

Proceedings of the 1st Workshop on

Planning in Continuous Domains

PCD 2013

Edited By:

Maria Fox, Derek Long, Daniele Magazzeni,

Brian Williams, Masahiro Ono

Rome, Italy - June 11, 2013

Organizing Commitee
Maria Fox
King’s College London, UK
Derek Long
King’s College London, UK
Daniele Magazzeni
King’s College London, UK
Brian Williams
Massachusetts Institute of Technology, USA
Masahiro Ono
Massachusetts Institute of Technology, USA

Program committee
Alessandro Cimatti, FBK-irst, Italy
Maria Fox, King’s College London, UK
Emilio Frazzoli, MIT, USA
Michael Hofbaur, UMIT, Austria
Hadas Kress-Gazit, Cornell University, USA
Martin Leucker, University of Lübeck, Germany
Derek Long, King’s College London, UK
Daniele Magazzeni, King’s College London, UK
Masahiro Ono, MIT, USA
Erion Plaku, Catholic University of America, USA
Gregory Provan, University College Cork, Ireland
Stefan Ratschan, Czech Academy of Sciences, Czech Republic
Wheeler Ruml, University of New Hampshire, USA
Martin Sachenbacher, Technische Universität München, Germany
Scott Sanner, NICTA, Australia
Louise Travé-Massuyès, LAAS-CNRS, France
Brian C. Williams, MIT, USA

Foreword

This volume contains the papers presented at PCD 2013, the First Workshop on
Planning in Continuous Domains, which gathered together experts from
planning and related disciplines including model-based reasoning, control and
verification.

The motivation of the workshop is that real domains are often described in
terms of both logical change and physical dynamics, and planning with such
hybrid domains is an important challenge. One way to address robust control of
hybrid systems is to establish bi-directional communication between the
continuous control of the sub-systems and the supervisory control of the overall
system. The form of the communications, and the resulting type of integration
between the different levels of control, have been topics of robotics research
around the world since Shakey was developed at SRI in the late 1960s.
However, if the goal is to have intelligent robots that can plan, act, react to
world and replan in a robust, effective and enduring way, existing methods have
not solved the problem.
Making this work is an important challenge for AI Planning, because a seamless
connection between high level goal-directed reasoning and sub-system control
is required if ever planning is to provide the supervisory control of persistently
autonomous robots operating competently in human environments.
The papers in this volume explore new approaches to planning and verification
with hybrid systems and integrating planning and control.

Maria Fox, Derek Long, Daniele Magazzeni,
Masahiro Ono, Brian Williams
Workshop Organizers
June 2013

Table of Contents

SMT-based Verification of Hybrid Systems...1
Alessandro Cimatti
Sampling-based Motion Planning with Temporal Logic Specifications........2
Sertac Karaman
Motion Planning with Linear Temporal Logic for Underwater Vehicles
Operating in Constrained Environments...3
Erion Plaku and James McMahon

p-Sulu, a Risk-Sensitive Plan Executive: from Building to Spacecraft.........4
Masahiro Ono and Brian C. Williams
Planning for Agile Earth Observation Satellites..9
Johannes Aldinger and Johannes Löhr
Operational Planning of Thermal Generators with Factored Markov
Decision Process Models...18
Daniel Nikovski

Flexible Execution of Partial Order Plans With Temporal Constraints.....27
Christian Muise, J. Christopher Beck and Sheila A. McIlraith
PDDL+ Planning with Events and Linear Processes.....................................35
Amanda Coles and Andrew Coles

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

SMT-based Verification of Hybrid Systems

Alessandro Cimatti
Fondazione Bruno Kessler

Trento, Italy

Complex embedded systems are increasingly present in
our daily lives, whenever a computer-based system interacts
with some physical plant or environment. Some application
domains of interest are industrial production, automotive,
railways, and aerospace. The key feature of such complex
system, often known as hybrid systems, is the combination
of discrete dynamics (e.g. from the control logic) and the
continuous dynamics (e.g. from the physical system). Dis-
crete dynamics represent, for example, control states and op-
eration modes, while continuous dynamics take into account
the physical aspects such as duration of activities, speed and
position of moving objects, and profiles for resource con-
sumption.

The ability to reason about such systems is important in
two complementary dimensions. In the design phases, there
is a need to predict the behaviour of the control algorithms
before they are put into operation. In the operation phases,
the ability to reason about such dynamic systems is a back-
bone for plan generation, plan validation, plan execution and
monitoring, fault detection/isolation/recovery (FDIR), and
replanning.

The objective of the talk is to present a formal account for
modeling hybrid systems, and a set of powerful techniques
to reason about them. The presentation will be grounded
in the well-studied formalism of hybrid automata, that en-
compasses instantaneous (mode) transitions and continuous
(timed) transitions.

We will introduce a symbolic representation in form
of Satisfiability Modulo Theories formulae, which can be
thought of as (fragments of) first-order logic where mathe-
matical symbols are interpreted according to suitable theo-
ries (e.g. linear arithmetic). The (combinational) backends
are SMT solvers, that can be seen as a tight integration of
SAT (to deal with the boolean reasoning) with dedicated
constraints solvers (to deal with theory reasoning).

The algorithms for reasoning about hybrid systems are
able to carry out various forms of reachability analysis, and
can be classified in two types. The basic ones, that lift
to the case of SMT the SAT-base algorithms developed for
the case of finite state model checking (including for exam-
ple bounded model checking, induction, interpolation-based
analysis, and IC3).

More advanced ones take into account the distinguishing
features of networks of hybrid automata. We concentrate
on the problem of scenario-based verification, i.e. check-
ing if a network of hybrid automata accepts some desired
interactions among the components, expressed as Message
Sequence Charts (MSCs). We conclude by investigating the
problem of requirements analysis for hybrid systems.

1

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Sampling-based Motion Planning with Temporal Logic Specifications

Sertac Karaman
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, USA

One of the most fundamental planning problems
in robotics is the motion planning problem: find a
dynamically-feasible trajectory for a robot to reach a goal
configuration starting from an initial configuration while
avoiding collision with obstacles.
Extensive research throughout the last decade has lead to

practical sampling-based motion planning algorithms, such
as the RRTs, that were demonstrated on various robotic plat-
forms. However, existing algorithms can only handle a sim-
ple task specification: ”reach the goal configuration and
avoid collision with the obstacles”.

In this talk, we describe motion planning problems where
the objective is to fulfill a given high-level task specifica-
tion given using temporal logics. These problems combine
motion planning problems that involve continuous domains
(such as positions, orientation, and velocities) with discrete
planning problem that embed discrete task requirements
(such as ordering, reachability, safety, liveness). We propose
a class of sampling-based algorithms that can solve such
problems with formal guarantees on completeness, compu-
tational complexity, and asymptotic optimality. We also dis-
cuss the implementation of the proposed algorithms on an
autonomous car driving in urban traffic

2

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Motion Planning with Linear Temporal Logic for
Underwater Vehicles Operating in Constrained Environments

Erion Plaku1 and James McMahon1,2

1Dept. of Electrical Engineering and Computer Science
Catholic University of America, Washington DC 20064 USA

1,2U.S. Naval Research Laboratory, Washington DC 20375 USA

As maritime operations shift to the littoral, it becomes
increasingly important to enhance the mission and motion-
planning capabilities of AUVs. Operating in the littoral
brings new challenges which are not adequately addressed
by existing approaches. As the littoral is characterized by
highly-trafficked zones, the AUV must operate near the
ocean floor in order to avoid collisions with medium- to
small-sized ships. Operations are further complicated when
tankers are present, which often cause large drafts, or when
fishing vessels are trawling, which could cause the AUV to
get entangled. Additional complications arise from boul-
ders, wreckage, and other objects found at the bottom of the
ocean, sudden changes in elevation of the ocean floor, and
varying ocean currents associated with tides and weather
patterns. Dealing with these challenges requires efficient
motion planning that take into account the vehicle dynam-
ics and quickly plan feasible motions that enable the AUV
to operate close to the ocean floor while avoiding collisions.

The demand to enhance the capabilities of AUVs oper-
ating in the littoral becomes more pressing when coupled
with critical missions, such as monitoring harbors or search-
ing for mines and other objects of interest. AUV oper-
ations, however, are currently limited to simple missions
given in terms of following a set of predefined waypoints
or covering an area of interest by following specific motion
patterns. Conventional approaches to motion planning for
AUVs based on potential fields, numeric optimizations, A*,
or genetic algorithms have generally focused on largely un-
obstructed and flat environments where dynamics and col-
lision avoidance do not present significant problems. As a
result, while conventional approaches are able to plan opti-
mal paths in 2D environments, they become inefficient when
dealing with the challenges arising from dynamics and the
need to operate close to the ocean floor in constrained 3D en-
vironments. The restrictions to follow predefined waypoints
or motion patterns and to operate in essentially flat environ-
ments greatly limits the feasibility of such approaches being
used for complex missions in constrained 3D environments.

To enhance the mission and motion-planning capabili-
ties of AUVs, this work develops an approach that makes
it possible to express maritime operations in Linear Tem-
poral Logic (LTL) and automatically plan collision-free and
dynamically-feasible motions to carry out such missions. As
missions are characterized by events occurring across a time

span, LTL allows for the combination of these events with
logical (and, or, not) and temporal operators (always, even-
tually, until, next). As an illustration, the mission of inspect-
ing several areas of interest while avoiding collisions can be
expressed in LTL as

�πsafe ∧ ♦πA1
∧ . . . ∧ ♦πAn

,

where πsafe denotes the proposition “no collisions” and πAi

denotes “searched area Ai.” As another example, searching
A1 or A2 before A3 or A4 is written as

�πsafe∧((¬πA3
∧ ¬πA4

) ∪ ((πA1
∨ πA2

) ∧�(πA3
∨ πA4

))) .

The expressive power of LTL makes it possible to con-
sider sophisticated missions. This makes planning even
more challenging. Motions need to be coupled with decision
making to determine the best course of action to accomplish
the mission. The discrete aspects, which relate to determin-
ing the propositions that need to be satisfied to obtain a dis-
crete solution, are intertwined with the continuous aspects,
which need to plan collision-free and dynamically-feasible
motions in order to implement the discrete solutions.
To address the challenges imposed by the intertwined de-

pendencies of the discrete and continuous aspects of the
combined planning problem, the proposed approach simul-
taneously conducts the search in the discrete space of LTL
sequences and the continuous space of feasible motions.
A key aspect of the technical contribution is the intro-
duction of roadmap abstractions in configuration space to
guide a sampling-based exploration of the state space. The
roadmap is constructed by sampling collision-free configu-
rations and connecting neighboring configurations with sim-
ple collision-free paths. The roadmap represents solutions to
a simplified motion-planning problem that does not take into
account the vehicle dynamics. These solutions are converted
into heuristic costs and heuristic paths to guide sampling-
based motion planning as it expands a tree of feasible mo-
tions in the state space, taking into account the vehicle dy-
namics, drift caused by ocean currents, and collision avoid-
ance. The roadmap abstraction also facilitates the decision-
making mechanism by providing estimates on the feasibility
of reaching intermediate goals as part of the overall mission
specified by the LTL formula. Simulation experiments with
accurate AUV models carrying out different missions pro-
vide promising validation.

3

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

p-Sulu, a Risk-Sensitive Plan Executive: from Building to Spacecraft

Masahiro Ono
Masahiro.Ono@jpl.nasa.gov

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109 USA

Brian C. Williams
williams@mit.edu

Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge, MA 02139 USA

Abstract

This paper gives an overview of a new risk-sensitive,
continuous plan executive called p-Sulu, as well as its
full-horizon variant, the p-Sulu Planner. p-Sulu and
the p-Sulu Planner provide two capabilities: 1) goal-
directed planning in a continuous domain and 2) risk-
sensitive planning that respects a user-specified upper
bound on the probability of constraint violations. They
both take as an input a new plan representation called
a chance-constrained qualitative state plan (CCQSP),
through which users specify the desired evolution of the
plant state as well as the acceptable level of risk. Given
a CCQSP, p-Sulu performs a real-time plan execution
over a relatively short, receding planning horizon, while
the p-Sulu Planner generates a sequence of actions over
the entire duration of the plan in one shot, with pay-
ing more attention to optimality. We also present a dis-
tributed extension of p-Sulu, called dp-Sulu. We have
deployed p-Sulu, dp-Sulu, and the p-Sulu Planner on
various systems, including aerial vehicles, space vehi-
cles, as well as buildings, and demonstrated their capa-
bilities by simulations and experiments.

Overview

p-Sulu is a risk-sensitive plan executive that works in a con-
tinuous domain. In the presence of stochastic exogenous dis-
turbance, p-Sulu generates a sequence of actions that guar-
antees that the risk of violating a given set of state con-
straints is below a user-specified bound. For example, the
position and velocity of an unmanned aerial vehicle is un-
certain due to potential wind turbulence. p-Sulu plans a path
that guarantees that the probability of penetrating into a no-
fly zone (NFZ) is below 1%, for example, while achieving
given time-evolved goals, as illustrated in Figure 1. The ob-
jective of this paper is to give a high-level overview of p-
Sulu, as well as references for interested readers.

Input: CCQSP

p-Sulu takes as an input a new plan representation called
a chance-constrained qualitative state plan (CCQSP). It is
an extension of qualitative state plan (QSP), developed and
used by Léauté and Williams (2005). CCQSP specifies a
desired evolution of the plant state over time, and is defined
by a set of discrete events, a set of episodes, which impose
constraints on the plant state evolution, a set of temporal

−2 0 2 4 6 8 10

x 10
4

−8

−6

−4

−2

0

2

4

x 10
4

x [m]

y
 [
m

]

Scenic Region

KPVC

KBED

Whale Region 2

Whale
Region 1

Scenario 1

Scenario 2

Scenario 3

Figure 1: A PTS flight scenarios and planning results.

Start in

[KPVC]

Remain in

[safe region]

[0 30] [0 40]

[0 60]

Remain in

[Scenic region]

End in

[KBED]

[5 10]

e0

e1 e2

eE

1%

Chance constraints:

c1 c2 0.0001%

Figure 2: An example of a CCQSP for the PTS scenario in
Figure 1.

constraints between events, and a set of chance constraints
that specify reliability constraints on the success of sets of
episodes in the plan.

A CCQSP may be depicted as a directed acyclic graph, as
shown in Figure 2. The circles represent events and squares
represent episodes. Flexible temporal constraints are repre-
sented as a simple temporal network (STN) (Dechter, Meiri,
& Pearl, 1991), which specifies upper and lower bounds on
the duration between two events (shown as the pairs of num-
bers in parentheses). The plan in Figure 2 describes the PTS
scenario depicted in Figure 1, which can be stated informally

4

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

as:

“Start from Provincetown (KPVC), reach the scenic re-
gion within 30 time units, and remain there for between
5 and 10 time units. Then end the flight in Bedford
(KBED). The probability of failure of these episodes
must be less than 1%. At all times, remain in the
safe region by avoiding the no-fly zones and the storm.
Limit the probability of penetrating such obstacles to
0.0001%. The entire flight must take at most 60 time
units.”

Outputs

The p-Sulu Planner has two outputs. The first is an exe-
cutable control sequence over a planning horizon that satis-
fies all constraints specified by the input CCQSP. In the case
of the PTS scenario, the outputs are the vehicle’s actuation
inputs, such as acceleration and ladder angle, that result in
the nominal paths shown in Figure 1. The second output is
the optimal schedule, a set of execution time steps for events
in the input CCQSP that minimizes a given cost function. In
the case of the PTS scenario, a schedule specifies when to
leave the scenic region and when to arrive at Bedford, for
example.

Approach

Many existing AI planners handle continuous variables by
discretizing them. In contrast, our approach is to perform
planning directly in a continuous domain, building upon
model predictive control (MPC), an optimal control method
that can consider constraints. Time evolved goals as well
as temporal constraints are encoded into a set of constraints
imposed on continuous variables. This approach has been
originally developed by (Léauté & Williams, 2005), and ex-
tended by (Ono, 2012) to include risk constraints.

Implementations

p-Sulu has three implementations: the p-Sulu Planner, p-
Sulu (in a narrow sense), and dp-Sulu. Although three im-
plementations share the same objective with the same format
of input (i.e., CCQSP), their planning approach is different,
and hence they have different strengths.

The p-Sulu Planner

The p-Sulu Planner (Ono, Williams, & Blackmore, 2013) is
a full-horizon planner, meaning that it generates a sequence
of actions over the entire duration of the plan in one shot. Its
strength is optimality; its solution is strictly optimal besides
a relatively small conservatism introduced by risk allocation
(Ono, 2012). However, it takes significantly longer com-
putation time compared to p-Sulu. Therefore, the p-Sulu
Planner is suitable for a problem that does not have non-
convex state constraints, which would make numerical op-
timization significantly harder. The p-Sulu Planner is built
upon the non-convex iterative risk allocation (NIRA) algo-
rithm, which is described in (Ono et al., 2013).

p-Sulu

p-Sulu (Ono, Graybill, & Williams, 2012; Ono, 2012), in
its narrow sense, refers to a model-based plan executive that
runs on real time with a continuous replanning over a reced-
ing horizon. This means that, for example, at t = 1, it plans
for t = 1 · · · 10; in the next time instance, t = 2, it generates
a plan for t = 2 · · · 11, and so on. Compared to the p-Sulu
Planner, p-Sulu has strength in computation time as it has
to run on real time. Unlike the p-Sulu Planner, p-Sulu does
not guarantee strict optimality, though in practice the solu-
tion quality of p-Sulu is comparable to the p-Sulu Planner in
many cases. p-Sulu is built upon the iterative risk allocation
(IRA) algorithm, which is presented in (Ono & Williams,
2008).

dp-Sulu

dp-Sulu (Ono, 2012) is an extension of p-Sulu that can con-
trol a multi-agent system in a distributed manner. Each agent
is controlled by p-Sulu, while a central module supervises
the entire system to resolve conflicts between agents.

Applications
p-Sulu provides a general planning capability that can be
applied to a broad range of problems. In this section we
introduce three applications.

Space Rendezvous

First, we present an application of the p-Sulu Planner to an
autonomous space rendezvous scenario of the H-II Transfer
Vehicle (HTV), shown in Figure 3. HTV is an unmanned
cargo spacecraft developed by the Japanese Aerospace Ex-
ploration Agency (JAXA), which is used to resupply the In-
ternational Space Station (ISS). In order to assure safety, a
very detailed rendezvous sequence is prescribed, as shown
in Figure 4. We encode this rendezvous sequence into a CC-
QSP as shown in Figure 5. In addition to the time-evolved
goals specified in the actual rendezvous sequence, we spec-
ify temporal constraints and chance constraints in the simu-
lation, as shown in the CCQSP.

Figure 3: H-II Transfer Vehicle (HTV), a Japanese un-
manned cargo vehicle, conducts autonomous rendezvous
with the International Space Station. Image courtesy of
NASA.

Figure 6 shows the planning result of the p-Sulu Planner.
We compare the result with Sulu, a deterministic predeces-
sor of p-Sulu, as well as a nominal planning approach, in

5

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

IS
S

 O
rb

it

AI Point

x

yRI HP PP CB

-300m-500 m -30m -10m

-5000 m

Earth

AI: Approach Initiation

RI: R-bar Initiation

HP: Hold Point

PP: Parking Point

CB: Capture Box

ISS

Figure 4: HTV’s final approach sequence (Japan Aerospace
Exploration Agency, 2009).

