π using
Algorithm 1. The symbol AA denotes all actions ap-
plied in the algorithm so far and let αproj be the set
of projected actions received by agent α so far. Now,
agent α applies build-RPG, so that Rα is updated by
Aαi = Aαi ∪{a|a ∈ α∪αproj : pre(a) ⊆ Pαi } (and accord-
ingly Pαi+1), for each layer Aαi . Let us assume, there
exists an extra action a ∈ α which was newly applied
(a /∈ AA) and for which a B Âi ∧ a 7 Aαi . We can also
assume WLOG, that a is �rst such action (in terms of
layer of appearance).

From de�nition of a B Âi , where pre(a) ⊆ P̂i ∧
pre(a) * P̂i−1 follows that pre(a) ⊆ P̂0 ∪ {p|b ∈
Âi−1, p ∈ add(b)} and pre(a) * P̂0 ∪ {p|b ∈ Âi−2, p ∈
add(b)}. Because a is �rst action for which a B Âi∧a 7
Aαi , for all actions b ∈ α, for which holds b B Âk where

k < i, holds also b B Aαk . Therefore A
α
k = Âk ∩ α and

Pαk = P̂k∩atoms(α) for all k < i and therefore pre(a) ⊆
Pαi ∧ pre(a) * Pαi−1, which means a B Aαi and that is a

contradiction. Now, we can assign AA ← AA∪{a} and
repeat the former step.
After broadcasting projections of the newly applied

public actions and calling extend-RPG by all other
agents, we can show that the second part of De�ni-
tion 3 also holds. Let aα be the projection of an action
a ∈ β which is broadcasted �rst. If there exists some i
for which a B Âi then pre(a) ⊆ P̂i and for the projec-

tion aα holds pre(a) ⊆ P̂i∩Lpub. Because for all actions

b ∈ Âi−1 the lemma holds, if b is public, bα B Aαi−1. Be-
cause aα is a projection, pre(aα) ⊆ Pα0 ∪

⋃
bα∈Aαi−1

add(b)

and therefore aα is applicable in layer i (and subsequent
layers), which means that the extend-RPG ensures that
aα B Aαi .

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

79

Theorem 5. When Algorithm 1 terminates, resulting
set of ARPGs R = {Rα|α ∈ A} built from Π is com-

patible with the RPG R̂ built from Π̂ and there are no
additional actions, i.e., Â = AA. Each public action in
Â has its projected counterparts in AA and vice versa,
i.e., for each public action a ∈ Â such that a ∈ α for
some agent α exists projected action aβ for each agent
β ∈ A \ α and aβ ∈ AA. There is no projected action

aβ ∈ AA for which there is no original action a ∈ Â.

Proof. We will now sketch an induction which shows
the compatibility in Theorem 5, based on the Lemma 4.
For the initial step of the induction we take all ARPGs
containing only the �rst fact layer Pα0 which is trivially
compatible because AA = ∅. The induction step is cov-
ered by Lemma 4, because each step of the Algorithm 1
can be decomposed as an application of build-RPG and,
if there are any applied public actions, broadcasting
their projections and application of extend-RPG by all
other agents. Even though the algorithm is running
asynchronously, Lemma 4 holds because of the mono-
tonicity of (A)RPGs.
Termination of the algorithm follows from the termi-

nation of classical RPG, either the algorithm reaches
goal or a �xed-point, where no more actions are added.
Similarly to classical RPG, building of ARPGs is mono-
tonic, which means that the facts and actions can only
be added and because the set of actions is �nite, there
must be a point where no more actions can be added
and the algorithm terminates. The detection of such
situation is more complicated in the distributed setting
and is described thoroughly in the algorithm section.
The last statement we are about to show is that there

are no additional actions, i.e., Â = AA (irrespective of
the projections of public actions) and that each public

action in Â has its projection in AA and vice versa. Let
us assume, that ∃a ∈ Â such that a /∈ AA, let us also
assume, WLOG, that a is such action appearing in the
earliest layer in R̂, say Âi, and that a ∈ α for some
agent α. We know, that exists minimal Apre ⊆ Âi−1
such that pre(a) ⊆ {p|b ∈ Apre, p ∈ add(b)}, because
pre(a) ⊆ Lα−int ∪ Lpub, for all actions b ∈ Apre either
b ∈ α or b is public. Because we assumed, that Apre ⊆
Â, for each b ∈ Apre, if b ∈ α then b ∈ Aαi−1and if b /∈ α
then b is public, therefore bα ∈ Aαi−1. From the said
pre(a) ⊆ {p|b ∈ Aαi−1, p ∈ add(b)}, which means that a
is applicable in Aαi and therefore a must be applied by
the algorithm. If we continue with next such action we
end up with Â ⊆ AA.
Now, we will show that Â ⊇ AA. Let us assume, that
∃a ∈ AA such that a /∈ Â and that a is �rst such action.
Similarly to the previous situation, if a is applicable in
some layer Aαi then there is some set of actions Apre ⊆
Aαi−1, which contains all actions providing preconditions

of a. Since all actions b ∈ Apre are also in Â, a is

applicable in Âi and therefore must be applied.

From Â ⊆ AA and Â ⊇ AA follows that Â = AA. We
have already shown that public actions have their pro-
jected counterparts. The only remaining part to show is
that there are no projected actions in AA without their
respective original actions in Â. This clearly follows
from the algorithm itself, because all projected actions
are created only when a public action is added to some
Aαi by agent α and as shown before, such action would

also be added to Âi.

Multiagent FF Heuristic
With the help of ARPGs, the Fast-Forward heuristic
estimate can be straightforwardly adapted to a multia-
gent setting. We will denoted such heuristic as hMAFF.
The multiagent (MA) relaxed plan backing the hMAFF

estimate can be in general spread over all ARPGs of
the agents in the team as illustrated in Figure 3. The
most left achieving actions has to be considered from
all agents. In the case of projected public actions, the
owner agent has to de�ne part of the the relaxed plan,
possibly using his internal actions, to achieve the inter-
nal facts of the provided public action. Additionally,
the relaxed plan has to share public actions which are
required by more agents at the same layers. The private
parts of the relaxed plan provided by the other agents
can be described by place-holding actions and therefore
no private information of the other agents has to be
revealed. The �nal heuristic estimate is the count of
actions of the MA relaxed plan.

De�nition. Let a MA relaxed plan π be a solution of
a MA relaxed problem Π = 〈L,A, s, SG〉, where s is the
state, we are estimating the cost for, then |π| = h(s) is
the multiagent relaxation heuristic estimate.

Similarly to the relaxation heuristic estimate hFF, we
restrain π for hMAFF according to hFF. A particular π
is de�ned using ARPGs Rα = (P ∪ A,E) of all agents
α ∈ A built for the state s. From the right (meaning
as in Figure 3), the relaxed plan π contains minimal
set of actions A∗m ⊆ Am, achieving the goal facts. The
action layer Am contain actions of all agents in layer
m (ignoring projections of actions, since the respective
original actions are also included in the same layer). If
there is a frame arc (pm−1, pm) ∈ Efrm

m of such facts,
i.e., pm ∈ SG, the fact pm does not need an explicit
achieving action from this particular layer as it will be
achieved by an action from an earlier (more left) layer.
This principle e�ectively selects the most-left achievers
of a fact as proposed by FF heuristic. The action set
A∗m induces next set of facts across all agents

Sm = {p|p ∈ pre(a) : a ∈ A∗m},
which has to be achieved by actions from previous ac-
tion layer Am−1 and so on until the action layer A0 is
reached, where all the actions have their preconditions
satis�ed by the initial state in P0.
Notice that since this de�nition works across all

ARPGs of all agents, the resulting π may contain ac-
tions of di�erent agents.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

80

fly-a-B-C unload-t1-B(t1)

load-t1-A
drive-t1-A-B

unload-t1-B

drive-t2-D-C

load-a-B unload-a-C

unload-a-C(a) load-t2-C

at-a-B at-a-C at-p-B

at-p-A
at-t1-A

at-t1-B
in-p-t1

at-p-B

at-t2-D at-t2-C

in-p-a at-a-C

at-p-C in-p-t2 unload-t2-D

a:

t2:

t1:

at-p-D

Figure 3: Multiagent Relaxed Plan

Theorem 6. Let πα ∩ α be the computed relaxed plan
of agent α restricted only to the agent's actions (exclud-
ing all projections of other agent's public actions), then
hMAFF(s) =

∑
α∈A |πα ∩ α| = hFF(s).

