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Constraint-based approaches for cyclic scheduling

Alessio Bonfietti, Michele Lombardi, Michela Milano
DISI, University of Bologna

{alessio.bonfietti,michele.lombardi2,michela.milano}@unibo.it

Talk Abstract
Cyclic scheduling problems arise whenever a set of non-
interruptible activities subject to precedence and resource
constraints must be repeatedly executed a large number of
times [Hanen, 1994; Draper et al., 1999]. Cyclic Scheduling
has applications in many practical domains, such as manu-
facturing, production systems, warehouse management, em-
bedded systems, software compilers, and chemical plants.

From a combinatorial optimization standpoint, cyclic
scheduling is the problem of assigning start times to periodic
activities such that the repetition interval (i.e. the period) of
the overall application is minimal and all the precedence re-
lations and the resource capacities are respected.

Traditional (non-cyclic) scheduling techniques have
achieved a good level of maturity in the last decade [Bap-
tiste, Le Pape, and Nuijten, 2001], but they are not trivial to
apply to cyclic scheduling. Hence two main classes of ap-
proaches have been proposed for this class of problems:

Blocked scheduling: this method is based on the assump-
tion that the schedule is repeated after its completion
time (i.e. the makespan), so that consecutive schedule
repetitions do not overlap [Bhattacharyya and Sriram,
2009]. This allows the use of traditional scheduling
techniques, at the cost of a considerable loss of optimal-
ity. It is possible to obtain better period values by apply-
ing a graph transformation (called unfolding [Parhi and
Messerschmitt, 1991]) to schedule a number of consec-
utive iterations at once. This technique, however, may
dramatically increase the graph size.

Modulo scheduling: this approach works by repeatedly
fixing the period and building a restricted model [Ha-
nen, 1994]. Optimization is carried out by performing
linear or binary search on the period value. This method
incurs no loss of optimality, but often results in large
models and may have slow convergence.

In this talk, we will introduce cyclic scheduling problems,
then briefly review some of the most important existing ap-
proaches, and finally present two main contributions:

1. A constraint approach (CROSS∗) that can solve cyclic
scheduling problems with no blocking, no graph trans-
formation, and no need to fix the period. The method is
based on a Modular Precedence Constraint (MPC) we

developed, and on an efficient dedicated search strat-
egy [Bonfietti et al., 2011]. The approach guarantees
optimality under a simplifying assumption, often rea-
sonable in practical cases.

2. A second constraint method (CROSS) which makes
no simplifying assumption and still does not require
to repeatedly build a restricted model. The approach
is based on our Global Cyclic Cumulative Constraint
(GCCC) and on a restart based search strategy [Bonfi-
etti et al., 2012].

Both the approaches adopt the Constraint Programming
methodology and modular arithmetic. They proved to be
able to find high quality solutions in a very short time, but
they can also be pushed to run complete search (although the
optimality proof takes longer). The two approaches outper-
formed traditional blocked- and modulo- scheduling ones in
terms of speed and/or solution quality, on a number of non-
trivial synthetic and industrial instances.
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Post-Optimizing Individual Activity Plans through Local Search

Anastasios Alexiadis and Ioannis Refanidis
Department of Applied Informatics, University of Macedonia,

Egnatia 156, 54006, Thessaloniki, Greece.
talex@java.uom.gr, yrefanid@uom.gr

Abstract

Post-optimization through local search is known to be a pow-
erful approach for complex optimization problems. In this pa-
per we tackle the problem of optimizing individual activity
plans, i.e., plans that concern activities that one person has
to accomplish independently of others, taking into account
complex constraints and preferences. Recently, this problem
has been addressed adequately using an adaptation of the
Squeaky Wheel Optimization Framework (SWO). In this pa-
per we demonstrate that further improvement can be achieved
in the quality of the resulting plans, by coupling SWO with
a post-optimization phase based on local search techniques.
Particularly, we present a bundle of transformation methods
to explore the neighborhood using either hill climbing or sim-
ulated annealing. We present several experiments that demon-
strate an improvement on the utility of the produced plans,
with respect to the seed solutions produced by SWO, of more
than 6% on average, which in particular cases exceeds 20%.
Of course, this improvement comes at the cost of extra time.

Introduction
Calendar applications and digital personal assistants are typ-
ically based on a series of fully specified and indepen-
dent events. Each of these events is defined among others
by a fixed start time, a duration (or end-time) and, poten-
tially, a location. Furthermore, many systems also support
tasks. These are individual commitments potentially hav-
ing a deadline to be met (e.g., writing a paper or doing the
week’s shopping). Tasks are usually kept separately in task
lists and are not characterized by a specific start time. In
these systems, as soon as a task is dropped into the calendar,
it is transformed to an event.

The need to develop intelligent automated systems for
calendar management has been considered ambitious for at
least three reasons. Ethnographic studies have shown that
people tend to seek appropriate and contextualized assis-
tance (Palen 1999). Moreover users would not be able to
define the scheduling domain explicitly, as that would re-
quire special training for the specification of their prefer-
ences with a formal representation. Finally, the scheduler
must be able to account for complex and subtle preferences
and constraints. While tracking this problem is considered

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ambitious, intelligent assistance with time and task manage-
ment has been a recognized target for AI (Myers et al. 2007)
(Freed et al. 2008) (Refanidis 2007) (Refanidis and Alexi-
adis 2011) (Berry et al. 2011) (Bank et al. 2012).

In (Refanidis and Yorke-Smith 2010) a model is presented
to treat events and tasks, denoted as activities, in a uniform
way. The model supports a number of unary and binary con-
straints and preferences over activities. Particularly, each
activity is characterized by a temporal domain, a duration
range, a set of alternative locations, interruptibility, utiliza-
tion, preferences over the temporal domain and the alterna-
tive durations, constraints and preferences over the way parts
of an interruptible activity are scheduled in time. The model
also supports binary (ordering, proximity and implication)
constraints and preferences between pairs of activities. In
the same work, a scheduler, based on the Squeaky Wheel
Optimization (SWO) framework and coupled with domain-
dependent heuristics, is employed to automatically schedule
a user’s individual activities. SWO is a powerful but incom-
plete search algorithm, so the solutions it produces are gen-
erally not optimal.

In this paper we present local-search techniques that
increase the quality of SWO’s plan output through post-
optimization. The use of local-search methods for con-
straint satisfaction problems has been done before (Curran,
Freuder, and Jansen 2010) (Lee et al. 2009) (Schöning 2010)
(Nakhost, Hoffmann, and Müller 2010). In our work, we
devised and implemented a set of transformations of valid
plans, such as shifting activities, changing their durations or
locations, as well as merging or splitting parts of interrupt-
ible activities. Extensive experimental results have shown
constant improvement over SWO’s output up to 22.7%.

This paper extends previous work (Alexiadis and Refani-
dis 2012), by providing additional post-processing trans-
formations to explore the neighborhood, enhanced with a
stochastic local search algorithm (that is, simulated anneal-
ing) to avoid local maxima. As it is shown experimentally,
additional improvement on the quality of the resulting plans
is achieved with the new features of the post-processing
phase.

The rest of the paper is structured as follows. First, we
formulate the optimization problem and illustrate the SWO-
based approach. Next, we present the local-search trans-
formations to explore the neighborhood during the post-
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optimization phase, using either hill-climbing or simulating
annealing (Kirkpatrick, Gelatt, and Vecchi 1983) (Ingber
1993). Subsequently, we present experimental results over
a large set of problem instances. Finally, we conclude the
paper and identify directions of future work.

Background
In this section we present the problem formulation, as well
as the SWO approach to cope with the problem.

Problem Formulation
In previous work (Refanidis and Yorke-Smith 2010), time
is considered a non-negative integer, with zero denoting the
current time. A set T of N activities, T = {T1, T2, . . ., TN},
is given. For each activity Ti∈T , its minimum duration is de-
noted with dmin

i and its maximum duration with dmax
i . The

decision variable pi denotes the number of parts in which
the i-th activity has been split, with pi≥1. Tij denotes the
j-th part of the i-th activity, 1≤j≤pi. The sum of the dura-
tions of all parts of an activity must be at least dmin

i and no
greater than dmax

i .1 For each Tij , the decision variables tij
and dij denote its start time and duration. The sum of all dij ,
for a given i, must equal di.2 Non-interruptible activities are
scheduled as one part.

For each Ti, we define the minimum and maximum part
duration smini and smaxi,3 as well as the minimum and
maximum temporal distances between every pair of parts,
dmini

4 and dmaxi.5
For each activity Ti, its temporal domain is de-

fined as a set of temporal intervals defining Di =
[ai1, bi1]∪[ai2, bi2]∪. . .∪[ai,Fi , bi,Fi ], where Fi is the num-
ber of intervals of Di.6

A set of M locations, Loc = {L1, L2, . . ., LM}, as well
as a two dimensional, not necessarily symmetric, matrix
Dist that holds the temporal distances between locations
are given. Each activity Ti has a set of possible locations
Loci⊆Loc, where its parts can be scheduled. The decision
variable lij∈Loci7denotes the particular location where Tij

is scheduled.8
Activities may overlap in time. Each activity Ti is char-

acterized by a utilization value, utilizationi.9 At any time
point, the set of activities that have been scheduled should
have compatible locations (i.e., locations with no temporal
distance to each other) and the sum of their utilization val-
ues should not exceed the unit.

The model supports four types of binary constraints: Or-
dering constraints, minimum and maximum proximity con-
straints and implication constraints. An ordering constraint
between two activities Ti and Tj , denoted with Ti < Tj ,
implies that no part of Tj can start its execution before all
parts of Ti have finished.10A minimum (maximum) distance
binary constraint between activities Ti and Tj implies every
two parts, one of Ti and another of Tj , must have a given
minimum (maximum) temporal distance.11 Finally, an im-
plication constraint of the form Ti ⇒ Tj implies that in or-
der to include Ti in the plan, Tj should be included as well.12

Scheduling personal activities is considered a constraint
optimization problem. That said, the empty schedule is a

valid schedule but with low utility, thus we are interested
in better schedules. There are several sources of utility. The
main source concerns the activities themselves. Each activ-
ity Ti included in the schedule contributes utility Ui(di) that
depends on its allocated duration. The way Ti is scheduled
by a schedule πi within its temporal domain constitutes an-
other source of utility, U time

i (πi). The user can define linear
and stepwise utility functions of time over the temporal do-
main of each activity.

Any form of hard constraint can also be considered a
soft constraint that might contribute utility. So, minimum
and maximum distance constraints between the parts of
an interruptible activity might contribute Udmini(πi) and
Udmaxi

(πi) respectively. Similarly, binary preferences can
be defined as well over the way pairs of activities are sched-
uled. Especially for ordering and proximity preferences, par-
tial satisfaction of the preference is allowed. The Degree of
Satisfaction for a partial preference p, denoted with DoS(p),
is defined as the ratio of the number of infinitesimal pairs of
parts, one from Ti and another from Tj , for which the binary
preference holds, to the total number of infinitesimal pairs of
parts.

To summarize, the optimization problem is formulated as
follows:

Given:

1. A set of N activities, T = {T1, T2, . . ., TN}, each one
of them characterized by its duration range, duration util-
ity profile, temporal domain, temporal domain preference
function, utilization, a set of alternative locations, inter-
ruptibility property, minimum and maximum part sizes as
well as required minimum and maximum part distances
for interruptible activities, preferred minimum and maxi-
mum part distances and the corresponding utilities.

1∀Ti, d
min
i ≤ di ≤ dmax

i OR di = 0 (C1)

2∀Tij ,

pi∑
j=1

dij = di (C2)

3∀Tij , smini ≤ dij ≤ smaxi (C3)
4∀Tij , Tik j �= k ⇒ tij + dij + dmini ≤ tik ∨

tik + dik + dmini ≤ tij (C4)
5∀Tij , Tik j �= k ⇒ tij + dmaxi ≥ tik + dik ∧

tik + dmaxi ≥ tij + dij (C5)
6∀Tij , ∃k, 1 ≤ k ≤ Fi : aik ≤ tij ≤ bik − dij (C6)
7lij ∈ Loci (C7)
8∀Tij , Tmn, Tij �= Tmn ∧

(Dist(lij , lmn) > 0 ∨Dist(lmn, lij) > 0)
⇒ tij + dij +Dist(lij , lmn) ≤ tmn ∨

tmn + dmn +Dist(lmn, lij) ≤ tij (C8)
9∀t,

∑

Tij

tij ≤ t < tij + dij

utilization ≤ 1 (C9)

10∀Ti, Tj , Ti < Tj ⇔ di > 0 ∧ dj > 0
⇒ ∀Tik, Tjl, tik + dik ≤ tjl (C10)

11∀Tik, Tjl, tik + dik + dminij ≤ tjl ∨
tjl + djl + dminij ≤ tik (C11)

∀Tik, Tjl, tik + dmaxij ≥ tjl + djl ∧
tjl + dmaxij ≥ tik + dik (C12)

12∀Ti, Tj , Ti ⇒ Tj ⇔ di > 0 ⇒ dj > 0 (C13)
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Figure 1: (a) The SWO cycle. (b) Coupled search spaces

2. A two-dimensional matrix with temporal distances be-
tween all locations.

3. A set C of binary constraints (ordering, proximity and im-
plication) over the activities.

4. A set P of binary preferences (ordering, proximity and
implication) over the activities.

Schedule
the activities in time and space, by deciding the val-
ues of their start times tij , their durations dij and their
locations lij , while trying to maximize the following
objective function:

U =
∑

i
di ≥ dmin

i

(Ui(di) + U time
i (πi) + Udmin

i (πi)
+Udmax

i (πi))

(1)

+
∑

p(Ti,Tj)∈P

up ×DoS(p(Ti, Tj))

subject to constraints (C1) to (C13).
The above formula calculates the total global utility of a

valid plan, which directly corresponds to the plan quality. It
is also possible to calculate a loose upper bound of a prob-
lem instance, by computing the sum of the maximum util-
ities of all preferences involved in that instance. However,
since different preferences will usually contradict to each
other, achieving their respective’s maximum utilities simul-
taneously is usually impossible.

The SWO Approach
In (Refanidis and Yorke-Smith 2010), the problem is solved
using the Squeaky Wheel Optimization (SWO) framework
(Joslin and Clements 1999). At its core, SWO uses a Con-
struct/Analyze/Prioritize cycle as shown in Figure 1(a). The
solution is found by a greedy approach, where decisions
are based on an order of the tasks determined by a priority
queue. The solution is then analyzed to obtain the tasks that
cannot be scheduled. Their priorities are increased, enabling

postprocess-swo(Activities, Best Solution)
New Best Solution ← best neighbour(Activities,

Best Solution)
if U(New Best Solution) ≤ U(Best Solution)

return Best Solution
else

return postprocess-swo(Activities, New Best Solution)
end

Figure 2: Hill-climbing based post-processing algorithm

the constructor to deal with them earlier on the next itera-
tion. The cycle will be repeated till a termination condition
occurs.