Remain in

[Safe Zone]

[1800 2400]

Chance constraints:

[600 ∞]

e1 eE

%5.0 1 =∆

Remain in

[RI]
e3e2

Remain in

[YA]

[600 ∞]

e5e4
Remain in

[PP]
e6

End in

[RP]

Start in

[AI]
e0

[0 4800]

[240 ∞] [240 ∞] [240 ∞] [600 ∞]

%5.0 2 =∆

Figure 5: A CCQSP representation of the HTV’s final ap-
proach sequence. We assume the same time-evolved goals
as the ones used for actual flight missions. The temporal
constraints and the chance constraints are added by the au-
thors.

which we assume that HTV moves from AI to RI using a
two-impulse transition (called “CW guidance law”) (Mat-
sumoto, Dubowsky, Jacobsen, & Ohkami, 2003; Vallado,
2001). From RI to CB, it follows a predetermined path that
goes through the center of the Safe Zone, as shown in Figure
6-(b), with a constant speed.

Our simulation results show that the probabilities of fail-
ure of the path generated by the p-Sulu Planner are less than
the risk bounds specified by the CCQSP. On the other hand,
Sulu’s path results in almost 100% probability of failure.
This is because Sulu minimizes the fuel consumption with-
out considering uncertainty. The results also show that the
plan generated by the p-Sulu Planner achieves 1.42 m/sec
reduction in Delta V compared to the nominal approach,
which is equivalent to an 11.9 kg saving of fuel, assuming
the 16, 500 kg mass of the vehicle and the 200 sec specific
impulse (ISP) of the thrusters. The computation time was
11.4 seconds. Please refer to (Ono et al., 2013) for more
detailed presentation of the results.

Building Control

Improving the energy efficiency of residential buildings
plays a significant role in addressing the global climate chal-
lenge. In the U.S., for example, residential buildings ac-
counted for 21.52% of total energy usage in the country
in 2008 (U.S. Energy Information Administration, 2010).

Parking point (PP) Capture Box (CB)

t = 3960 t = 4800

F
li

g
h

t
d

ir
ec

ti
o

n

o
f

th
e

IS
S

Earth
AI point

ISS

AI: Approach Initiation, RI: R-bar Initiation, YA: Yaw-around

t = 0

(a) (b)

IS
S

 o
rb

it

Earth

(c)

RI point Hold point (HP)

t = 2280 t = 3120

Safe Zone

Figure 6: Planning results of Sulu, the p-Sulu Planner, and a
nominal planning approach. The input CCQSP is shown in
Figure 5.

Heating and cooling accounted for the largest portion of
the residential energy consumption: 7.99 quadrillion Btu or
38.2% of the energy consumption in the residential sector.

We deploy p-Sulu on a smart building called Connected
Sustainable Home, shown in Figures 7. The objective is to
optimally control the indoor temperature so that energy sav-
ing is maximized while limiting the risk of violating con-
straints on room temperature.

Figure 7: Artist’s concept of the Connected Sustainable
Home.

Figure 8 shows an example of a CCQSP, where the three
temperature states are defined as in Figure 9. Given a CC-
QSP, p-Sulu outputs an optimal profile of indoor tempera-
ture over a day, as well as a suggestion on the schedule of
the resident to minimize the energy use, if the residents have
flexibility in their schedule. Our simulation studies demon-
strated that p-Sulu achieves significant savings in the energy
consumption over a classical set-point controller with a fixed
set point, while dramatically improving robustness over a
deterministic plan executive, Sulu. The results are presented
in detail in (Ono et al., 2012).

6

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

temperature
Maintain home

temperature
Maintain home

temperature
Maintain sleep

[24, 24]

Maintain minimal
temp constraints

[8, 8] [1, 5] [5, 5] [6, 10]

e0

e1 e2 e3

e4

Δ = 1% Δ = 0.01%

Wake up Go to

work

Come

back

Figure 8: An example of a CCQSP for a resident’s schedule
in a planning problem for the Connected Sustainable Home.
The event e0 represents the midnight. The CCQSP requires
that the resident must go out for work for five hours, but the
time to go to work is flexible between 9 a.m. and 1 p.m.

Sleep

Home

Away/Minimal Constraints

Tem
perature

Time

Figure 9: The state space of the CCQSP in Figure 8.

Aerial Personal Transportation System

Finally, we present an application of dp-Sulu for Per-
sonal Transportation System (PTS), envisioned by Boeing
as shown in Figure . The PTS consists of a fleet of small per-
sonal aerial vehicles (PAV) that enable the flexible point-to-
point transportation of individuals and families. The flight
plan for each PAV is specified by a CCQSP, as shown in
Figure 2. We also use CCQSP to specify constraints that
involves multiple vehicles, such as minimum time inter-
val between two landings and collision avoidance. dp-Sulu
computes optimal flight paths as well as schedules in a dis-
tributed manner, as illustrated in Figure 11. The simulation
results are presented in detail in (Ono, 2012).

Figure 10: Personal Transportation System (PTS). (Cour-
tesy of the Boeing Company)

(b)

Figure 11: A screen shot of dp-Sulu controlling a fleet of
three personal aerial vehicles

Conclusions

This paper gave a high-level overview of the p-Sulu Plan-
ner, p-Sulu, and dp-Sulu, three implementation of a risk-
sensitive planner that works in a continuous state space.
We presented three applications of the planners in three do-
mains: space rendezvous, building control, and an aerial per-
sonal transportation system.

Acknowledgments

This paper is based upon work supported in part by the Boe-
ing Company under Grant No. MIT-BA-GTA-1, the Na-
tional Science Foundation under Grant No. IIS-1017992,
and by Siemens AG under Addendum ID MIT CKI-2010-
Seed Fund-008. The research on Connected Sustainable
Home was conducted within the Green Connected Home
Alliance between the Mobile Experience Lab, at the Mas-
sachusetts Institute of Technology and the Fondazione
Bruno Kessler in Trento, Italy. The research described in
this paper was performed when the first author was at MIT
and Keio University, and is not related to the work he per-
forms at Jet Propulsion Laboratory. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the author and do not necessarily reflect
the view of the sponsoring agencies.

References

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal con-
straint networks. Artificial Intelligence, 49, 61–95.

Japan Aerospace Exploration Agency (2009). HTV-
1 mission press kit. Available on-line at
http://www.jaxa.jp/countdown/h2bf1/

pdf/presskit_htv_e.pdf.

Léauté, T., & Williams, B. C. (2005). Coordinating agile
systems through the model-based execution of tem-
poral plans. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI).

7

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Matsumoto, S., Dubowsky, S., Jacobsen, S., & Ohkami, Y.
(2003). Fly-by approach and guidance for uncon-
trolled rotating satellite capture. In Proceedings of
AIAA Guidance, Navigation, and Control Conference
and Exhibit.

Ono, M. (2012). Robust, Goal-directed Plan Execution with
Bounded Risk. Ph.D. thesis, Massachusetts Institute
of Technology.

Ono, M., Graybill, W., & Williams, B. C. (2012). Risk-
sensitive plan execution for connected sustainable
home:. In Proceedings of the 4th ACM Workshop On
Embedded Systems (BuildSys).

Ono, M., Williams, B., & Blackmore, L. (2013). Probabilis-
tic planning for continuous dynamic systems. Journal
of Artificial Intelligence Research, 46, 449 – 515.

Ono, M., & Williams, B. C. (2008). An efficient motion
planning algorithm for stochastic dynamic systems
with constraints on probability of failure. In Proceed-
ings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI-08).

U.S. Energy Information Administration (2010). Annual en-
ergy outlook..

Vallado, D. A. (2001). Fundamentals of Astrodynamics and
Applications, Second Edition. Microcosm Press.

8

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Planning for Agile Earth Observation Satellites

Johannes Aldinger and Johannes Löhr
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
79110 Freiburg, Germany

{aldinger, loehr}@informatik.uni-freiburg.de

Abstract

Agile Earth observation satellites are satellites orbiting Earth
with the purpose to gather information of the Earth’s surface
by slewing the satellite toward regions of interest. Constraints
arise not only from dynamical and kinematic aspects of the
satellite and its sensors. Regions of interest change over time
and bad weather can conceal important observation targets.
This results in a constant need to replan the satellite’s tasks
and raises the desire to automatize this planning process. We
consider the Earth observation problem with the help of the
module extension of the numerical planning system Temporal
Fast Downward. Complex satellite slew maneuvers are calcu-
lated within modules, while the planner selects and schedules
the regions to be scanned. First results encourage deeper re-
search in this area so that forthcoming satellite space missions
can draw on automated planning to improve the performance
of agile Earth observation tasks.

Introduction

We are interested in the feasibility of automated planning
techniques in the context of Earth observation scenarios.
The task of Earth observation missions is to scan regions
of interest, straight stripes referred to as patches, during the
flyover.

A task in the context of an Earth observation mission is
to select and to schedule a sequence of observation patches.
Determining the sequence of patches is a rather simple dis-
crete planning problem for current automated planning sys-
tems. However, complex numerical calculations have to be
performed to determine the slew maneuver of the satellite
to approach and scan a patch. The feasibility of the dis-
crete plan tightly depends on the continuous aspects since
it has to consider the satellite’s orbital motion, its attitude
and angular rate as well as its torque capability in realistic
scenarios. Instrument alignment and required scan velocity
pose additional constraints. The feasibility of slews between
two successive scans depends on the satellite’s attitude, an-
gular rate and position and is varying in time. Any decision
to scan a certain patch at a certain position in orbit may af-
fect the feasibility of future scan maneuvers. This makes
the problem difficult to solve in case of larger sets of patch
observations. Nevertheless, it allows to decouple the deter-
ministic planning task, form the numeric calculations which
makes Earth observation an appealing task for modular plan-

ning systems e.g. Temporal Fast Downward with Modules
(TFD/M) (Dornhege et al. 2009).

In recent years, potent automated planning systems
emerged from the planning community. Often, these plan-
ners are tested on IPC benchmark domains. While these
benchmarks are well suited to determine strengths and
weaknesses of different planning systems, the potential for
industrial applications has not been fully exploited yet. We
aim to solve realistic problems relevant to industrial needs.
Other examples of successful industrial applications include
work of Penna et al. (2010) and Fox, Long, and Maga-
zzeni (2011). Thereby, weaknesses of current planning sys-
tems are discovered, so that future research can support the
applicability of real world problems.

We found the planning system TFD/M to be suitable for
our purpose. In TFD, numerical calculations, in our case
slew maneuvers of the satellite, are outsourced into modules,
while the basic planning problem, the selection and schedul-
ing of the patches, is performed by TFD.

Basics

In this section we define the Earth observation task. After-
wards, we will show how to solve the problem by an au-
tomated planning system. We contemplate over automated
planning systems in general at first before considering the
TFD/M planning system.

Earth observation

Earth observation missions are an important topic in
aerospace where the goal is to scan the Earth’s surface with
the help of satellites. Earth observation applications in-
clude among others geodesy, cartography, climatology and
weather forecast. Depending on the desired application, dif-
ferent sensors from radar over infrared to visual sensors are
used. The patches of interest are straight stripes that have to
be scanned at a constant scan velocity which depends on the
sensors used. The satellite has only restricted storage capac-
ities and has to dump collected data to a ground station from
time to time. The regions of interest change over time, and
weather influences the visibility of interesting patches. Earth
observation tasks vary in the agility of sensors which usually
depends on the sensor’s weight. Some instruments can be
aligned to regions of interest without altering the attitude of
the satellite. Agile Earth observation tasks considered in this

9

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

paper carry heavy instruments which are firmly fixed to the
satellite. Patches are scanned by slewing the satellite’s line
of site towards the regions of interest.

As of now, human experts identify reasonable and feasi-
ble maneuvers by hand. The identified maneuvers are then
optimized and verified by potent physics simulation tools,
before they are transmitted to the satellite.

Modeling a Planning Problem

To solve a real world planning problem with an automatized
planning system, it is necessary to model it first. Formally,
a planning task is defined as tuple �V , s0, s⋆,O�. The set of
variables V contains Boolean variables with domain {⊤,⊥}
as well as numeric variables with domain dom(v) ⊆ Q for
v ∈ V . The states of the planning problem are assignments
of all variables v ∈ V to a value in their domain and s0 is
the initial state. The goal states s⋆ are defined by a partial
assignment over some of the logical variables. The set of
operators O contains operator triples �C,E, c� consisting of
preconditions C, effects E and an action cost c.

Driven by the International Planning Competition IPC,
the predominant language to describe planning tasks is
the Planing Domain Description Language (PDDL) (Ghal-
lab et al. 1998). The interface for “semantic attach-
ments” in PDDL (Dornhege et al. 2009) allows the ad-
dition of three types of modules to the planning do-
main: conditioncheckermodules, costmodules and
effect modules. Conditionchecker modules evalu-
ate to logical (Boolean) variables that occur in the precondi-
tion of a planning operator. Similarly, cost modules repre-
sent numeric variables. When cost modules occur in the
precondition of a planning operator, the numeric value is
compared to another numerical statement with a compari-
son operator {<,≤,=,≥, >} while it can also be used di-
rectly to determine the action cost. Finally, effect mod-
ules modify a set of variables in the planner state. The mod-
ified variables can be either logical or numeric variables.

Temporal Fast Downward with Modules

To solve a continuous planning problem such as the Earth
observation problem, a planning system capable of dealing
with numeric variables is required. Even though numeric
domains can be successfully solved with a numeric planner
(Löhr et al. 2012) it is favorable to outsource numeric com-
plexity into modules.

An extension of the fast downward (FD) planning sys-
tem (Helmert 2006) to allow for temporal and numerical
aspects (TFD) has been proposed by Eyerich, Mattmüller,
and Röger (2009). TFD extends Fast Downwards Context
Enhanced Additive Heuristic to numerical variables. While
TFD supports numerical state variables, heuristic estimates
in numerical rich domains are coarse. To handle com-
plex numerical processes, the calculation should be sepa-
rated from the logical planning task. The modules exten-
sion TFD/M (Dornhege et al. 2009) allows to access “se-
mantic attachments”, modules that outsource the numerical
calculations from the logical planning level. TFD/M inter-
leaves the causal planning problem “what to do” with the
numerical task “how to achieve it”. Neither a top-down nor

Figure 1: Earth observation scenario with subtrack of the
satellite and observation sites to be scanned.

a bottom-up approach can satisfy the interdependency be-
tween low level calculations and high level plan structure,
and we therefore rely on an interleaved approach. A classi-
cal top-down decomposition of the planning task solves the
problem on an abstract symbolic domain, and then refines
that symbolic plan. In the case of Earth observation the
planner would first schedule the sequence of patches to be
scanned, while the maneuvers to follow this sequence would
then be calculated in a refinement step. The drawback of a
top-down approach is, that high-level solutions can be in-
correct or pose contingencies for low-level planners. Even
if the maneuvers are feasible, the resulting plan is unlikely
to be good. The opposite approach, a bottom-up decompo-
sition, precomputes all refined solutions, so that a higher
level symbolic planner can then draw on the lower level
plans. While the resulting plans are usually optimal, pre-
computing all low level solutions requires excessive mem-
ory and runtime. In continuous settings there are infinitely
many low level plans. In the Earth observation scenario, all
possible maneuvers would have to be precomputed which is
intractable even for coarse discretizations. The semantic at-
tachments of TFD evaluate the decomposition of a symbolic
action on demand and can thus involve the interdependency
between high level symbolic actions and low level numeric
calculations. This allows TFD/M to solve an Earth observa-
tion task as presented in the next section.

Planning the Earth observation task

We described the Earth observation scenario problem, and
a tool to solve it: TFD/M. When solving Earth observation
problems with TFD/M, the continuous world has to be dis-
cretized. Then, we can exploit the strength of modern plan-
ning systems: the selection and scheduling of the good ac-
tions.

Our general framework is a three step process. At first,
we precompile the real world problem into a planning task,
at second solve this planning task with TFD/M and finally
verify the planned results with a physics simulator. The pre-
processing step reduces some of the numerical complexity
from the planning problem. We consider the subtrack ob-
tained by projecting the satellite perpendicular to the earth

10

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Figure 2: Planning Problem obtained from the Earth obser-
vation scenario of Figure 1 after preprocessing.

surface and peel off a stripe of the Earth’s surface following
the subtrack. The width of the peeled off stripe includes all
patches that are within the satellite’s visual range determined
by its maximal angular deflection. For an example, consider
the Earth observation scenario in Figure 1. The ground track
of the satellite is depicted by a green line. The patches to be
scanned are depicted in red. Some of the patches in north
west Africa are out of range of the satellite’s sensors. The
planning problem that arises after preprocessing is depicted
in Figure 2. The green patches correspond to the observation
sites in Figure 1. In the planning problem we omit Earth’s
curvature and treat the surface of the precompiled problem
as long plane with a satellite flying over it on an orbit de-
picted in olive green (Figure 2). If the problem horizon en-
tails multiple satellite orbits, the same “patch” can be vis-
ible from different orbit positions. This results in multiple
instances of the same patch in the precompiled stripe, usu-
ally in different orientation. To distinguish such patches, we
use the term observation site for a site on Earth that has to
be scanned, and use patch for a concrete instance observed
from the current orbit.

Scanning patches corresponds to achieving soft goals be-
cause it is not always possible to scan all patches in the plan-
ning problem. Following Keyder and Geffner (2009) we in-
troduce an action to ignore an observation site, which re-
sults in a high penalty cost. By modifying the penalty for
ignoring a patch, the observation sites can be given different
priorities. The goal of the planning problem is to deal with
all observation sites, which can be done by either scanning
a patch, or by actively ignoring it. While scanning occurs at
a cost depending on the optimization criterion of the plan-
ning problem (e.g. available time or energy consumption)
ignoring an observation site occurs at a much larger penalty
cost.

The state variables V of the Earth observation planning
problem contain logical variables as well as numerical ones.
Some “variables” can not change their value during the
planning process and we refer to them as constants. We
use the common notion of fluents for variables that can
be manipulated by the planning operators. The state of

the Earth observation scenario contains Boolean constants
(e.g. (belongsto ?patch ?osite) describing that a
patch belongs to an observation site) Boolean fluents (e.g.
(dealt ?osite) describing that an observation site has
been processed) numerical constants describing satellite pa-
rameters (e.g. (roll-max ?sat) describing the maxi-
mal roll angle of the satellite) as well as numerical fluents
(e.g. (roll-angle ?sat) describing the current roll
angle of the satellite).

In the initial state s0, no observation site has been dealt
with, the numerical fluents describe the satellite’s current
orbit position, attitude and angular rates. The numeric con-
stants model the attitude constraints of the satellite such as
maximal angle deflection and maximal angular rates. The
goal states s⋆ of the planning task are all states, where all
observation sites have been dealt with. The planning opera-
tors O are scan to scan a patch and ignore to ignore an
observation site.