Proof. The fact that hMAFF(s) = hFF(s) follows from

the previously shown compatibility of the RPG R̂ built
for relaxed planning problem Π̂ and the set of ARPGs
built from R = {Rα|α ∈ A} for relaxed MA planning

problem Π. We �rst extract relaxed plans π̂ for Π̂ and
{πα|α ∈ A} for Π by e�ectively choosing �rst achievers
of goal facts and of preconditions of previously chosen
achievers. It is clear that for some fact p we choose an
action a s.t. p ∈ add(a) only if a B Ai for some layer Ai
and there is no action b s.t. p ∈ add(b) and b B Aj for
some j < i. Because of the compatibility of the RPG
and ARPGs, we choose exactly the same actions (and
their projections, which are then omitted) for π̂′ and for
{π′α|α ∈ A′}, which means that |π̂′| =

∑
α∈A′ |π′α ∩ α|

and therefore hMAFF(s) = hFF(s).

Experiments
The experiments were conducted on an implementation
of satis�cing version of MA-A* (Nissim and Brafman
2012) with various relaxation heuristic estimates2. The
algorithm begins with a centralized factorization and a
reachability analysis of a centralized planning problem.
After the factorization, the agents are started receiving
its factors of the problem as an input. The agents run
in parallel, each one in its own thread and the messages
are delivered by an additional asynchronous messaging
thread. Each agent uses an event queue to serialize the
computation and reactions to incoming messages. If an
agent �nds a sound plan (with parts from other agents)
it prints it and stops the distributed process.
Since the algorithm is asynchronous, the runs are

non-deterministic. Therefore we conducted each exper-
imental run as ten measurements. Each measurement
was limited to 8GB of memory for the Java Virtual Ma-
chine and to 10 minutes of runtime. Each measurement

2Technically the implementation is not A* as the heuris-
tics are not admissible, therefore the used algorithm is pre-
cisely MA-BestFirstSearch.

Algorithm 2 Distributed extraction of hMAFF

Input: ARPG R for state s, having layers
(P0, A0, P1, A1, . . . , An−1, Pn) and goal SG ⊆ L.

Output: Relaxed plan R from s to SG.

1: P ← SG
2: R← ∅
3: for i = n− 1; i > 0; i← i− 1 do
4: P ′ ← ∅
5: for p ∈ P do
6: if p /∈ Pi then
7: a← a ∈ Ai, such that p ∈ add(a)
8: R← R ∪ {a}
9: P ′ ← P ′ ∪ pre(a), P ← P\{p}
10: if a is projected action of agent α then
11: request Rα for s, goal pre(aorig) from α
12: R← R ∪Rα
13: end if
14: end if
15: end for
16: P ← P ∪ P ′
17: end for
18: return R

was run on 8-core processor at 3.6GHz separately. The
results from the measurements were averaged.
We used �ve planning domains, four originating in

the single-agent IPC planning benchmarks. Similarly
to the evaluation of the algorithms in (Nissim, Braf-
man, and Domshlak 2010), we chose domains which
are straightforwardly modi�able to the multiagent set-
ting: logistics (similar to the running example, but
with more agents), linear logistics (one package has
to be transported stepwise by all agents), rovers, and
satellites. As in (Komenda, Novák, and P¥chou£ek
2013), we have extended the set of IPC-based domains
by a coordination domain cooperative pathfinding,
in which robots on a grid are tasked to switch their posi-
tions not colliding with each other. We tested following
distribution strategies of FF heuristic estimation:

• hFFα using only locally built RPGs (including projec-
tions of public actions) and local estimation of Fast-
Forward heuristic, as proposed in (Nissim and Braf-
man 2012).

• hMAFF using distributed ARPGs based on Algo-
rithm 1 and distributed extraction of FF heuristic
as described in Algorithm 2.

• Lazy hMAFF using only locally built RPGs (including
projections of public actions) and distributed extrac-

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

81

We can compute hMAFF(s) by �rst building the set
of ARPGs R = {Rα|α ∈ A} for relaxed MA planning
problem Π = 〈L, A, s, SG〉 using Algorithm 1, then si-
multaneously extracting relaxed plans πα for each agent
using Algorithm 2 and �nally summing the lengths of
the resulting relaxed plans, excluding projections of
other agent's public actions.

hFF
α hMAFF Lazy hMAFF

|A| l∗ t[s] v cs l t[s] v cs cr ch l t[s] v cs cr ch l

cp

3 6 0.4 99 97 6 6.3 168 166 6.6k 39 6 0.7 117 115 72 40 6
5 16 88 25k 25k 16 � � � � � � 7.6 1.8k 1.8k 120 145 18
7 24 � � � � � � � � � � 323 52k 52k 168 254 30,9

log
4 14 0.6 1.5k 847 14 2.5 505 272 10k 50 14 0.4 365 223 32 45 14
6 20 6.2 17k 7.4k 20,6 � � � � � � 1.3 732 341 52 185 20

llg

6 18 0.2 134 61 18 4.9 118 54 2.0k 35 18 0.5 130 61 22 21 18
8 24 0.6 241 113 24 11 216 102 4.6k 64 24 1.2 231 108 30 34 24
10 30 0.9 381 181 30 27 337 161 8.7k 99 30 2.8 357 170 38 46 30

rov
2 22 � � � � 88 378 4 25k 4 22 19 482 4 72 4 22
3 33 � � � � � � � � � � 261 2.0k 14 108 11 33

sat

4 14 32 32k 369 14 16 941 27 9.8k 22 14,3 0.8 536 29 4 23 14,3
6 21 � � � � � � � � � � 6.2 1.7k 67 6 54 21,3
8 � � � � � � � � � � � 45 4.5k 147 8 104 28,1

Table 1: Experimental results for the heuristics. |A| is number of agents, l is sequential length of the plan (l∗ is
optimal), t is duration of the search in seconds, v is a number of visited states, cs is a number of search messages
(each of size of a state), cr is a number of messages building ARPGs (each of size of a projected public action)
and ch is a number of messages for the heuristic estimate (each of size of a partial relaxed plan). As hFFα do not
build distributed ARPGs, cr and ch are always zero. The domains are coop. pathfinding (cp), logistics (log),
linear logistics (llg), rovers (rov) and satellites (sat). Runs denoted as � did not �nish in the limits.

tion of FF heuristic as in Algorithm 2 with additional
information on reachability of projected actions.

The implementation we used is a preliminary prototype
which is not competitive with the current single-agent
state-of-the-art planners, but nevertheless it gives in-
sights in comparison of the heuristics.

The hMAFF is based on the theory presented in the
previous section. For each state each of the agents
computes the heuristic estimate, i.e., a complete set
of ARPGs is built. In order to manage the distribu-
tion and asynchronism, the ARPG building algorithm
slightly di�ers from Algorithm 1 so that ARPGs for sev-
eral di�erent states can be built simultaneously. The
heuristic estimate is then extracted using Algorithm 2.

In Lazy hMAFF, the ARPGs are built lazily, i.e., an
agent builds an ARPG for its current search state using
its actions and projections similarly as in hFFα , then the
Relaxed Plan (RP) is extracted and only when some
projected action is added to the RP, request is sent to
the owner of the original action. The owner then builds
an ARPG from the given state to preconditions of the
original actions, extracts a RP using the same proce-
dure and sends back the computed RP. The returned
RP is then merged with the original one. This e�ec-
tively forms a distributed recursion algorithm. Such
algorithm signi�cantly lowers communication load and
enables the agents to search in parallel, especially in
loosely coupled problems. In addition to this, reach-
ability analysis using Algorithm 1 can be done before
starting the search to improve the estimate of applica-
bility of the projected actions.

The results in Table 1 show, that hFFα is fast and can
e�ectively solve smaller problem instances, but it is not

much informed, as illustrated by the number of visited
states. This becomes critical in larger problems. On
the other hand, hMAFF is better informed, but it has to
build all ARPGs for each state which is estimated. This
is extremely communication intensive as shown by the
number of exchanged ARPG messages (cr). Also the
possibilities of parallel computation are reduced by the
fact that all agents have to build the ARPGs for each
estimated state.
The best performance is given by the Lazy hMAFF.

This implementation keeps the heuristic estimate qual-
ity of hMAFF, but since it does not build ARPGs dur-
ing the search, but only local RPGs enriched by the
projections of other agents' actions, the RPGs can be
built lazily only for those states where any interaction
between the agents is needed and only those agents in-
volved build the RPGs. The ARPGs are computed only
in an initial reachability analysis, which can be omitted,
but which signi�cantly improves the results.