SWO is a fast but incomplete search procedure. The algo-
rithm searches in two coupled spaces, as shown in Figure
1(b). These are the priority and solution spaces. Changes
in the solution space are caused by changes in the priority
space. Changes in the priority space occur as a result of an-
alyzing the previous solution and using a different order of
the tasks in the priority queue. A point in the solution space
represents a possible solution to the problem. Small changes
in the priority space can impact large ones on the solution
that is generated.

SWO can easily be applied to new domains. The fact that
it gives variation on the solution space makes it different
than more traditional local search techniques such as WSAT
(Selman, Kautz, and Cohen 1995). SWO was adapted to the
Constraint Optimization Problem described in the previous
section, using several domain dependent heuristics that mea-
sure the impact of the various ways that a specific activity is
scheduled on the remaining ones. A solution is obtained by
deciding values for the decision variables tij , dij and lij , for
each Tij , while trying to maximize Formula (1).

Applying Local-Search Methods to Enhance
SWO Output

We applied hill-climbing (HC) using the output of SWO as
the seed value, to further enhance the solution quality. The
overview of the approach is presented in Figure 2.
U denotes the objective function of formula (1) and So-

lution is a complete and valid assignment of values to the
decision variables tij , dij and lij , for each Tij . HC is ini-
tialized with the problem definition (Activities) and SWO’s
output solution as the initial Best Solution.

Calculating the Best Neighbor
The best neighbour function computes neighbor solutions
by attempting various changes to the decision variables of
the parts of activities. The algorithm always keeps the solu-
tion resulting from the change that produces the highest util-
ity. When all the available changes have been attempted on
the decision variables of every part, the algorithm chooses
the neighbor solution with the best utility to continue.

COPLAS 2013: 8th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
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For every part Tij of each activity Ti, the following trans-
formations are attempted:

Best Start Time: This transformation attempts different
values for the decision variable tij of part Tij , one decision
variable at a time. The values attempted always belong to the
temporal domain of activity Ti. For each value attempted,
the constraints are checked to examine if the change is con-
sistent with them. If it is not, it is ignored.

Changing the duration: This transformation attempts
different values for the decision variable dij of part Tij . The
values dij are always between smini and smaxi, as defined
for activity Ti. Every change is checked for constraint con-
sistency.

Decreasing the duration of a task will not result in im-
proving the overall quality; however, if it is combined with
a stochastic local search procedure like simulated annealing,
interesting results arise.

Merging two parts of an activity: This transformation at-
tempts to merge two parts of an activity into a single part.
For part Tij , it iterates over all other parts of activity Ti, and
for every Tik, j 	=k, it attempts to remove Tik and move its
duration to Tij . Tik is then removed.

For every Tik, where j 	=k, the function first checks
whether dij+dik≤smaxi holds. If it does not, it ignores Tik.
Otherwise it attempts to produce two new solutions. In the
former solution, dij is increased by dik; in the latter, dij is
increased by dik and tij is decreased by dik. In other words,
the duration of the removed part is added either at the end or
at the beginning of part Tij . As above, every solution pro-
duced is checked for constraint consistency.

Transfering duration between parts of the same activity:
This transformation attempts to transfer duration between
two parts of the same activity. For part Tij , it iterates over
all other parts of activity Ti, and for every Tik where j 	=k it
attempts to transfer duration from Tik to Tij .

For every Tik (where j 	=k, dik>smini and dij<smaxi),
up to four neighboring solutions are computed. These are the
following:

1. Move the maximum allowed duration (trans d) by set-
ting dik = dik − trans d and dij = dij + trans d. This
moves trans d duration from the end of Tik to the end of
Tij .

2. Move the maximum allowed duration (trans d) by set-
ting dik = dik − trans d, dij = dij + trans d and
tij = tij − trans d. This moves trans d duration from
the end of Tik to the beginning of Tij .

3. Move the maximum allowed duration (trans d) by set-
ting dik = dik − trans d, dij = dij + trans d, tij =
tij − trans d and tik = tik + trans d. This moves
trans d duration from the beginning of Tik to the begin-
ning of Tij .

4. Move the maximum allowed duration (trans d) by set-
ting dik = dik − trans d, dij = dij + trans d and
tik = tik + trans d. This moves trans d duration from
the beginning of Tik to the end of Tij .

The maximum allowed duration, trans d, is calculated
as min(smaxi − dij , dik − smini). If the constraint con-
sistency check on all the four new solutions fails, trans d is
decreased by one. This will proceed until either a new valid
solution is created or trans d = 0.

Splitting a part: This transformation attempts to split a
part into two parts. For part Tij , where dij≥(2 × smini) it
attempts to create a new part Tik where k = pi + 1. The
new part will have dik = smini, lik = lij and the function
will search for a suitable tik that succeeds on the consistency
check of the new solution. If no such valid tik is found, noth-
ing is computed.

Increasing the duration of an activity: This transfor-
mation attempts to increase the duration of a part and,
consequently, of the whole activity. For part Tij , where
dij<smaxi, it attempts to produce up to two solutions. First,
dij+1 is attempted. This will increase the part’s duration by
1 and place the extra duration at the end of the part. On the
second case, dij + 1 and tij − 1 are attempted. This will
increase its duration by 1, by putting the extra duration the
beginning of Tij .

Swapping parts of different activities: This transforma-
tion attempts to swap two parts’ start times between different
activities. So, for each part Tij of activity Ti, it is attempted
to exchange tij with each tkx of the x-th part of k-th activity.

Adding a part: This function is different from the previ-
ous ones in that it does not operate on parts but on activities,
by attempting to add new parts. For an activity Ti, where:

pi∑
j=1

dij ≤ (dmax
i − smini) (2)

it is attempted to create a new part Tik where k = pi+1. The
new part will have dik = smini, lik = lij(where j = pi)
and the function will search for a suitable tik that succeeds
on the consistency check of the new solution. If no such valid
tik is found, nothing is computed.

Adding an Activity: Similar to the previous transforma-
tion, this one is only applied on activities. If an activity is
found, that was not scheduled for any reason (such as con-
straint violations with other activities of greater utility etc),
this—and only this—transformation will be applied to that
activity, as the other transformations are not defined on ac-
tivities that do not have any scheduled parts. The purpose of
this transformation is to include activities in the plan, that
were not scheduled, by taking advantage of plan changes
from the other transformations.

For an activity Ti that is not included in the current sched-
ule, this transformation aggressively tries to schedule it by
inserting parts to the timeline and within the domain of the
task, starting from the earliest and proceeding to the latest
time points. At each time window where a part of Ti can be
inserted, it is inserted with the minimum possible duration
and at the first found possible location. Due to the aggres-
sive policy of this transformation, it might be the case that
an activity will not be inserted in the current schedule, al-
though this was possible.
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Changing Locations: For every part Tij , the
best neighbour transformation attempts to change its
location and then to apply all the above methods described,
except Adding a Part and Adding an Activity, which refer
to activities. For every possible location li∈Loci of Tij , the
total travelling time of the resulting solution is computed.
Traveling time between two consequent parts, Tij and
Tul, scheduled at lij and lul, is defined as Dist(lij , liu).
If a suitable value for lij is found that reduces the total
travelling time, all the above methods are re-applied on the
resulting solution. The location change is then reset when
we move to the next part.

This transformation allows to explore combinations of
location changes with the above functions described. The
logic behind the method is to search for any potential lo-
cation changes that decrease the total travelling time of the
schedule, thus giving the post-optimization algorithm more
rescheduling options.

Avoiding Local Maximums
The hill-climbing post-processing algorithm can get stuck
in local maxima. Algorithms based on simulated anneal-
ing (Kirkpatrick, Gelatt, and Vecchi 1983) are another type
of local-search algorithms that can be applied to the above
problem. Hill-climbing never makes a descending move (to
states of lower global utility) and thus is not complete. In
contrast a pure random walk is complete but extremely inef-
ficient.

As a middle-ground to the above two extremes, we re-
placed hill-climbing as a post-processing algorithm with one
based on simulated annealing. Annealing is the process in
which one starts at a high energy state and high temperature
levels, attempting to minimize the energy gradually—while
lowering the temperature as well—to reach a low-energy
state. Lower temperatures decrease the chances of moves to
higher-energy levels (moves to worse states than the current
one).

Low-energy states are reversed in our model to describe
high global utility solutions. As a result, the simulated an-
nealing based post-processing algorithm, presented in Fig-
ure 3, starts from the solution that results from the preceding
SWO phase and gradually increases its utility. In addition, we
empowered simulated annealing with tabu lists, to avoid re-
turning to previously visited solutions. Finally, we converted
all the transformation functions of the previous section to re-
turn all the valid neighbor solutions they calculated, instead
of the best one.

There is a high probability of descending moves (to lower
utility solutions), at the start of execution, which gradually
decreases as the temperature variable decreases as well. This
feature allows us to expand the search-space and avoid local
maxima, whereas the gradual decrement allows the search
algorithm to converge to a high-utility solution.

In the simulated annealing based post-processing algo-
rithm we use the random neighbour function (instead of
best neighbour), which returns a random neighbor solution.
For increased efficiency, we define the variable lists Cikt ∈
C, where each one of them holds all the valid neighbor so-
lutions for an application of the t transformation function,

enhanced-postprocess-swo(Activities, Solution, Best, K,
Tabu, SCHEDULE, KMAX, EMAX)

if K ≥ KMAX OR U (Best) ≥ EMAX
return Best

NTabu ← Tabu ∪ Solution
T ← SCHEDULE[K]
C ← ∅
DO i ← 0 to ∞

if i+ K = KMAX
return Best

New ← random neighbour(Activities,Solution,C),
New /∈ NTabu, (Cikt ∈ C) ← (Cikt ∈ C) \ New

ΔE ← U(New)− U(Solution)

UNTIL ΔE > 0 OR select New with probability e
ΔE

T

New K ← K + i+ 1
if New > Best

New Best ← New
else New Best ← Best
return enhanced-post-process-swo(Activities, New,

New Best, New K, NTabu, SCHEDULE, KMAX, EMAX)

end

Figure 3: Simulated annealing based post-processing algo-
rithm

for an activity part Tik or a whole activity Ti (in the case of
Adding a Part or Adding an Activity). For activities without
any scheduled parts, only Adding an Activity is used (which
is not used for any scheduled ones). Each Cikt is created dy-
namically when required. As an example, if the transforma-
tion Transfer Duration (with no location changes) is chosen
for the activity part Tik, the search algorithm will pop a solu-
tion out of CikTransferDuration. If the previous list does not
exist, the transformation will be computed on the above part
and CikTransferDuration will be created—with all the valid
neighbor solutions found. Whenever the random neighbour
function chooses a solution from a transformation on a part,
that has already been computed, the only overhead for the
algorithm will be to obtain that solution from the list. When
the current solution changes, the above lists are deleted and
will be recomputed on demand. The number of valid solu-
tions, for a transformation applied on a part, is not known
beforehand, thus creating the need for the above variables.

The search algorithm uses the following parameters:
SCHEDULE, KMAX, EMAX and |Tabu|. SCHEDULE defines
the cooling schedule of the simulated annealing search algo-
rithm. We used a cooling schedule dependent on KMAX that
is defined as: SCHEDULE[K] = SCHEDULE[K-1] × (1 −
0.07 × 100

KMAX ), where SCHEDULE[1] = 0.9. KMAX (the
number of iterations of the simulated annealing algorithm)
was set to 2000 and EMAX (the upper bound of the problem)
to the upper bound of the particular problem instance being
solved. We set |Tabu| (the number of past solutions kept in
the tabu list) to KMAX

10 .
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Figure 4: Improvement of plan quality over SWO. Dashed line concerns hill-climbing (HC), whereas solid line concerns simu-
lated annealing (SA 2K) with 2,000 iterations.
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Figure 5: Improvement of plan quality over SWO for various configurations of the simulated annealing based post-processing
phase. SA 50K refers to SA with 50,000 iterations. SA 50K+HC refers to SA 50K coupled with hill climbing. SA 2K+HC
refers to SA with 2,000 iterations, coupled with HC.

Evaluation
We first compared the original SWO algorithm versus SWO
coupled with the hill-climbing post-processing algorithm, as
well as versus the SWO coupled with the simulated annealing
one, on 60 test cases, ranging in size, taken from (Refanidis
and Yorke-Smith 2010). The implementation of the above
algorithms was done in C++ and the experiments were run
on an Intel Xeon 2.66GHz processor.

The results of the first comparison are shown in Figure
4. The plot represents the plan quality percentage improve-
ment of the two post-processing algorithms to the original
SWO. The dashed line concerns the hill-climbing (HC) post-
processing algorithm, whereas the solid line represents the
simulated annealing post-processing algorithm with 2,000
iterations (SA 2K).

The test set (which was created for benchmarking SWO’s
solution quality and speed of execution) consists of five

problems per number of activities, ranging from five activi-
ties to sixty, in steps of five. All the problems include activ-
ities with large temporal domains with many intervals each.
A number of binary constraints and preferences were de-
fined on them.

As we can observe from Figure 4, there is an improvement
in all test cases with both HC and SA 2K. The best case was
a 22.7% improvement in plan quality with SA 2K. The av-
erage was a an improvement of 4.6% for HC and 6.7% for
SA 2K. As can be seen from the above results, SA 2K per-
formed better than HC. Moreover, we can observe that SWO
does not reach local maxima, though it approaches them in
a satisfactory manner.

Next, we run some tests with more aggressive parameters,
which are displayed in Figure 5. The dotted line represents
a combination of the two algorithms, i.e. hill-climbing run-
ning on top of the resulting solution of SA (SA 2K+HC),
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Figure 6: Execution time results for SWO, HC and SA 2K.
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Figure 7: Execution time results for SA 50K, SA 50K+HC and SA 2K+HC.

in order to reach the nearest local maximum. The improve-
ment over SWO was 7.03% on average. The solid line rep-
resents the combination of the two algorithms again, with
a more aggressive KMAX= 50000 for simulated annealing
(SA 50K+HC). The average improvement was 9.8%, with
a best case of 24.19%. Finally, the dashed line represents
the results of simulated annealing only, with KMAX= 50000
(SA 50K). The average improvement was 9.54% with a best
case of 24.19%.

The percentage of time penalty was greater on the larger
problems than the ones with fewer activities. Figure 6 com-
pares the execution time of standard SWO to HC and SA 2K.
The times given for HC and SA 2K are the combined values
of the time of the main scheduler plus the post-processor.
The figure is in logarithmic (base 10) scale. The dotted line
represents SWO, dashed represents HC and solid represents
SA 2K. The worst cases were encountered with the larger
problem instances. On instances with up to 20 activities—
which is the usual case for practical problems—the execu-
tion time of the three algorithms remains close. On the larger

problem instances, SA 2K outperforms HC in terms of exe-
cution time, whereas simultaneously it provides better qual-
ity results as has been shown in Figure 4.

Having in mind real-world situations, we consider the
time requirements acceptable, since the problems of the test
set are artificially created with increased complexity (many
binary constraints and preferences), thus they are more com-
plex than typical real-world situations that are expected to
involve fewer activities with less interdependencies between
them.

In Figure 7 we compare the execution time of the more ag-
gressive algorithms, SA 50K, SA 2K+HC and SA 50K+HC
(combined values of scheduler plus post-processor). SA 50K
and SA 50K+HC were the slowest, though their execution
time is close, as the cost of the HC phase is overshadowed
by the execution time of the SA with the large KMAX value.
On the other hand, SA 2K+HC is 114% slower than SA 2K
on average.