Discretization

To model the Earth observation scenario, each state of the
Earth observation planning problem describes a “snapshot”
of the continuous world. Usually the satellite has just
scanned a patch and the numeric state fluents describe the
attitude and rate of the satellite in this position with line of
sight toward the end of the patch. Discrete planning deci-
sions are made between these snapshot states. The available
actions at such a state are to either scan or to ignore one
of the remaining patches. While ignoring a patch results in
a discrete successor state only altering Boolean fluents, de-
termining the successor snapshot state of the planner after
applying a scan action is not obvious. As the world is con-
tinuous, deciding for the next patch to scan could result in
infinitely many possible successor states, since it is possible
to scan a patch from different positions in the orbit. To com-
mit to one discrete successor state after deciding for a patch
to scan, we make the following assumption:

Assumption 1. It is always best to scan a patch as soon as
possible.

We assume that it is always best to scan the chosen patch
as soon as possible, thus leaving wider scope for future ac-
tions. This assumption implies that it is more important to
scan many patches than to scan them with a good image
quality which is usually obtained when the angular deflec-
tion of the satellite’s line of sight is minimal. It is not ob-
vious how to calculate the earliest possible satellite state to
scan the patch.

In the following we will show how this “earliest possi-
ble” satellite state at the start of the scan maneuver can be
estimated. We will first look at the extreme positions and
omit the constraints posed from other patches. Then we will
propose a method based on interval nesting to determine the
earliest possible orbit position to start scanning the selected
patch. At first we consider the case, where the patch to scan
is far away from the satellite’s current orbit position. The
earliest possible approach configuration of a satellite is ob-
tained by deflecting the satellite as far possible. The maxi-

11

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

x−

αmax

> αmax

tscan · vorb

αmax
< αmax

tscan · vorb
x+

x−

Figure 3: Satellite states to determine the earliest possible
position to scan the patch

mal deflection is limited by the maximal angle under which
the sensor can operate.

An example is illustrated in Figure 3. The subtrack of the
satellite is depicted by the dashed line. The left satellite in
the left graphic depicts the state of the satellite at the earliest
orbit position x− to scan the patch. There, the satellite is
deflected with the maximal angle αmax towards the patch.
However, the attitude dynamic constraints of the satellite
could be violated by scanning the patch starting form x−.
After scanning, the satellite would be in the infeasible state
depicted on the right side of the left graphic in Figure 3. In
this case, the state of the satellite when exiting the patch is
critical to approach the patch as early as possible. The right
satellite in the graphic on the right depicts the earliest pos-
sible satellite state to finish scanning the patch. This state is
reached, if the scan started at orbit position x+. The orbit
position x+ can be calculated because the scan time needed
for scanning the patch tscan and the orbital velocity vorb are
known. Depending on the scanning speed and the orienta-
tion of the patch relative to the satellite’s subtrack position,
either x− or x+ can be the critical earliest possible orbit po-
sitions to scan the patch. The satellite state sfirst is the state
adopted at the earliest possible orbit position max(x−, x+).

Analogously the last possible orbit position to scan the
patch can be computed by minimizing over the latest atti-
tude under which the satellite can start or end a scan, where
the satellite adopts state slast. All feasible maneuvers to
scan the patch are in the interval between the orbit positions
at sfirst and slast. In real planning problems with multi-
ple patches it is not likely that all patches can be scanned
as early as sfirst. Instead, scanning a patch should start as
soon as possible from the satellite’s current state. Unfortu-
nately, neither the satellite’s orbit position nor its attitude af-
ter executing this best slew maneuver are known in advance.
The principal problem of finding the earliest orbit position
to start the next scan builds a non-linear equation system for
which no closed form solutions methods are known to us.
We therefore approximate the satellite state with the help of
interval nesting.

The flow chart in Figure 4 illustrates the mathematical cal-
culations needed inside a scan planning operator, which
approximates the earliest orbit position to scan the patch
as well as the corresponding slew maneuver. Two types of

determine sfirst

maneuver

possible?

return maneuver

determine slast

maneuver

possible?

max

nesting?

determine smid

maneuver

possible?

Scan infeasible

determine send

yes

maneuver

to sfirst

no

slow := sfirst

sup := slast

yes

no

yes

maneuver

to sup

no

yes

sup := smid

no

slow :=

smid

Figure 4: Inside a scan-patch planning operator. Green
boxes can be calculated by Function 1 while green diamonds
are calculated by Function 2.

mathematical calculations have to be performed frequently
in an Earth observation planning task:

Function 1. Determine the satellite’s state (attitude and an-
gular rates) from a given orbit position when pointing to-
wards a patch, with angular rates satisfying the vectorial
velocity for scanning the patch.

Function 2. Determine the feasibility of a maneuver given
two satellite states.

We will take a deeper look at the mathematical calcula-
tion of Function 1 and Function 2 in the next section and
assume for now that both functions can be computed effi-
ciently. The green boxes in the flow chart in Figure 4 are

12

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

all instances of Function 1 while the green diamonds can be
calculated with Function 2. The orbit position after the opti-
mal slew maneuver from the current state of the satellite to
the best approach state lies in the interval between the orbit
position at sfirst and slast. If a maneuver from the current
satellite state scurrent to the earliest possible scan configu-
ration is possible, this maneuver from scurrent to sfirst is
optimal, and can be returned. After scanning the patch the
satellite adopts state send, with an orbit position depending
on orbital velocity and the scanning time, both of which are
given in the domain description. The deliberations made for
sfirst and depicted in Figure 3 ensure that send is valid. If
the maneuver from scurrent to sfirst is infeasible, it is used
as lower bound slow of an interval nesting, and slast is calcu-
lated as latest possible orbit position to scan the patch. If the
maneuver to slast is infeasible, the patch can not be scanned
at all. Otherwise, the satellite’s state of a time optimal ma-
neuver is found between the unreachable lower bound slow
and the reachable but not time optimal upper bound satellite
state sup = slast. Unless the maximal nesting depth is ex-
ceeded, we determine the satellite state smid in the middle
of the boundaries with the help of Function 1, and check if
the maneuver from the current satellite configuration to the
middle configuration is feasible with the help of Function 2.
If the maneuver is feasible, a better upper bound has been
found, while the smid is used as lower bound if the time
slew time is exceeded.

In our implementation we limit the depth of the interval
nesting to 10which offers a good trade-off between run-time
(less than 1 ms) of the operation and precision (approxi-
mately 10 m deviation). We note that more sophisticated
interval nesting methods to determine the orbit position of
the most promising middle configuration could be used.

While we calculate the satellite’s attitude and angular
rates send after scanning, we do not check if the maneuver
from sup to send is feasible with our method described in
Function 2.

Assumption 2. When entry and exit configuration are fea-
sible, the whole scan maneuver is.

The maneuver of the satellite during a scan is given by
kinematical constraints and not considered here in this paper.

As mentioned earlier, the extension of the PDDL planning
language allows planning operators to contain three types of
modules: conditionchecker modules, cost modules
and effect modules. In our implementation, scanning
a patch is decoupled into two actions approach-patch
and scan-patch. This is mostly done for technical rea-
sons, since it is easier to determine the satellite state after
each operator execution during planning which makes it eas-
ier to verify the feasibility of the plan during post processing.
Within these two operations, we use five modules, which all
calculate parts of the flow chart of Figure 4. To avoid the
recalculation of the same function, a database stores all cal-
culations performed by Function 1 and Function 2. The time
intensive interval nesting is therefore only computed once
for each configuration.

The modules executed by the approach-patch opera-
tor all follow the flow chart diagram (Figure 4) and basically

compute the same thing. A conditionchecker-module
approach-patch-possible tests, if approaching a
patch is possible, a cost-module approach-time de-
termines the maneuver time to approach the patch, and fi-
nally an effect-module approach-effect modifies
the planning state and sets the planning variables of the
satellite to sup. The modules used in the scan-patch

operator are a rather simple module scan-time that cal-
culates the time needed for scanning. We do not need a
conditionchecker module, since Assumption 2 en-
sures that the feasibility of each scan is already checked by
approaching the patch. The scan-effect module obvi-
ously sets the planner state of the variables concerning the
satellite to send. Additionally the planning operator sets the
corresponding observation site dealt variable to true.

Satellite Attitude Dynamics

In the previous section we have identified two mathemat-
ical functions calculating the attitude and angular rates of
the satellite and the feasibility of the slew maneuvers. Both
have to be calculated frequently within the modules of the
planner. Function 1 consists of two parts: determining the
attitude of the satellite when pointing towards the targeted
patch, and the angular rates of the satellite that is necessary
to scan the patch. Afterwards we will present the calcula-
tions for Function 2 that checks the feasibility of the slew
maneuver.

Coordinate Systems The Earth observation scenario is
preprocessed from the Earth spherical coordinates (see Fig-
ure 1) to a flat cartesian coordinate system along the subtrack
of the satellite (see Figure 2). The x-axis points in flight
direction, the z-axis points towards center of Earth (Nadir)
and the y-axis completes the right hand coordinate system.
The center of the coordinate system lies within the center
of mass of the satellite at time t0. This Earth fixed plan-
ning frame is notated as N-frame. The satellite’s body-fixed
frame is referred to as B-frame, where the z-axis is assumed
to be coaxial with the instruments line of sight. A vector x in
N-frame is notated as xN , in body fixed coordinates as xB ,
respectively and its norm is denoted as �xN�. The compo-
nents of a vector are identified by stating the respective axis
in subscript e.g. pN = [pNx , p

N
y , p

N
z].

Attitude Determination We define the attitude of the
satellite’s fixed body-frame, the B-frame by its Euler angles
with respect to the N-frame. The roll angle φ is defined by
a rotation of the satellite around the x-axis and the roll rate
is referred to as φ̇. The pitch angle θ and pitch rate θ̇ are de-

fined around the y-axis and the yaw angle ψ and yaw rate ψ̇
are defined around the z-axis respectively. Vectors defined in
the N-frame are transformed into the B-frame by the direct
cosine rotation matrix

13

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

DCMBN = DCMθ DCMφ DCMψ,where

DCMθ =

�

cos−θ 0 sin−θ
0 1 0

sin θ 0 cos−θ

�

DCMφ =

�

1 0 0
0 cos−φ sinφ
0 sin−φ cos−φ

�

(1)

DCMψ =

�

cos−ψ sinψ 0
sin−ψ cos−ψ 0

0 0 1

�

.

Figure 5: Geometry of an exemplary patch position

The patch to be observed is specified by a start coordinate

PNstart and an end coordinate PNend and has to be scanned
with a constant scan velocity vscan. The direction of the
patch is given by

pN = PNend − PNstart

with length l = �pN� which leads to the scan time

tscan =
l

vscan
.

To scan a patch from an orbit position xNS/C , the instru-

ment’s line of sight has to point to the start position of the
patch, which corresponds to a specific attitude DCMBN of
the B-frame with respect to the N-frame. Additionally the

angular rate of the satellite ωS/C = [φ̇, θ̇, ψ̇]T is specified
by the scan velocity of the patch. The attitude and angu-
lar rate of the satellite after scanning a patch can be ob-
tained similarly. Here the satellite has also a specified at-
titude DCMBN and angular rate ωS/C depending on the

new orbit position at x
′N
S/C = xNS/C + vNGT tscan and the

end position of the patch. Both, attitude and angular rate are

functions of xNS/C and patch point PN to be aimed at. In

order to calculate the attitude DCMBN we sequence rota-
tions around the yaw axis, the roll axis and the pitch axis.
The satellite yaws with angle ψ, as depicted in Figure 5.

ψ = arctan
pNy

pNx

The line of sight vector rN = [PN − xNS/C] points from the

spacecraft to a start point or to an end point of a patch. This
is firstly rotated to a auxiliary frame H with angle ψ

rH = DCMHN
Ψ rN

which yields the roll angle

φ = arctan(
dφ

h
)

and the pitch angle

θ = arctan(
dθ

�

h2 + dφ2
),

where dφ = rHy and dθ = rHx . The direct cosine matrix, that
defines the attitude of the satellite pointing the instrument to
a start or end point of a patch, can finally be computed by
Equation 1.

Angular Rate Determination The required scan velocity
of the line of sight at the patch

vNscan = vscan
pN

�pN�

is generated by the subtrack velocity vNGT and a compensat-
ing velocity induced by a rotation of the satellite

vNcomp = vNscan − vNGT .

Using the compensation velocity transformed to the B-frame

vBcomp = DCMBNvNcomp

and the line of sight vector in body frame

rB = DCMBNrN

the angular rate in body frameωB can be implicitly obtained
by

vBcomp = ω
B × rB

The compensation velocity is a cross product of the satellite
rotation and the line of sight vector

vBcomp =

�

ωx
ωy
ωz

�

×

�

0
0
�r�

�

=

�

ωy�r�
−ωx�r�

0

�

which leads to ωBy =
vBcomp.x

�r� and ωBx = −
vBcomp.y

�r� . The

angular rate in N-frame finally is given by

ω
N = DCMBN

ω
B .

14

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Slew Feasibility We are interested to check the feasibility
of a slew maneuver between two arbitrary patches meaning
a maneuver that slews the satellite from an arbitrary initial
attitude and angular rate to a desired attitude and angular
rate. Ideally the necessary torque profile in B-frame is anal-
ysed. This is computationally expensive and exceeds the
acceptable runtime of modules by far. Therefore we intro-
duce conservative assumptions to be able to quickly check
the feasibility of a slew.

Note on Maximum Torques Torques T acting on a rigid
body and the resulting angular rates ω in body fixed coordi-
nates are connected by the well known Euler equation

TB = JBωB + ω
B × JBωB , (2)

where J is the (here diagonal) inertia matrix of the satellite.
During the slew the coupling of the axes is compensated by
nonlinear feedback control such that

TB = TBC + TBmax, where (3)

TBC = ω
B × JBωB . (4)

This allows to assess the maximum angular acceleration
which can be realized during a slew around an axis i of the
B-frame

ω̇Bmax,i =
TBmax,i

Jii
. (5)

Slew Feasibility The calculation of the slew maneuver is
done in the N-frame to reduce the computational cost. How-
ever, the torques have physically to be generated in the body
fixed frame. Therefore we use a conservative upper border
for the maximum allowable angular acceleration in N-frame

ω̇Nmax = min
i

�

(ω̇Bmax,i)
2

3
(6)

such that the resulting torques in the body fixed B-frame can-
not be exceeded. We use a steplike angular acceleration pro-
file with duration Δt see Figure 6.

t

ω̇

ω̇1

ω̇2

0 ts Δt

A

Figure 6: Generic steplike torque profile around one axis of
the N-frame

The slew is calculated around each axis separately. Start-
ing with the angular rate ω(t0)

N at the beginning of the slew
and the initial Euler angle α(t0) corresponding to φ(t0),
θ(t0) or ψ(t0) and the desired angular rate ω(t0 + Δt) and

angle α(t0 +Δt), respectively, the necessary change of the
states in each axis is given by

Δα = α(t0 +Δt)− α(t0)

Δω = ωN (t0 +Δt)− ωN (t0).

Integration yields

Δω =

Δt
�

0

ω̇N (t) dt = ω̇1 ts + ω̇2 (Δt− ts), (7)

corresponding to Figure 6. We denote ts as switching time
in between both angular accelerations. The change in the
angle is

Δα =

�� Δt

0

ω̇N (t) dt dt

=
1

2
ω̇1t

2
s + ω(t0)ts +

1

2
ω̇2(Δt− ts)

2

+ (ω(t0) + ω̇1ts)(Δt− ts). (8)

Equation 7 can be converted to

ω̇2 =
Δω − ω̇1ts

Δt− ts

while Equations 7 and 8 yield

ts =
Δα− 1

2
ΔωΔt− ω0Δt

1

2
ω̇1Δt− 1

2
Δω

. (9)

Equation 9 solely depends on the unknown initial angular
acceleration ω̇1. We set

ω̇1 := ±ω̇Nmax

under the assumption that it is always reasonable to begin
a slew with maximum angular acceleration in order to have
a maximum scope for the choice of ts and ω̇2. The correct
sign of ω̇1 can be found by evaluation of ts.

ω̇1 =

�

ω̇Nmax, ts > 0
−ω̇Nmax, ts < 0

Equation 9 is evaluated again, if necessary. If ts or ω̇2 holds
one of the following equations

ts < 0

ts > Δt

|ω̇2| > ω̇Nmax

for any axis of the N-frame, the maneuver is infeasible1.

Experimental Results

To test the feasibility of our approach, we implemented
the precompiled planning problem from Figure 2 modeling
the Earth observation scenario from Figure 1 in PDDL and
solved it with TFD/M. Figure 7 shows a visualization of the

1It is worth to mention that the commanded maneuver in B-
frame could be feasible anyhow due to the conservatism induced in
Equation 6. This is part of future optimization.

15

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Figure 7: Earth observation scenario with subtrack of the satellite and observation sites to be scanned. The magenta colored
arrows depict the line of sight of the instrument during the slew maneuver.

intermediate states of the satellite extracted from the result-
ing plan. The satellite’s attitude is depicted by the current
body fixed frame in blue black and magenta.

The satellite slews towards the first patch to scan it at its
earliest possible state. The start of the scan maneuver of all
other patches is constrained by the attitude of the satellite
after scanning the previous patch, so all other maneuvers
have to be calculated by interval nesting.

The resulting plan happens to be optimal for the tested
planning instance given our assumptions and the satellite
parameters used. The leftmost patch cannot be scanned be-
cause the satellite’s state to start the scan maneuver is infea-
sible. In additional experiments we investigated the influ-
ence of increasing the maximal angular rates of the satellite
in the planning problem. In this case the slew maneuver
from the last patch to the ignored rightmost patch becomes
feasible. With more angular scope also the first patch is in
range and TFD/M finds a plan scanning six of the patches.

Although our approach is promising and seems to work
well in practice, optimality cannot be guaranteed, even re-
garding the inaccuracies of the model such as plain Earth
surface, circular orbits, etc. The interval nesting approach
is only iterated to a certain depth so that each scan action is
started at a minimally later orbit position than theoretically
possible. Now it is easy to construct a problem that will not
be solved optimally by our approach by adding a new patch
that is reachable by a slew maneuver from the orbit position
after scanning the previous patch from the theoretical earli-
est orbit position but not from the orbit position found by in-
terval nesting. Completeness can be achieved with the triv-
ial plan, but in scenarios where all patches could be scanned
it is not guaranteed that TFD/M will unnecessarily ignore
some observation sites with the analogous argument as for
optimality.

Conclusion and Future Work

We have presented an agile Earth observation task and an
automated planning system capable of solving it. Prelimi-
nary experiments show the feasibility of our approach. We
will continue our research in more complex problems.

The automated planning system TFD/M can be success-
fully applied to our Earth observation scenario. Neverthe-
less we believe that better planning systems could be devel-
oped for larger Earth observation tasks. As modeled, the
Earth observation problem does not involve temporal con-
currency, and the planning problem is even serialized arti-
ficially with the help of Boolean “idle” variables. While
numerical variables are required for the Earth observation
scenario, the temporal aspect of TFD is not. Many other
real world problems do not require temporal concurrency
but have to deal with complex numerical calculations in the
same way as TFD/M handles semantic attachments. A se-
rial numerical planner would hav to solve a problem with
a smaller branching factor of sequential actions instead of
time stamped states which offers the potential for better
heuristics. These heuristics could either be more informed
or faster to compute which increases the performance of a
planning system and therefore the industrial applicability.