Final Remarks

Our formal treatment and design of algorithms for com-
puting distributed Relaxed Planning Graph for mul-
tiagent planning can be seen as a �rst step towards
e�cient MA planners based on satis�cing state-space
search techniques utilizing relaxation heuristics. Fur-
thermore, we have experimentally shown that appro-
priate implementation of a decentralized estimation of
a global relaxation heuristic can radically improve com-
putational and communication e�ciency of the plan-
ning process as a whole.

Acknowledgments This work was supported by the
U.S. Air Force EOARD grant no. FA8655-12-1-2096.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

82

References

Brafman, R. I., and Domshlak, C. 2008. From one
to many: Planning for loosely coupled multi-agent sys-
tems. In Rintanen, J.; Nebel, B.; Beck, J. C.; and
Hansen, E. A., eds., Proceedings of ICAPS'08, 28�35.
AAAI.

Helmert, M., and Domshlak, C. 2009. Landmarks,
critical paths and abstractions: What's the di�erence
anyway? In Gerevini, A.; Howe, A. E.; Cesta, A.; and
Refanidis, I., eds., Proceedings of ICAPS'09. AAAI.

Helmert, M.; Haslum, P.; and Ho�mann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential plan-
ning. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
Proceedings of ICAPS'07, 176�183. AAAI.

Ho�mann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
Journal of Arti�cial Intelligence Research 14:253�302.

Komenda, A.; Novák, P.; and P¥chou£ek, M. 2013.
Domain-independent multi-agent plan repair. Jour-
nal of Network and Computer Applications. DOI:
10.1016/j.jnca.2012.12.011.

Mattern, F. 1987. Algorithms for distributed termina-
tion detection. Distributed computing 2(3):161�175.

Nissim, R., and Brafman, R. I. 2012. Multi-agent A*
for parallel and distributed systems. In van der Hoek,
W.; Padgham, L.; Conitzer, V.; and Winiko�, M., eds.,
Proceedings of AAMAS'12, 1265�1266. IFAAMAS.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010.
A general, fully distributed multi-agent planning algo-
rithm. In Proceedings of AAMAS'10, 1323�1330.

Pellier, D. 2010. Distributed planning through graph
merging. In Filipe, J.; Fred, A. L. N.; and Sharp, B.,
eds., Proceedings of ICAART'10, volume 2, 128�134.
IFAAMAS.

Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete infor-
mation. In Raedt, L. D.; Bessière, C.; Dubois, D.; Do-
herty, P.; Frasconi, P.; Heintz, F.; and Lucas, P. J. F.,
eds., Proceedings of ECAI'12, volume 242 of Frontiers
in Arti�cial Intelligence and Applications, 762�767. IOS
Press.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

83

FMAP: a Heuristic Approach to Cooperative Multi-Agent Planning

Alejandro Torreño, Eva Onaindia, Óscar Sapena
Universitat Politècnica de València

Camino de Vera s/n
46022 Valencia, SPAIN

Abstract

In this paper we propose FMAP, a novel method for
multi-agent planning that relies on an integrated planning-
coordination approach. Agents continuously build up refine-
ment plans and coordinate them until they find a joint so-
lution plan. Each agent implements a complete forward-
chaining partial-order planning. Multi-agent search is guided
by a novel heuristic function based on the concept of Do-
main Transition Graph and optimized to evaluate plans in
a multi-agent context with incomplete information. Experi-
mental results show that this heuristic is competitive when
compared to FF’s heuristic in single-agent environments, and
that FMAP achieves a good performance at solving MAP
problems adapted from the IPC testbeds.

Introduction
Multi-agent planning (MAP) extends the typically central-
ized approach by introducing multiple entities that combine
their knowledge and capabilities to solve planning tasks that
they are not able to solve by themselves, or at least they can
accomplish them better by cooperating with each other (de
Weerdt and Clement 2009). In general, solving a cooperative
MAP task involves a planning procedure by which agents
build local plans and a coordination activity that combines
them into a global solution (Durfee 2001).

The most straightforward approach to MAP divides the
planning task into subtasks and allocates each task to an
agent. Then, agents compute individual plans and a post-
planning coordination process combines these local plans
into a global solution (Nissim, Brafman, and Domshlak
2010; Van Der Krogt and De Weerdt 2005; Tonino et al.
2002). This plan merging scheme (Ephrati and Rosenschein
1997) allows to fully reuse standard single-agent planning
techniques. However, plan merging is unlikely to cope with
problems that involve many interactions among agents as
merging may introduce exponentially many ordering con-
straints in problems which require a big coordination effort.
Another major research trend in cooperative MAP coordi-
nates plans during planning, rather than treating both ac-
tivities as separate processes. This integrated planning and
coordination approach provides a unified vision of coop-
erative MAP and introduces a much more flexible resolu-
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion scheme for solving complex problems with a high num-
ber of interactions among agents. Different methods follow
the integrated approach to MAP. The Partial Global Plan-
ning framework (Durfee and Lesser 1991) and its extension,
the Generalized Partial Global Planning (Decker and Lesser
1992), allow agents to iteratively communicate their local
plans to the rest of agents and then merge this information
into their own partial global plan to improve it. The con-
tinual planning approach integrates planning and execution
and coordinates agents by synchronizing them at execution
time (desJardins et al. 1999; Brenner and Nebel 2009). The
TFPOP algorithm (Kvarnström 2011) is a centralized plan-
ning method that combines temporal planning and forward-
chaining partial-order planning for solving MAP problems
with few interactions among agents. The best-response plan-
ning algorithm (Jonsson and Rovatsos 2011) iteratively im-
proves the quality of the agents’ plans through single-agent
planning technology.

The work in (Torreño, Onaindia, and Sapena 2012) in-
troduces MAP-POP, an approach to integrated MAP that
proves to be more competitive than a plan merging method
(Nissim, Brafman, and Domshlak 2010) at solving MAP
problems adapted from the International Planning Compe-
tition testbeds. MAP-POP combines planning and coordi-
nation through a multi-agent refinement planning procedure
(Kambhampati 1997). Refinement plans are individually de-
vised through an embedded Partial-Order Planning (POP)
system (Younes and Simmons 2003). Planning agents in
this approach are partially unaware of the initial state of the
world and the information known to the rest of agents, an as-
pect generally overlooked in most MAP frameworks. While
this MAP approach shows promising results, it still presents
some limitations regarding performance and lack of theoret-
ical properties.

This paper introduces FMAP, a novel approach to inte-
grated MAP that is inspired on the proposal in (Torreño,
Onaindia, and Sapena 2012). Agents in FMAP collabora-
tively build refinement plans through an embedded cus-
tomized Forward-Chaining Partial-Order Planning (FPOP)
search process (Coles et al. 2010) that ensures complete-
ness and allows for the definition of competitive heuristic
functions. The internal FPOP search process is guided by a
heuristic function based on the notion of Domain Transition
Graph (DTG) (Helmert 2006). The features of FMAP (in

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

84

particular, the partial information managed by the agents)
motivated the development of a novel heuristic. In this MAP
context, the application of popular heuristic functions such
as FF’s heuristic (hFF) (Hoffmann and Nebel 2001) would
require an important computational effort to evaluate plans;
incomplete information obliges agents to interact with each
other (for instance, hFF would require the joint construction
of a distributed relaxed planning graph (Zhang, Nguyen, and
Kowalczyk 2007) instead of a simple one to evaluate a plan).
In contrast, DTGs are particularly efficient data structures as
they only depend on the planning domain and are built only
once throughout the planning process.

The combination of a refinement planning scheme, a
FPOP search process and a DTG-based heuristic function
gives rise to a complete and reliable planning method that
offers a good performance in both single-agent and multi-
agent problems. The experimental evaluation shows that
FMAP provides a similar performance than the state-based
planner JavaFF (Coles et al. 2008) when tested on single-
agent problems, and that it is more effective than MAP-POP
(Torreño, Onaindia, and Sapena 2012) at solving large MAP
problems with many interactions among agents. Moreover,
we will show that, even though the DTG-based heuristic has
been particularly designed for the evaluation of plans in a
MAP context, it returns very similar results when compared
to hFF in single-agent problems.

This paper is organized as follows: next section formal-
izes the notion of MAP task and all the elements involved.
Following, we describe the main components of FMAP, in-
cluding the FPOP search process and the DTG-based heuris-
tic function. Next, we provide the experimental results that
evaluate the performance of FMAP when tested with single-
agent and multi-agent planning tasks. Finally, we conclude
by summarizing our upcoming research lines.