Finally, we compared the performance of the above algo-
rithms to the loose upper bound of their respective problem

COPLAS 2013: 8th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

13



0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

0

5

0

5

100

Test cases

Pl
an

 q
ua

lit
y 

%
____ SA 2K
_ _ _  HC
........  S

Figure 8: Quality relative to the upper bound for SWO, HC and SA 2K.
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Figure 9: Quality relative to the upper bound for SA 50K, SA 50K+HC and SA 2K+HC.

instances. These results are shown in Figures 8 and 9. Partic-
ularly, SWO had an average plan quality of 85% to the loose
upper bound, whereas HC and SA 2K had 89% and 91% re-
spectively. Coupling SA with HC resulted in less than 1%
of average improvement relative to SA, whereas increasing
KMAX raised it to 93%.

The worst case for SWO was a plan quality of 72%, which
was increased to 75% with HC, and to 89% with SA 2K. SA
50K+HC further raised it to 90%.

Conclusions and Future Work
In this paper we employed local search post-optimization
methods to further improve the quality of personal plans
with complex preferences, that were originally produced by
an adaption of the Squeaky Wheel Optimization framework.
Due to the complexity and interplay of the preference model,
post processing seems to be a necessity to obtain locally op-
timal plans.

Based on our experimental results, we found two practi-
cal configurations of the proposed post-optimization mod-

ules: The first one, which is optimized for speed of execu-
tion, consists of a simulated annealing post-processing phase
with a predefined moderate number of iterations. The second
one, which is optimized for quality of solutions (producing
high-utility local optimal solutions), couples a long simu-
lated annealing phase with a hill-climbing one.

For the future, we are considering new enhancements to
both the model and the scheduling algorithm. Concerning
the model, we are working on the inclusion of joint activi-
ties, i.e., activities where many persons are involved, and on
non-monotonic temporal domain preferences—for greater
flexibility when specifying the user’s temporal preferences.
Another option that is considered is to convert the problem
definition to a planning problem, with preconditions and ef-
fects, which will allow the model to be greatly enriched.

Concerning post-optimization, we are working on devis-
ing new transformations for exploring the local neighbor-
hood, including selected combinations of the transforma-
tions presented in this paper. Using heuristics to select a
subset of the transformations to consider might be of great
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significance, in order to keep the whole approach efficient.
Another thought we are considering is comparing the post-
processing module applied on a random initial solution to
SWO+SA. Moreover a formal analysis of real-world test
cases would enable us to produce test data more closely re-
lated to real-world problem instances. Last of all, we will
compare the individual transformations’ contribution to each
other in producing the final solution.
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Abstract

We present a sound, though incomplete, and tractable propa-
gation procedure for PDDL3 trajectory constraints, with the
aim of providing an inexpensive unsatisfiability test for sets of
such constraints. The propagator is supported by (tractable)
methods that derive additional constraints from the problem
description. It is applied to compute lower bounds on penalty
for problems with soft trajectory constraints (preferences).

Introduction
PDDL version 3 (Gerevini et al. 2009) introduced trajectory
constraints, a subset of linear temporal logic that can express
constraints on the sequence of states visited by the execution
of a plan, in addition to the constraint on the end state of
the sequence that is imposed by the planning goal. Given
a planning problem P and a set of trajectory constraints C,
the question we must answer is, is there a plan for P whose
induced state sequence satisfies C? This question is clearly
as hard as deciding if there is any plan at all for P , i.e.,
PSPACE-complete.

However, suppose we know that P has a plan, and that we
need to check not one set of trajectory constraints but a large
number of different sets of constraints. This situation arises,
for example, if the trajectory constraints are “soft”, i.e., pref-
erences rather than hard constraints, and we are searching
for a most preferred subset that is satisfiable w.r.t. P . We
should, at least in some cases, be able to infer that a con-
straint set C is unsatisfiable w.r.t. P without exhaustively
searching through all plans for P .

This paper presents an approach to this problem, in the
form of a sound but incomplete, and tractable, propagation
procedure for PDDL3 trajectory constraints. That is, given
a constraint set C, and some information extracted from the
problem P , the propagator computes additional constraints
that are implied by those given; if it finds an implied contra-
diction, we know that C is unsatisfiable w.r.t. P . Because the
propagator reasons (mostly) not about the problem but only
about constraints extracted from it, time complexity scales
additively in the size of P and the number of constraint sets
to be tested.

This work is motivated by a specific example of the
kind of problem described above: The Rovers Qualititative-
Preferences domain from the 2006 International Planning

Competition. In this domain, the objective is to satisfy a
maximum weight subset of preferences over trajectory con-
straints. For each problem there is a plan that achieves the
hard goals, but the complete set of constraints can not be
simultaneously satisfied. Identifying subsets of constraints
that are contradictory (w.r.t. P ) allows computing bounds
on the minimum penalty, due to unsatisfied preferences, of
any plan (Haslum 2007). My previous approach to testing
satisfiability of plan constraint sets was to compile the con-
straints into the problem and test for unsolvability with the
admissible hm heuristic. The disadvantage of this test is
that the complexity of computing hm depends on the size of
the problem (albeit only polynomially, for fixed m). As we
will demonstrate, this causes the propagation-based test to
scale up much better as the size of the problem grows: for
the largest instances, it is three orders of magnitude faster at
performing a single test. However, because the compilation-
based test is able to exploit properties of the hm heuristic
to amortise computation over several tests, the difference in
total runtime is only a factor 2.89 (median). On the other
hand, the propagation- and compilation-based methods are
complementary, in the sense that both find unsatisfiable sets
that the other cannot detect. Thus, lower bounds based on
the combined results of both methods are generally best.

PDDL3
PDDL3 (Gerevini et al. 2009) extends PDDL with two new
features: Preferences are “soft goals”, which may be either
normal, final state goals or preferences over trajectory con-
straints. Trajectory constraints are expressed using a set of
five modal operators, which may not be nested. The sat-
isfaction of a constraint is determined by the sequence of
states visited by a plan’s execution. Each PDDL3 operator
corresponds to a particular formula in linear temporal logic
(Pnueli 1977), provided a suitable interpretation of LTL over
finite state sequences (Bauer and Haslum 2010).

For ease of presentation, we consider here a standard
propositional STRIPS model of planning problems, without
negation. That is, a planning problem P consists of a set
of propositional atoms (V ), a set of actions (A), and an ini-
tial state s0. A state (including s0) is an assignment of truth
values to the atoms in V , i.e., a propositional logic model.
Each action a is described by its precondition (pre(a)), add
(add(a)) and delete (del(a)) effects, which are all sets of
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Constraint name ϕ �s = s0, s1, . . . , sn |= ϕ iff...
(at-end α) Fα sn |= α
(always α) Aα ∀i si |= α
(sometime α) Eα ∃i si |= α
(at-most-once α) AMOα ∀i if si |= α then ∃j ≥ i ∀i ≤ k ≤ j sk |= α and ∀k > j sk 	|= α
(sometime-before α β) β SBα ∀i if si |= α then ∃j < i sj |= β
(sometime-after α β) β SAα ∀i if si |= α then ∃j ≥ i sj |= β
Never α Nα ∀i si 	|= α
Never β after α β NAα ∀i if si |= α then ∀j ≥ i sj 	|= β

Table 1: PDDL3 and auxiliary plan constraints.

atoms, interpreted as conjunctions. The action is applica-
ble in a state s iff s |= pre(a), and applying it leads to
a state s′ where all atoms in add(a) are true, all atoms in
del(a) − add(a) are false, and all other atoms retain their
value from s. Note that this definition of a planning problem
does not include a goal. PDDL3 has a special trajectory con-
straint for facts that must hold at the end of a plan execution.
Thus, the standard notion of a planning goal is subsumed by
the more general condition of satisfying a set of trajectory
constraints, defined below.

Every sequence of actions, �a = a1, . . . , an, from A that
is executable from the initial state induces a corresponding
sequence of states, �s = s0, s1, . . . , sn, visited by the execu-
tion. We call this an execution of P . PDDL3 trajectory con-
straints are evaluated over state sequences. We write �s |= ϕ,
where ϕ is a trajectory constraint, if �s satisfies ϕ. We also
write P |= ϕ if every execution of P satisfies ϕ. Given a
planning problem P and a set C of trajectory constraints,
we say that C is satisfiable w.r.t. P iff there exists an execu-
tion of P that satisfies each constraint in C.

The PDDL3 trajectory constraints and their satisfaction
conditions are summarised in Table 1. It also introduces
an abbreviation for each constraint, and two auxiliary con-
straints which will be useful in describing the propagation
algorithm. Note that PDDL3 does not allow nesting of
modal operators: the formulas α and β are only allowed to
be state formulas, i.e., Boolean formulas over V . To ensure
that implication between state formulas can be decided in
polynomial time, we assume that these formulas are single
atoms or sets of atoms (i.e., conjunctions). This is, however,
not an essential restriction of the propagation algorithm. If
support for general formulas is desired, we may either give
up tractability and use a complete SAT solver to decide im-
plication, or use some sound but incomplete polynomial-
time implication test. The only requirement on the test is
that it is closed under transitivity; that is, if the test proves
α → β and β → γ, it must also prove α → γ.

Note the asymmetry between the sometime-before and
sometime-after constraints: αSBβ requires α to hold
strictly before β is first achieved, while αSAβ requires α to
hold at the same time as or after any time that β is true. The
propagation procedure currently does not consider SA con-
straints. Some of the challenges and possibilities of making
inferences from such constraints are discussed later.

In the following we will use one additional notation: Da,
where a is an action. It is read “disallowed a”, and means

that a must not appear in any action sequence. It is not a
modal operator like in other trajectory constraints, but is im-
plied by those in some situations. For example, if the state
sequence must satisfy Nα and pre(a) → α, then a can not
be part of the corresponding action sequence. We use Da as
a shorthand for stating that some condition that prevents the
inclusion of a holds.

Inferring Constraints from the Problem
The propagation procedure works on a set of trajectory con-
straints, C. However, since the aim is to infer if the con-
straint set is inconsistent w.r.t. a planning problem, P , we
extract certain information from P , which is provided as in-
put to the propagator. This information is (mostly) expressed
as additional trajectory constraints.

This is an important design decision. Since the motivation
is to perform quick (in-)consistency tests on many different
trajectory constraint sets, the complexity of the test should
not depend (too much) on the size of P . It is acceptable to
perform relatively expensive (though still tractable) compu-
tation on P to extract information that is used by the test, but
not to repeat this computation for every constraint set that is
tested.

Mutual Exclusion Mutual exclusion, or “mutex” for
short, holds between two state formulas, α and β, iff there
is no reachable state in which both of them are true, i.e.,
P |= N(α∧β). We use the shorthand notation mutex(α, β).

Deciding mutual exclusion in general is as hard as solv-
ing the planning problem, but there are numerous meth-
ods for computing a sound but incomplete set of mutex
relations, using admissible heuristics or invariant-finding
methods (e.g. Gerevini and Schubert 1998; Rintanen 2000;
Helmert 2006). In the implementation of the propagator we
use the pair-wise atom mutex set found by the h2 heuristic.

Landmarks The concept of landmarks in planning was
first introduced by Porteous, Sebastia and Hoffmann (2001),
and have been used in many ways since. Informally, a land-
mark is “something that must happen at some point in any
plan”. Different varieties of landmarks have been defined,
where the “something” is a fact, formula or set of actions.

We consider a landmark relation between state formulas:
α is a landmark of β iff α must be achieved (strictly) be-
fore β in every execution of P . This is precisely the same
as saying that P |= αSBβ. Fact landmarks, in the usual
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sense, are landmarks of the planning goal. Deciding if the
landmark relation holds between arbitrary state formulas is
again PSPACE-hard, but a sound approximation for single-
atom state formulas can be computed in polynomial time by
testing relaxed reachability of β in a problem modified by
removing α from the add effects of all actions and the ini-
tial state. Note that if α is true in s0 or β is unreachable
in the original problem, αSBβ holds trivially. Such trivial
relations are ignored.

The Never-After Relation P |= β NAα iff β does not
hold in, and cannot be achieved from, any reachable state
where α holds. This is a kind of extended mutex relation:
a normal mutex says that α and β cannot be true simultane-
ously, while β NAα says that if α ever was true, β can never
become true.

A sound but incomplete set of never-after relations be-
tween single atoms can be computed by relaxed reachability
tests. Let p be an atom and sp a state in which every atom
except those that are mutex with p is true: if q is not re-
laxed reachable from sp, then P |= q NA p. This is similar
to Vidal & Geffner’s (2004) computation of inter-action dis-
tances, but distinguishing only the case of infinite distance
(unreachability).

Conditional Constraints Relations between formulas,
like landmarks and never-after, are a consequence of lack
of choice. Generally, the more alternative ways there are of
achieving β, the fewer α’s will be landmarks of it. How-
ever, if actions are disallowed (because their preconditions
or effects contradict some constraint), choices narrow, and
new relations that previously did not hold may become valid.
For example, suppose there are two alternative plans for get-
ting from A to B: (go A C), (go C B) and (go A D),
(go D B). If, however, (go A C) is disallowed, there is
only one way and (at D) becomes a landmark of (at B).
If both (go A C) and (go A D) are disallowed, (at B)
becomes unreachable. This idea extends also to other types
of trajectory constraints.

Definition 1 〈ϕ,A〉, where ϕ is a trajectory constraint and
A a set of actions, is a conditional constraint of P iff ϕ holds
in every execution of P that does not include any action in
A.

That is, if all actions in A become disallowed, then the
constraint ϕ is satisfied by all remaining executions of P .
Equivalently,

P |=
⎛
⎝∧

a∈A

Da

⎞
⎠ → ϕ.

We also say that ϕ holds in P conditional on A.
We consider two types of conditional constraints: land-

marks, i.e., constraints αSBβ, and unreachability, i.e., con-
straints of the form Nα. The next proposition provides a
method to compute a sound, but not necessarily complete,
set of such conditional constraints, with single-atom state
formulas, without enumerating subsets of actions. It may

be that, for example, conditional never-after constraints also
exist in a problem, but we currently do not have an effective
method of finding them.

Proposition 2 Let p be an atom that is false in the initial
state, and Adds(p) = {a | p ∈ add(a)} the set of actions
that add p: 〈Np,Adds(p)〉 is a conditional (unreachability)
constraint of P .

Furthermore, for each q ∈ ⋃
a∈Adds(p) pre(a), such that

q is not already a landmark of p, let Reqs(q) = {a | q ∈
pre(a)} be the set of actions whose preconditions include
q: 〈q SB p,Adds(p)−Reqs(q)〉 is a conditional (landmark)
constraint of P .
Proof: Since p is not initially true, some action in Adds(p)
must take place to make it true; hence, if these actions are
disallowed, Np must hold. Furthermore, if all actions in
Adds(p) − Reqs(q) are disallowed, all remaining actions
that add p have q in their precondition. Thus q must be
achieved before p. �

Enumerating pairs of propositions p and q gives directly
a polynomial-time algorithm for computing conditional
landmarks and unreachability, since the sets Adds(p) and
Reqs(q) are immediate from action definitions.