The planning problem can be formalized with the seman-
tic attachments extension of the planning language PDDL.
However, it is strongly connected with the syntax in the
modules, and the interface between modules (implemented
in the programming language C++) and planning language
has to be maintained by hand. An object oriented planning
language would be better suited to setup the problem. A
promising approach that improves the communication be-
tween modules and planning problem is the Object Oriented
Planning Language OPL (Hertle 2011).

Satellites in an Earth observation mission have only lim-
ited storage capacities and have to dump collected data to a
ground station from time to time. We intend to model this
data handling in future implementations. Further improve-
ments include the handling of the satellite’s orbit which was
modeled to be circular, while it is somewhat elliptical in re-
ality. Considering the deviations from a circular orbit does
not change the general structure of our model and is benefi-
cial to better approximate the satellite’s real behavior.

Acknowledgments

This work was supported by the German Aerospace Center
(DLR) as part of the Kontiplan project (50 RA 1221).

16

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

References

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Bren-
ner, M.; and Nebel, B. 2009. Semantic Attachments for
Domain-independent Planning Systems. In Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS 09).

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the Context-enhanced Additive Heuristic for Temporal and
Numeric Planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS
09), 130–137. AAAI Press.

Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
Construction of Efficient Multiple Battery Usage Policies.
In Proceedings of the 21st International Conference on Au-
tomated Planning and Scheduling (ICAPS 2011).

Ghallab, M.; Isi, C. K.; Penberthy, S.; Smith, D. E.; Sun, Y.;
and Weld, D. 1998. PDDL - The Planning Domain Def-
inition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.

Hertle, A. 2011. Design and Implementation of an Object-
Oriented Planning Language. Master’s thesis, Albert-
Ludwigs-University, Freiburg.

Keyder, E., and Geffner, H. 2009. Soft Goals can be
Compiled Away. Journal of Artificial Intelligence Research
(JAIR) 36:547–556.

Löhr, J.; Eyerich, P.; Keller, T.; and Nebel, B. 2012. A Plan-
ning Based Framework for Controlling Hybrid Systems. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2012).

Penna, G. D.; Intrigila, B.; Magazzeni, D.; and Mercorio, F.
2010. Planning for autonomous planetary vehicles. In 27th
Congress of the International Council of the Aeronautical
Sciences (ICAS 2010), 131–136.

17

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Operational Planning of Thermal Generators with
Factored Markov Decision Process Models

Daniel Nikolaev Nikovski
nikovski@merl.com

Mitsubishi Electric Research Laboratories,
201 Broadway, Cambridge, MA 02139, USA

Abstract

We describe a method for creating conditional plans for con-
trollable thermal power generators operating together with
uncontrollable renewable power generators, under significant
uncertainty in demand and output. The resulting stochastic
sequential decision problem has mixed discrete and contin-
uous state variables and dynamics, and we propose a dis-
cretization method for the continuous part of the model that
unifies all variables into a large discrete Markov decision pro-
cess model. Although this model is way too large to be solved
directly, its state transition probabilities can be factored effi-
ciently, and a reduction of all continuous variables to one net
demand variable makes it tractable by dynamic programming
over a suitably constructed AND/OR tree. The proposed al-
gorithm outperformed existing non-stochastic solvers on sev-
eral problem instances, resulting in both lower risks and op-
erational costs.

Introduction
The operational planning of thermal generators is a diffi-
cult sequential optimization problem that electrical power
utilities must solve continuously to ensure that they meet
power demand with maximal reliability and at a minimal
cost. Fossil-burned thermal generators (using coal, natural
gas, or oil) consume vast amounts of expensive fuel and con-
tribute significantly to global warming, so minimizing the
amount of consumed fuel is of primary importance in the
electrical power industry.
Given a set of generators with their cost structure and fuel

consumption rates, the objective of optimal operational plan-
ning is to find the best sequence of commands to turn indi-
vidual generators on or off, and the optimal amount of power
produced by each of them over an extended period of time,
subject to the operational constraints that these generators
might have. Typical planning periods range between one day
or one week, and the state of the generators can typically
be changes once every hour. The predicted demand over the
entire planning horizon is also assumed to be known, either
exactly, or with some quantifiable uncertainty.
There are several reasons why this problem is very com-

putationally challenging. The first reason lies in the temporal
constraints on the operational durations of individual gener-
ators that arise from their mechanical construction and re-
quirements for reliable operation. It is generally not desir-
able (or frequently even possible) to turn the burners of the

generators on and off at arbitrary moments, because frequent
switching would cause damage due to excessive thermal ex-
pansion and contraction. For this reason, once a generator
is turned on or off, it must remain in that state for several
hours, and conversely, if it has been turned off, it must be
kept off for several hours. In other words, when a command
is given to turn a generator on or off, it is committed to that
state for multiple decision periods, and that is why this prob-
lem is also known as the unit commitment problem. Due to
these temporal constraints, the planning problem must be
solved over the entire planning horizon, making it a sequen-
tial decision problem. Although the states of the generators
are Boolean variables (on or off), the state variables of the
sequential decision problem must include information about
how many decision periods the generator has been on or off,
and that increases the cardinality of the state space enor-
mously.

The second reason for the high computational complex-
ity of this problem is its mixed continuous/discrete nature.
Some of the decision variables are discrete (e.g. the commit-
ment status of generation units), and others are continuous
(e.g. the amount of power produced by each unit). More-
over, the dynamics that govern the evolution of the system
are also mixed: the total demand for electricity is a contin-
uous scalar variable, whereas the main components (gen-
eration units) switch between discrete modes (on or off).
This significantly limits the number of solution methods that
can be applied to this problem, because there are relatively
few planning and optimization methods that can solve mixed
continuous/discrete problems efficiently.

The third reason this problem is very difficult is that at
least part of the system dynamics are random, for most prac-
tical situations. In all cases, for any future moment during
the planning period, the total demand for power will not be
a completely known, deterministic value, but a random vari-
able predicted from the information available at the time of
planning. The prediction error can often be quantified (typ-
ical values are around 2% of total demand), and although
most currently deployed planning systems have chosen to
ignore this uncertainty or deal with it in a heuristic man-
ner, such uncertainty information can arguably be used to
improve the performance of the planning algorithm. More-
over, the increased penetration of renewable power sources
such as photovoltaic panels and wind turbines, whose output

18

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

depends strongly on uncontrollable atmospheric conditions
such as solar radiation and wind speed, has effectively intro-
duced much higher levels of uncertainty in the net demand
for power to the controllable thermal generators. For exam-
ple, if 20% of the power generator by a utility is supplied by
wind turbines, in case the wind dies down suddenly, the net
demand to the thermal generators might increase suddenly
by 20%. The operational plan must allow for such contin-
gencies, if forced outages are to be avoided. As a result, ig-
noring uncertainty in the system is becoming increasingly
impossible for electrical power utilities. And, in addition,
other sources of uncertainty are possible faults in the gener-
ators, which are naturally random events, but can be charac-
terized probabilistically.

Due to its primary economic significance, the opera-
tional planning problem for thermal generators has been ad-
dressed by a very large number of solution methods, in-
cluding ones based on dynamic programming, Lagrangian
relaxation, interior point methods, and mixed integer pro-
gramming, as well as heuristic methods such as genetic al-
gorithms, simulated annealing, evolutionary programming,
differential evolution, particle swarm optimization, Hop-
field neural networks, etc. (Wood and Wollenberg 1996;
Xia and Elaiw 2010). Formulations as a model predictive
control or optimal control problem are possible, too (Xia,
Zhang, and Elaiw 2011). Dynamic programming methods
can leverage successfully the sequential nature of the deci-
sion process in order to compute suitable plans efficiently,
but suffer from the well known curse of dimensionality due
to the large size of the state space of the problem. Mixed
integer programming methods can handle successfully the
mixed continuous/discrete nature of the planning task, but
again do not scale up very well because of the sheer com-
binatorial complexity of the discrete optimization part. La-
grangian relaxation could also be a very effective solution
to the mixed continuous/discrete optimization problem, and
has been shown to perform well on large problems. Global
optimization methods such as genetic algorithms and simu-
lated annealing can be very effective on problems with dis-
joint feasibility regions, but cannot guarantee that global op-
tima would always be reached, in general.

However, the majority of these methods either ignore un-
certainty completely at the planning state, or deal with it
heuristically, or consider only a small number of possible
future realizations of the uncertain variables, and usually
compute a fixed operational plan for the entire period that
is executed sequentially. As is well known in AI, such plans
can only succeed if the problem domain is static, completely
observable, deterministic, and the action descriptions avail-
able to the planner are correct and complete. One common
heuristic is to include a safety margin of extra capacity (for
example, 3%) to be committed for production. This results
in operating more and/or larger units than are necessary to
meet expected demand. This approach is largely heuristic,
and is not likely to work in the future, when renewable en-
ergy sources become even more widespread. And, in gen-
eral, whereas there might be some value in algorithms that
can find fixed plans that are maximally robust with respect
to future uncertain outcomes, a much more natural approach

would be to use algorithms that can compute conditional
plans that can select actions depending on future states (also
known as contingency plans in AI, feedback controllers in
control theory, and decision policies in operations research).
This paper describes one such approach based on factored
Markov decision processes (fMDP), where continuous dy-
namics are discretized by means of a barycentric approxi-
mation and added to the discrete dynamics, the state of the
resulting completely discrete fMDP is pruned by means of
problem domain knowledge, and the optimal decision policy
is found by means of dynamic programming over AND/OR
trees.

Formulation of the Planning Problem

Formally, the operational planning problem for generators
can be described as follows. Given N available controllable
generator units, and a planning horizon of length T units of
suitable duration, for example one hour, the overall goal is
to minimize the total operating cost for these units, subject
to operating constraints and at an acceptable risk of a forced
outage. The demands Dt, 1 ≤ t ≤ T , over the entire plan-
ning horizon are random variables coming from a stochastic
process with known structure and parameters. There are also
K uncontrollable generators, and we assume that the real-
izations ykt of their random output amounts Y

k
t , 1 ≤ t ≤ T ,

1 ≤ k ≤ K, also come from known stochastic processes.
At all times, the sum of the supply from all generators, con-
trollable and uncontrollable, must match the total demand at
that time.

In order to formulate a sequential decision problem,
we introduce the decision variables uit ∈ {0, 1} for all
time periods t, 1 ≤ t ≤ T , and controllable units i,
1 ≤ k ≤ K, which represent the intended commit-
ment status of the generators during the next operational
period. Similarly, we introduce the state variables xit ∈
{−l,−l + 1, . . . ,−1, 1, . . . , L− 1, L}, where l is the mini-
mum allowed time for keeping a generator off, and L is the
minimum allowed time for keeping a generator on. Nega-
tive values correspond to off condition, and positive values
correspond to on condition.

For the state variables of the controllable part of the pro-
cess, if we have an existing commitment status uit−1 for gen-

erator i, operation time xit−1, and new commitment status

uit, the new operational time x
i
t can calculated by Equation

(1) where T cl
i is the “cold start” time of unit i, li is the min-

imum down time of unit i, and Li is the minimum up time
of unit i (Li, Johnson, and Svoboda 1997).

19

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

xit =























































































1 if −T cl
t ≤ xit−1 ≤ −li and

uit = 1 (start up)
xit−1 + 1 if 1 ≤ xit−1 ≤ Li − 1

(up and must stay up)

Li if xit−1 = Li and u
i
t = 1

(up and available to shut down)

−1 if xit−1 = Li and u
i
t = 0

(shutting down)

xit−1 − 1 if −l + 1 ≤ xit−1 ≤ −1
(down and must stay down)

or −T cl
i + 1 ≤ xit−1 ≤ −li and

uit = 0
(down and available to start up)

−T cl
i if xit−1 = −T cl

i and u
i
t = 0

(1)

Additional constraints, such as maximal up/down times,
can be accommodated by suitable modifications to Eq. (1).
For the demand variable, we assume that we have a

stochastic dynamic model that specifies the probability
Pr(Dt = dt|Dt−1 = dt−1, Dt−2 = dt−2, . . . , D0 = d0)
that value (power demand) dt will be observed at time t
if a series of demands d0, d1, . . . , dt−2, dt−1 has been ob-
served until then. Similarly, for each uncontrollable gen-
erator k we assume that we can estimate the probability
Pr(Y k

t = ykt |Y
k
t−1 = ykt−1, Y

k
t−2 = ykt−2, . . . , Y

k
0 = yk0)

that value (power output) ykt will be observed at time t if
a series of outputs yk0 , y

k
1 , . . . , y

k
t−2, y

k
t−1 has been observed

until then. Various predictive models can be used, such as
auto-regressive (AR), neural nets, support vector machines,
etc., that map past observations onto future values.

The planner must observe several constraints in minimiz-
ing the total cost. The load balance constraint states that the
total generation must be equal to the demand dt at any time
step. If pit is the generation of unit i at hour t, then

N
�

i=1

pitu
i
t +

K
�

k=1

ykt − dt = 0, for t = 1, 2, . . . , T. (2)

The objective function is presented in Equation 3, where
Eu0,x0,y0,d0

denotes the expectation operator with regard to
the initial configuration u0, operational time x0, the initial
demand d0, and the initial output y0. For notational sim-
plicity, the decision variables at time t are represented as
the vector ut

.
= [u1t , u

2
t , . . . , u

N
t], the state variables are

denoted by the vector xt
.
= [x1t , x

2
t , . . . , x

N
t], and the re-

alizations of all uncontrollable generators are denoted as
yt
.
= [y1t , y

2
t , . . . , y

K
t].

J∗ = minu1,u2,...,uT
Eu0,x0,yt,dt

{
�T−1

t=0 [
�N

i=1 fi(x
i
t, u

i
t, yt, dt)

+
�N

i=1 hi(x
i
t, u

i
t, u

i
t+1) + gt(ut, yt, dt)]}

(3)

Here fi(x
i
t, u

i
t, yt, dt) denotes the operating cost of op-

erating unit i in configuration uit and state x
i
t for one

time step in order to meet demand dt when the uncontrol-
lable generators output electricity amount yt. The function

hi(x
i
t, u

i
t, u

i
t+1) denotes the cost of switching to configura-

tion uit+1 at the end of the step. The third cost component,
gt(ut, yt, dt), denotes the equivalent cost of the risk of not
being able to meet demand dt under output of uncontrol-
lable generators yt with the chosen configuration of all units
ut. This cost is proportional to the probability that the total
capacity of the committed units in ut plus what the uncon-
trollable generators produce (yt) is less than the demand dt:

gt(ut, yt, dt) = αPr(

N
�

i = 1

uitcap
i +

K
�

k = 1

ykt < dt),

where capi is the maximal generation capacity of unit i. A
suitably chosen proportionality coefficient α specifies the
relative preference between minimizing operating cost and
risk of failure to meet demand. By adding the operating cost
and risk compensation cost together, the objective function
represents a trade-off between fuel costs and risk.

At any given time, if we can find the optimal sequence
u1, u2, . . . , uT that minimizes the cost in Equation 3 by
whatever computational means, we will have an operational
plan that can be executed over the entire planning horizon.
However, as argued above, such an open-loop, unconditional
plan is not tailored to the concrete situation that will be en-
countered in the future. An alternative approach is to rec-
ognize that the uncertainty in power demand and genera-
tor supply makes the decision problem a stochastic one, and
its optimal solution is not an unconditional plan (sequence
of commitment decisions), but an entire decision policy. A
conditional operational planner could compute conditional
plans that are robust to future variations of supply and de-
mand, and could provide a safety margin implicitly, by plan-
ning for all possible contingencies. One significant difficulty
associated with this approach has been how to represent all
such possible contingencies, and how to plan for them. One
proposal organizes all future possible realizations of the sys-
tem (called scenarios) as a tree of scenario bundles (Takriti,
Birge, and Long 1996). However, this model for represent-
ing stochasticity is limited to only the few scenarios included
in it, whereas in a practical system the future evolution can
be realized in an infinite number of ways. Our work aims to
expand this approach by improving the probabilistic model-
ing of system evolution.

We propose a method for finding the optimal conditional
operational plan of a set of power generators under stochas-
tic demand for electrical power and stochastic output of
some generators. Unlike traditional operational plans, which
are fixed in advance, a conditional operational plan depends
on the future state of the observable random variables (de-
mand and output), and can result in different actual se-
quences of decisions depending on the observed outcomes
for these variables. The planner explicitly balances the op-
erational cost of electricity generation with the risk of not
being able to meet future electricity demand. We represent
the stochastic dynamics of the components of the system as
a factored Markov decision process (MDP) model, and pro-
pose efficient approximate algorithms for computing suit-
able conditional operational plans.

20

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Demand

Solar

Oil

Coal

Gas

Demand'

Solar'

Oil'

Coal'

Gas'

a11

a12

a13

Time t Time t+1

Demand''

Solar''

Oil''

Coal''

Gas''

a21

a22

a23

Time t+2

Figure 1: DBN for a power generation problem with three
controllable and one uncontrollable power generators.

Factored Markov Decision Processes for

Conditional Operational Planning

We propose to represent a power generation system consist-
ing of multiple generators of the type described above by
means of a factored Markov decision process (fMDP), and
find the optimal conditional operational plan by means of ap-
proximate dynamic programming (Boutilier, Dearden, and
Goldszmidt 2000). The fMDP is usually expressed graphi-
cally as a dynamic Bayesian network (DBN). A DBN con-
sists of circles that represent random variables, diamonds
that represent decision variables, and directed edges con-
necting the circles and diamonds that represent the statisti-
cal dependence between the corresponding variables. When
dealing with a time-dependent system, each time period (e.g.
one hour) is represented by its own set of random variables.
Three time slices of the DBN for an example stochastic unit
commitment problem with four generators, one of which un-
controllable (solar), are shown in Fig. 1.

In Fig. 1, one random, continuous, and uncontrollable
variable represents the power demand. Another random,
continuous, and uncontrollable variable represents the out-
put of a photovoltaic generator. (In this case, these two
model components are first-order Markovian, that is, the
next state depends only on the current state, for example by
means of an AT(1) model. However, this is not a fundamen-
tal limitation: for higher-order models, edges from previous
time slices can be added, too.) In addition, three conven-
tional controllable generators are shown, too; their discrete
variables xit take on l + L possible different values, and
represent the operational time of the respective generator.
Three decision variables (shown as diamonds) represent the
individual decisions ati = uit to turn on/off the correspond-
ing generators, and thus commit them for power production.

These models components are necessarily first-order Marko-
vian, but do not need to be deterministic — certain probabil-
ity of failure to change the state of a generator as desired
could be modeled in them. The probabilistic evolution of
the system is described by local conditional probability ta-
bles for each variable, where the conditional dependence is
defined only on the parents of that variable in the graph of
the DBN. Thus, the DBN serves as a compact representa-
tion of a large Markov decision process whose state space is
exponentially large in the number of states of the individual
variables over which it is factored.

In order to specify a factored MDP, the state, action, and
transition model for each individual variable must be de-
fined, along with the reward/cost structure. This is done
differently for the thermal generators which are naturally
represented by means of discrete variables, and for the de-
mand and uncontrollable generators which are naturally rep-
resented by means of continuous variables. For the fMDP
part corresponding to thermal generators, the definitions of
state and action variables coincide with those in the origi-
nal sequential decision problem described in Section . For
the continuous variables, we use a discretization method
based on barycentric coordinates that we have already ap-
plied to other sequential decision problems such as train run-
curve optimization and set-point scheduling for air condi-
tioners (Nikovski and Esenther 2011; Nikovski et al. 2012;
Nikovski, Xu, and Nonaka 2013).