Multi-Agent Planning Task Formalization
Agents in FMAP work under partial observability by adopt-
ing the open world assumption, thus assuming that informa-
tion not represented in an agent’s model is unknown to the
agent. Although there are some well-known MAP languages
in the literature, such as MA-STRIPS (Brafman and Domsh-
lak 2008), we developed our own language to define the par-
ticular features of our model, such as the agents’ partial in-
formation on the world. This language, based on PDDL3.1
(Kovacs 2011), represents information through SAS+-like
state variables (Bäckström and Nebel 1995).

The states of the world are modeled through a finite set
of state variables, V , each of them associated to a finite do-
main,Dv , of mutually exclusive values. Assigning a variable
v ∈ V a value of its domain, d ∈ Dv , gives rise to a fluent
〈v, d〉. A positive fluent is a tuple 〈v, d〉, which indicates that
the variable v takes the value d. A negative fluent takes the
form 〈v,¬d〉, indicating that v does not take the value d.

An action is a tuple α = 〈PRE(α), EFF (α)〉, where
PRE(α) is a finite set of fluents that represents the precon-
ditions of α, and EFF (α) is a finite set of positive and neg-
ative operations that model the effects of α. A state S is
a set of positive and negative fluents. Executing an action
α in a world state S gives rise to a new world state S′ as

a result of applying EFF (α) over S. Effects of the form
(v = d) add a fluent 〈v, d〉 and a set of fluents (〈v,¬d′〉,
∀d′ ∈ Dv / d′ 6= d) to S′. If (〈v, d′〉 ∈ S, d′ 6= d) or
〈v,¬d〉 ∈ S, then (v = d) removes those fluents in state S′.
Effects of the form (v 6= d) add a fluent 〈v,¬d〉 to S′. If
〈v, d〉 ∈ S, (v 6= d) also removes 〈v, d〉 in state S′.

A MAP task is defined as a tuple TMAP =
〈AG,V,A, I,G〉, where AG = {1, . . . , n} is a finite non-
empty set of agents; V = {Vi}ni=1, where Vi is the set of
state variables known to an agent i; A is the set of planning
actions of the agents; I is a set of fluents that defines the ini-
tial state of TMAP ; and G is the set of goals of TMAP , i.e.,
the values of the state variables that agents have to achieve
to fulfill TMAP .

As stated above, the complete set of state variables V may
not be known to all agents. An agent i may have a partial
observability on the domain of a variable, Di

v ⊆ Dv . The
observability of a fluent by an agent i is defined by its view
on the state variables:

• A fluent 〈v, d〉 or 〈v,¬d〉 is fully observable by i if v ∈ Vi

and d ∈ Di
v .

• A fluent 〈v, d〉 or 〈v,¬d〉 is partially observable by i if
v ∈ Vi but d 6∈ Di

v . Given a state S, where 〈v, d〉 ∈ S, i
will see instead a fluent 〈v,⊥〉, where ⊥ is the undefined
value.

• A fluent 〈v, d〉 or 〈v,¬d〉 is not observable by i if v 6∈ Vi.

Each agent i ∈ AG has a set of actions Ai such that A =⋃
∀i∈AG Ai. If α ∈ Ai is included in a plan, then agent i is

responsible of executing α.
FMAP is a multi-agent refinement planning framework,

a general method based on the refinement of the set of all
possible plans (Kambhampati 1997). The internal reasoning
of each agent is based on a POP search procedure (Barrett
and Weld 1994), and hence, agents build partial plans.

A partial plan is a tuple Π = 〈∆,OR, CL〉. ∆ ⊆ A is
the set of actions in Π. OR is a finite set of ordering con-
straints (≺) on ∆. CL is a finite set of causal links of the

form α
〈v,d〉→ β or α

〈v,¬d〉→ β, where α and β are actions in

∆. α
〈v,d〉→ β indicates that (v = d) ∈ EFF (α) supports

a precondition 〈v, d〉 ∈ PRE(β). α
〈v,¬d〉→ β indicates that

〈v,¬d〉 ∈ PRE(β), v ∈ V , d ∈ Dv , is supported by an
effect (v 6= d) ∈ EFF (α) or (v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as Π0 = 〈∆0, OR0,
CL0〉, where OR0 and CL0 are empty sets, and ∆0 con-
tains αi. Planning agents manage two fictitious actions, αi

and αf , which do not belong to the action set of any par-
ticular agent. αi represents the initial state of TMAP , i.e.,
PRE(αi) = ∅ and EFF (αi) = I, while αf repre-
sents the global goals of TMAP , i.e., PRE(αf) = G, and
EFF (αf) = ∅. A plan Π for any task TMAP will always
contain αi.

Planning agents in our model cooperate to solve MAP
tasks by progressively refining an initially empty plan Π un-
til a solution is reached. The definition of refinement plan

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

85

is closely related to the internal forward-chaining partial or-
der planning search performed by the agents. We define a
refinement plan as follows:

A refinement plan Πr = 〈∆r, ORr, CLr〉 over a partial
plan Π = 〈∆, OR, CL〉, is a flaw-free partial plan which
extends Π, i.e., ∆ ⊂ ∆r, OR ⊂ ORr and CL ⊂ CLr. Πr

introduces a new action α ∈ ∆r over Π, resulting in ∆r =
∆ ∪ α. All the preconditions in PRE(α) are supported by
actions in Π; i.e., ∀p ∈ PRE(α), ∃ β p→ α ∈ CLr, where
β ∈ ∆.

Refinement plans in FMAP include actions that can be
executed in parallel by different agents. Some MAP models
consider that two concurrent actions are mutually consistent
if none of them modifies the value of a state variable that the
other relies on or affects (Brenner and Nebel 2009). We also
consider that the preconditions of two mutually consistent
actions have to be consistent (Boutilier and Brafman 2001).
Thus, two concurrent actions α ∈ Ai and β ∈ Aj are mutu-
ally consistent if none of the following holds:

• ∃(v = d) ∈ EFF (α) and ∃(〈v, d′〉 ∈ PRE(β) ∨
〈v,¬d〉 ∈ PRE(β)), where v ∈ Vi ∩ Vj , d ∈ Di

v ∩ Dj
v ,

d′ ∈ Dj
v and d 6= d′, or vice versa.

• ∃(v = d) ∈ EFF (α) and ∃((v = d′) ∈ EFF (β)∨(v 6=
d) ∈ EFF (β)), where v ∈ Vi ∩ Vj , d ∈ Di

v ∩ Dj
v ,

d′ ∈ Dj
v and d 6= d′, or vice versa.

• ∃〈v, d〉 ∈ PRE(α) and ∃(〈v, d′〉 ∈ PRE(β)∨〈v,¬d〉 ∈
PRE(β)), where v ∈ Vi ∩ Vj , d ∈ Di

v ∩ Dj
v , d′ ∈ Dj

v
and d 6= d′, or vice versa.

Agents address concurrency issues through the resolution
of threats over the causal links of the plan (Younes and Sim-
mons 2003). Thus, concurrency between any two actions
introduced by different agents is guaranteed as refinement
plans are always free of flaws.

Finally, a solution plan for a FMAP task TMAP is a refine-
ment plan Π = 〈∆, OR, CL〉 that supports the global goals
G of TMAP by introducing the final action αf , i.e., αf ∈ ∆

and ∀g ∈ PRE(αf), ∃ β g→ αf ∈ CL, where β ∈ ∆.

FMAP Refinement Planning Procedure
This section describes the cooperative refinement planning
procedure of FMAP, which is a plan-space search where
each node of the tree is built through a forward-chaining
POP (FPOP). Some existing planning approaches combine
the least commitment strategy (Weld 1994) of POP with the
performance of a forward-chaining search scheme. POPF
(Coles et al. 2010) is a single-agent method that departs
from a temporal and numeric forward-chaining state-based
approach and modifies it to reduce the commitment of tem-
poral order choices. This results in a hybrid proposal that
represents a compromise between standard forward-search
and POP. TFPOP (Kvarnström 2011) applies centralized
forward-chaining POP for multiple agents, keeping a se-
quential thread of execution for each agent.

Unlike POPF, FMAP works on a plan space, as a classi-
cal POP, but each node comprises a forward-built non-linear

plan. As opposite to TFPOP, each tree node in FMAP is con-
tributed by several agents, in which parallel branches of the
non-linear plan denote parallel threads of execution.