In the example above, this algorithm will find that
(at D) is a landmark of (at B) conditional on
{(go C B)}, but it will not find that the same relation is
also conditional on {(go A C)}.

The Propagation Algorithm
Algorithm 1 presents the main propagation algorithm. Its
arguments are a set of trajectory constraints, C, and a set of
conditional (landmark and unreachability) constraints, X . C
is assumed to contain any non-conditional constraints (land-
mark and never-after relations) inferred from the problem.

The algorithm first infers state formulas that can never
hold in any execution that satisfies C (lines 4–23), repeating
a cycle of inferences until a fixpoint is reached, then infers
state formulas that must hold, at some point, in any execu-
tion (lines 24–25). All inferences are restricted to state for-
mulas that appear in the input. If there is a formula that must
hold but cannot, a contradiction has been found. Finally,
a separate check for inconsistencies with at-most-once
constraints is done. This is detailed in Algorithm 2.

The algorithm maintains two data structures: a set D of
disallowed actions and a directed graph G over the set of
state formulas that combines sometime-before relations
and implications. That is, there is an edge from α to β in
G iff either β SBα ∈ C or α → β. Note the direction of
the edge in the first case: it is from the “triggering side” of
the constraint, i.e., α. Both of these relations are transitive,
and the first step in the fixpoint loop (lines 9–11) is to add
any missing transitively implied SB relation (this assumes
that implications are already transitively closed). Whenever
a new constraint Eα or Nα is derived, it is propagated along
SB relations and implications. Likewise, when a new SB
constraint is derived, existing N constraints are propagated
through it.
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Algorithm 1 Trajectory Constraint Propagation
1: procedure PROPAGATE(C,X)
2: Let F = {state formulas in C and X}.
3: Set D = {a | Aα ∈ C and

(∧
p∈del(a) ¬p

)
→ ¬α}.

4: for each Aα ∈ C do
5: for each β ∈ F such that mutex(α, β) do
6: ASSERTNEVER(β)
7: Set G = 〈F, {(α, β) | β SBα ∈ C or α → β}〉.
8: repeat
9: for each (α, β), (β, γ) ∈ G do

10: if (α, γ) 	∈ G then
11: ASSERTSB(γ, α).
12: for each α, β ∈ F do
13: if αSBβ ∈ C and β SBα ∈ C then
14: ASSERTNEVER(α).
15: if αSBβ ∈ C and β NAα ∈ C then
16: ASSERTNEVER(β).
17: for each 〈αSBβ,A〉 ∈ X do
18: if A ⊆ D then
19: ASSERTSB(α, β).
20: for each 〈Nα,A〉 ∈ X do
21: if A ⊆ D then
22: ASSERTNEVER(α).
23: until no change.
24: for each Eα ∈ C and Fα ∈ C do
25: ASSERTSOMETIME(α).
26: if ∃α such that Eα ∈ C and Nα ∈ C then
27: return contradiction.
28: if ∃α, β s.t. αNAβ, β NAα,Eα,Eβ ∈ C then
29: return contradiction.
30: if not CHECKAMO(C, D) then
31: return contradiction.
32: return C.

33: procedure ASSERTSB(α, β)
34: Add αSBβ to C and (β, α) to G.
35: if Nα ∈ C and Nβ 	∈ C then
36: ASSERTNEVER(β).

37: procedure ASSERTNEVER(α)
38: Add Nα to C.
39: for each action a do
40: if pre(a) → α or add(a) → α then Add a to D.
41: for each αSBβ ∈ C do
42: if Nβ 	∈ C then ASSERTNEVER(β).
43: for each β ∈ F such that β → α do
44: if Nβ 	∈ C then ASSERTNEVER(β).

45: procedure ASSERTSOMETIME(α)
46: Add Eα to C.
47: for each β SBα ∈ C do
48: if Eβ 	∈ C then ASSERTSOMETIME(β).
49: for each β ∈ F such that α → β do
50: if Eβ 	∈ C then ASSERTSOMETIME(β).

A cyclic SB relation becomes unsatisfiable if any formula
in the cycle is ever true. Similarly, a cycle between SB and
NA relations implies that the trigger formula can never hold.
When a state formula is proven unachievable (i.e., Nα is de-
rived), the set of disallowed actions is updated with actions
whose preconditions or add effects imply the formula (sub-
routine ASSERTNEVER, lines 39–40). The last step in the
fixpoint loop (lines 17–22) is to check if the set of disallowed
actions triggers any conditional constraint, which may result
in further SB or N constraints becoming active.

Proposition 3 If implications derived between state formu-
las are closed under transitivity, PROPAGATE is correct.
Proof: The correctness of the CHECKAMO procedure is
shown separately in Proposition 4 below. Hence, we con-
sider only other inferences made by PROPAGATE:

Line 3: Aα and
(∧

p∈del(a) ¬p
)
→ ¬α entail Da.

If a appears in the action sequence, then the negation of
every atom in del(a) holds in the state immediately after.
If this implies ¬α, clearly α does not hold in every state,
contradicting Aα.
Lines 4–6: Aα and mutex(α, β) entail Nβ. Obvious.
Lines 9–11: Since implications are already transitively
closed, both edges (α, β) and (β, γ) cannot be implications;
thus at least one of β SBα and γ SBβ is in C. If both are,
then for any state sequence �s satisfying C, if si |= α there
exists a j < i such that sj |= β (otherwise �s 	|= β SBα), and
therefore there exists a k < j such that sk |= γ (otherwise
�s 	|= γ SBβ). Thus, if any state satisfies α there must be an
earlier state satisfying γ. Hence �s |= γ SBα.

Suppose β SBα is in C and β → γ. If si |= α, there is
a j < i such that sj |= β; by the implication sj |= γ as
well. If instead γ SBβ is in C and α → β, then if si |= α,
then si |= β by implication; thus there is a j < i such that
sj |= γ.
Lines 13–14: αSBβ and β SBα entail Nα. By the transi-
tivity of SB shown above, the cyclic SB relation implies
αSBα. This implies that if α is ever true, it would also have
to be true in an earlier state; thus, there can be no first state
in which α holds. Hence, α holds in no state. (The cycle
also entails Nβ, but this is added by ASSERTNEVER.)
Lines 15–16: αSBβ and β NAα entail Nβ. Suppose �s |=
{αSBβ, β NAα}, and that si |= β for some state si in �s.
There is a j < i such that sj |= α (otherwise �s 	|= αSBβ).
But since �s |= β NAα, this implies sk 	|= β for all k ≥ j.
Hence si 	|= β.

Lines 17–22: If ϕ holds conditional on A, then(∧
a∈A Da

) → ϕ by definition.
Line 24–25: Goals that must hold in the final state (Fα) must
also hold at some point in the execution.
Lines 26–27: Eα and Nα are contradictory. This is immedi-
ate from their definitions in Table 1.
Lines 28–29: αNAβ and β NAα entail ¬Eα∨¬Eβ. αNAβ
and β NAα means that α and β are mutex, i.e., that there is
no reachable state in which both are true. Thus, they cannot
be achieved at the same time. If α becomes true at any point,
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Algorithm 2 Checking at-most-once Constraints
1: procedure CHECKAMO(C,D)
2: Set AMO Acts = ∅. // AMO Acts is a set of sets
3: for each AMOα ∈ C do
4: if s0 |= α then
5: Add ActChF(α) to AMO Acts.
6: Set D = D ∪ActChT(α).
7: else
8: Add ActChF(α) and ActChT(α) to AMO Acts.
9: Let Cands = {p | s0 	|= p, ∃Eα ∈ C : α → p}.

10: Set sets = ∅. // sets is a set of sets of sets
11: for each p ∈ Cands do
12: Let sets(p) be the smallest {A1, . . . , Am} ⊆

AMO Acts s.t. (Adds(p)−D) ⊆ ⋃
i=1,...,m Ai.

13: Add sets(p) to sets.
14: for each S = {A1, . . . , Am} ∈ sets do
15: Let R = {p | sets(p) = S}.
16: Let G = 〈R, {(p, q) | ∃a 	∈ D : p, q ∈ add(a)}〉.
17: Let R′ = APXINDEPENDENTSET(G).
18: if |R′| > |S| then
19: return false.
20: return true.

β cannot be achieved later, and vice versa. Hence, at most
one of Eα and Eβ can be satisfied.
Lines 35–36, 41–42: αSBβ and Nα entail Nβ. If si |= β
for any i, there must be a j < i such that si |= α. This
contradicts Nα.
Lines 39–40: Nα and pre(a) → α entail Da; Nα and
add(a) → α entail Da. If a appears in the action sequence,
pre(a) holds in the state where it is applied and add(a) in
the state immediately after. If either implies α, this contra-
dicts Nα.
Lines 43–44: Nα and β → α entail Nβ. Obvious.
Lines 47–48: Eα and β SBα entail Eβ. If �s |= Eα then
si |= α for some state si in �s. Since �s |= β SBα, this
implies that sj |= β for some j < i. Hence �s |= Eβ.
Lines 49–50: Eα and α → β entail Eβ. Obvious. �

The AMOα constraint states that α may be true in at
most one contiguous subsequence of states. That is, if α
is true at some point and later becomes false, it may not
become true again. The procedure for checking unsatis-
fiability of this constraint type, shown in Algorithm 2, is
based on counting. Each state formula α that appears in
an AMO constraint is associated with two sets of actions:
ActChF(α) = {a | pre(a) → α,

(∧
p∈del(a) ¬p

)
→ ¬α}

and ActChT(α) = {a | mutex(pre(a), α), add(a) → α}.
Actions in ActChF(α), when applied, necessarily change
the value of α from true to false, and actions in ActChT(α)
change it from false to true. The AMOα constraint implies
that at most one action in each of these sets can appear in any
plan. (In fact, if α is initially true, no action in ActChT(α)
can appear in the plan.) Next, we find a set of atoms that are
not initially true but implied by existing E constraints, i.e.,

atoms that must be achieved at some point, and such that the
set of still allowed actions that add each of them is covered
by the union of at-most-once action sets, ActChF(α) and
ActChT(α), where AMOα ∈ C. These atoms are grouped
into sets whose achievers are covered by the same at-most-
once action sets, and from each a subset such that no ac-
tion adds two atoms in the subset is found. This amounts
to solving a independent set problem over the (undirected)
graph that has the atoms in the set as nodes and an edge be-
tween two atoms iff there is a, still allowed, action that adds
both. Since finding a maximal independent set is NP-hard,
it is solved with an approximation algorithm (Boppana and
Halldórsson 1992). If the size of such a set is greater than the
number of at-most-once action sets that covers its achievers,
we have a contradiction.

Proposition 4 If CHECKAMO(C,D) returns false, no se-
quence of actions satisfies C ∪ {Da | a ∈ D}.
Proof: We first establish that any sequence of actions
a1, . . . , an satisfying AMOα:
(1) contains at most one action from ActChF(α);
(2) contains at most one action from ActChT(α); and
(3) if s0 |= α, contains no action from ActChT(α).
Suppose ai and al (i < l) both belong to ActChF(α). By
construction of ActChF(α), this means si−1 |= α, si 	|= α,
sl−1 |= α, and sl 	|= α. Note that l − 1 > i, since si and
sl−1 cannot be the same state. However, since si−1 |= α,
the AMOα constraint requires that there is a j ≥ i − 1 such
that sk |= α for all i− 1 ≤ k ≤ j and sk 	|= α for all k > j.
Any choice of j > i − 1 violates the first condition, since
si 	|= α. But chosing j = i−1 violates the second condition,
since sl−1 |= α and l − 1 > i− 1. This shows (1).
For (2), suppose ai and al (i < l) both belong to
ActChT(α). Similar to the previous case, this means
si−1 	|= α, si |= α, sl−1 	|= α, and sl |= α. By the same
argument as above, this contradicts AMOα.
For (3), suppose s0 |= α and that ai belongs to ActChT(α).
This means si−1 	|= α and si |= α. Note that i > 1, since
s0 and si−1 cannot be the same state. Since s0 |= α and
si−1 	|= α sk 	|= α must hold for all k > i− 1 for AMOα to
be satisfied. But this is contradicted by si |= α.
Suppose the condition of the if statement on line 18, |R′| >
|S|, is true. From (1) and (2) above, no more than |S| ac-
tions from the set

⋃
Ai∈S Ai can appear in any action se-

quence satisfying C. Also to satisfy C, each atom in R′
must be achieved. Since no action adds more than one atom
in R′, this means at least |R′| actions that add some atom in
R′ must take place. But all actions that add some atom in
R′ and that are not disallowed are contained in

⋃
Ai∈S Ai.

Clearly, no action sequence can contain both at least |R′|
and at most |S| actions from this set. �

Proposition 4 refers only to sequences of actions. Since
PDDL3 constraints are evaluated over the sequence of states
visited by a plan, they can, in some situations, be satisfied
by a parallel plan even when not satisfiable by any sequen-
tial plan, because the parallel plan does not visit the states
that occur where parallel actions are interleaved (Gerevini
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et al. 2009, Section 2.4.2). However, no two actions in
ActChF(α) can occur in parallel, since they all destroy
each other’s preconditions. Likewise, no two actions in
ActChT(α) can take place in parallel: Since α holds after
applying any action in ActChT(α), the action must destroy
the precondition of every action in ActChT(α), as other-
wise the mutex relation between α and those preconditions
would not hold. Hence, contradictions found by CHECK-
AMO are valid also if we consider parallel plans.

Evaluation
The trajectory constraint propagator was designed with the
problem of computing lower bounds for problems in the
Rovers QualitativePreferences domain in mind, so it is nat-
ural to test it in this setting. Some limitations of the current
implementation (e.g., that all state formulas are atoms, and
not considering sometime-after constraints) are also due
to this particular problem set.

The method previously used to test unsatisfiability of a
constraint set (Haslum 2007) was to compile the constraints
into the problem, i.e., to create a modified problem P ′ such
that any plan for P ′ satisfies the constraints, and check un-
solvability of the resulting problem with the hm admissible
heuristic (Haslum and Geffner 2000), with m = 1 or 2. The
compilation is also somewhat specialised for the constraints
that appear in the Rovers QualitativePreferences problem
set, and for use with the hm test for unsolvability.

With both tests, unsatisfiable constraint sets are found by
simply enumerating and testing subsets of constraints in the
problem in order of increasing size, skipping sets that con-
tain a subset already proven unsatisfiable. End-state goals
(at-end constraints) are included in every test. With the
compilation-based test, sometime constraints are treated in
a special way for efficiency reasons. As a result, the two
methods do not test the exact same subsets of constraints.

Compilation of Trajectory Constraints
PDDL3 trajectory constraints can be compiled away, with a
polynomial increase in problem size (Gerevini et al. 2009).
The compilation used in the proof of this is based on con-
verting the constraint to an automaton, accepting exactly
the state sequences that satisfy the constraint, encoding the
automaton into the problem, and posing its acceptance as
a goal. Variations of this compilation have been used in
some planners supporting PDDL3 (e.g. Edelkamp 2006;
Baier and McIlraith 2006).