The main idea of the method is to replace the continuous
state variables with a discrete set of states in a way that ap-
proximates well the original continuous dynamics. Let the
dynamics of a continuous component of the model be rep-
resented by the function zt+1 = fz(zt, at), where zt is a
vector variable that could include one or more of the de-
mand dt, the output of uncontrollable generators y

k
t , or some

of their time-lagged values dt−1, y
k
t−1, etc. Let the dimen-

sionality of this vector be b. The objective of the conversion
method is to represent the dynamics of the continuous sys-
tem zt+1 = fz(zt, at) by a conditional probability transfer
function Pr(st+1 = s(j)|st = s

(i), at = a
(k)), defined over

suitably chosen set S of N discrete states s(i), 1 ≤ k ≤ K.

The algorithm selects N states s(1), s(2), . . ., s(N) such

that each corresponds to a state z(i) ∈ Rb, and their De-
launay triangulation is computed (Fig. 2), (Preparata and

Shamos 1990). Then, each available action a(l) is executed
in each of them in turn, according the continuous dynam-

ics function z′ = fz(z
(i), a(l)), and the barycentric coordi-

nates p1, p2, . . . , pb+1 of the end state z
′ are computed with

respect to the simplex that encloses it. These barycentric
coordinates are then used as transition probabilities of the
discrete MDP. The detailed computational procedure, along
with discussion of its computational complexity, is available
in (Nikovski and Esenther 2011).

Conceptually, we can think of this algorithm as a way of
converting the system dynamics represented by the function
fz to an equivalent probabilistic representation involving

only a small set of points s(i)embedded into the original con-
tinuous state space of the system. If the system starts in one
of these few points, the successor state z′, in general, will

21

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

z

z

z
1

2

(i)

z'
p2

p3

p1

Figure 2: A Delaunay triangulation on a set of vertices
sampled from the embedding two dimensional space. The
dashed line shows the transition from some starting state

z(i) under action a resulting in end state z′ = f(z(i), a).
The simplex (here, triangle) containing the end state z′ is
shown with a dotted background, and the barycentric coor-
dinates p1, p2, and p3 of z

′ are computed with respect to
the vertices of that simplex. These coordinates are also the

transition probabilities from z(i) under action a to the states
corresponding to these vertices in the resulting MDP.

not coincide with another one of these points. However, we
can identify the b+ 1 points that define a simplex that com-
pletely encloses the successor state z′, and can think that the
system has transitioned not to point z′ itself, but to the ver-
tices of this simplex with various probabilities, instead. The
probabilities are equal to the convex decomposition of point
z′ with respect to the vertices of the simplex, also known as
the barycentric coordinates of that point within the simplex.
The similarities between convex combinations (barycentric
coordinates) and probability mass functions required by the
MDP formalism make this conversion possible.

This procedure is applied in turn for every group of vari-
ables in the DBN that have temporal dependence. For the
demand variable D, we could assume that the next demand
Dt+1 depends only on the current demand Dt (Markovian
property of the underlying stochastic process) with transition
probability Pr(Dt+1 = dt+1|Dt = dt), and if a higher-
order model is necessary, time-lagged values of demand
Dt−1, Dt−2, etc. could be included. For the uncontrollable
generators, we make similar assumptions that Y k

t+1 depends

only on Y k
t , with probability Pr(Y

k
t+1 = ykt+1|Y

k
t = ykt).

These transition probabilities can be estimated either from
statistical data, or by means of discretizing a suitable contin-
uous stochastic Markov process, such as the auto-regressive
process of order 1 (AR(1) process).
Once the transition probabilities for all variables in the

DBN have been determined, joint transition probability for
the entire system Pr(ut+1, xt+1, yt+1, dt+1|ut, xt, yt, dt)
can be computed from the transition probabilities of the in-
dividual random variables, as is customary for Bayesian net-
works. It can be observed that although the MDP has a very

large joint state space, its transition structure is very sparse.
The next step is to determine the transition cost,

which, unlike transition probabilities that can be spec-
ified separately for each individual variable, must be
specified for the entire MDP. Given a joint MDP state
(ut, xt, yt, dt) and an action ut+1, the immediate one-step
cost c(ut, xt, ut+1, yt, dt) is computed as

c(ut, xt, ut+1, yt, dt) =
�N

i=1 fi(x
i
t, u

i
t, yt, dt)

+
�N

i=1 hi(x
i
t, u

i
t, u

i
t+1) + gt(ut, yt, dt)

(4)
where the switching costs hi(x

i
t, u

i
t, u

i
t+1) and risk cost

gt(ut, yt, dt) are computed as described above, and the fuel
costs fi(x

i
t, u

i
t, yt, dt) are computed by solving the follow-

ing economic dispatch problem: minimize
�

i Fi(p
i
t) sub-

ject to the generation limits for all generators and the load
balance constraint for this particular realization of the un-
controllable variables yt and demand dt:

N
�

i = 1

uitp
i
t +

K
�

k=1

ykt − dt = 0

where Fi(p
i
t) is the cost of producing p

i
t units of elec-

tricity by generator i; typically, this function is quadratic
in pit, and the economic dispatch problem can be solved
by means of quadratic programming. The objective of eco-
nomic dispatch is to find the optimal generation amounts
pit of the committed units so that the cost of generation is
minimized for a specific realization of the random variables.
After the optimal generation amounts [p1t , p

2
t , . . . , p

N
t] are

found, the individual generation costs can be calculated as
fi(x

i
t, u

i
t, yt, dt) = Fi(p

i
t), 1 ≤ i ≤ N .

Given such anMDP, we can define its cost-to-go functions
Jt for each step t and each joint state of the MDP. For the
terminal step T , when no further decisions will be made,
JT (uT , xT , yT , dT) = 0.
For all other steps, the cost-to-go function

Jt(ut, xt, yt, dt) is defined iteratively by means of a
Bellman equation, as follows (Puterman 1994):

Jt(ut, xt, yt, dt) = minut+1
{c(ut, xt, ut+1, yt, dt)

+
�

dt+1,yt+1
Pr(dt+1, yt+1|dt, yt)Jt+1(ut+1, xt+1, yt+1, dt+1)}

(5)
Note that the transition probabilities

Pr(dt+1, yt+1|dt, yt) are factored conveniently, due to
the conditional independence relations in the DBN of
the MDP. The cost-to-go function J0(u0, x0, y0, d0) of
the initial state of the generators and demand would then
correspond to the minimal operating cost under the optimal
policy for the entire planning problem.
In principle, this cost can be found by computing the

costs-to-go of all states in the MDP. However, when some of
the variables are continuous, the cost-to-go (value function)
of the MDP cannot be computed and represented efficiently.
The discretization method described above addresses pre-
cisely this problem, by replacing the continuous variables
D and Yk with sets of discrete states S, making the entire

22

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

MDP discrete, and standard MDP solution methods such as
dynamic programming, value iteration, and policy iteration
can be applied (Puterman 1994). A solution method based
on dynamic programming over AND/OR trees is described
in the next section.
Furthermore, if these costs are computed and stored, the

optimal decision ut+1 = πt(ut, xt, yt, dt) for time step t
and state (ut, xt, yt, dt) can be identified as the one that min-
imizes the right-hand side of the Bellman equation 5:

πt(ut, xt, yt, dt) = argminut+1
{c(ut, xt, ut+1, yt, dt)

+
�

dt+1,yt+1
Pr(dt+1, yt+1|dt, yt)Jt+1(ut+1, xt+1, yt+1, dt+1)}

(6)
This policy is conditioned upon the current realizations of

the random variables yt and dt, so it represents a conditional
planner. By observing the outcomes yt and dt for each con-
secutive time step, different actual operating schedules will
be obtained.

Solving fMDP Models with Aggregated Net

Demand

The objective of solving the stochastic unit commitment
problem represented by the fMDP is to find the optimal
policy that maps the states of the fMDP onto the decision
variables that signify which generators will be turned on/off
in the next period, where optimality is defined in terms of
jointly minimizing production cost and risk of failure. The
straightforward method of solving fMDPs is to expand the
factored state and solve the resulting flat MDP by means
of dynamic programming, applying equation 5 repeatedly,
starting from the terminal step and proceeding backwards to
the first step (Puterman 1994). However, for most practical
problems, e.g. when L = l = 5, the number of generators
N = 20, the number of one-hour time periods T = 24, the
expanded MDP will have |X| = T (L+ l)N = 24 · 1020 dis-
tinct states for the controllable generators only, and would
be impossible to solve.
One practical simplification of the problem is to aggre-

gate the output of the uncontrollable generators Yt into the
demand variable, by subtracting these outputs from the total
demand Dt to arrive at the net demand D

′

t. If all uncon-
trollable random variables are Gaussian processes, then D′

t

is a Gaussian process, too, with expected value (mean) D̄′

t

and variance σt for each time period t. Henceforth, we will
assume that Dt denotes the net demand. For planning pur-
poses, the net demand Dt can be computed by subtracting
the expected values Ȳt at the time of planning (t = 0). When
executing the policy, the actually observed realizations yt at
time t can be used to estimate the distribution of the random
variable Dt+1, so that the estimates of the transition proba-
bilities Pr(dt+1|dt, yt) will in fact be based on yt, when de-
termining the optimal configuration ut+1 by means of Equa-
tion 6.
Another computational simplification of the problem is to

reduce the size of the MDP in a reasonable manner. Intu-
itively, if forecasts for the values of the continuous random
variables Dt and Yt are known in advance, and the assump-
tion that these are Gaussian processes holds true, most of

the configurations of the generators ut at time t would be
irrelevant to satisfying demand at that time. Some of them
will have capacities too low to meet demand, and others will
use unnecessarily many generators to meet demand econom-
ically. By considering only configurations ut of the control-
lable part of the MDP whose maximal committed capacity
(MCC) is close to the expected net demand D̄t, we can dras-
tically reduce the size of the space of the MDP.
A practical way of identifying such suitable configura-

tions is to run a fast deterministic algorithm for unit com-
mitment for several possible values of target reserve β such
that the target demand is (1 + β)D̄. Suitable schedules Sβ
are identified for each β, and the generator configurations
ut present in Sβ are included in the reduced state space of
an approximate solver, which essentially switches between
individual segments from multiple schedules Sβ , depending
on the time evolution of power demand and uncontrollable
generators.
Hence, the fundamental idea of the solution algorithm

is to identify suitable configurations for representative de-
mands, and then use them to produce schedules for any
possible realization of demand. We use an AND/OR tree
(Martelli and Montanari 1973) to represent all selected con-
figurations of the generators and possible realizations of fu-
ture demand. The AND/OR tree is then used for planning
for any demand instances.

Generating Candidate Schedules

This step identifies a finite set of representative commit-
ment schedules so that they can be reused in the remaining
steps. To solicit schedules, we first select a set of demand
samples in hope that they are representative ones. For each
slected demand, a deterministic UC problem associated with
the demand is solved to obtain its schedule. We start iden-
tifying demand samples by finding the overall “upper” and
“lower” demands of interest. Let the mean of the demand
D be D̄ = [D̄1, D̄1, . . . ¯, DT]. Starting from a large posi-
tive number β and decreasing it gradually, we find a demand
(1 + β)D̄ whose UC is feasible. This demand is the up-
per demand. Similar procedure can find the lower demand.
The two demands determine a demand interval. The sched-
ule generation procedure performs search in the interval and
finds demands and their solution schedules.

Building the AND/OR tree

An AND/OR tree has two types of nodes — AND nodes
and OR nodes. An AND/OR tree is a tree where (1) its
root is an AND node, (2) it has alternating levels of AND
and OR nodes, and (3) its terminal nodes are AND nodes
(Martelli and Montanari 1973). An AND/OR tree is shown
in Fig. where the AND/OR nodes are respectively in rect-
angular/circular shapes. Note that in this case the outputs
of the uncontrollable generators Yt have been aggregated
into the net demand variable Dt, and are not included in the
AND/OR tree.
An AND node for the UC problem is associated with a

system state (ut, xt, dt) at time step t, whereas an OR node
is associated with the action ut at that time. The root node
corresponds to the initial state of the UC system. The values

23

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

(u , x , d)

(u , x , d) (u , x , d)

u u

0 0 0

1
1

1

2

1

1

1

1

1 1

1

1

1

uuu uu u
2

1

2

2 1

2 2

2

2

1

2

2

1
2

u2

1
u2

2

2
1

2
1(u , x , d) 2 2 2

1 1(u , x , d) 2
2

2
2(u , x , d) 2 2 2

2 2(u , x , d) ... (u , x , d)2
1

2
7 (u , x , d)2

1
2
7

2 (u , x , d) (u , x , d)2
2

2
8

2
2

2
8

2

2
1
2(u , x , d)

2

1 1(u , x , d)11

1 2 1 2

1

2
1 2

2

1 2

2
1 2

2

1 2

Figure 3: An AND/OR tree example

of the nodes are evaluated bottom-up. For an OR node ut+1,
if its parent AND node is (ut, xt, dt) and its children (AND)
nodes are {(ut+1, xt+1, dt+1)|dt+1}, then the value of the
OR node is evaluated as

Vt(ut+1|ut, xt, dt) = c(ut, xt, ut+1, dt)
+

�

dt+1
p(dt+1|dt)Vt+1(ut+1, xt+1, dt+1)

(7)

Note that the notation Vt(ut+1|ut, xt, dt) means that the
value of OR node is conditional on its parent AND node. For
an AND node (ut, xt, dt), its value Vt(ut, xt, dt) is evalu-
ated as follows:

Vt(ut, xt, dt) =

�

c(uT , xT , uT , dT), if t = T
minut+1

Vt(ut+1|ut, xt, dt) otherwise
(8)

Note that the minimization in minut
is over all children

OR nodes ut+1, and that no configuration switching cost is
incurred at the last step, since the continuation of the sched-
ule at that time is yet unknown.

Evaluating MDP Policies

Once a policy has been computed and stored in the AND/OR
tree, we adopt a sampling approach to evaluate its op-
erational cost and risk under future random demand D.
For this purpose, we draw a suitable number of samples
d = [d1, d2, . . . , dT] from the demand variable D (e.g.,
1000 samples). For each sample, we start from the root
of the tree and execute the actions specified by the tree.
Such an execution results in a path in the tree. Specifically,
an execution path is a sequence of system states and ac-
tions {(u0, x0, d0), u1, (u1, x1, d1), . . . , uT , (uT , xT , dT)}
that are prescribed by the initial system state, the AND/OR
tree, and the demand realization d = [d1, d2, . . . , dT]. The
cost of a path can be accessed by solving the economic dis-
patch problem for each step, given the prescribed configura-
tions ut, while its risk can be calculated using the committed
capacity ut and the realization of demand dt. The overall
risks and costs are the average across the paths associated
with the demand samples. These costs and risks show how
the risks can be compromised by the additionally paid cost.

Experimental Results

We experimented with the proposed method on a test prob-
lem adopted from (Li, Johnson, and Svoboda 1997), ex-
tended with the introduction of uncertainty in the demand.
The standard deviation of demand was assumed to be 2%
of expected demand: σt = 0.02D̄t. No uncontrollable gen-
erators were used, so the net demand is equal to the total
demand. The approximate algorithm from the previous sec-
tion was implemented and compared against two existing
algorithms: one of them was based on a priority list ((Wood
and Wollenberg 1996)), and the other one was the decom-
mitment algorithm proposed in (Li, Johnson, and Svoboda
1997). Our results showed that the approximate solution
method provides a good balance between generation cost
and risk of failure to meet demand. We performed exper-
iments on two UC examples: one with 4 units, and another
one with 20 units. We were able to calculate the truly optimal
MDP solution for the 4-unit UC example, so we were able
to investigate the accuracy of our approximation scheme on
that problem, too. The experiments were performed on a
computer with Intel Core 2 Duo E6600 CPU (2.40GHz). The
algorithm was implemented in MATLAB.

Experimental Conditions

The generation cost of a committed unit i at time t is
computed as a quadratic function of the produced amount
of power by the unit: fi(x

i
t, u

i
t, dt) = ci0 + ci1p

t
i +

ci2(p
i
t)

2
. The unit switching and start-up cost is expressed as

h(xit, u
i
t, u

i
t+1) = tcsti + bcsti(1 − exp(−γxit)), if u

i
t = 0

and uit+1 = 1, and zero otherwise. In the start-up cost, the
fixed component tcsti represents the cost of starting gen-
erator i, while the second term bcsti represents the cost of
starting the boiler and varies exponentially with the length
of the time that the unit has been off.
Under a Gaussian assumption for demand (Dt ∼

N(D̄t, σ
2
t)), the risk compensation cost gt(ut, dt) is given

by

α′ · CFSO ·

ˆ

∞

�

i
ui

t
capi

1
�

2πσ2t
exp(−

(D − D̄t)
2

2σ2t
) · dD

where α′ is the proportionality constant, CFSO is the full
system operating costs (the cost of the system in which all
units are turned on and generate according to their maximum
capacity), and the integral is the failure probability (risk).
Failure happens when the actual demand D is greater than
the Maximum Committed Capacity (MCC)

�

i capiu
i
t of all

operating units. By increasing the constant α, the weight of
the risk component in the objective function is increased,
thus favoring configurations with higher MCC, at the ex-
pense of a higher operational cost for running such configu-
rations.

A 4-unit example

The decision horizon of the 4-unit UC prob-
lem was 24 hours. The coefficients tcsti and
bcsti of the start-up costs for the four units
were [200,2000;500,20000;100,700;44,100]. The

24

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

−5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Effective extra cost (Percentage)

R
is

k

Conditional exact
Conditional approximate
Decommitment
Priority list

Figure 4: Performances of the algorithms on a 4-unit prob-
lem

fuel cost coefficients [c0, c1, c2] for the four units
were [0.00211,16.51,02.7; 0.00063,21.05,1313.6;
0.00712,22.26,371.0; 0.00413,25.92,660.8], in cho-
sen cost units. The minimum up and minimum down
times were [3, 3, 2, 2] and [4, 4, 3, 3]. The minimum
and maximum capacities were [10, 10, 10, 10] and
[100, 90, 80, 60], here and henceforward, in cho-
sen power units. The expected demand vector was
D̄ =[105,85,65,140,100,105,125,145,165,185,205,245,265,285,
200,140,100,105,125,145,165,185,205,225]. The initial op-
erational times were x0 = [5,−5, 5,−5].
The risk versus cost curves for various methods are pre-

sented in Fig. 4. “Conditional exact” refers to the algo-
rithm that solves the MDP exactly, i.e., all Bellman backups
(Equation 6) were performed. “Conditional approximate”
refers to the algorithm proposed in the previous section. In
the figure, the horizontal axis is the percentage of the ex-
tra operational cost with respect to a reference operational
cost, taken to be the lowest experimentally obtained opera-
tional cost for any scheduler on this problem. For this prob-
lem instance, it can be seen that the solution of the proposed
algorithm is very close to optimality (the conditional exact
solution), and the algorithm outperforms significantly both
the priority list and the decommitment algorithms in balanc-
ing operational costs and risks. For the lowest levels of risk,
which are probably close to the desired cost/risk trade-off
point of an actual generation system, the loss of optimality
is less than 1%, whereas the gain in costs with respect to
deterministic schedulers is greater than 9%.