FMAP is a multi-agent search by which agents jointly
build and explore a plan-space search tree. Each node in
the tree is a refinement plan whose actions have been con-
tributed by different planning agents. Agents independently
devise refinement plans over a centralized base plan through
an embedded FPOP procedure. The main stages of the
FMAP iterative process can be summarized as follows:
• Base plan selection: Among all the leaf nodes of the

multi-agent plan-space search tree, agents collectively se-
lect the most promising refinement plan as the new base
plan Πb.
• Refinement plan generation: Each agent individually

applies a FPOP search that generates a set of refinement
plans over Πb. A refinement plan introduces a new fully-
supported action in Πb.
• Refinement plan evaluation: Agents evaluate the qual-

ity of the refinement plans via the DTG-based heuristic
function hDTG.

• Refinement plan communication: Agents communicate
each other the evaluated plans and then they select the
following base plan Πb.
Algorithm 1 summarizes the FMAP procedure. The pro-

cess starts with an initial information exchange by which
agents communicate the fluents defined as shareable infor-
mation. Our MAP language allows us to define, for each
agent, the fluents that it can share with the others.
Algorithm 1: FMAP algorithm as applied by an agent i

Shareable information exchange
openNodes← ∅
Πb ← Π0

repeat
RP i ← FPOP (Πb)

∀ Πr ∈ RP i, f(Πr) = g(Πr) + hDTG(Πr)

openNodes← openNodes ∪RP i

∀j 6= i, send RP i to j
∀j 6= i, receive RP j from j

openNodes← openNodes ∪RP j

Πb ← arg min
Πn∈openNodes

f(Πn)

openNodes← openNodes \Πb

until αf ∈ Πb ∨ openNodes = ∅
if αf ∈ Πb then

return Πb

else
return No solution

After the initial information exchange, agents start the it-
erative planning procedure. At each iteration, agents select
the most promising plan in the openNodes list as the next
base plan Πb (initially, the empty plan Π0 is selected). Then,
each agent i generates a set of refinement plans RP i over
Πb through its embedded FPOP search engine.

Each refinement plan Πr ∈ RP i is evaluated through
f(Πr) = g(Πr) + hDTG(Πr), where g(Πr) is the number

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

86

of actions of the plan Πr and hDTG(Πr) applies our DTG-
based heuristic function to estimate the cost of reaching a
solution plan from Πr.

Agents communicate each other their refinement plans
and store them in the openNodes list. Following, they se-
lect the next base plan Πb as the refinement plan from
openNodes that minimizes f(Πb). This iterative process
carries on until Πb becomes a solution plan; i.e., Πb sup-
ports the fictitious final action αf , or the openNodes list
becomes empty, in whose case, agents will have explored
the complete search space without finding a solution for the
MAP task.

In the next subsections, we analyze the key elements of
FMAP, the FPOP search used for the individual genera-
tion of the refinement plans and their evaluation through the
hDTG heuristic.

Forward-Chaining Partial-Order Planning
In FPOP, a refinement plan, Πr, generated over a given base
plan, Πb, always introduces a new action α over Πb. Πr is
a flaw-free partial plan in which the preconditions of the
newly introduced action, α, are fully supported. Since re-
finement plans are built in a forward-chaining fashion and
the plan does not contain threats among its actions, it is
possible to consistently infer state information from any re-
finement plan. This allows for the use of powerful state-
based heuristic functions, a key advantage over backwards-
chaining POP that will be discussed in the following subsec-
tion.
Algorithm 2: FPOP (Πb) algorithm for an agent i

RP i ← ∅
if potentiallySupportable(αf ,Πb) then

return solutionP lans
for all α ∈ Ai do

if potentiallySupportable(α,Πb) then
Plans← {Πb}
repeat

Select and extract Πs ∈ Plans
F laws(Πs)← unsPre(α,Πs) ∪ Threats(Πs)
if Flaws(Πs) = ∅ then
RP i ← RP i ∪Πs

Select and extract Φ ∈ Flaws(Πs)
Plans← Plans ∪ solveF law(Πs,Φ)

until Plans 6= ∅

return RP i

Algorithm 2 summarizes the FPOP procedure that is in-
voked by each agent i to generate the refinement plans as
explained in Algorithm 1. Firstly, agent i checks whether
the fictitious final action αf can be supported in Πb. The
function potentiallySupportable(Πb, αf) checks if ∀(v =
d) ∈ PRE(αf), ∃〈v, d〉 ∈ EFF (β)/β ∈ ∆(Πb). In other
words, the agent estimates that αf is potentially supportable
if for every precondition of αf a matching effect among the
actions of Πb can be found. This means that it is possible
to support αf ’s preconditions through causal links. The fun-
tion potentiallySupportable is an approximate procedure

to determine the possibility of supporting an action in the
plan, as it does not actually check the possible conflicts that
arise when supporting αf . Thus, if αf is potentially support-
able, agent i will explore all the possible alternatives to sup-
port αf in a POP fashion, returning a set of solutionP lans
that solve the MAP task TMAP .

If αf is not supportable yet, agent i computes the set of
potentially supportable actions out of its set of actions Ai.
The repeat loop in Algorithm 2 generates, for each support-
able action α ∈ Ai, a set of flaw-free plans stored in RP i

that refine Πb, each representing a possible way to fully sup-
port α.

Agent imanages a list of Plans, which initially only con-
tains the base plan Πb. At each iteration, agent i extracts
a plan Πs ∈ Plans and calculates Flaws(Πs) as the set
of the preconditions of α that are not yet supported in Πs,
unsPre(α,Πs), plus the unsolved threats that arise due to
the introduction of α in Πs, Threats(Πs). If Flaws(Πs) =
∅, Πs is stored in RP i as a valid refinement plan over Πb.
Otherwise, the process selects a flaw Φ from Πs and solves
it in a POP fashion, thus generating a set of successors of
Πs, that are stored in the Plans list. Once Plans is empty,
the FPOP process concludes and the refinement plans RP i

of each agent i are stored in the FMAP search tree as a result
of expanding node Πb.

The refinement plans obtained with FPOP are then evalu-
ated in order to estimate their quality. For this purpose, we
have defined a state-based heuristic function that takes ad-
vantage of the features provided by FPOP.

DTG-Based Heuristic Function
One of the major advantages of FMAP over other MAP ap-
proaches based on backwards-chaining POP (Torreño, On-
aindia, and Sapena 2012) is that it is possible to compute
the state resulting from the application of a refinement plan
Πr in the initial state of the MAP task. This allows us to
use state-based heuristics while keeping the advantages of
backwards-chaining POP. Since FPOP builds up refinement
plans through a forward search, and actions in the plan are
ensured not to have any conflicts among them, it is possible
to linearize a partial plan and calculate the state that results
from executing it.

Linearizing a refinement plan Πr involves sequentializing
the actions in ∆(Πr) by establishing a total ordering among
them. Consider two actions α ∈ ∆(Πr) and β ∈ ∆(Πr); if
α ≺ β ∈ OR(Πr) or β ≺ α ∈ OR(Πr) we keep this or-
dering constraint in the linearized plan. In case that α and β
are concurrent actions, a total ordering is established among
them. Since refinement plans do not have conflicts, it is ir-
relevant how concurrent actions are ordered, as there are not
interactions between their preconditions and effects.

From the linearized plan, linearize(Πr), we define the
state SΠr

as the finite set of fluents that result from the ap-
plication of the sequence of actions in linearize(Πr) over
I, the initial state of TMAP .

Since FPOP is actually working on a state space de-
fined by the linearization of partial plans, we could make
use of heuristics like hFF , the relaxed planning graph

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

87

(at t2) = c1

t2(at t2) = c1

(at p)
c1

(at t1) = c1
t1 (at t1) = c1

(at t1) = c1

t1
(at t1) = c1

(at t2) = c1

(at t2) = c1

(at p) (agent 1) (at p) (agent 2)

Agent 2

Agent 2 ⊥

c1

t2Agent 1

Agent 1

⊥

c1

Figure 1: Centralized and distributed DTG example

(RPG) heuristic of FF (Hoffmann and Nebel 2001). How-
ever, FMAP is a fully distributed approach to MAP where
agents have an incomplete view of the planning task, and this
makes the application of hFF not to be adequate to guide
our MAP search. The reason is the following; using hFF

to estimate the quality of a refinement plan involves agents
building a distributed RPG (Zhang, Nguyen, and Kowal-
czyk 2007) as none of the agents has enough knowledge to
build a complete RPG by itself. This is a costly process that
entails many communications among agents to coordinate
which each other and, in addition, this process has to be re-
peated for the evaluation of each refinement plan. Therefore,
the predictable high computational cost of the application of
hFF led us to initially discard this choice and opt for design-
ing a DTG-based heuristic (hDTG).