The compilation we have used is simplified, mainly by
restricting it to trajectory constraints in which state formu-
las are single atoms. It is also somewhat tailored to support
inference by the hm heuristic, which is used to detect un-
solvability of the compiled problem. We assume that the
constraints to be tested are not trivially satisfied or contra-
dicted, e.g., for Ap that p is not initially false and for Ep and
pSB q that p is not initially true. The compiled problem, P ′
is an ordinary planning problem, with an end-state goal. For
each constraint, P ′ is modified as follows:
Fp: p becomes a goal.
Ap: Remove from P ′ any action with p ∈ del(a).

0.
0

1.
0

2.
0

Problem (increasing size)

S
ec

on
ds

 / 
te

st Compilation + h^2
Propagation

Figure 1: Time per unsatisfiability test, using compilation
and the h2 heuristic and using propagation.

Ep: Add a new atom had-p, and add had-p to the add effects
of any action with p ∈ add(a). had-p becomes a goal.
pSB q: Add a new atom had-p, and add had-p to the add
effects of any action with p ∈ add(a). Add had-p to the
precondition of any action with q ∈ add(a).
AMOp: First, for each action that adds or deletes p, ensure
the action is “toggling” w.r.t. p. That is, if the action deletes
p, its precondition must include p and if it adds p its precon-
dition must be mutex with p. This property can be enforced
by splitting non-toggling actions into two cases (Hickmott
et al. 2007). Next, add a new, initially true, atom first-p, and
add first-p to the delete effects of any action with p ∈ del(a),
and to the precondition of any action with p ∈ add(a).
Testing a constraint set C with the compilation-based
method proceeds in three steps: First, the constraints are
compiled to produce problem P ′. Second, the hm heuristic
is computed from the initial state of this problem. Third, the
problem goals are evaluated with the heuristic. If hm(G′) =
∞, where G′ is the goal set of P ′, C is unsatisfiable w.r.t. P .

The first two steps are relatively time-consuming, while
the last is very quick. The hm heuristic approximates the
cost of achieving a set (i.e., conjunction) of atoms of size
greater than m by the cost of the most expensive subset of
size m. Thus, if |G′| > m, hm will only detect unsolv-
ability if there is a m-subset of G′ that is also unsolvable.
This is the reason for the special treatment of sometime
constraints: Since these are translated into end-state goals, it
is not necessary to perform a separate compilation for each
subset of them. Instead, all sometime constraints (together
with some subset of other constraints) are compiled, and
each subset of at most m of them (together with at-end
goals) tested in the heuristic evaluation step.

Results
There are 20 problems in the test set. The number of soft
trajectory constraints varies from 14 to 274, and tends to
increase with problem size. The compilation-based test is
applied to every subset of at most 2 constraints of types other
than sometime, and every combination of one of these sets
with at most m sometime constraints. The propagation-
based test is applied to every subset of at most 3 constraints.
For the largest problem that is potentially over 20 million
tests. However, because sets that contain a subset already
proven to be unsatisfiable are skipped, only 3.4 million tests
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Figure 2: Lower bounds computed from unsatisfiable con-
straint sets found by the propagation-based and compilation-
based tests, as a percentage of the highest lower bound for
each problem. The highest lower bound was obtained by
combining the results of both tests.

are actually needed for this problem.
The propagation-based test is faster than the compilation-

based test with the h2 heuristic, and although it does grow
with problem size, it does so much more slowly. The dif-
ference ranges from about 10 times faster to over 1000
times faster on the largest problems. This is shown in
Figure 1. However, because of the separate treatment of
sometime constraints, the compilation-based method per-
forms far fewer tests. As a result, the reduction in total run-
time is only a factor that ranges from 1.85 to 4.77 (median
2.89). On two problems, the compilation-based method is
faster (by a factor less than 2).

The compilation-based test with h2 is generally more
powerful than the propagation-based method: it finds more
unsatisfiable constraint sets for 15 problems, and a higher
lower bound for 17 problems. The lower bounds computed
from the unsatisfiable sets found by the propagation-based
method are, however, not far below: with the exception of
two problems, they are above 75% of higher bound. There
is, however, also a strong complementarity between the two
methods: For 16 of the 20 problems, both methods find some
unsatisfiable set that is not found by the other, and for 14
problems, the lower bound computed from the union of un-
satisfiable sets found by both methods dominates the bounds
produced by either method alone. Figure 2 displays this in
detail. The majority of unsatisfiable constraint sets found by
propagation but not with compilation and h2 include at least
one at-most-once constraint. This is because the CHECK-
AMO procedure can find contradictions implied by a more
than two subgoals, as shown by the following example.

Example 1 Rovers QualitativePreferences problem #6 has,
i.a., the following goals1:

(1) (sent-image obj0 col)
(2) (sent-image obj0 LR)
(3) (sent-image obj1 LR)

To achieve a sent-image goal, some rover must take the

1The names of some predicates have been changed to shorten
them, and to make the example easier to grasp.

image (achieving (have-image ?rover ?obj ?mode)),
and then send it. The take-image action, requires, among
other preconditions, (calibrated ?camera), which is
also deleted by the action (i.e., a camera must be recalibrated
before each photo), and (supports ?camera ?mode).

In problem #6, there are two rovers, rover0 and rover1.
rover0 has two cameras, cam0 and cam1, which support
both image modes; rover1 has one camera, supporting only
mode col. Thus, landmark analysis infers the constraints

(4) (sometime-before (sent-image obj0 LR)
(have-image rover0 obj0 LR))

(5) (sometime-before (sent-image obj1 LR)
(have-image rover0 obj1 LR).

Now, consider the constraints
(6) (at-most-once (calibrated cam0))
(7) (at-most-once (calibrated cam1))
(8) (sometime (have-image rover0 obj0 col).

From (2) and (4), and (3) and (5), the propagator derives
(9) (sometime (have-image rover0 obj0 LR))

(10) (sometime (have-image rover0 obj1 LR)).
Hence, the set Cands in CHECKAMO contains, i.a.,
p1: (have-image rover0 obj0 LR)
p2: (have-image rover0 obj1 LR)
p3: (have-image rover0 obj0 col)

A1 = ActChF((calibrated cam0)), the set of ac-
tions that change (calibrated cam0) from true to false,
consists of all take-image actions using cam0; likewise,
A2 = ActChF((calibrated cam1)) consists of all
take-image actions using cam1. Since these are the only
two cameras on rover0, these two sets together contain
all actions that add each of the three candidate atoms; thus
sets(pi) = {A1, A2} for i = 1, 2, 3. Thus, we have
S = {A1, A2}, and R = {p1, p2, p3}. Since no action adds
more than one of the candidate atoms, the independent set
problem is trivial (the graph has no edges), so R′ = R. Since
|R′| = 3 > 2 = |S|, CHECKAMO finds a contradiction.

The propagation-based test also finds a few contradictions
involving more than two sometime-before constraints.
The compilation-based test with the h1 heuristic is fast, but
also much weaker.

Discussion
The design goal for the PDDL3 propagator was to have a
sound, though incomplete, test for unsatisfiability of a tra-
jectory constraint set w.r.t. a planning problem, whose time
complexity is not strongly related to the size of the prob-
lem. This led to a two-stage approach, where relevant in-
formation is extracted from the problem in a preprocess-
ing step, and passed to the propagator in the form addi-
tional constraints. Results on problems from the IPC 2006
Rovers QualitativePreferences domain confirm that this goal
has been largely met.

A limitation of the current propagator is that it makes
no use of sometime-after constraints. This constraint
stands out in that it is the only one that is not finitely sat-
isfiable. For any constraint set C that does not include a
sometime-after constraint, if C is satisfied by any execu-
tion of a problem P , it is also satisfied by a finite execution:
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Because the number of possible states is finite, in any in-
finite execution there is an index i such that all states that
appear in the sequence appear in the finite sequence up to
i, and this finite sequence satisfies all constraints in C. The
sometime-after constraint does not have this property: If
α and β are mutually exclusive state formulas, the constraint
set {αSAβ, β SAα} is satisfied by a state sequence that al-
ternates infinitely between states where α and β hold, but it
is not satisfied by any finite sequence.

Like SB , the SB constraint is transitive: β SAα and
γ SAβ entail γ SAα. It is also propagated by implication,
from the right-hand side to the left. Because it is not strict,
however, a cycle of SA constraints do not entail that the
state formulas in the cycle can never hold. From αSAβ and
β SAα we can only infer that in any finite execution, α ∧ β
must hold at some point. Applying this inference rule would
mean that the set of state formulas handled by the propaga-
tion algorithm is no longer restricted to those that appear in
its input; in fact, it may grow exponentially. Of course, we
could limit inference to checking whether any pair of state
formulas that appear in a SA -cycle are mutex.

To the best of my knowledge, this is the first approach
aimed specifically at proving the unsatisfiability of PDDL3
trajectory constraints. Most planners have dealt with such
constraints by compiling them away. An exception is the
work of Bienvenu, Fritz and McIlraith (2006), which deals
with preferences over trajectory constraints (more general
than those expressible in PDDL3) using progression. Their
optimistic evaluation provides a lower bound, but a rather
weak one, since it assumes that any constraint that has not
been irrecoverably violated by the state sequence so far will
be satisfied. Baier, Bacchus and McIlraith (2009) describe
an admissible heuristic, based on delete-relaxed plans, for
planning with preferences. In combination with compilation
it can provide lower bounds for problems with soft trajec-
tory constraints, probably comparable to those obtained us-
ing the compilation described above with the h1 heuristic.
Resolution-based proof procedures for the full linear tempo-
ral logic have been developed in the area of formal methods
(Fisher, Dixon, and Peim 2001). These methods are com-
plete, and hence necessarily of high complexity.

Although the propagator is designed to prove unsatisfi-
ability of trajectory constraints w.r.t. a planning problem,
it could potentially also detect unsolvability of a problem
without trajectory constraints, by applying it to just the con-
straints extracted from the problem and the problem’s goal.
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Abstract

In multiagent scheduling, each agent has to schedule
its activities to respect its local (internal) temporal con-
straints, and also to satisfy external constraints between
its activities and activities of other agents. A scheduling
problem is decoupled if each agent can independently
(and thus privately, autonomously, etc.) form a solution
to its local problem such that agents’ combined solu-
tions are guaranteed to satisfy all external constraints.
We expand previous work that decouples multiagent
scheduling problems containing strictly conjunctive tem-
poral constraints to more general problems containing
disjunctive constraints. While this raises a host of chal-
lenging issues, agents can leverage shared information
as early and as often as possible to quickly adopt addi-
tional temporal constraints within their local problems
that sacrifice some local scheduling flexibility in favor
of decoupled, independent, and rapid local scheduling.

Motivation
Many scheduling problems can be represented using temporal
constraint networks, where events are represented as variables
whose domains are the possible execution times, and where
constraints restrict the timings between events in terms of
bounds on the differences between variables’ values. Figure 1
represents one such scheduling problem involving four tasks,
with constraints between the variables representing the start
and end times of each task. For instance the edge from T3BST

to T3BET represents the constraint T3BET − T3BST ∈ [50, 80],
that is, the duration of task T3 is between 50 and 80 min-
utes. The Disjunctive Temporal Problem (DTP) (Stergiou
and Koubarakis 2000) is a general version of such problems,
where constraints represent a choice among many constituent
temporal difference constraints, each of which has its own
bounds expressed over its own pair of timepoints. The dis-
junctive constraints in Figure 1 are represented with double
lines, where all edges belonging to a single disjunctive con-
straint intersect (e.g., T1 must follow T2 by 60 minutes or
precede T2 by 45).

∗A version of this abstract appears at AAMAS 2013. This is a
synopsis of work that appears at AAAI 2013.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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∨
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Figure 1: An example MaDTP with four tasks. T1 and T2
belong to agent A while T3 and T4 belong to agent B.
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External Constraints 

Agent 1’s 
Interface 

Agent 2’s 
Interface 

Agent n’s 
Interface 

Figure 2: Overview of MaDTP structure. External constraints
relate the local DTPs of different agents.

A consistent DTP is one that has a solution—a scheduling
of specific times to each variable that respects all constraints.
There are flexibility benefits to representing DTP solution
spaces—sets of solutions naturally captured within the flexi-
ble ranges of times between temporal bounds—rather than
a single, possibly brittle solution. The DTP is known to be
an NP-hard problem, where for general DTPs with |C| dis-
junctive temporal constraints each with k possibilities, each
of the O(k|C|) possible networks of constraints must be ex-
plored in the worst case (Stergiou and Koubarakis 2000;
Tsamardinos and Pollack 2003). As depicted graphically in
Figure 2, a multiagent DTP (MaDTP) (Boerkoel and Durfee
2012) is one whose variables, and constraints among them,
are partitioned among n agents. For example, the top and
bottom rows in Figure 1 represent tasks belonging to two
different agents, A and B respectively. The DTPs of different
agents are constrained through external constraints, repre-
sented using dashed lines.
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Figure 3: The objective of the MaTDP is to add new local
constraints (shown as dashed lines) that render external con-
straints superfluous and thus encapsulate more of an agent’s
local problem.

T1AST T1AET T2AST T2AET

T3BST T3BET T4BST T4BET

[40,70]

[10:30,11:20] [11:10,12:00]

[150,240]

[7:00,7:50] [9:30,10:20]

[60,110]

[50,80]

[7:00,8:00]

[120,155]

[7:50,8:50]

[70,110]

[9:50,10:50] [11:00,12:00]

Figure 4: An example temporal decoupling of the example
problem. Any combination of solutions to the top and bottom
components will form a solution to the original problem in
Figure 1.

While external constraints capture key relationships be-
tween different agents’ activities, they also introduce cou-
pling between agents’ local problems. To mitigate the level
of interagent coupling, we introduce a property of MaDTPs
called local decomposability. An MaDTP is locally decom-
posable if, for any agent i, any locally consistent assignment
of values to any subset of agent i’s local timepoint variables
can be extended to a joint solution. Local decomposability
approximates full decomposability, which requires full con-
nectivity so that any assignment of any subset of variables is
extensible to a solution. However, to modify the completion
time for a deliverable (e.g., a data analysis or query answer),
an agent still needs to check that others can adjust their sched-
ules to accommodate the change, which can trigger a further
cascade of adjustments by other agents to their schedules.

Here we extend the original definition of the Multia-
gent Temporal Decoupling Problem (MaTDP) (Hunsberger
2002; Boerkoel and Durfee 2011; 2013b; 2013a), which was
previously defined based on problems containing strictly con-
junctive constraints. Agents’ local DTP subproblems form
a temporal decoupling of a consistent MaDTP D if (i) each
agent’s local DTP subproblem is consistent; and (ii) any com-
bination of solutions to each agent’s local DTP subproblem
yields a joint solution to D. As illustrated in Figure 3, the
MaTDP is defined as finding, for each agent, a set of ad-
ditional constraints (e.g., tighter bounds on the timings of
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Figure 5: Graphical overview of the MaDTP-LD algorithm.

activities) that, when added to the agent’s local DTP, creates
a temporal decoupling of MaDTP D. Figure 4 represents a
decoupling of the MaDTP in Figure 1, where any solution
to agent A’s DTP in the top row can be combined with any
solution to agent B’s DTP in the bottom row to form a joint
solution. A challenge is that finding a decoupling requires
ensuring that at least one of the solutions to the MaDTP, if
any exist, must survive the decoupling (Hunsberger 2002),
and so is an NP-hard problem. A second challenge is that dis-
junctive temporal constraints involve arbitrarily many pairs
of variables, and so may induce combinatorially many differ-
ent network structures, making efficient representation of the
set of these possible structures particularly challenging.