20-unit example

In this experiment we used all 20 generators described in (Li,
Johnson, and Svoboda 1997). The expected demand vec-
tor was [2133.3, 2133.3, 2066.7, 2066.7, 2133.3, 2133.3,
2266.7, 2400.0, 2400.0, 2400.0, 2333.3, 2200.0, 2133.3,

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Effective extra cost (Percentage)

R
is

k

Conditional approximate
Decommitment
Priority list

Figure 5: Performances of the algorithms on a 20-unit prob-
lem

2133.3 ,2200.0, 2266.7, 2400.0, 2400.0, 2400.0, 2400.0,
2333.3, 2200.0, 2200.0, 2066.7]. It was no longer possible
to find the truly optimal conditional schedules, but it is pos-
sible to compare the performance of the conditional approx-
imate, priority list, and decommitment algorithms (Fig. 5).
Again, the results show that the proposed novel algorithm
uniformly achieved a much better risk/cost balance than the
priority list and the decommitment approaches, with opera-
tional cost savings around 4% for the lowest levels of risk.

Conclusion and Future Work

We have described a general method for representing the
mixed continuous/discrete dynamics of power generation
systems under multiple sources of uncertainty such as
variable power demand and intermittent renewable energy
sources, and have introduced a class of conditional opera-
tional plans where the unit commitment decisions are con-
ditioned upon the state of observable random variables. The
proposed factored Markov decision process models repre-
sented in the form of dynamic Bayesian networks are com-
pact and are also easy to specify, maintain, and extend with
new power sources. We have also proposed one concrete al-
gorithm for finding such conditional operational schedules
for power generation that depend on a single random vari-
able — the net demand that aggregates in itself all sources
of randomness. The algorithm focuses on small subsets of all
possible configurations of generators in order to compute the
schedule efficiently. Experimental results suggest that the re-
sulting conditional plans are close to the truly optimal ones,
and provide a much better trade-off between generation cost
and risk of failure to meet demand than two known non-
stochastic unit commitment algorithms that compute fixed
schedules.
In the proposed solution algorithm, we use AND/OR trees

to represent, find, and evaluate the optimal conditional plan.

25

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

However, this algorithm is by no means the only possible
way to solve stochastic generation problems represented by
means of fMDPs and DBNs. In future work, we plan to in-
vestigate other solution methods based on approximate dy-
namic programming that could result in much better com-
putational complexity. Furthermore, the current solution ag-
gregates the variability of all stochastic variables into the
net demand to the controllable power generators, for the
sake of computational efficiency. This simplifies the plan-
ning problem, because the branching in the AND-OR tree
is based only on that single variable. However, even higher
efficiency might be possible if the conditional schedule is
conditioned on the values of each individual stochastic com-
ponent. This would significantly increase the complexity of
the planning process, and would depend critically on find-
ing more computationally efficient solution methods for the
undrelying fMDP models.
For example, the method proposed in (Feng et al. 2004)

represents the value function of the dynamic programming
problem over continuous domains by adaptively discretiz-
ing such continuous variables. This approach might result in
more accurate and compact representations than are possi-
ble with our method, where the tesselation of the continu-
ous domains is performed apriori, before value functions are
evaluated. Adaptive discretization is indeed compatible with
our discretization scheme, too, for example by sub-dividing
a simplex where the value function varies a lot (measured on
its vertices), into multiple smaller simplices. The application
of symbolic dynamic programming (SDP, (Sanner, Delgado,
and de Barros 2011)) to the factored MDP-based formula-
tion of the operational planning problem might be possible,
too.
The formulation of the fMDP described in the paper as-

sumes that all generators assume their intended configura-
tion uti without fail. This allows us to use the decision vari-
ables uti as components of the state of the system, thus sim-
plifying the planning process. If the possibility of equipment
failure must be taken into account, the actual configuration
U t
i of the generators should be included as a random state
variable in the DBN, and its probabilistic dependence on the
intended configuration uti can be modeled according to the
failure probabilities of individual generators. Such an exten-
sion is completely compatible with the proposed modeling
formalism of factored Markov decision processes.

References

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 49–107.

Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R.
2004. Dynamic programming for structured continuous
Markov decision problems. In Proceedings of the 20th con-
ference on Uncertainty in Artificial Intelligence, UAI ’04,
154–161. Arlington, Virginia, United States: AUAI Press.

Li, C.; Johnson, R. B.; and Svoboda, A. J. 1997. A new
unit commitment method. IEEE Transactions on Power
Systems 113–119.

Martelli, A., and Montanari, U. 1973. Additive AND/OR

graphs. In Proceedings of the Third International Joint
Conference on Artificial intelligence, 1–11.

Nikovski, D., and Esenther, A. 2011. Construction of em-
bedded Markov decision processes for optimal control of
non-linear systems with continuous state spaces. In IEEE
Conference on Decision and Control and European Con-
trol Conference, 7944–7949.

Nikovski, D.; Lidicky, B.; Zhang, W.; Kataoka, K.; and
Yoshimoto, K. 2012. Markov decision processes for train
run curve optimization. In Electrical Systems for Aircraft,
Railway and Ship Propulsion (ESARS), 2012, 1–6.

Nikovski, D.; Xu, J.; and Nonaka, M. 2013. A method for
computing optimal set-point schedules for HVAC systems.
In Proceedings of the 11th REHVAWorld Congress CLIMA
2013.

Preparata, F. P., and Shamos, M. I. 1990. Computational
Geometry. Heidelberg: Springer Verlag.

Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York,
NY: John Wiley & Sons, Inc.

Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2011.
Symbolic dynamic programming for discrete and continu-
ous state MDPs. In Proceedings of the 27th conference on
Uncertainty in Artificial Intelligence, UAI ’11, 643–652.
Arlington, Virginia, United States: AUAI Press.

Takriti, S.; Birge, J. R.; and Long, E. 1996. A stochastic
model of the unit commitment problem. IEEE Transactions
on Power Systems 1497–1508.

Wood, A. J., and Wollenberg, B. F. 1996. Power
Generation, Operation, and Control. New York: Wiley-
Interscience.

Xia, X., and Elaiw, A. M. 2010. Optimal dynamic eco-
nomic dispatch of generation: a review. Electric Power
Systems Research 975–986.

Xia, X.; Zhang, J.; and Elaiw, A. 2011. An application
of model predictive control to the dynamic economic dis-
patch of power generation. Control Engineering Practice
19(6):638–648.

26

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Flexible Execution of Partial Order Plans With Temporal Constraints∗

Christian Muise1, J. Christopher Beck2, and Sheila A. McIlraith1

1Dept. of Computer Science
University of Toronto

{cjmuise,sheila}@cs.toronto.edu

2Dept. of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

Abstract

We propose a unified approach to plan execu-
tion and schedule dispatching that converts a plan,
which has been augmented with temporal con-
straints, into a policy for dispatching. Our approach
generalizes the original plan and temporal con-
straints so that the executor need only consider the
subset of state that is relevant to successful execu-
tion of valid plan fragments. We can accommodate
a variety of calamitous and serendipitous changes
to the state of the world by supporting the seamless
re-execution or omission of plan fragments, with-
out the need for costly replanning. Our method-
ology for plan generalization and online dispatch-
ing is a novel combination of plan execution and
schedule dispatching techniques. We demonstrate
the effectiveness of our method through a prototype
implementation and a series of experiments.

1 Introduction

Plans and schedules often go awry because of unanticipated
changes in the world. In such cases, it is up to the execu-
tion monitoring system (EM) to determine what to do. Typi-
cally, an EM represents the temporal plan it is executing as a
partial-order plan (POP) with an associated simple temporal
network (STN) [Dechter et al., 1991] that captures the tempo-
ral constraints between actions [Younes and Simmons, 2003;
Coles et al., 2010]. The EM executes the POP’s actions one
after another until the goal is reached or a discrepancy is
detected. Often, the EM is forced to resolve discrepancies
through costly replanning, rescheduling, or plan repair (e.g.,
the IxTeT-eXeC system [Lemai and Ingrand, 2003]).
The focus of this paper is on maximizing the robustness of

plan execution by minimizing the need for replanning. We
propose an execution module, TPOPEXEC, which is com-
prised of two components: 1) COMPILER, an offline prepro-
cessor that takes as input a POP and a set of temporal con-
straints, and produces a generalized representation; and 2)
EXECUTOR, an online component that soundly selects a tem-
porally consistent, valid plan fragment from the generalized

∗This paper also appears in the Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013).

plan. TPOPEXEC does no replanning or repair. Rather, it can
serve as a component of a larger execution engine to reduce,
but not eliminate, the need for replanning.
TPOPEXEC reacts to the state of the world, proposing the

next action of one of a large number of valid plan fragments
whose starting state satisfies the necessary conditions for plan
validity. This enables TPOPEXEC to seamlessly elect to exe-
cute parts of a plan multiple times and/or to omit actions that
are no longer necessary for achieving the goal.
Such flexibility can introduce ambiguity in the interpre-

tation of temporal constraints. For example, if you must
start eating 3 to 10 minutes after heating your dinner, and
eating gets delayed causing you to re-heat, then what tem-
poral relationship(s), if any, should exist between the first
heating and the eating? As such ambiguities are not ad-
dressed by STNs, we introduce a specification language for
temporal constraints that avoids the execution-time ambigu-
ities and further supports the specification of constraints be-
tween state conditions and actions. We formally define the
semantics of the temporal constraints and prove the correct-
ness of TPOPEXEC. Compared to conventional EM systems,
our approach has the potential to avoid replanning exponen-
tially more often (in the size of the state). Experiments with a
simulated uncertain environment show TPOPEXEC achieving
the goal in 92% of the trials while the standard STN dispatch-
ing technique only has a success rate of roughly 30%.
TPOPEXEC leverages existing work from both partial-

order plan execution and temporal reasoning. While many
of the core algorithms are based on existing techniques, our
main contribution stems from the dynamic creation of tempo-
ral subproblems that need to be solved during execution. Our
approach is noteworthy for its novelty and broad applicability
while making an important step towards integrating plan exe-
cution and schedule dispatching – tasks that are traditionally
addressed independently [Smith et al., 2000].

2 Preliminaries

STRIPS Following [Ghallab et al., 2004], a STRIPS Plan-
ning Problem is a tuple Π = �F,O, I,G� where F is a set of
fluent symbols,O is a set of action operators, and I andG are
sets of fluents, corresponding to the initial state and goal con-
dition. Every action a ∈ O is defined by three sets of fluents
PRE, ADD, andDEL, corresponding to the preconditions,

27

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

add effects, and delete effects. An action a is executable in
state s iff PRE(a) ⊆ s. An executable sequence of actions
is a plan. A plan that commences with I and terminates in G
is a valid plan for G. Given a plan a0, . . . , an, the sequence
of actions ai, . . . , an, where i ≥ 0, is a plan suffix.

Partial-order Plans A partial-order plan (POP) is a tuple
P = �A,O� where A is the set of actions in the plan and
O is a set of orderings between the actions in A (e.g., (a1 ≺
a2) ∈ O) [Weld, 1994]. For this work, we do not require
a set of causal links to be defined. A total ordering of the
actions in A that respects O is a linearization of P . A POP
provides a compact representation for multiple linearizations,
and is considered valid iff every linearization is a valid plan.
We further assume that the set of ordering constraints O in a
valid POP is transitively closed. We typically add two special
actions to the POP, aI and aG, that encode the initial and goal
states through their add effects and preconditions. A POP
suffix of a given POP �A,O� is any POP �A′,O′� where (1)
A′ ⊆ A, (2) O′ = {(a1 ≺ a2) | (a1 ≺ a2) ∈ O and a1, a2 ∈
A′}, and (3) ∀a1 ∈ A′, ((a1 ≺ a2) ∈ O) → (a2 ∈ A′).
That is, every ordering originating from an action in the suffix
implies the corresponding action is also in the suffix. While
the same ground action may appear more than once in A, we
assume that every element of A is uniquely identifiable.

Durative Actions Following Fox and Long (2003), any
durative action appears in the plan as a pair of instanta-
neous start and end actions that must alternate (a durative
action must end before it can be started again). We fur-
ther augment the pair of actions with a suitable temporal
constraint to enforce the duration (cf. Section 3.1). We
handle domains where durative actions must overlap, typi-
cally referred to as required concurrency [Fox et al., 2004;
Cushing et al., 2007], but we do not handle situations where
a single durative action must overlap with itself during exe-
cution [Coles et al., 2008]: when a start action occurs, the
corresponding end action must occur before the start can be
executed again. Our work is focused on STRIPS planning
problems and a set of temporal constraints inspired by those
found in PDDL3.0. STRIPS cannot require that two instanta-
neous actions “execute in parallel” (e.g., [Boutilier and Braf-
man, 2001]), so this situation will not arise. In the future, we
hope to expand to other aspects of PDDL including condi-
tional effects, numeric state fluents, and continuous change.

3 Temporal Constraints and Traces

The starting point for our work is a Temporally Constrained
POP (TPOP), ��A,O�, C�, which comprises a valid POP
�A,O�, and a set of temporal constraints C. Here, we do
not concern ourselves with where the POP comes from, but
options include using a partial-order planner (e.g., VHPOP
[Younes and Simmons, 2003]), relaxing a sequential plan
(e.g., [Muise et al., 2012]), or having a POP specified by the
user. Temporal constraints originate with the user, with the
exception of those generated in the transformation of dura-
tive actions to pairs of instantaneous actions. This decoupling
enables a POP to be re-used in multiple scenarios by simply
varying the temporal constraints. In this section, we propose
a syntax and semantics for the temporal constraints in C.

Consider the TPOPEXEC for a mobile-phone based cog-
nitive assistant (CA) that oversees a user’s daily activities.
The CA knows his/her plan for the day including activities
such as laundry, transportation, dinner, and a movie. It is up-
dated about the state of the world by the user, RSS feeds, etc.
CA “executes” a plan by reminding the user to perform ac-
tions. As the state is updated, CA’s EXECUTOR revises its
reminders. If the user’s date is delayed, they may need to re-
book dinner. If the user’s friend gives them $50, they can skip
going to the bank.
As noted in Section 1, TPOPEXEC is able to seamlessly

re-execute or omit portions of a plan. This can create am-
biguity in the interpretation of standard STNs, as illustrated
by the “heating & eating” example. It is also the case that
many temporal constraints are more compellingly expressed
as constraints between state properties and actions (e.g., “Be
at the movie at least 15 minutes before it starts.”). These two
desiderata serve as motivation for our new language.

3.1 Temporal Constraints

Inspired by PDDL3.0 and linear temporal logic [Gerevini et
al., 2009; Pnueli, 1977], our language introduces four tempo-
ral modal operators ranging over the actions of our TPOP, the
fluents in our planning domain, and time (the positive reals).
Our language supports the specification of a set of constraints,
but no connectives. During execution, actions in our TPOP
may be repeated or skipped, requiring a formalism strictly
more expressive than STNs: in an STN, there is no accom-
modation for unplanned re-execution or omission of actions,
nor is there a facility to express temporal constraints with re-
spect to the state of the world [Dechter et al., 1991].

Definition 1. Temporal Constraint Types

• (latest-before b a l u): A past constraint between ac-
tions a and b over bounds l, u ∈ R≥0 ∪ {∞} stipulates
that if b occurs, then a must have occurred previously
and the most recent occurrence of a is between l and u
time units.

• (earliest-after a b l u): A future constraint between ac-
tions a and b over bounds l, u ∈ R≥0 ∪ {∞} stipulates
that if a occurs, then b must occur in the future and the
next occurrence is between l and u time units.

• (holds-before a f l u): A past fluent constraint between
an action a and fluent f over bounds l, u ∈ R≥0 ∪ {∞}
stipulates that if a occurs, then f must have held between
l and u time units in the past.

• (holds-after a f l u): A future fluent constraint between
an action a and fluent f over bounds l, u ∈ R≥0 ∪ {∞}
stipulates that if a occurs, then f must hold between l
and u time units in the future.

The notation mirrors the PDDL3.0 preference syntax: e.g.,
(latest-before b a l u) should be read as “the latest occur-
rence of action a before an occurrence of b is between l and u
time units”. For the CA example, consider the temporal con-
straint, (latest-before exercise eat meal 30 240): exercise
must be more than a half hour and no more than four hours

28

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

after eating. If, after exercising, the user decides to exercise
again (due to an exogenous change in the world), the tim-
ing of the second exercise action must be consistent with the
constraint and the timing of the most recent meal. If the con-
straint had been (earliest-after eat meal exercise 30 240),
there would be no constraint between the meal and the sec-
ond occurrence of exercise: that constraint is only relevant to
the earliest occurrence of exercise after a meal.
If a⊢ and a⊣ denote the instantaneous actions correspond-

ing to the start and end of a durative action a, we augment
the domain with (latest-before a⊣ a⊢ l u) where l and u are
lower and upper bounds on the duration of a.

3.2 Semantics

We define the semantics of our temporal constraints with re-
spect to the execution trace of the plan – a history of action-
state pairs, indexed by time and represented as a timed word
[Alur and Dill, 1994].

Definition 2. Trace

Given a TPOP ��A,O�, C� and planning problem
�F,O, I,G�, we define a trace, T , to be a finite timed
word, (σ0, t0), · · · , (σn, tn), where σi ∈ Σ, the alphabet Σ
ranges overA×S , and the time values, ti ∈ R≥0, are strictly
increasing. T is executable iff for every ((ai, si), ti) in T , ai
is executable in si. T is static iff for every ((ai, si), ti) in T ,
if i > 0 then si is the result of executing ai−1 in state si−1.
We signify the concatenation of traces T and T ′ as T · T ′.

We assume that the state of the world is fully observable.
If a fluent changes unexpectedly (e.g., through an exogenous
event), a tuple in the trace reflects this change. A single tu-
ple ((ai, si), ti) ∈ T is an occurrence , and we refer to the
actual trace of performed actions as an execution trace. An
execution trace is valid if it is executable, satisfies every tem-
poral constraint, and the final action is aG (i.e., the goal is
achieved). Finally, we say that an execution trace is a valid
partial trace if it can be extended to be a valid trace.
Figure 1 defines the semantics of our temporal modal op-

erators with respect to a trace. We use the abbreviation

(time-diff i j l u)
def
= l ≤ tj − ti ≤ u to indicate that the

time between indices i and j is bounded between l and u;
(occ a i) to denote that action a occurred at ti in the trace.
For both variants of a future constraint, T may be a valid par-
tial trace but not a valid trace because the constraint is not yet
satisfied – e.g., for earliest-after, a appears in T , but b has
not occurred since then. Such constraints are unresolved.