The concept of DTG (Helmert 2004) turns out to be an
appropriate data structure to devise a heuristic function for
a MAP context. A DTG is a directed graph that represents
the ways in which a state variable can change its value. Each
transition on a DTG is also labeled with the necessary condi-
tions for the transition to occur; i.e., the common precondi-
tions to all the planning actions that induce the value transi-
tion. As opposite to RPGs, DTGs are independent of the par-
ticular state of the refinement plan, thus avoiding to recalcu-
late DTGs during the planning process. Therefore, DTGs, as
a state-independent data structure, are particularly adequate
for MAP.

As for the incomplete information, the unknown value
⊥ is represented in a DTG as the other values of the cor-
responding variable. The only difference is that transitions
from/to ⊥ are labeled with the agents that cause that transi-
tion. This can be observed in Figure 1, which shows a small
DTG example based on the driverlog domain. The graph
represents the DTG of a state variable (at p) that describes
the possible locations of a package p (two different trucks
t1 and t2, and one city c1). In a centralized problem (upper
diagram of Figure 1) all the information is available in the
DTG. Consider, though, a multi-agent version of the prob-
lem (bottom diagrams of Figure 1) with two different agents
1 and 2 that manage t1 and t2, respectively. In this situation,
agent 1 ignores where package p goes once agent 2 picks
it up in c1, and vice versa. If agent 1, for example, has to
evaluate the cost of achieving the fluent 〈at p, t1〉 and it ig-
nores the location of p, then it will request agent 2 the cost

of delivering p in c1 and then it will add the cost of moving
p from c1 to t1. Communications among agents are required
to evaluate multi-agent plans with unknown information, but
DTGs are much more efficient than RPGs as they remain
constant along the planning process, so agents can minimize
the communication cost by memorizing paths and distances
between values.
Algorithm 3: hDTG heuristic calculation for a plan Πr

hDTG ← 0
SΠr ← linearize(Πr)
openG← PRE(αf)
for all 〈v, d〉 ∈ PRE(αf) do
V aluesv ← {getV alue(v, SΠr)}

while openG 6= ∅ do
〈v, dg〉 ← arg max

〈v′,d′〉∈openG
distMin(v′, V aluesv′ , d

′)

openG← openG \ {〈v, dg〉}
d0 ← arg min

d∈V aluesv
|Dijkstra(v, d, dg)|

// minPath: value transitions (di, di+1)
minPath← Dijkstra(v, d0, dg)
for i← 0 to |minPath| − 1 do
αmin ← getMinCostAction(v, di, di+1)/

(di, di+1) ∈ minPath
openG← openG ∪ {〈v, d〉 ∈ PRE(αmin)/
d 6∈ V aluesv}

for all (v = d) ∈ EFF (αmin) do
V aluesv ← V aluesv ∪ {d}
hDTG ← hDTG + 1

return hDTG

Algorithm 4: distMin(v, V aluesv, d) function
dini ← arg min

d′∈V aluesv

|Dijkstra(v, d′, d)|

return |Dijkstra(v, dini, d)|

Algorithm 5: getMinCostAction(v, di, dj) function
Aij ← α ∈ A/〈v, di〉 ∈ PRE(α) ∧ (v = dj) ∈ EFF (α)
αmin ← arg min

α∈Aij

∑
∀〈v′,d′〉∈PRE(α)

distMin(v′, V aluesv′ , d
′)

return αmin

hDTG is a heuristic function that returns, for a given plan
Πr, the number of actions of a relaxed plan between the state
SΠr that results from applying linearize(Πr), as described
above, and the set of goals of TMAP , G. hDTG performs a
backward search by which actions that support the goals in G
are consecutively introduced in the relaxed plan, until their
preconditions are also fully supported. Hence, the underly-
ing principle of hDTG is quite similar to hFF , except for the
fact that we use DTGs instead of RPGs to build the relaxed
plan.

Algorithm 3 summarizes the hDTG evaluation process
for a refinement plan Πr. First, the process calculates SΠr

by linearizing Πr. The procedure manages a set of fluents,
openG, that is initially set to G. During the evaluation pro-
cess, the preconditions of the actions introduced in the re-
laxed plan to support the fluents in openG will be also in-
cluded in openG. For each variable v in the MAP task, the
process handles a list of values, V aluesv , which is initial-
ized to the value of v in SΠr

. For each action introduced in

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

88

Sπr G
Load
p t b

<at p, b>
<at t, a>

<at p, b>
<at t, b>

Drive
t a b

<at t, a>

(at t = b) Drive
t b c

<at t, b>

(at t = c)

(at p = t)

Unload
p t c

<at p, t>
<at t, c>

(at p = c)

<at p, c>

p
a b c

t

Figure 2: hDTG evaluation process example

the relaxed plan that includes an effect (v = d′), V aluesv
will store d′ as a value that can be used to support fluents of
openG in further iterations of the process.

An iteration of the hDTG evaluation process, described in
Algorithm 3, performs the following stages:

• Open goal selection: This stage selects and extracts
the fluent 〈v, dg〉 ∈ openG that requires the largest
number of value transitions to be supported. Function
distMin(v, V aluesv, d), shown in Algorithm 4, com-
putes the shortest path length to support a fluent 〈v, d〉.
• DTG path computation: This process calculates the

shortest sequence of value transitions in v’s DTG from
an initial value d0 ∈ V aluesv to dg; that is, minPath =
((d0, d1), (d1, d2), . . . , (dg−1, dg)). In Algorithm 3, this
path is computed through Dijkstra(v, d0, dg).

• Relaxed plan construction: For each value transition
(di, di+1) ∈ minPath, this stage introduces in the re-
laxed plan the minimum cost action αmin that causes
that transition; that is, 〈v, di〉 ∈ PRE(αmin) and (v =
di+1) ∈ EFF (αmin). The cost of an action is com-
puted as the sum of the minimum number of value transi-
tions required to support each of its preconditions, as it
can be observed in Algorithm 5. The unsupported pre-
conditions of each αmin are stored in openG, so they
will be supported in forthcoming iterations. For each ef-
fect (v′ = d′) ∈ EFF (αmin), the value d′ is stored in
V aluesv′ , so d′ can be used in the following iterations to
support other fluents in openG.

The iterative evaluation procedure carries on until all the
open goals have been supported, that is, openG = ∅, and
hDTG returns the number of actions in the relaxed plan.

Figure 2 (upper diagram) shows a small example that il-
lustrates the application of hDTG. This is a transportation
example including three different cities a, b and c, a truck
t and a package p. The MAP task has two state variables,
(at t) and (at p), that indicate the position of the truck t and
the package p, respectively. The goal of the task is to deliver
p in city c, that is, G = {〈at p, c〉}. Let Πr be a refinement
plan such that SΠr

= {〈at t, a〉, 〈at p, b〉}.
The hDTG evaluation procedure of plan Πr starts

by initializing the V alues and openG sets as follows:

V alues(at t) = {a}, V alues(at p) = {b} and openG =
{〈at p, c〉}.

The selection stage extracts the only fluent in openG for
its resolution, that is, 〈v, dg〉 = 〈at p, c〉. The initial value d0

is the only value in V alues(at p), d0 = b. The shortest DTG
path from b to c is computed as minPath = ((b, t), (t, c)),
that is, the truck t loads the package p in city b and un-
loads it in c. Thus, actions load p t b and unload p t c
are introduced in the relaxed plan, as they produce the value
transitions (b, t) and (t, c), respectively. The preconditions
and effects of these actions are used to update the V alues
and openG sets as follows: V alues(at p) = {b, t, c} and
openG = {〈at t, b〉, 〈at t, c〉}.

The second iteration begins by extracting 〈v, dg〉 =
〈at t, c〉 from openG, since V alues(at t) = {a} and the
distance from a to c is greater than the distance from a to b.
Hence, the initial value for at t is also d0 = a. The com-
puted path reflects the shortest route that truck t can fol-
low to reach city c from a: minPath = ((a, b), (b, c)). The
process introduces the actions that produce these value tran-
sitions in the relaxed plan: drive t a b and drive t b c.
The effects of these actions are included in V alues(at t), re-
sulting in V alues(at t) = {a, b, c}. Since b ∈ V aluesat t,
〈at t, b〉 ∈ openG is also supported, and therefore,
openG = ∅, and hDTG = 4. Figure 2 shows the computed
relaxed plan.

Completeness and Soundness
The FMAP algorithm builds a multi-agent search tree whose
nodes are partial plans. As previously stated, given a base
plan, each of the agents generates a set of flaw-free refine-
ment plans that introduce and fully support a new action into
the plan. An agent i studies all the possible ways to sup-
port each action α ∈ Ai, giving rise to a set of plans that
cover all the possibilities to support the actions in Ai. As
all the agents refine base plans concurrently, then all the ac-
tions in A are studied and all the possible refinements over
a base plan are generated. Thus, FMAP is a complete MAP
method, as it completely explores the search space.