Influence-based Decoupling
In this section, we outline our two distributed approaches for
calculating the complete and temporally independent MaDTP
solution spaces, respectively.

MaDTP Local Decomposability
Our MaDTP-LD algorithm (Boerkoel and Durfee 2012) for
computing the complete set of MaDTP solution spaces pro-
vides a basis for our decoupling algorithm. The key insight of
MaDTP-LD is that not all local solutions qualitatively change
how an agent’s problem will impact other agents. Thus, in-
stead of enumerating all joint component MaSTPs, an agent
i can instead focus on enumerating its local component STPs
that lead to distinct STP projections over its interface—the
portion of its local problem that is involved in external con-
straints. An agent’s influence space (Oliehoek, Witwicki,
and Kaelbling 2012) summarizes how its local constraints
impact other agents so that all coordination can be limited to
these smaller influence spaces. As illustrated in Figure 5, the
MaDTP-LD operates in three distinct phases: (1) each agent
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Figure 6: Graphical overview of the MaDTP-TD algorithm.

independently enumerates its influence space; (2) then agents
exchange their influence spaces, incorporating the influence
spaces of other agents as new local constraints; and (3) fi-
nally, each agent independently enumerates its local solution
space while respecting the influence space constraints of all
agents. The joint solution space is represented in a distributed
fashion as a cross-product of local solution spaces and allows
agents to independently manage their local solution spaces.

MaDTP Temporal Decoupling

Our MaDTP Temporal Decoupling (MaDTP-TD) algorithm
(Boerkoel and Durfee 2013a; 2013b) builds on the MaDTP-
LD algorithm. Our approach differs from the MaDTP-LD
algorithm by incorporating information from the shared DTP
as early and often as possible, rather than waiting for each
agent to completely enumerate its local influence space be-
fore shared reasoning occurs. Incorporating shared informa-
tion has the effect of pruning globally infeasible schedules
from an agent’s local search space early on and then, once a
temporal decoupling as been found, short-circuiting agents’
reasoning by eliminating those local schedules that are no
longer consistent with respect to the new decoupling con-
straints. The shared DTP solution space can be thought of as
the cross-product of agents’ influence spaces. Thus, as agents
construct their local influence spaces, they can also build the
shared DTP solution space in a way that is provably sound
and progressively more complete over time. Then, as soon
as a solution to the shared DTP is found, it can be used to
construct and install a temporal decoupling, which in turn
saves computing the entire joint solution space, representing
a potentially combinatorial savings. Our approach is both
provably sound and complete.
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Figure 7: Runtime performance of MaDTP-LD vs. MaDTP-
TD as the number of agents scales.

Comparison
We compare our new decoupling approach against our
MaDTP-LD algorithm that computes the entire joint solution
space, replicating our previous experimental setup (Boerkoel
and Durfee 2012). We measure the maximum processing
time across agents (i.e., the time the last agent completes exe-
cution) and the number of distinct, consistent local temporal
constraint networks. Using a 100 second timeout on loosely-
coupled problems (p = 0.2), Figure 7 shows that using our
distributed MaDTP-LD algorithm to compute a complete,
locally decomposable joint solution space runs in less orders-
of-magnitude less time than a naive centralized approach
that computes full joint decomposabilty, which exceeds 100
seconds for problems with more than two agents. Figure 7
also shows that using our distributed MaDTP-TD algorithm
to compute a temporally decoupled solution space scales to
problems involving orders-of-magnitude more agents than
the MaDTP-LD algorithm. As discussed next, this is achieved
by sacrificing the completeness of the joint solution space in
favor of increased agent independence.

As shown in Figure 8, for problems containing just two
agents, as the proportion of external constraints increases
(p), our MaDTP-TD algorithm demonstrates upwards of a
four orders-magnitude decrease in runtime over the complete
MaTDP-LD algorithm. This is because as soon as agents
find a decoupling, they immediately commence with finding
only solutions that are consistent with the new decoupling
constraints rather than fully enumerating the entire joint solu-
tion space. However, Figure 8 also illustrates that these gains
come at the cost of limiting the completeness of local solu-
tion spaces as measured by the number of distinct consistent
local temporal networks. This limits the amount of flexibility
an agent has to react to scheduling disturbances.

Discussion
In conclusion, we discuss a new distributed, decoupling ap-
proach for calculating solution spaces to MaDTPs where
agents independently and incrementally build their influence
spaces until a valid temporal decoupling can be found. Over-
all, we believe the gains in runtime efficiency of our MaDTP-
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Figure 8: Relative gains in runtime compared to relative loss
of completeness of the MaDTP-LD algorithm compared to
MaDTP-TD algorithm as the level of interaction coupling
increases.

TD algorithm over the MaDTP-LD algorithm outpace the
relative sacrifices in solution space completeness—our ap-
proach solves loosely-coupled problems containing 64 agents
in under a second while maintaining at least a tenth of all
consistent local temporal networks, whereas the MaDTP-LD
algorithm consistently exceeds 100 seconds for problems
with more than four agents. In the future, we would like
to investigate optimal and heuristic variants of our decou-
pling approach where, for example, agents produce influence
spaces in a best-first manner in an attempt to guide the coor-
dinator to a more flexible temporal decoupling in an anytime
manner.

Acknowledgments
We thank the anonymous reviewers for their suggestions and
Professor Julie Shah and the Interactive Robotics Group for
their guidance. This work was supported, in part, by the NSF
under grant IIS-0964512 and by a UM Rackham Fellowship.

References
Boerkoel, J., and Durfee, E. 2011. Distributed algorithms
for solving the multiagent temporal decoupling problem. In
Proc. of AAMAS-11, 141–148.
Boerkoel, J., and Durfee, E. 2012. A distributed approach
to summarizing spaces of multiagent schedules. In Proc. of
AAAI-12, 1742–1748.
Boerkoel, J., and Durfee, E. 2013a. Decoupling the multia-
gent disjunctive temporal problem. In Proc. of AAAI-13, To
Appear.
Boerkoel, J., and Durfee, E. 2013b. Decoupling the multi-
agent disjunctive temporal problem (extended abstract). In
Proc. of AAMAS-13, To Appear.
Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proc. of AAAI-02, 468–
475.
Oliehoek, F. A.; Witwicki, S. J.; and Kaelbling, L. P. 2012.
Influence-based abstraction for multiagent systems. In Proc.
of AAAI-12, 1422–1428.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1):81–117.
Tsamardinos, I., and Pollack, M. 2003. Efficient solution
techniques for disjunctive temporal reasoning problems. Ar-
tificial Intelligence 151(1-2):43–89.

COPLAS 2013: 8th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

27



A Constraint Programming Approach to Solve Scheduling Problems under
Uncertainty

Laura Climent, Richard J. Wallace, Miguel A. Salido and Federico Barber
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Email: lcliment@dsic.upv.es, msalido@dsic.upv.es and fbarber@dsic.upv.es
Cork Constraint Computation Centre and Department of Computer Science

Western Gateway Building, University College Cork, Ireland. Email: r.wallace@4c.ucc.ie

Abstract

Many real life problems come from uncertain and dynamic
environments, which means that the original problem may
change over time. Therefore, the original solution may be-
come invalid after these changes. A high percentage of ap-
proaches that deal with these problems consider the existence
of knowledge about the uncertain and dynamic environment.
Nevertheless, for many scheduling dynamic problems, there
does not exist extra information about the future possible in-
cidences or it is hard to obtain. In this paper, we extend
and improve a CSP approach for obtaining robust solutions
in order to apply it to scheduling problems and obtain robust
schedules. This approach does not consider extra detailed ad-
ditional information about the future possible changes. Thus,
it assumes that any task of the schedule may undergo a de-
lay. The search algorithm presented assigns values to the
variables based on their number of feasible greater contigu-
ous neighbours. They represent slack between tasks, which
confers robustness to the schedule because it is able to ab-
sorb delays. We have evaluated the proposed approach with
open-shop and job-shop benchmarks by using existent robust-
ness measures in the literature that assess the number of time
buffers, their duration and/or their distribution.

1 Introduction
Real life problems often evolve over time because the real
environments that they come from are often uncertain and
dynamic. Thus, the original solution found may no longer
be valid after these changes. There are two main approaches
for dealing with these situations: reactive approaches and
proactive approaches. For dynamic scheduling the clas-
sification can be extended: reactive scheduling, stochastic
scheduling, scheduling under fuzziness, proactive schedul-
ing and sensitivity analysis (see (Herroelen and Leus 2005)
for a survey).

Re-solving the problem after the loss of a solution (reac-
tive approaches) consumes computational time. In addition,
for scheduling problems there exists another disadvantage
because if the new schedule is delivered late, it could cause
the shutdown of the production system, the breakage of ma-
chines, the loss of the material/object in production, etc. As
an alternative, proactive approaches try to avoid these draw-

Copyright c© 2013, Association for the Advancement of Artificial
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backs by using all the available knowledge about the possi-
ble future changes in order to avoid or minimize their effects.
That is why these techniques are highly valued for dealing
with problems in uncertain and dynamic environments.

For the reasons mentioned above, we focus our attention
on the search for robust schedules (proactive approaches),
specifically, the ability of a schedule to maximize the
chances of resisting changes, since we strongly value solu-
tion loss prevention. We also consider situations where there
is an added difficulty stemming from the fact that there is no
detailed extra information about possible future changes that
a scheduling problem may undergo. This is in contrast to
most alternative approaches, which require statistics and/or
probabilities of changes (for instance stochastic scheduling
approaches and scheduling under fuzziness).

If no specific information is given about the dynamics
of the situation, it is reasonable to assume that any task of
the schedule may undergo a delay due the expected dura-
tion of an activity being exceeded or because a required re-
source has became unexpectedly unavailable. For instance,
in scheduling problems, it is reasonable to assume that any
task of the schedule may undergo a delay. In (Fu et al. 2012),
the authors stated that unexpected external events such as
manpower availability, weather changes, etc. lead to delays
or advances in completion of activities in scheduling prob-
lems.
Example 1. In a simple scheduling problem in which the
end-time of a task is 3, all the following tasks in the same job
have an start-time in the interval [3,max]. However, if in the
future there is a delay of 1 time unit in the aforesaid task, it
can be assumed that the new domains of the following tasks
are [4,max]. Figure 1 shows a schedule for this example
that has become invalid due to the delay in 1 time unit of
the first task T0 (marked with a mesh) coincide with the start
of the following task T1 (starting in the 3 time unit). For
this reason, in the scheduling framework, the slack between
tasks confers robustness to the schedule because it is able to
absorb task delays.

In this paper we extend and improve the general proactive
Constraint Programming approach presented in (Climent et
al. 2012) to scheduling problems. This new incorporation
mainly consists on: (i) improving the efficiency of the search
algorithm for dealing with scheduling problems (problems
that usually have large domains) and (ii) adapting the robust-
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Figure 1: Invalid schedule for Example 1.

ness objective function for scheduling problems. In order
to meet our main objective of finding robust schedules with
slack that are able to absorb delays, the extended and im-
proved search algorithm computes and maximizes the num-
ber of feasible greater contiguous neighbours of the values
assigned to the CSP variables (for the CSPs that model the
schedules).

The next section recalls some general definitions and ro-
bustness measures. Section 3 gives a brief account of earlier
procedures related with our approach. Section 4 describes
our CSP search algorithm for finding robust schedules. Sec-
tion 5 presents a case study using a open-shop scheduling
benchmark. Section 6 describes experiments with various
job-shop scheduling benchmarks. Finally, Section 7 gives
conclusions.

2 Technical Background
Here, we give some basic definitions that are used in the rest
of the paper, following standard notations and definitions in
the literature.

2.1 Constraint Programming
Constraint programming (CP) is a powerful paradigm that
has being applied with success to many domains such as
scheduling, planning, configuration, networks, etc.

Definition 1. A Constraint Satisfaction Problem (CSP) is
represented as a triple P = 〈X ,D, C〉 where:

• X is a finite set of variables X = {x1, x2, ..., xn}.
• D is a set of domains D = {D(x1), D(x2), ..., D(xn)}

such that for each variable xi ∈ X , D(xi) is a set of
values that the variable can take.

• C is a finite set of constraints C = {C1, C2, ..., Ce} which
restrict the values that the variables can simultaneously
take.

The CSP modeling of an scheduling problem usually con-
sists of associating a variable with each start or end time of
a task (in this paper we use the start time), the domains as-
sociated to each variable represent the possible time units,
and therefore by means of them it is possible to fix a max-
imum desired makespan. Finally, the duration of the tasks
and their order (if there exists) can be fixed by means of the
CSP constraints.

2.2 Robustness and its measurement
In this subsection we formally explain the feature of robust-
ness associated to solutions (and by extension to schedules)
and also how to measure the robustness of the schedules.

Definition 2. The most robust solution within a set of so-
lutions is the one with the highest likelihood of remaining a
solution after any type of change.

Note that this concept has a strong dependency with re-
spect to the assumption of the future possible changes that
may occur. In addition, Definition 2 does not consider mod-
ifications in the original solution but only its resistance to
future changes in the problem.

In the following we introduce several criteria for measur-
ing scheduling robustness. There are two main factors that
increase the capability of the schedule to absorb unexpected
delays in its activities: the number of buffers and their du-
ration. Since longer delays in a task subsume smaller de-
lays in the same task, we will assume that shorter delays are
more likely to occur over all the tasks. For this reason, we
strongly prefer that the slack be uniformly distributed across
the whole schedule. The simplest way of determining this
feature is calculating the number of time buffers.

However, ideally, the slack should be as long as possible
because the longer the buffers are, the longer delays are able
to absorb. For this reason another straight-forward robust-
ness measurement was proposed in (Leon, Wu, and Robert
1994) as the slack average in the schedule.

The combination of the duration of the buffers and their
distribution along the schedule provides another robustness
measure (R), which is a slight variant of a measure intro-
duced in (Surico et al. 2008) that consists in maximizing the
slack average (avg) and minimizing their standard deviation
(std).

R = avg(slack)− α std(slack) (1)

In (Surico et al. 2008), the authors state that α should be
in [0.2,0.25].

3 Limitations of earlier techniques
A high percentage of earlier proactive approaches use addi-
tional information about the uncertain and dynamic environ-
ment and usually involve probabilistic methodologies. Since
our approach is searching for robust solutions for CSPs, in
the following we mainly explain the limitations of other ap-
proaches of this type. For a survey about specific approaches
for scheduling problems that do not involve CSP approaches
see the survey (Herroelen and Leus 2005).

In one example of proactive approach that use additional
information, data is gathered in the form of penalties, in
which values that are no longer valid after changes in the
problem are penalized (Wallace and Freuder 1998). On the
other hand, in the Probabilistic CSP model (PCSP) (Fargier
and Lang 1993), there exists information associated to each
constraint, expressing its probability of existence.