4 Generalizing and Executing TPOPs

Typical EMs execute actions in a plan in the order pre-
scribed, until the goal is reached or a discrepancy is de-
tected. At that point, they trigger replanning or reschedul-
ing [Lemai and Ingrand, 2003; Conrad and Williams, 2011;
Levine, 2012]. The dispatching of STNs operates in a sim-
ilar fashion [Dechter et al., 1991]. In contrast, TPOPEXEC
executes the first action of the cheapest valid plan fragment
whose starting state satisfies the necessary conditions for plan
validity and satisfies the temporal constraints. Such robust-

ness is not found in existing methods without explicit replan-
ning or rescheduling.
Our approach is to provide a flexible representation that

generalizes a plan to capture, for each step of the plan, the
necessary subset of state required to ensure the plan’s valid-
ity. In the case of a TPOP, which compactly encodes k lin-
earizations (sequential plans of length n), this generalization
produces up to kn sequential plans of lengths ranging from 1
to n, each leading to the goal but starting in different states.
The generalized TPOP is represented as a policy, and it allows
for the choice of any one of the (up to) kn sequential plans,
filtering out those that do not respect the temporal constraints.
Our policy enables TPOPEXEC to choose between the execu-
tion of different linearizations depending on the state of the
world. In doing so, it can accommodate a number of unantic-
ipated changes, either calamitous or serendipitous.
TPOPEXEC is comprised of an offline preprocessing phase

(COMPILER) and an online computation phase (EXECUTOR).
COMPILER systematically computes every possible tempo-
rally consistent partial plan that corresponds to a suffix of
the input TPOP. EXECUTOR retrieves a temporally consis-
tent partial plan that it can use to achieve the goal. To sim-
plify the exposition, we present our approach for a subclass
of TPOPs where the constraints, C, are restricted to involve
only actions (i.e., the latest-before and earliest-after con-
straints): referred to as an ATPOP. In Section 4.3, we show
how to express an arbitrary TPOP as an ATPOP. We assume
that the ATPOP is provided to TPOPEXEC. Potential sources
of an ATPOP include manually hand-coding one, annotating
a standard POP with temporal constraints, or computing one
with a dedicated planner. For this work, however, we focus
on executing an ATPOP rather than its synthesis.

4.1 COMPILER: Offline Generalization

Given an ATPOP, execution trace, and state of the world,
TPOPEXEC needs to determine if any fragment of the AT-
POP can achieve the goal and satisfy all of the temporal con-
straints while taking the trace so far into account. We compile
the causal and temporal conditions required for every partial
plan into a policy that indicates if we can still reach the goal,
and if so, what action to execute next and when.
The key component of the policy representation is a partial

plan context. Given an ATPOP, a partial plan context captures
a subset of the original ATPOP actions and orderings, a can-
didate action, a, and a set of sufficient conditions, ψ, both
for the execution of a and to guarantee that some lineariza-
tion of the ATPOP suffix starting from a will lead to the goal,
ignoring for the moment the temporal constraints.

Definition 3. Partial Plan Context

Given a problem �F,O, I,G� and ATPOP ��A,O�, C�, we
define a partial plan context as a tuple �A⊣,O⊣, ψ, a�, where:

1. A⊣ ⊆ A is the set of actions to be executed.

2. O⊣ is a set of ordering constraints over A⊣.

3. ψ ⊆ F is a set of fluents sufficient for executing A⊣.

4. a ∈ A⊣ and ∄a′ ∈ A⊣ s.t. (a
′ ≺ a) ∈ O⊣

29

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

((a0, s0),t0), · · · , ((an, sn), tn) |= (latest-before b a l u)

iff ∀j : 1 ≤ j ≤ n if (occ b j) then ∃i : 0 ≤ i < j, (occ a i) ∧ (time-diff i j l u) ∧ ∀k : i < k < j, ak �= a

((a0, s0),t0), · · · , ((an, sn), tn) |= (earliest-after a b l u)

iff ∀i : 0 ≤ i ≤ n− 1 if (occ a i) then ∃j : i < j ≤ n, (occ b j) ∧ (time-diff i j l u) ∧ ∀k : i < k < j, ak �= b

((a0, s0),t0), · · · , ((an, sn), tn) |= (holds-before a f l u)

iff ∀j : 1 ≤ j ≤ n if (occ a j) then ∃i : 0 ≤ i < j, (f ∈ si) ∧ [∃t∗ : (ti ≤ t
∗ � ti+1) ∧ (l ≤ tj − t

∗ ≤ u)]

((a0, s0),t0), · · · , ((an, sn), tn) |= (holds-after a f l u)

iff ∀i : 0 ≤ i ≤ n− 1 if (occ a i) then ∃j : i < j ≤ n, (f ∈ sj) ∧ [∃t∗ : (tj ≤ t
∗ � tj+1) ∧ (l ≤ t∗ − ti ≤ u)]

Figure 1: Semantics of the temporal modal operators with respect to a trace. l, u ∈ R≥0 ∪ {∞}, l ≤ u, and a, b are actions.

Context viability captures the notion that there exists a lin-
earization of the partial plan context’s POP that is valid and
satisfies every constraint. Formally, given a planning prob-
lem Π, ATPOP ��A,O�, C�, valid partial trace T , and current
state of the world s, a partial plan context �A⊣,O⊣, ψ, a� is
(1) causally viable wrt. Π and s iff the POP �A⊣,O⊣� has a
linearization starting with a that is a valid plan for the plan-
ning problem with s as the initial state, (2) temporally viable
wrt. C and T iff there exists a trace T ′ where the actions in
T ′ correspond to a linearization of �A⊣,O⊣� and T ·T ′ satis-
fies every temporal constraint in C, and (3) simply viable wrt.
Π, s, C, and T iff �A⊣,O⊣� has a linearization making the
context both causally and temporally viable.

Establishing Causal Viability To generate every causally
viable context, we appeal to the approach of Muise et
al. (2011) which transforms a POP into a policy. As part
of their process, they produce a sequence of condition-action
pairs where the condition holds in a state iff some lineariza-
tion of the POP has a suffix that can reach the goal starting
with the action. Space prohibits us from a full exposition, but
we modify their algorithm in two ways: (1) rather than simply
record the condition ψ and candidate action a, we also record
the set of actions and ordering constraints to build a partial
plan context, and (2) additional ordering constraints are com-
puted to ensure that, when establishing temporal viability, we
reason about the correct linearization. Both modifications are
primarily for bookkeeping and the soundness of the subse-
quent steps. Neither modification has a significant impact on
the algorithm’s performance. The following proposition fol-
lows from the proof of correctness of Muise et al.’s causal
viability algorithm (Muise et al. 2011, Theorem 2).

Proposition 1. Every partial plan context, �A⊣,O⊣, ψ, a�,
that we produce is causally viable wrt. Π and s iff ψ ⊆ s.

Establishing Temporal Viability Given the temporal con-
straints, for each partial plan context, COMPILER determines
temporal viability by proving consistency of a carefully con-
structed context-specific STN (CSTN).
An STN consists of a set of events and a set of simple tem-

poral constraints. We useXa to signify an event for action a,
and make the distinction between an action a and an eventXa

corresponding to an execution of a. A simple temporal con-
straint restricts the time between two events to be between a

pair of bounds: [l, u]Xa1
,Xa2

def
= l ≤ t(Xa2

) − t(Xa1
) ≤ u

where t(·) is a mapping of events to time-points. A CSTN
contains events corresponding to the scope of the set of sim-
ple temporal constraints relevant to the context. The set of
relevant simple temporal constraints, with respect to the AT-
POP ��A,O�, C� and the context �A⊣,O⊣, ψ, a�, consists of:

1. Temporal constraints on the unexecuted actions in A⊣:

{[ǫ,∞]Xa1
,Xa2

| (a1 ≺ a2) ∈ O⊣}

2. Past temporal constraints ending in A⊣:

{[l, u]Xa1
,Xa2

| (latest-before a2 a1 l u) ∈ C, a2 ∈ A⊣}

3. Future temporal constraints involving only A⊣:

{[l, u]Xa1
,Xa2

| (earliest-after a1 a2 l u) ∈ C, a1, a2 ∈ A⊣}

COMPILER stores only those contexts that have a tempo-
rally consistent CSTN [Muscettola et al., 1998]. Such a
CSTN may or may not lead to a temporally viable partial
plan context depending on the actual timing of occurrences.
To enable a quick, online re-calculation of temporal viability,
COMPILER stores the temporal windows between event Xa

and events in the CSTN that correspond to actions outside of
A⊣. We ignore future constraints with a single action outside
of A⊣, because without knowing if the first action appears in
the execution trace, the CSTN should not include it.

4.2 EXECUTOR: Online Execution

Given the state of the world and execution trace, EXECUTOR
follows a four step process: (1) retrieve the set of causally
viable partial plan contexts, (2) sort the contexts in ascending
distance-to-goal, (3) identify the first context that is tempo-
rally viable, and (4) return the leading action and its temporal
window. To determine temporal viability, given an execution
trace and the stored temporal windows for events that have
occurred, EXECUTOR uses the following two-step process:

1. If there are unresolved future constraints in the trace, re-
build the CSTN and recheck its consistency.

2. Simulate the execution of past events in the CSTN.

Resolving Future Temporal Constraints For every un-
satisfied future temporal constraint (earliest-after a1 a2 l u),

30

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

we have a set of occurrences that are the cause for the con-
straint remaining unsatisfied: the occurrences containing a1
that have happened after the most recent occurrence contain-
ing a2. If Xa1

does not already exist in the CSTN, then
EXECUTOR adds event, Xa1

, corresponding to the latest oc-
currence of a1 and includes the simple temporal constraint
[l, u]Xa1

,Xa2

. If there is more than one occurrence that serves

as a reason for the unsatisfied constraint, EXECUTOR adds an-
other event, X ′

a1
, to the CSTN corresponding to the earliest

occurrence containing a1 (with the constraint [l, u]X′

a1
,Xa2

).

The remaining occurrences containing a1 can be ignored as
they cannot further constrain the CSTN. EXECUTOR then re-
checks for consistency to ensure temporal viability.

Simulating Previous Events Using the standard dispatch-
ing algorithm for an STN [Muscettola et al., 1998], EXECU-
TOR tests if a schedule exists for the actions in A⊣ that ad-
heres to all of the temporal constraints and the execution
trace. For every event Xa in the CSTN where a /∈ A⊣, we
have a corresponding latest occurrence ((a, si), ti) ∈ T (start
actions for active future temporal constraints also have an as-
sociated occurrence). EXECUTOR follows the order found in
T to dispatch each event at the time already established, prop-
agating the start times. If EXECUTOR must dispatch an event
at a time outside of its temporal bounds, then the network
is inconsistent (cf. Theorem 2 of Muscettola et al. (1998)).
If the temporal windows remain non-empty, then the process
ends with a temporal window for the event corresponding to
the candidate action, a. This provides EXECUTOR both with
a certificate that the CSTN is consistent, and indicates what
should be done: execute a within its temporal window.

Theorem 1. Given an ATPOP ��A,O�, C�, valid partial
trace T , and partial plan context �A⊣,O⊣, ψ, a�, the context
is temporally viable iff the context’s CSTN is consistent and
can be dispatched following the above two steps.

Proof sketch. For the context to be temporally viable,
�A⊣,O⊣� must have a linearization that corresponds to some
trace T ′ such that T · T ′ satisfies every constraint in C. The
first set of constraints included in the CSTN ensures that any
schedule follows a linearization of �A⊣,O⊣�. The CSTN is
consistent and dispatchable iff there is a schedule of the ac-
tions in A⊣ that satisfies every constraint. We thus have a
candidate for T ′ iff the context is temporally viable. �

Combining Proposition 1 and Theorem 1, we can now as-
certain how TPOPEXEC leverages a partial plan context:

Theorem 2. For a given planning problem Π, ATPOP
��A,O�, C�, execution trace T , state of the world s, and par-
tial plan context �A⊣,O⊣, ψ, a�, the partial plan context is
viable iff (1) ψ ⊆ s, (2) the context’s CSTN is consistent, and
(3) the context’s CSTN can be dispatched.

4.3 Discussion

We have built computational machinery to enable TPOPEXEC
to select a next action and the timing of its execution. Fol-
lowing Theorem 2, as long as a suffix of some linearization
of the POP can achieve the goal while satisfying all temporal
constraints, TPOPEXEC will eventually achieve the goal. Be-
cause determining temporal viability requires some amount

of reasoning online, EXECUTOR filters first based on causal
viability, and then discards the contexts which are not tem-
porally viable. To choose amongst temporally viable con-
texts, EXECUTOR prefers the context with the best plan qual-
ity based on action cost, breaking ties by the minimum tem-
poral distance between the current time and the goal.

The complexity for computing the causally viable contexts
online is at worst linear in the number of contexts, but in prac-
tice is much smaller – typically linear in the size of the rel-
evant portion of the current state. The complexity of deter-
mining temporal viability is at worst polynomial in the size
of the CSTN. However, we have identified many heuristic
checks that successfully determine, in the overwhelming ma-
jority of situations, whether or not the CSTN is temporally
consistent. Naively stored, the number of contexts and tem-
poral networks may pose a problem. However, by leveraging
the commonality between the contexts and their temporal net-
works, we were able to drastically reduce the overall storage
compared to [Muise et al., 2011] to store both the state and
temporal information.

Optimizations We augmented these methods with a number
of critical optimizations. Among the most important are the
following: (1) When constructing a CSTN, COMPILER keeps
only those events in the scope of any temporal constraint in
the CSTN while retaining the transitive ordering from all ac-
tions in A⊣ (not every action in A⊣ must be a part of a tem-
poral constraint). This reduces the size and complexity of
the STN. (2) Rather than always doing a full consistency
check for testing temporal viability in the presence of open
future temporal constraints, EXECUTOR evaluates a number
of necessary or sufficient conditions first. EXECUTOR uses a
full consistency check only when more efficient checks fail.
Space precludes us from detailing the techniques here, but
one example is that if no future temporal constraint tightens a
lower or upper bound on an unexecuted action, then the previ-
ously compiled temporal windows remain valid: if the CSTN
was found to be consistent in the offline phase, then it remains
consistent as long as the temporal windows are not tightened.

Reformulation to ATPOP The approach described applies
only to ATPOPs. We reformulate TPOPs involving fluent
temporal constraints into ATPOPs, enabling the elegant ap-
plication of our approach to arbitrary TPOPs. The reformula-
tion is sound, but incomplete with respect to the holds-before
constraint. For completeness, we must expand the tempo-
ral reasoning to handle disjunctive constraints (i.e., having a
sometime-before constraint between actions).

We reformulate our fluent temporal constraints to action
constraints. As such, for each fluent participating in a tem-
poral constraint, we introduce an auxiliary action af with the
precondition of PRE(af) = {f} and no add or delete ef-
fects. These actions are used to record the observation of
fluents. We then replace the fluent temporal modal opera-
tors with suitable counterparts: (holds-before a f l u) (resp.
(holds-after a f l u)) is replaced by (latest-before a af l u)
(resp. (earliest-after a af l u)). This modification permits
TPOPEXEC to observe necessary facts at a time required. Fi-
nally, we require a unique auxiliary action for each fluent con-
straint, as sharing the auxiliary actions is unsound.

31

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

5 Experimental Evaluation

The core contribution of this work is the ability to exe-
cute a plan in a world that can change in unpredicted ways,
while reasoning about ongoing causal and temporal viabil-
ity. We accomplish this while avoiding unnecessary replan-
ning, rescheduling, or plan repair. In building on the work of
Muise et al. (2011), TPOPEXEC is able to continue executing
a POP in exponentially many more states than traditional ap-
proaches that execute actions according to a prescribed order-
ing. Nevertheless, the work of Muise et al. (2011) cannot rea-
son about temporal constraints. Many execution monitoring
systems suffer a similar fate. Standard approaches to sched-
ule dispatching, such as Muscettola et al. (1998), are blind
to causal viability and the conditions for the executability of
actions. Such approaches will only succeed on problems that
do not experience obstructive change.

Our evaluation focuses on TPOPEXEC’s robustness and
ability to avoid replanning. We also evaluate the general
properties of TPOPEXEC’s behaviour. The first experiment
demonstrates the increased capabilities of our approach over
restricted forms of our method that improve on existing ex-
ecution strategies (i.e., STN dispatching), and the second
experiment examines the amount of replanning TPOPEXEC
avoids. TPOPEXEC is written in Python, and we conducted
the experiments on a Linux desktop with a 3.0GHz processor.

IPC benchmarks lack a combination of causal requirements
and complex temporal constraints. As such, we tested our im-
plementation on an expanded version of the CA domain that
serves to challenge the causal and temporal reasoning, and
is representative of what we might find in the real world. In
total, there are 19 actions in the plan (11 durative), 8 past
temporal constraints, and 4 future temporal constraints. The
ATPOP has 18 ordering constraints which result in a total of
49,140 linearizations. The types of un-modelled dynamics
include children becoming hungry, laundry being soiled, etc.
In addition to being modelled after real-world temporal re-
quirements, the constraints were designed to pose a challenge
for TPOPEXEC. For example, often in the CA domain there
is ample opportunity for a context to be causally viable but
not temporally viable – the actions in the context can achieve
the goal, but not without violating some temporal constraint.
Such situations challenge the temporal reasoning aspects of
TPOPEXEC to find the most appropriate context.

Rate of Success We simulate our CA agent in a world
where fluents change unexpectedly in both positive and neg-
ative ways (i.e., adding and deleting fluents from the state).
TPOPEXEC fails when EXECUTOR determines the goal is no
longer causally and temporally achievable. The level of vari-
ability in the world is set using parameter α: α = 0 corre-
sponds to no changes whatsoever and α = 1 corresponds to
significant unpredictable change (at least one fluent changes
after every action with 99.998% probability). For 20 different
values of α, we ran 1000 trials for each approach. The pro-
portion of successful trials is referred to as the success rate.

Ignoring the causal requirements and simply dispatching
the ATPOP one action after another mirrors STN dispatch-
ing, which we argued above would be unsuccessful in most
instances. Nonetheless, we test this approach to verify our in-

0.0 0.2 0.4 0.6 0.8
Environment Variability (α)

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

TpopExec

Opportunistic

STN Dispatch

Figure 2: The success rate of the three approaches over a
range of environment dynamics, both good and bad.

tuition and evaluate the level of environmental variability that
an STN dispatching algorithm can handle. We also present
an Opportunistic version of TPOPEXEC that we restricted to
execute an action at most once. It can, however, skip actions
if positive changes allow. Figure 2 shows the success rate for
all three approaches for a given value of α.
TPOPEXEC consistently outperforms both the ablated ver-

sion and STN dispatching by a substantial margin – success-
fully executing the plan in more than 80% of the instances for
almost all values of α and in total succeeding in over 92% of
the simulations compared to just over 30% for the STN ap-
proach. Having the opportunity to re-execute plan fragments
that are required again, while adhering to the imposed tem-
poral constraints, provides us with a distinct advantage. The
ablated version, while heavily restricted, still outperformed
the STN dispatching for the majority of α-values, solving
roughly twice as many instances.

Replan Avoidance We evaluate how often TPOPEXEC
avoids replanning during execution in the CA domain. If
other systems that replan online are able to replan quickly
enough, then their execution behaviour would match ours.
Every replan, however, requires solving a PSPACE problem
which is what we avoid. Similar to the previous experiment,
we evaluate with respect to a range of environment dynamics
(the α parameter). However, to properly gauge the need for
replanning, we only allow for negative changes to the world:
fluents are randomly made false. We count the number of
times during execution that TPOPEXEC would be forced to
replan if it had not generalized the ATPOP, and we consider
only those runs where TPOPEXEC reaches the goal. Figure 3
shows the mean replan rate for a given α-value, normalized
by a theoretical maximum number of replans.