As for soundness, it is important to remark a partial-order
plan is sound if it is a flaw-free plan. In our algorithm, we
address inconsistencies among partial plans by detecting and
solving threats. Thus, FMAP is sound if all the flaws of a re-
finement plan are correctly detected and solved. Since agents
manage an incomplete information model, we should study
how visibility over fluents affects the detection of threats.

Let Π be a partial plan and let 〈v, d′〉 be a fluent in a causal
link cl ∈ CL(Π). Let Πr be a refinement over Π, devised
by an agent i, that introduces a new action αi which is not
ordered with respect to cl and has an effect (v = d′′). This
effect gives rise to a threat over cl as it conflicts with 〈v, d1〉.
For Πr to be sound, agent i should be able to detect and
correct such a threat whatever its observability of 〈v, d′〉 is:
• If i has full visibility over 〈v, d′〉, the threat will be cor-

rectly detected.
• If i has no visibility over 〈v, d′〉, then v 6∈ Vi. In this case,

agent i does not have an action αi with an effect involving
variable v, i.e., such a threat can never occur.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

89

• If i has partial visibility over 〈v, d′〉, agent i will see in-
stead a fluent 〈v,⊥〉. Since ⊥6= d′′, the threat will be de-
tected and solved.

Therefore, all the threats over partial plans are always de-
tected and resolved, which proves that FMAP is sound.

Experimental Results

In order to assess FMAP performance, we realized both
single-agent and multi-agent experiments. Tests were per-
formed with some of the benchmark problems from the In-
ternational Planning Competitions1 (IPC). More precisely,
we run the STRIPS problem suites for five domains of the
2002 IPC (the satellite, rovers, logistics, driverlog and de-
pots domains) and two domains of the 2008 IPC (elevators
and woodworking).

The first test compares hDTG and an implementation of
hFF in FMAP for single-agent problems (agents are lim-
ited to 1). Additionally, we executed the most popular Java-
based implementation of the FF planner, JavaFF (Coles et
al. 2008). As FMAP is also implemented in Java, we can
then achieve a fair comparison between FMAP and the state-
based planner JavaFF.

Table 1 summarizes the results of the single-agent plan-
ning experimentation2. Each experiment is limited to 30
minutes. The table compares the quality of the results ob-
tained with JavaFF, and FMAP with hDTG and hFF . The
quality of the results obtained by each planning approach
is assessed via four parameters: 1) number of solved prob-
lems; 2) average number of actions of the solution plans; 3)
average makespan, i.e. duration or number of time steps re-
quired to execute a plan; and 4) average execution time. No-
tice that we do not include the makespan values in JavaFF
because it returns sequential plans. Actions, makespan and
execution times are relative values with respect to the results
obtained with FMAP using hDTG (we will simply refer to
this approach as hDTG and hFF to the FMAP version with
hFF). This way, the notation nx indicates ”n times as much
as the result obtained with hDTG”. For instance, a 2x item in
the Actions column indicates that, in average, the number of
actions of the plans obtained with the approach is twice as
much as the number of actions obtained with hDTG. Equiv-
alently for the makespan and computation time. Thereby, a
value higher than 1x indicates a better result for hDTG and
a value lower than 1x shows a worse result for hDTG.

In general, hDTG and hFF behave similarly in a single-
agent context. hFF solves 123 problems out of 160 (77%),
while hDTG solves 121 (nearly a 76%). In the satellite do-
main, hFF is slightly faster than hDTG, while hDTG ob-
tains better-quality solutions and solves one more problem.
In the rovers and logistics domains, hFF shows a good per-
formance and improves hDTG’s results by all the parame-
ters we measured, being able to solve the complete logistics
problem suite.

1http://ipc.icaps-conference.org/
2All the tests were performed on a single machine with a 2.83

GHz Intel Core 2 Quad CPU and 8 GB RAM.

Results in the depots domain favor hDTG, which is six
times faster than hFF and obtains better-quality plans in av-
erage. However, hFF is able to solve two more depots prob-
lems than hDTG. The driverlog domain presents mixed re-
sults; while hDTG improves the average makespan of the
solutions, hFF solves one more problem and is slightly
faster, providing solutions with fewer actions in average.
The woodworking domain favors hDTG, which solves six
more problems than hFF and is around 19 times faster,
whereas the plans of hFF show a slightly lower makespan.
Finally, hDTG proves to be a better heuristic for the ele-
vators domain. Both heuristics solve the complete problem
suite, but hDTG is more than three times faster, and it ob-
tains better solution plans in both number of actions and
makespan.

According to these results, we can conclude that both
heuristics present a very similar performance in a single-
agent context. Elevators and woodworking domains favor
hDTG, while hFF performs better with the rovers and lo-
gistics domains. The rest of domains show mixed results.
We can conclude then that, even though hDTG was partic-
ularly designed for the evaluation of multi-agent plans, it is
very competitive compared to one of the most efficient state-
based heuristic functions, hFF .

Table 1 also compares hDTG with JavaFF. As shown in
the results, JavaFF obtains much better execution times in
four of the domains (around 10 times faster than hDTG).
The much more simple calculations of a state-based planner
benefit JavaFF’s execution times. However, FMAP is still
faster in the driverlog, woodworking and elevators domains,
which proves the good performance of our approach.

JavaFF is able to solve more problems than hDTG in four
of the planning domains as it is generally faster than hDTG.
hDTG manages to outperform JavaFF in the logistics and
depots domains. In terms of plan quality, hDTG generally
obtains better results that JavaFF, generating shorter plans
in average in five of the planning domains. JavaFF only
achieves slightly better solutions in the rovers and wood-
working domains.

In conclusion, JavaFF noticeably reduces execution times
in some of the domains and solves more problems than
hDTG, which is burdened by its complex POP-based search
machinery. However, hDTG obtains better-quality solution
plans in most cases, which indicates the robustness of our
planner.

In multi-agent scenarios, we compared the performance
of FMAP with another state-of-the-art MAP planner, MAP-
POP (Torreño, Onaindia, and Sapena 2012). As FMAP,
MAP-POP is an integrated planning and coordination ap-
proach where agents have a partial view of the domain,
which makes it appropriate to assess the performance of our
MAP method.

We adapted six domains of Table 1 to a multi-agent
scenario. In the satellite, rovers and elevators domains
we modeled an agent for each satellite, rover
and elevator, respectively. In the driverlog domain,
drivers are identified as the agents in each prob-
lem. Logistics and Depots include two different types of

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

90

Domain
FMAP JavaFF

hDTG hFF
Solved Solved Actions Makespan Time Solved Actions Time

Satellite 18 / 20 17 / 20 1,029x 1,172x 0,935x 20 / 20 1,14x 0,402x
Rovers 15 / 20 17 / 20 0,957x 0,915x 0,523x 20 / 20 0,98x 0,039x

Logistics 16 / 20 20 / 20 0,978x 0,964x 0,197x 12 / 20 1,026x 0,107x
Depots 9 / 20 11 / 20 1,076x 1,074x 6,149x 6 / 20 1,16x 0,157x

Driverlog 14 / 20 15 / 20 0,966x 1,015x 0,872x 15 / 20 1,006x 1,26x
Woodworking 19 / 30 13 / 30 1x 0,986x 18,8x 22 / 30 0,85x 1,495x

Elevators 30 / 30 30 / 30 1,007x 1,036x 3,395x 30 / 30 1,028x 4,905x

Table 1: Comparison between FMAP (with DTG and FF heuristics) and JavaFF

Domain FMAP MAP-POP
Solved Solved Actions MS Time

Elevators 30 / 30 22 / 30 0,996x 1,364x 8,088x
Rovers 19 / 20 14 / 20 0,957x 0,889x 0,788x
Satellite 18 / 20 18 / 20 0,988x 0,871x 0,156x
Logistics 10 / 20 8 / 20 0,993x 0,95x 1,645x
Driverlog 14 / 20 2 / 20 1,105x 1x 264,187x

Depots 6 / 20 1 / 20 1,2x 1,125x 2,879x

Table 2: Comparison between FMAP and MAP-POP

agents: agents in the logistics domain are airplanes
and trucks, while depots and trucks are modeled as
agents in the depots domain.

In general, domains satellite, rovers and elevators give
rise to simple MAP problems in which there are few in-
teractions among agents. The resolution process for these
problems is noticeably simpler. The driverlog, logistics and
depots domains lead to much more complex MAP problems
with many interactions among agents, which directly affects
the number of problems solved by each method.