Other techniques focus on the dynamism of the variables
of the CSP. For instance, the Mixed CSP model (MCSP)
(Fargier, Lang, and Schiex 1996), considers the dynamism
of certain uncontrollable variables that can take on differ-
ent values of their uncertain domains. The Uncertain CSP
model (UCSP) is an extension of MCSP, whose main in-
novation is that it considers continuous domains (Yorke-
Smith and Gervet 2009). The Stochastic CSP model (SCSP)
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(Walsh 2002) assumes a probability distribution associated
with the uncertain domain of each uncontrollable variable.
The Branching CSP model (BCSP) considers the possible
addition of variables to the current problem (Fowler and
Brown 2000). For each variable, there is a gain associated
with an assignment.

In most of these models as well as in a high percentage of
techniques for scheduling that are not CSP approaches, it is
necessary to have a list of the possible changes or the repre-
sentation of uncertainty, often in the form of an associated
probability distribution. As a result, these approaches cannot
be used if the required information is not known. In many
real problems, however, knowledge about possible further
changes is either limited or nonexistent.

Previous work in the search of robust solutions for general
CSPs without extra data about the future possible changes,
by mean of reformulation approaches, was done in (Cli-
ment et al. 2013). However, it was not adapted and ap-
plied to scheduling problems. On the other hand, there ex-
ist model reformulation techniques that do not consider ex-
tra data about the dynamism over the schedule. Thus, they
also search for schedules with slack. This is achieved by
adding two variables to each original variable (the variables
that represent the start time of the tasks). One variable rep-
resents the slack that is following the task and the other vari-
able represents the sum of the slack and the original starting
time. As instance, let pi be the starting time of the task xi.
Thus, we would replace it by p′i = pi + si, where si repre-
sents the slack associated to task xi. In addition, depending
on the maximum bound of the slack desired, another con-
straint should be added, such as si ≤ k. In this case, the
delay is up to k time units. In addition, an objective function
that express the goal of maximizing the total slack should be
defined.

The main advantage of the approach presented in this pa-
per over the above mentioned approaches, for whose mod-
els the variables represent slack, is that our approach can be
applied when all slack-values require a consistency check.
This requirement is necessary in scheduling problems where
intermediate non-valid slack values are possible. Examples
of this type of problem are scheduling problems with limited
machine availability (see for instance (Schmidt 2000)). In
these cases, some machines are unavailable in certain time
intervals; for this reason, tasks that require these resources
cannot be executed in such time units. We would like to
note that the model reformulation techniques do not check
the satisfiability of intermediate slack values.

There is an existing proactive CSP approach that does
not consider detailed additional information. However, this
approach does not check the satisfiability of intermediate
slack values. It searches for super-solutions (Hebrard 2006),
which are solutions that can be repaired after changes occur,
with minimal changes that can be specified in advance. In
Section 7 there is a comparison of the schedules obtained
by our technique with the schedules obtained by this tech-
nique. This motivates the following detailed explanation of
the aforementioned approach.
Definition 3. A solution is a (a, b)-super-solution if the loss
of values of a variables at most, can be repaired by assigning

other values to these variables, and changing the values of b
variables at most (Hebrard 2006).

For CSPs, the main focus has been on finding (1,0)-super-
solutions (because of the high computational cost of com-
puting b > 0 or a > 1). This is one reason why we analyze
this particular super-solution case in this paper. The other
reason is motivated by (Verfaillie and Jussien 2005), where
the authors state that a desirable objective is to “limit as
much as possible changes in the produced solution”, which
motives the search of (a, 0)-super-solutions. In the following
the (1,0)-super-solutions are further explained by a simple
example.
Example 2. Let us consider the following CSP:

x0, x1 ∈ {1, 2, 3}
C1 : x0 ≤ x1

• The solution (x0 = 1, x1 = 1) is not a (1,0)-super-
solution, because if the variable x0 loses the value 1, it is
not possible to find another value for x0 that is consistent
with C1, since (x0 = 2, x1 = 1) and (x0 = 3, x1 = 1)
are not solutions to the problem.

• The solution (x0 = 1, x1 = 2) is a (1,0)-super-solution,
because if any variable loses its value, at least one value
can be found that is compatible with the assignment of
the other variable. If x0 loses its value 1, a value of 2
can be assigned to x0, since (x0 = 2, x1 = 2) is solution
of the problem. If x1 loses its value 2, a value of 1 or
3 can be assigned to x1, since (x0 = 1, x1 = 1) and
(x0 = 1, x1 = 3) are solutions of the problem.

However, finding (1,0)-super-solutions is problematic be-
cause, (1) if there is a backbone variable (a variable that
takes the same value in all the solutions), this ensures that
there are no (1,0)-super-solutions, (2) in general, it is un-
usual to find (1,0)-super-solutions where all variables can
be repaired. For these reasons, in (Hebrard 2006) the au-
thor also developed a branch and bound-based algorithm for
finding solutions that are close to (1,0)-super-solutions, i.e.,
where the number of repairable variables is maximized (also
called maximizing the (1-0)-repairability).

4 Robustness Search
In this section, we explain our main objective and search
algorithm for obtaining robust schedules.

4.1 Main Objective
As stated, ideally a robust schedule should exhibit well dis-
tributed slack, so that the likelihood that it can absorb de-
lays and still remain valid is high. To meet this objective,
we extend a CSP approach that searches for robust solutions
for CSPs (Climent et al. 2012) to scheduling problems. For
the general CSP robust search, the authors stated that ro-
bust solutions are surrounded by feasible neighbours. Nev-
ertheless, in scheduling problems, there is a feature inherent
to the structure of the modeled CSP to be considered: the
domain values represent time units. This fact implies that
lower neighbour values cannot be used for repairing a vari-
able breakage (when there is a delay in a task) because this
time unit has already occurred. Thus, if there is a delaying
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incident and the time point t is not available, then neither are
values lower than t available. Given these particular charac-
teristics, the desirable objective is to search for neighbours
that are greater than the value assigned. This is illustrated
bellow.

Example 3. We consider a toy scheduling problem with two
tasks: T0 and T1. Both are of 2 time units duration and must
be executed in this order. The maximum makespan allowed
is 6 time units. In Figure 2 we can see the CSP model as-
sociated to the Example 3 and its solution space. The two
variables X0 and X1 represent the start times of tasks T0

and T1, respectively. The domain of both variables (repre-
sented with discontinuous lines) is [0 . . . 4], which preserves
the maximum makespan fixed to 6 time units (the maximum
start time of a task is the maximum makespan minus the du-
ration of the aforesaid task). There exists a constraint con-
trolling the execution order of the tasks (T0 must start before
T1), which is C0 : X1 ≥ X0 + 2. There exist 6 solutions
(black points).
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Figure 2: CSP model of Example 3 and its solutions.

If no specific information is given about the dynamic en-
vironment, which is the most robust schedule? As stated in
Section 2, the greater number of time buffers and the greater
their duration is, the more robust the schedule is. But how
can we determine which solution of the modeled CSP meets
these characteristics? The answer is obtained by calculating
the greater feasible contiguous neighbours located at dis-
tance lower or equal to k from a solution. The number of
greater feasible neighbours associated to each variable, cor-
responds to the duration of the slack that is located after the
task that is represented by this variable. Thus, the slack is
able to absorb a delay in the previous task as long as itself,
without modifying the other tasks (robustness feature).

In the following (a) figures the greater neighbours are sur-
rounded by a circle and connected to the marked solution. In
the following (b) figures are shown the schedules equivalent
to the solutions marked in (a) figures. Note that neighbours
in (a) figures correspond to the slack in figures (b). For the
above example, there exist 3 more robust schedules accord-
ing to the criteria mentioned above. If we maximize the sum
of greater neighbours values that are located at distance 1

(k = 1) from each value of the assignment, the solution ob-
tained is shown in Figure 3(a). This solution has one greater
neighbour for each value. On the other hand, if we maxi-
mize the sum of greater neighbours values that are located at
distance k > 1 from each value of the assignment, the 3 so-
lutions represented in Figures 3(a), 4(a) and 5(a) are equally
robust. The computation of the sums is: 1+ 1 (Figure 3(a)),
2 + 0 (Figure 4(a)) and 0 + 2 (Figure 5(a)).

At this stage, we wonder again which feature is prefer-
able: greater number of time buffers or greater total slack
duration? (if both features cannot coexist). The answer is
obviously related with the type of dynamism associated to
the scheduling problem. Lower k values are performing bet-
ter for frequent short delays that can occur in any task. How-
ever, greater k values can obtain schedules that may face
greater delays in the tasks, but these schedules probably will
become invalid faced with high frequency delays (because of
the lower number of tasks that have slack associated). Since
in this paper we do not assume extra detailed information
about the future changes, in Section 6 we analyze several
ranges of k values.
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(a) Solutions.
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(b) Schedule of the marked solution.

Figure 3: Schedule S0 = (x0 = 0, x1 = 3).

In the following we provide some notation that will be
used in further formal definitions. We denote a feasible par-
tial assignment as S, while XS is the subset of variables
that are involved in S. Thus, X\XS is the set of unas-
signed variables in S. The value assigned to a variable x
in S is denoted as S(x). And Nk(x, v, S) is the set of fea-
sible greater contiguous neighbour values at distance lower
or equal to k from v, which is a feasible value for the vari-
able x. Here, when we say feasible values we mean that
they are also feasible with respect to S. We refer the subset
DS(x) ⊆ D(x) that is consistent with the feasible partial
assignment S. Thus, Nk(x, v, S) is:

Nk(x, v, S)= {w ∈ DS(x) : w > v ∧ w − v ≤ k ∧ (2)
∀j ∈ [1 . . . (w − v − 1)](v + j) ∈ DS(x)}
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(a) Solutions.
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(b) Schedule of the marked solution.

Figure 4: Schedule S1 = (x0 = 0, x1 = 4).
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(a) Solutions.
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(b) Schedule of the marked solution.

Figure 5: Schedule S2 = (x0 = 0, x1 = 2).

The first condition checks that the feasible neighbours val-
ues are greater to the value v, the second condition checks
that their distance from v is lower or equal to k. The third
condition ensures that all the greater values that are closer
to v than w are also feasible values (contiguity condition).
If at least one of them is not, the value w does not belong
to Nk(x, v, S). The set of feasible greater neighbours has to
be contiguous because otherwise, it means that there exists a
task that is making these intermediate values infeasible and
therefore they do not represent a slack in the schedule.

The objective function is the total number of greater fea-
sible contiguous neighbour values of a partial assignment
S (Equation 3) and it is calculated by summing the size
of Nk(x, v, S) (denoted |Nk(x, v, S)|) for each variable
x ∈ X . If S is an incomplete assignment, the maximum
|Nk(x, v, S)| for each v ∈ DS(x) of the unassigned vari-
ables is calculated (upper bound). Since the maximum size
of the set of neighbour values is k, it is not necessary to
check all the values of DS(x) in case that one has k neigh-
bours.

f(S, k)= {
∑

x∈X\XS

max{|Nk(x, v, S)|, ∀v ∈ DS(x)}

+
∑
y∈XS

|Nk(y, S(y), S)|} (3)

Next, we give a formal rationale for using the total num-
ber of greater feasible contiguous neighbours of the solution
(sum of greater feasible contiguous neighbours of each value
of the solution) as a measure of robustness.

For k = 1, each value has either zero or one neighbour.
Here we can discount the case of zero neighbours because if
an assignment has zero neighbours, then it must be part of a
singleton domain, and it will be part of all solutions. So we
need only consider values with one neighbour. In this case,
a solution with a greater sum is one whose assignments have
more neighbours.

Proposition 1. If we assume that having one neighbour
confers greater robustness than not having any and that the
probabilities of single changes are independent, then a solu-
tion with a greater neighbour-sum than another will also be
more robust, and vice versa.

Note that as the number of variables in the problem in-
creases, it becomes increasingly unlikely that a variable with
an assignment having zero neighbours will be associated
with the largest neighbour-sum for the remaining variables.

In the non-convex case, it is unfortunately possible for
one assignment to have zero neighbours, while other assign-
ments to the same variable have one or two. In this case,
we cannot assume Proposition 1. However, as the number
of variables in the problem increases, it becomes increas-
ingly unlikely that a variable with an assignment having zero
neighbours will be associated with the largest neighbour-
sum for the remaining variables.

4.2 Search Algorithm
In this section we extend the search algorithm that searches
for robust solutions for CSPs (Climent et al. 2012) to
scheduling problems. In that paper, the authors applied the
general CSP search algorithm to a toy scheduling problem
(4 jobs). However, for dealing with real life problems, some
efficiency techniques have to be added to the search algo-
rithm. Furthermore, the objective function of the search
algorithm presented in (Climent et al. 2012) valued lower
feasible neighbours, even if as stated in Section 4.1 these
values represent time that has already passed and therefore
can not be considered for the robustness computing. The
extended search algorithm consists of a Branch & Bound
algorithm (Algorithm 1) (B&B-Nk) that maximizes the ob-
jective function f(S, k) (see Equation 3). This algorithm
is an ‘anytime’ algorithm that prunes the branches whose
objective function value is lower or equal to the maximum
function value obtained (fMax). We have improved it by
computing the maximum possible objective function value,
which is the maximum number of neighbours for each vari-
able multiplied by the number of variables of the CSP. This
value is denoted as uB (upper bound). Thus, if the objective
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function value of a new solution found is equal to the upper
bound, the algorithm stops, since this solution is optimal.

The most important efficiency improvement that we have
adopted is the Geometric restart strategy (Walsh and others
1999) in order to reduce the repetition of failures in search
due to early wrong assignments (thrashing). Thus, each time
that the number of failures (referenced as nbF ) reaches a
cutoff value (referenced as C), a condition that is checked in
Algorithm 3, the algorithm restarts the search from scratch,
while maintaining the constraints weights stored by the
dom/wdeg variable selection heuristic (Boussemart et al.
2004). The value of the number-of-fails cutoff is increased
geometrically in Algorithm 1 according to a scaling fac-
tor (referenced as scale) and a multiplicative factor (refer-
enced as m). We have implemented two different options
to carry out when a solution is found. In the first restarting
option, called restarting-completion, when the first solution
is found, the algorithm continues the search until comple-
tion (note that in this case we assign a huge number rep-
resenting ∞ to the number of fails cutoff). In the second
restarting option, called restarting-scratch, after each solu-
tion found, the algorithm restarts the search from scratch
and also restarts the number of fails cutoff computation (the
constraint weights remain the same). For instances whose
domain size is large, this restarting option could be useful
because it avoids spending a large amount of time in a spe-
cific branch. The latter happens when Algorithm 1 checks
many domain values of variables located in low positions of
the search tree, because the objective function of the par-
tial assignment is better than the maximum found until this
moment (fMax). In this case, if there exists a time cutoff,
Algorithm 1 could not analyze other branches of the tree,
which may contain solutions of good quality.