Table 2 shows the MAP results. The table presents the
number of problems solved by each method, and MAP-
POP’s average time, number of actions and makespan (MS),
as relative values with respect to the results obtained with
FMAP. FMAP solves 97 out of 130 problems, roughly the
75% of the tests, while MAP-POP only solves 65, a poor
50% of the problems in the benchmark. MAP-POP is only
able to solve the same number of problems than FMAP in
the satellite domain. This result is especially significative
considering that MAP-POP is not complete, as authors rec-
ognize that their method implicitly prunes parts of the search
tree (Torreño, Onaindia, and Sapena 2012). Thus, FMAP is
able to solve more problems than MAP-POP while keeping
completeness.

MAP-POP shows a better performance in the simplest do-
mains, satellite and rovers. In both cases, MAP-POP solves
problems faster and obtains better-quality solutions, an indi-
cation that MAP-POP is a better approximation for domains
with few interactions among agents. MAP-POP also obtains
slightly better plans in the logistics domain, but in this case,
FMAP is nearly 2 times faster than MAP-POP, and it solves
two more problems. FMAP presents better results in the el-

evators domain, solving the complete benchmark and pro-
viding solutions with a much lower makespan (whereas the
average number of actions is slightly higher), and being 8
times faster than MAP-POP in average.

The major differences between both methods can be
found in the two most complex domains, driverlog and de-
pots. In both cases, FMAP solves far more problems in much
less time than MAP-POP, and the average quality of the so-
lution plans also favors FMAP.

In conclusion, FMAP shows to be a more robust method
than MAP-POP while keeping soundness and complete-
ness. FMAP is able to solve complex MAP problems which
present many interactions among agents, whereas MAP-
POP is only competitive with simpler problems, such as the
satellite ones. In addition, FMAP shows excellent results in
both multi-agent and single-agent problems.

Conclusions and future work
FMAP is a general-purpose and flexible MAP model which
has been extensively tested on IPC benchmarks, and rep-
resents one of the few domain-independent fully-operative
MAP approaches nowadays. FMAP contributes to the state
of the art in multi-agent planning in several ways. First, it
is specifically designed for domains under incomplete in-
formation, allowing agents to ignore the variables or spe-
cific values of variables of other agents. This allows us to
deal with inherently distributed domains (functionally or
spatially). Second, FMAP combines the expressiveness and
flexibility of a POP with the development of a heuristic
for state-based search, exploiting the structure of distributed
state-independent DTGs and thus avoiding recalculating dis-
tance estimates at each node of the POP tree. This is a rel-
evant issue in MAP approaches as they typically present an
overload due to the agents message passing during the solv-
ing process. Third, the experimental results show that hDTG

is very competitive when compared to hFF and that FMAP
outperforms a state-of-the-art MAP method based on back-
wards POP.

We intend to implement a distributed version of hFF . We
would like to test if the power of hFF is somehow outshad-
owed by the repeated calculation of distributed RPGs. On
the other hand, we will work on improving the hDTG heuris-
tic function for that FMAP provides a better performance in
the most complex IPC planning domains.

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

91

Acknowledgments
This work has been partly supported by the Span-
ish MICINN under projects Consolider Ingenio 2010
CSD2007-00022 and TIN2011-27652-C03-01.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Barrett, A., and Weld, D. S. 1994. Partial-order planning:
Evaluating possible efficiency gains. Artificial Intelligence
67(1):71–112.
Boutilier, C., and Brafman, R. 2001. Partial-order planning
with concurrent interacting actions. Journal of Artificial In-
telligence Research 14(105):136.
Brafman, R., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 28–35.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Journal of Au-
tonomous Agents and Multiagent Systems 19(3):297–331.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Teach-
ing forward-chaining planning with JavaFF. In Colloquium
on AI Education, 23rd AAAI Conference on Artificial Intel-
ligence.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS), 42–49.
de Weerdt, M., and Clement, B. 2009. Introduction to plan-
ning in multiagent systems. Multiagent and Grid Systems
5(4):345–355.
Decker, K., and Lesser, V. R. 1992. Generalizing the Partial
Global Planning algorithm. International Journal of Coop-
erative Information Systems (IJCIS) 2(2):319–346.
desJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton, M.
1999. A survey of research in distributed continual plan-
ning. AI Magazine 20(4):13–22.
Durfee, E. H., and Lesser, V. 1991. Partial Global Planning:
A coordination framework for distributed hypothesis forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics,
Special Issue on Distributed Sensor Networks 21(5):1167–
1183.
Durfee, E. H. 2001. Distributed problem solving and plan-
ning. In Multi-agents Systems and Applications: Selected tu-
torial papers from the 9th ECCAI Advanced Course (ACAI)
and AgentLink’s Third European Agent Systems Summer
School (EASSS), volume LNAI 2086, 118–149. Springer-
Verlag.
Ephrati, E., and Rosenschein, J. S. 1997. A heuristic tech-
nique for multi-agent planning. Annals of Mathematics and
Artificial Intelligence 20(1-4):13–67.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. Proceedings of ICAPS 161–170.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast planning generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS), 114–121. AAAI.
Kambhampati, S. 1997. Refinement planning as a unifying
framework for plan synthesis. AI Magazine 18(2):67–97.
Kovacs, D. L. 2011. Complete BNF description of
PDDL3.1. Technical report.
Kvarnström, J. 2011. Planning for loosely coupled agents
using partial order forward-chaining. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS), 138–145. AAAI.
Nissim, R.; Brafman, R.; and Domshlak, C. 2010. A general,
fully distributed multi-agent planning algorithm. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 1323–1330.
Tonino, H.; Bos, A.; de Weerdt, M.; and Witteveen, C. 2002.
Plan coordination by revision in collective agent based sys-
tems. Artificial Intelligence 142(2):121–145.
Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In 20th European Conference on Artificial Intelligence
(ECAI 2012), volume 242, 762–767. IOS Press.
Van Der Krogt, R., and De Weerdt, M. 2005. Plan repair as
an extension of planning. In Proceedings of the 15th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 161–170.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI magazine 15(4):27.
Younes, H., and Simmons, R. 2003. VHPOP: Versatile
heuristic partial order planner. Journal of Artificial Intel-
ligence Research 20:405–430.
Zhang, J.; Nguyen, X.; and Kowalczyk, R. 2007. Graph-
based multi-agent replanning algorithm. In Proceedings of
the 6th Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

92

Beynier, Aurélie 8
Borrajo, Daniel 57
Brafman, Ronen 1, 26

Cushing, William 48

de Weerdt, Mathijs 27
Durkota, Karel 43

Estivie, Sylvia 8

Fdez-Olivares, Juan 34

Kambhampati, Subbarao 48
Komenda, Antońın 43, 66, 75

Milla-Millán, Gonzalo 34

Nissim, Raz 1
Novák, Peter 66

Onaindia, Eva 84

Pechoucek, Michal 66

Sapena, Óscar 84
Scharpff, Joris 17
Shani, Guy 26
Smith, David 48
Sánchez-Garzón, Inmaculada 34

T.J. Spaan, Matthijs 17
Talamadupula, Kartik 48
Torreño, Alejandro 84

Volker, Leentje 17

Zilberstein, Shlomo 26

Štolba, Michal 75

Author Index

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

93

Algorithms 66
Automated planning 43, 75

48
34

ommitments
onflict solving

Contingent planning 26

26
66
75
8

1 34

Dec-POMDP
Deterministic domain-independent multi-agent planning
Distributed algorithms
Distributed planning under uncertainty
Distributed problem solving

ynamic mechanism design 17

Experimental validation 43
Experimental verification and validation 66

Forward- haining artial- rder lanning 84

84Heuristic unction
Heuristic search 75

84Incomplete nformation
nfrastructural networks 17

8
1
48

17, 26, 48
66

1, 8, 34, 57, 84
43, 75

Markov ecision rocesses
echanism design
inimum perturbation

Multi-agent
Multi-agent plan repairing

ulti-agent planning
Multi-agent systems

48
1, 17
57
26

Keyword Index

lan similarity
Planning

lanning with private information
Planning with sensing

roblem decomposition 57

84
48

Refinement planning
Replanning
Resource allocation 8

Single-agent 48
Stochastic 17

Uncertainty 17

Proceedings of the Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2013)

94

	DMAP
	pc
	preface
	toc
	paper_6
	paper_4
	paper_14
	paper_1
	paper_11
	paper_9
	paper_8
	paper_2
	paper_10
	paper_7
	author_index
	keyword_index