Algorithm 1: B&B-Nk: Branch and Bound algorithm
Data: P = 〈X ,D, C〉, k, scale,m, time cutoff
Result: S, Nk, fMax

S ← ∅; // Partial assignment
XS ← ∅; // Set of variables assigned
Nk ← ∅; // Set of contiguous surrounding neighbours
fMax ← 0; // Maximum f(S, k) for the solutions
uB ← k ∗ |X |;
i ← 1;
GAC3-Nk(P, S,XS ,Nk, k, fMax);
repeat

if restarting-scratch ∧ new solution found then
i ← 1;

C ← scale ∗mi; //number of fails cutoff
i ← i+ 1;

until time cutoff ∨ not
MGAC3-Nk(P, S,XS ,Nk, k, fMax, 0, C, uB) ;

The inference process is carried out by Algorithm 2
(GAC3-Nk), which is an extension of the well known GAC3
(Mackworth 1977). Some specific notation has been in-
cluded, as V ar(c), which it is the scope of c ∈ C. The
original seekSupport function of GAC3 searches for a sup-
port of each domain value. However, this function has a in-

put parameter the set of values for being analysed. Thus, if
any of these values are deleted because there does not exist
any consistent support with respect the partial assignment,
seekSupport returns False. This function is first called with
the values of the domain of the variables (for checking if the
partial assignment S is GAC3) and later with Nk just for
assigned variables (for checking if each Nk(x, S(x), S) is
GAC3 with respect S). In order to ensure the contiguity
of the values in Nk, Algorithm 2 checks the consistency of
subsets of Ni ⊆ Nk, where i is equal to 1 initially, and it
is increased in one unit until at least one of the values of
Ni is inconsistent or until i reaches the value of k. After
composing the set of contiguous neighbour values that are
GAC3 with respect S, Algorithm 2 analyzes if the objective
function f(S, k) is greater than fMax. If it is not, or S is not
GAC3, returns false.

Algorithm 2: GAC3-Nk: Global Arc Consistency
Data: P, S,XS ,Nk, k, fMax, nbF
Result: D,Nk, nbF
Q ← {(x, c), ∀c ∈ C, ∀x ∈ V ar(c)}
while Q 	= ∅ do

(x, c) ← takeElement(Q);
sD ← seekSupport(x,D(x), c);
if |D(x)| = ∅ then

nbF ← nbF + 1; // number of failures
return False;

if not sD then
Q ← Q ∪ {(y, c′), ∀c′ ∈ C ∧ c′ 	= c ∧ ∀x, y ∈
V ar(c′) ∧ x 	= y}

if x ∈ XS then
i ← 1;
repeat

update Ni(x, S(x), S) with Equation 2;
sN ← seekSupport(x,Ni(x, S(x), S), c);
i ← i+ 1;

until sN = False ∨ i > k ;
Nk(x, S(x), S) ← Ni(x, S(x), S)

return f(S, k) > fMax; // See Equation 3

For scheduling problems, whose modeled CSPs have con-
vex domains, Bounds Arc Consistency for discrete CSPs
(Lhomme 1993) is used in order to reduce the computational
time. The main feature of this consistency technique is that
the arc consistency in the value assignment is only applied
to the bounds of each convex domain. Thus, including it in
the search algorithm only affects to the seekSupport func-
tion, which instead of seeking for a support for all the set of
values, just checks the minimum and maximum bounds.

Algorithm 3 (MGAC3-Nk) performs a Maintaining
GAC3 process by assigning to each variable x ∈ X a new
value v ∈ D(x), until the value selected is GAC3-Nk with
respect S. Furthermore, Algorithm 3 is also responsible for
updating the set of assigned variables XS , the partial assign-
ment S and the maximum objective function value fMax

(for each solution found). Furthermore, it stores the do-
mains and set of neighbours of all the variables before mak-
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ing an assignment. Note that after a variable x is assigned,
D(x) contains a single value that is the value assigned to x.
If Algorithm 2 (GAC3-Nk) returns false, then Algorithm 3
(MGAC3-Nk) carries out the backtracking process and also
restores the domains and set of neighbours of all the vari-
ables.

Algorithm 3: MGAC3-Nk: Maintaining GAC
Data: P, S,XS ,Nk, k, fMax, nbF,C, uB
Result: S,Nk, fMax

select x ∈ X\XS ; // dom/wdeg heuristic
XS ← XS ∪ x;
save D and Nk;
while |D(x)| 	= ∅ ∧ nbF < C do

select min(v) ∈ D(x); // Lexicographical value
order heuristic
S ← S ∪ {x = v};
D(x) ← v;
if GAC3-Nk(P, S,XS ,Nk, k, fMax, nbF ) then

if XS = X then
// New solution found
fMax ← f(S, k);
if fMax = uB then

return True; // Best possible cost
achieved

C ← ∞; // restarting-completion
return False; // restarting-scratch

if MGAC3(P, S,XS ,Nk, k, fMax, nbF,C, uB)
then

return True;

restore D and Nk;
S ← S\{x = v};

XS ← XS\x;
return False;

5 Case Study
In this section a case study of an scheduling benchmark is
described to graphically show the robustness of schedules
obtained with Algorithm 1) (B&B-Nk). We analyze an in-
stance derived from Taillard optimization problems (Taillard
1993): “os-taillard-4-105-0”, which is a well-known prob-
lem and was used in the CSP solver competition1.

This problem was converted to satisfaction problems by
fixing the maximum makespan allowed (latest finishing
time). For the analyzed instance the maximum makespan
is set to 105% of the best makespan, so that it is possible
to have schedules with instances of greater slack. Since the
open-shop benchmark is composed of 4 machines, 4 jobs
and 4 tasks per job, the resultant CSP model contains 16
variables and 48 constraints; the latter prevent two tasks
from using the same machine at the same time as well as
ensuring that two tasks of the same job do not overlap.

For this benchmark as well as the benchmarks analyzed in
Section 6, we have used a Intel Core i5-650 Processor (3.20

1http://www.cril.univ-artois.fr/ lecoutre/benchmarks.html

Ghz) and we have fixed the time cutoff to 100 seconds. In
addition, for the geometric restart, we have fixed the scale
factor to 10 and the multiplicative factor to 1.5.

Figure 6 shows a non robust schedule obtained by a CSP
solver. The jobs are represented on the vertical axis and time
is represented on the horizontal axis. Tasks are shown in
light grey with the number of task and the machine assigned
to each task. The striped slack represents the natural slack
produced because the earlier starting next task related with
a task, is waiting to the release of a machine or to the end of
another task, or by the gap between the last task of a job and
the makespan. It can be observed that this schedule has only
7 natural slack after the tasks, so a delay at any other place
in the schedule will invalidate the obtained solution.

Figure 6: Non robust schedule (makespan=195).

Figure 7 shows the solution obtained for “os-taillard-4-
105-0” problem by B&B-Nk algorithm for k = 1. It can be
observed that it has additional instances of slack (in dark
gray). These slacks are not produced because the earlier
starting next task related with a task is not able to start be-
fore; for this reason, they are differentiated from the natural
slack by denoting them as robust. Because of them, this opti-
mal schedule is more robust than the previous one. It is more
robust because more tasks maintain slack to handle short de-
lays. Note that this schedule has 11 robust slacks each of 1
time unit. Therefore, if any task has a delay of 1 time unit
the schedule will still be valid. The makespan of this sched-
ule is only 2 units longer than the makespan of the schedule
represented in Figure 6 (trade-off between robustness and
makespan).

Figure 7: Schedule obtained by B&B-Nk, k = 1 (11 robust
slack whose sum is 11, makespan=197).

As mentioned, the duration of each robust slack obtained
in the previous schedule is 1 time unit. However, by increas-
ing the value of k, Algorithm B&B-Nk searches for assign-
ments that have up to k greater feasible contiguous neigh-
bours. As a consequence, the durations of the robust slack
obtained are up to k time units. Figure 8 shows the schedule
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obtained for “os-taillard-4-105-0” problem by B&B-Nk al-
gorithm for k = 3. This schedule has the same makespan as
the schedule obtained by B&B-Nk algorithm for k = 1 (see
Figure 7), but the sum of robust slack is higher even though
it has a smaller number of time buffers. The schedule repre-
sented in Figure 8 has 7 cases of robust slack whose sum is
18 time units. They are scattered as follows: 4 slacks of 3
time units and 3 slacks of 2 time units.

Figure 8: Schedule obtained by B&B-Nk, k = 3 (7 robust
slack whose sum is 18, makespan=197).

The greater the number and size of robust slacks, the
higher is the probability that the rest of the schedule will re-
main satisfiable after changes. We have observed that sched-
ules obtained with lower k values maximize the number of
buffers even if their size is small. In contrast, the computa-
tion of higher k values tends to give priority to the sizes of
the buffers and as consequence, the number of buffers ob-
tained is sometimes lower.

6 Experimental Results
In this section, we apply the search algorithm presented in
this paper to scheduling benchmarks from the literature, in
order to evaluate the robustness of schedules obtained for
a wide range of k values. We analyzed 5 sets of 10 job-
shop CSP instances studied in (Sadeh and Fox 1996). Each
instance is composed of 10 jobs of 5 tasks each and there
are 5 resources. Each job has a random linear sequence of
resources to visit, with the exception of the bottleneck re-
sources, which are visited after a fixed number of operations
(in order to further increase resource contention). The in-
stances in the XCSP format and the XCSP parser can be
found in Christophe Lecoutre’s web page 2.

The solutions obtained by B&B-Nk algorithm for
restarting-completion are referred as “neighbour solutions”
in Figure 9. On the other hand, the solutions obtained by
our technique for restarting-scratch are referred as “neigh-
bour solutions(R)”. We also have analyzed another proac-
tive CSP approach in the literature: finding super-solutions
(see Section 3 and (Hebrard 2006)). The main reason for
choosing this technique is that it is a proactive approach
that can solve general CSPs and that, like our technique, it
does not consider extra information about the future possible
changes (uncertainty probabilities, statistics, etc.). For cal-
culating solutions that maximize the number of repairable
values for (1,0)-super-solutions (referred as “(1,0)-super-
solutions”), we modified Algorithm 1 (B&B-Nk) by chang-
ing MGAC3-Nk and GAC3-Nk algorithms for MAC+ and

2http://www.cril.univ-artois.fr/ lecoutre/index.html

GAC+ (Hebrard 2006), respectively. The value of the pa-
rameter d (duration of the delay) has been fixed to the same
value than k (equally conditions). In addition, we analyzed
the robustness of a simple schedule obtained by a CSP solver
(referred as “simple solutions”). This analysis has not been
included as an alternative to our technique obviously, but in
order to detect how much natural slack a simple schedule
has. In addition we have included the geometric restart and
bounds consistency techniques explained in Section 4.2 in
both techniques, in order to provide these computational ad-
vantages to all the approaches analyzed. For all of them also
the time cutoff is fixed to 100 seconds.

Figures 9(b) show the evaluation of ‘e0ddr1’ benchmark.
The rest of the problems sets have not been included due
to space limitations but the results were similar, showing
the best robustness results for the less constrained bench-
marks because here it is more likely that there are buffers
of long durations. It can be observed that Algorithm 1 for
both restarting options outperformed both other approaches.
Furthermore, the analysis of the k/d parameters shows that
when these parameters have their lowest values, the num-
ber of buffers of the schedules found by our algorithm is
markedly greater than for schedules obtained by the sim-
ple solver and the super-solution approach (see Figure 9(a)).
However, the differences in robustness seems to be quite
general. The main disadvantage of the (1,0)-super-solution
technique is that it considers as repairable values those that
imply a change in the start time of a task so it now follows
another task sharing the same resource that it originally fol-
lowed, which is not equivalent to slack in the schedule.

From this analysis, we can conclude that there do not exist
strong differences between the two restarting options devel-
oped for Algorithm 1, restarting-completion and restarting-
scratch. But the latter obtains more robust schedules for
lower k values (see k/d ∈ [1, 5] in Figure 9). For greater
k values, apparently, both restarting options provide similar
results.

The schedules obtained by Algorithm 1 for the lowest k
values had the maximum number of buffers. On the other
hand, the robustness measures are greater for the greater k
values. Depending on the dynamic nature of the problem,
it would be desirable to prioritize between a higher number
of time buffer of short duration or a lower number of time
buffer of long duration (if the two features can not be both
maximized). The more information about the possible future
changes and its certainty, the better robustness results we can
obtain. However, even if this information is unknown, we
can obtain a schedule with certain distributed slack fixing an
intermediate value of k in our Algorithm 1.

7 Conclusions
In this paper we extend and improve a CSP approach for
obtaining robust solutions in order to apply it to schedul-
ing problems and obtain robust schedules for problems that
come from uncertain and dynamic environments where the
information about the possible future changes is unknown.
Thus, there do not exist uncertainty statistics nor probabili-
ties about the incidences that can occur in the schedule. In
this context, it is reasonable to assume that the tasks of the
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Figure 9: Robustness analysis for the e0ddr1 benchmark.

scheduling problem may undergo delays due to unexpected
extensions of some activities or due to the unforeseen un-
availability of some resources. For this reason, the main ob-
jective for conferring robustness consists in finding sched-
ules that incorporate some extra slack because they are able
to absorb these incidences. In order to achieve these buffer
times, we search for solutions that maximize the sum of the
greater feasible contiguous neighbours at distance lower or
equal to k from the values of the solution. The obtained
schedules have a high probability of remaining valid faced
with delays in the tasks of the scheduling problem due to the
incorporated slack. The number of greater feasible contigu-
ous neighbours associated with a variable is the size of the
slack located at the end of the task associated to this variable.

We have described a case study in which we applied our
search algorithm to a well known open-shop benchmark.
We obtained two schedules with certain robustness that only
have 2 time units more of makespan than the best known
makespan for the scheduling problem (trade-off between ro-
bustness and makespan). In addition, by increasing the k

parameter, we greatly increased the total robust slack even
though the number of time buffers was lower.

We have compared our approach for searching for ro-
bust schedules with another proactive CSP approach in the
literature: super-solutions, as well as with a simple CSP
solver. The evaluation has been developed with well known
job-shop benchmarks. We have shown that our approach
can outperform both ordinary CSP algorithms (this dra-
matically) and algorithms that find (1,0)-super-solutions (or
maximize the number of repairable variables in case that
there does not exist a (1,0)-super-solution). On the basis
of these experiments, we conclude that schedules obtained
with lower k values maximize the number of buffers even
if their size is small. However, the computation of higher
k values tends to give priority to the sizes of the slack and
as consequence, the number of buffers obtained might be
lower. Therefore, depending on the dynamic nature of the
problem (if it is not possible to maximize both features), it
would be desirable to prioritize between a higher number of
small buffers or a lower number of big buffers.

Our technique can be applied to many real-world schedul-
ing problems where there is an added difficulty in that the
environment is not only dynamic but also highly uncertain,
because information about the possible future changes is
limited or non-existent. In these cases, we provide schedules
with certain robustness even under these difficult conditions.

In the future, we plan to extend the search algorithm
to handle constraint satisfaction and optimization problems
(CSOP). In this case the main objective would be not only to
increase the robustness of the schedule but also to decrease
its makespan or another critrion. This step would allow the
user to chose between the proper trade-off between these
criteria, according to the scheduling problem specifications.
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