We find that the number of replans avoided increases lin-
early with the increase variability. Due to the temporal con-
straints on the length of the day, and the length of some dura-
tive actions, there is a theoretical limit of roughly 20 replans
required for the dynamics we introduce. In situations where
TPOPEXEC must operate over a larger time frame, we would
expect the potential for replan avoidance to grow.

System Behaviour Profiling EXECUTOR, we found that
35% (resp. 60%) of the time was spent determining if con-
texts were causally (resp. temporally) viable. The remaining
time was used for bookkeeping and data-structure updates for

32

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

0.0 0.2 0.4 0.6 0.8
Environment Variability (α)

0.0

0.2

0.4

0.6

0.8

M
ea
n
R
ep
la
n
s

Figure 3: The number of replans that would be required dur-
ing execution over a range of destructive environment dynam-
ics (mean and standard deviation).

the simulation. COMPILER spent the vast majority of time
checking the consistency for the CSTN of each of the 306
partial plan contexts. There is substantial commonality be-
tween CSTNs of similar contexts, and a potential optimiza-
tion is to reuse the computation results. An average of 19
temporal windows were required for every CSTN. However,
the memory bottleneck is the data-structure used for comput-
ing the causally viable contexts. Using a custom represen-
tation, we were able to reduce the memory requirements for
our causal information by a factor of four compared to Muise
et al. (2011), while our total footprint (causal plus temporal
information) used about half the memory of just storing the
causal information with the previous representation.

6 Related Work

Most approaches to executing plans with complex temporal
constraints assume that an action in a plan will be executed
once: an action may appear multiple times in a plan, but
each plan appearance corresponds to exactly one action oc-
currence. IxTeT-eXeC executes actions from a temporally re-
stricted POP and monitors the sufficient conditions for con-
tinued causal and temporal viability, replanning when they
fail to hold [Lemai and Ingrand, 2003]. In a similar vein, the
Pike system executes a temporally restricted POP while con-
tinuously monitoring a weaker set of conditions for temporal
viability [Levine, 2012]. TPOPEXEC can be seen as an im-
proved executor that tries to avoid plan repair and replanning,
and we hope to incorporate our method into a larger system.
The Drake system focuses primarily on executing a plan

with complex temporal constraints [Conrad and Williams,
2011]. While it can choose not to execute an action if non-
execution is explicitly included as part of a complex temporal
constraint, Drake does not represent or reason about causal
validity. One avenue we hope to pursue is using the Drake
temporal reasoning in place of our CSTNs. Doing so would
allow us to handle more expressive constraints.
There is a large body of research on plan execution mon-

itoring (e.g., [Pettersson, 2005; Fritz and McIlraith, 2007;
Doherty et al., 2009]). Some systems, such as the work of
Doherty et al. 2009, monitor temporal constraints, but many
do not. They typically focus on the feasibility of just one par-
tial, sequential plan and resort to replanning when any condi-

tion is violated. There have been a number of temporal logics
introduced for monitoring plans and schedules (e.g., [Koy-
mans, 1990; Kvarnström et al., 2008]). The most related to
our work is TLTL [Bauer et al., 2007]: it uses timed words
at the core of its specification and provides a syntax capable
of expressing the temporal constraints available to an ATPOP.
They do not, however, include a mechanism for deciding what
to do next. It is of interest to consider how we might expand
our constraint specification language to handle all of TLTL.

7 Summary and Discussion

We presented TPOPEXEC, a system for generalizing and ro-
bustly executing a plan that is augmented with temporal con-
straints. In the face of unexpected changes in the world,
TPOPEXEC can select from a large number of valid plan
fragments that are consistent with the temporal constraints,
repeating parts of a plan or omitting actions, as necessary.
This is all done without the need to replan. To accommodate
this flexibility, we introduced temporal constraints over ac-
tions and fluents, formalizing their semantics with respect to
the execution trace. During execution, TPOPEXEC identifies
the partial plans, computed offline, that can achieve the goal
while satisfying all of the temporal constraints. To choose an
action for execution, TPOPEXEC selects one at the start of the
best quality partial plan identified as being viable.
We demonstrated our methodology through a prototype

implementation and a series of experiments to test the robust-
ness and flexibility of TPOPEXEC. In a simulated uncertain
environment for a real-world inspired domain, TPOPEXEC
achieved the goal in 92% of the trials while the standard STN
dispatching technique succeeded 30% of the time.
We aim to address two fundamental limitations with our

work: 1) temporal reasoning and schedule dispatching tech-
niques typically do not consider the state of the world, and
2) execution monitoring schemes for planning problems that
allow multiple action occurrences typically do not allow for
temporal constraints to be defined. The temporal constraints
that we introduce are an essential ingredient for the synthesis
of plan execution and schedule dispatching techniques when
the environment can change in unexpected ways. They also
elucidate the need for referring to both state and actions as
integral parts of a temporal constraint.
There may exist a tradeoff between the time saved by

avoiding replanning and the quality of a new plan that could
be found. In this work, we assume that replanning should be
avoided if at all possible, but we hope to consider this tradeoff
future work. As the contributions of TPOPEXEC can be seen
as complementary to many existing execution monitoring
systems (e.g., IxTeT-eXeC or Kirk [Lemai and Ingrand, 2003;
Kim et al., 2001]), we hope to incorporate our techniques into
a larger system for wider application.

Acknowledgements

Wewould like to thank the anonymous reviewers whose valu-
able feedback helped improve the final paper. The authors
gratefully acknowledge funding from the Ontario Ministry
of Innovation and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

33

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

References

[Alur and Dill, 1994] R. Alur and D. L. Dill. A the-
ory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[Bauer et al., 2007] A. Bauer, M. Leucker, and C. Schallhart.
Runtime verification for LTL and TLTL. Transactions
on Software Engineering and Methodology, pages 1–68,
2007.

[Boutilier and Brafman, 2001] C. Boutilier and R. I. Braf-
man. Partial-order planning with concurrent interact-
ing actions. Journal of Artificial Intelligence Research,
14:105–136, 2001.

[Coles et al., 2008] A. Coles, M. Fox, D. Long, and
A. Smith. Planning with problems requiring temporal co-
ordination. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, pages 892–897, 2008.

[Coles et al., 2010] A. J. Coles, A. I. Coles, M. Fox, and
D. Long. Forward-chaining partial-order planning. In
Proceedings of the 20th International Conference on Au-
tomated Planning and Scheduling, pages 42–49, 2010.

[Conrad and Williams, 2011] P. R. Conrad and B. C.
Williams. Drake: An Efficient Executive for Temporal
Plans with Choice. Journal of Artificial Intelligence Re-
search, 42:607–659, 2011.

[Cushing et al., 2007] W. Cushing, S. Kambhampati,
Mausam, and Weld D. S. When is temporal planning
really temporal. In Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, pages
1852–1859, 2007.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks. Artificial Intelligence, 49(1-
3):61–95, 1991.

[Doherty et al., 2009] P. Doherty, J. Kvarnström, and
F. Heintz. A temporal logic-based planning and ex-
ecution monitoring framework for unmanned aircraft
systems. Autonomous Agents and Multi-Agent Systems,
19(3):332–377, 2009.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An
extension to pddl for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research, 20:61–
124, 2003.

[Fox et al., 2004] M. Fox, D. Long, and K. Halsey. An in-
vestigation into the expressive power of PDDL2.1. In Pro-
ceedings of the 16th European Conference of Artificial In-
telligence, 2004.

[Fritz and McIlraith, 2007] C. Fritz and S. A. McIlraith.
Monitoring plan optimality during execution. In Proceed-
ings of the 17th International Conference on Automated
Planning and Scheduling, pages 144–151, 2007.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic planning in
the fifth international planning competition: PDDL3 and
experimental evaluation of the planners. Artificial Intelli-
gence, 173(5-6):619–668, 2009.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso.
Automated Planning: Theory & Practice. Morgan Kauf-
mann, 2004.

[Kim et al., 2001] P. Kim, B. C. Williams, and M. Abram-
son. Executing reactive, model-based programs through
graph-based temporal planning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
pages 487–493, 2001.

[Koymans, 1990] R. Koymans. Specifying real-time prop-
erties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[Kvarnström et al., 2008] J. Kvarnström, P. Doherty, and
F. Heintz. A temporal logic-based planning and execution
monitoring system. In Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling,
pages 332–377, 2008.

[Lemai and Ingrand, 2003] S. Lemai and F. Ingrand. Inter-
leaving temporal planning and execution: IxTeT-eXeC. In
Proceedings of the ICAPS Workshop on Plan Execution,
2003.

[Levine, 2012] S. J. Levine. Monitoring the execution of
temporal plans for robotic systems. Master’s Thesis, 2012.

[Muise et al., 2011] C. Muise, S. A. McIlraith, and J. C.
Beck. Monitoring the execution of partial-order plans via
regression. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 1975–1982,
2011.

[Muise et al., 2012] C. Muise, S. A. McIlraith, and J. C.
Beck. Optimally relaxing partial-order plans with
MaxSAT. In Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling, pages
358–362, 2012.

[Muscettola et al., 1998] N. Muscettola, P. H. Morris, and
I. Tsamardinos. Reformulating temporal plans for efficient
execution. In Proceedings of the 6th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, pages 444–452, 1998.

[Pettersson, 2005] O. Pettersson. Execution monitoring in
robotics: A survey. Robotics and Autonomous Systems,
53(2):73–88, 2005.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs.
In Proceedings of the Eighteenth IEEE Symposium Foun-
dations of Computer Science, pages 46–57, 1977.

[Smith et al., 2000] D. E. Smith, J. Frank, and A. K.
Jónsson. Bridging the gap between planning and schedul-
ing. Knowledge Engineering Review, 15(1):47–83, 2000.

[Weld, 1994] D. S. Weld. An introduction to least commit-
ment planning. AI Magazine, 15(4):27, 1994.

[Younes and Simmons, 2003] H. L. S. Younes and R. G.
Simmons. VHPOP: Versatile heuristic partial order plan-
ner. Journal of Artificial Intelligence Research, 20:405–
430, 2003.

34

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

PDDL+ Planning with Events and Linear Processes

Amanda Coles and Andrew Coles
Department of Informatics,

King’s College London, WC2R 2LS UK
email: firstname.lastname@kcl.ac.uk

Abstract

In this paper we present a scalable fully-automated PDDL
planner capable of reasoning with PDDL+ events and linear
processes. Processes and events model (respectively) contin-
uous and discrete exogenous activity in the environment, oc-
curring when certain conditions hold. We discuss the signifi-
cant research challenges posed in creating a forward-chaining
planner that can reason with these, and present novel state-
progression and consistency enforcing techniques that allow
us to meet these challenges. Finally we present results show-
ing that our new planner, using PDDL+ domain models, is
able to solve realistic expressive problems more efficiently
than the current state-of-the-art alternative: a compiled PDDL
2.1 representation with continuous numeric effects.

1 Introduction

Classical planning has traditionally been concerned with
reasoning about a static world in which the effects of actions
occur instantaneously. The reality of the world in which
plans must be executed is, however, often different to this:
numeric quantities change over time and exogenous happen-
ings occur, both in response to, and independently of, the
actions carried out in the plan. For example, at sunrise the
battery charge of a space vehicle begins to increase contin-
uously over time, this increase does not depend upon the
vehicle taking any specific action, it happens automatically.

Even in the absence of exogeny, scalable automated plan-
ning in the presence of continuous numeric change has only
recently become a possibility, due to advances in classical
and temporal planning. While there was some early work on
planning with such models, notably the planners Zeno (Pen-
berthy and Weld 1994) and OPTOP (McDermott 2003b),
the challenge of efficiently computing effective heuristics
severely restricted scalability. Following the introduction
of continuous numeric change into version 2.1 of the stan-
dard planning domain modelling language, PDDL, (Fox and
Long 2003) a number of modern planners began to address
the challenge of reasoning with continuous numeric change.

The planner COLIN (Coles et al. 2012) performs forward-
chaining search and uses a mixed integer program (MIP)
to ensure that the constraints arising due to the interaction
of continuous numeric variables are met. POPF (Coles et
al. 2010) extends COLIN to reason with partially ordered
plans, and forms the basis for this work. Kongming (Li

and Williams 2011) uses a planning graph based structure to
build plans, making use of a proprietary language to specify
continuous dynamics. It also uses aMIP to manage temporal
and numeric constraints, but is less expressive than COLIN
in the sense that it does not allow two actions to simultane-
ously change the value of a variable.
To date there are only two planners that are capable

of reasoning with discrete and continuous change caused
by both actions and exogenous happenings as described in
PDDL+ (Fox and Long 2006). TM-LPSAT (Shin and Davis
2005) is a fully automated planner that can solve PDDL+
planning problems with linear continuous change. It uses a
SAT-based compilation, giving a discrete set of time points;
and, like COLIN, uses an LP solver to manage numeric con-
straints. Its approach shows promise, but empirically, suffers
from scalability issues. UPMurphi (Penna et al. 2009) takes
a model-checking approach but relies on a hand-crafted dis-
cretisation of time to reason with continuous change. The
use of a discretisation allows it to handle non-linear contin-
uous change, the only planner to do so, but of course requires
human expertise. The main challenge for UPMurphi is scal-
ability as it it has no heuristic for guidance.
In this paper we present a scalable forward-chaining plan-

ner capable of reasoning with linear continuous change and
exogenous happenings. By building on state-of-the-art ap-
proaches to planning with continuous numeric change, we
avoid the need to discretise time, with the consequence
of improved scalability. Avoiding discretisation introduces
new challenges in ensuring that exogenous happenings oc-
cur immediately when their conditions hold and that their
conditions are avoided if they are not desired. We discuss
how we overcome these challenges and empirically demon-
strate the scalability of our planner on PDDL+ problems.

2 Problem Definition

The logical basis for temporal planning, as modelled in
PDDL 2.1 (Fox and Long 2003), is a collection of propo-
sitions P , and a vector of numeric variables v. These are
manipulated and referred to by actions. The executability of
actions is determined by their preconditions. A single con-
dition is either a single proposition p ∈ P , or a numeric
constraint over v. We assume all such constraints are linear,
and hence can be represented in the form:

w.v{>,≥, <,≤,=}c

35

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

(w is a vector of constants and c is a constant). A precondi-
tion is a conjunction of zero or more conditions.
Each durative action A has three sets of preconditions:

pre⊢A, pre↔A, pre⊣A. These represent the conditions that
must hold at its start, throughout its execution, and at the end
of the action, respectively. Instantaneous effects can then be
bound to the start or end of the action. eff+⊢A and eff−⊢A
denote the propositions added and deleted at the start of A,
and effnum⊢ A denotes any numeric effects. Similarly, eff+⊣A,

eff−⊣ and effnum⊣ record effects at the end. We assume all
such effects are linear, i.e. are of the form:

v{+=, -=,=}w.v + c where v ∈ v

Semantically, the values of these instantaneous effects be-
come available small amount of time, ǫ, after they occur.
Each action additionally has a conjunction of continuous

numeric effects eff↔, of the form dv/dt=c, c ∈ ℜ, that oc-
cur while it is executing1. Finally, the action has a duration
constraint: a conjunction of (assumedly linear) numeric con-
straints applied to a special variable durA corresponding to
the duration of A. As a special case, instantaneous actions
have duration ǫ, and have only one set of preconditions preA
and effects eff+A and eff−A. For use in reasoning a durative
action A can be split into two instantaneous snap actions,
A⊢ and A⊣, representing the start and end of the action re-
spectively, and a set of constraints (invariant and duration
constraints and continuous numeric effects). Action A⊢ has
precondition pre⊢A and effects eff

+

⊢A ∪ eff−⊢A ∪ effnum⊢ A.
Likewise, A⊣ is the analogous action for the end of A.
A PDDL+ planning problem augments a PDDL planning

problem with processes and events. Like actions, these have
preconditions, and effects. As an analogue, events are akin
to instantaneous actions: if an event’s preconditions preA
are satisfied, it occurs, yielding the event’s instantaneous
effects. Similarly, processes are akin to durative actions,
with pre↔A corresponding to the process’ precondition, and
eff↔ containing its continuous numeric effects. Then, while
pre↔A is satisfied, the continuous numeric change occurs.
Thus, the critical distinction between processes and events,
and actions, is that a process/event will automatically occur
as soon as its precondition is satisfied, modelling exogenous
activity in the environment; whereas an action will only hap-
pen if chosen to execute in the plan.
PDDL+ has a number of problematic features that make

the plan validation problem is intractable, even when the
language is restricted to linear continuous change. In par-
ticular, in theory, events can infinitely cascade, repeatedly
firing and self-supporting. Or, having reached the goals, it is
challenging to determine whether they persist from then on-
wards, given future processes and events that may occur. To
address the former of these issues, we make the restriction
proposed by Fox and Long (2006) that events must delete
one of their own preconditions. For the latter, we require
that, if persistence is desired, the goal specified is sufficient
to ensure the desired goals persist. Note that a goal required
to be true beyond a specified fixed time, but not necessarily
persist, can be modelled by using a process to count time
and adding time > time required to the goal.

1We allow c to be derived from mathematical operations on
constant-valued state variables.

3 Running Example

We introduce a simple small example problem based on the
use of a mobile phone (cellular phone). The scenario is as
follows: a person initially in the countryside with his phone
switched off must go to the city and make a call from there
using his mobile phone (i.e. the goal is called2). The domain
has three durative actions:

• travel: dur = 15; pre⊢ = {at country}; eff−⊢ = {at coun-

try}; eff+⊣ = {at city}; eff↔ = {d(signal)/dt = 0.5}

• turn on: dur > 0; pre⊢ = {¬on}; eff+⊢ = {on}; eff−⊣ =
{on}; eff↔ = d(battery)/dt = -1

• call: dur=1; pre⊢={at city ∧ battery> 1}; eff+⊣={called};

There is also a process, which models the transfer of data
over the network at a fixed rate, if certain conditions are met:

• transfer: pre↔ = {on ∧ battery > 10 ∧ signal > 5};
eff↔ = d(data)/dt = 1

Finally, an event models a low-battery warning:

• warning: pre = {¬warned∧battery< 8}; eff = {warned}

4 PDDL+ versus PDDL 2.1

In this section we further explore the relationship between
PDDL+ processes and events and their PDDL 2.1 counter-
parts: durative-actions and (instantaneous) actions.
First, we observe that, at any time, each process pi (with

precondition Ci and effects eff↔pi) is either executing, or
not; i.e. either Ci or ¬Ci. We might therefore consider there
to be two durative-actions for pi, rather than one:

• run pi, with pre↔run pi=Ci, and eff↔run pi=eff↔pi;

• not-run pi, with pre↔not-run pi=¬C, and no effects;

• in both cases, the duration of the action is in [ǫ,∞].

If we could somehow then ensure that we only ever apply
run pi⊣ (the end of run pi) if we simultaneously apply not-
run pi⊢ – and vice-versa – then the behaviour of the process
has been simulated with actions. Whenever the truth value
of Ci changes (which may be many times) we simply switch
which one of these two actions is executing. Ensuring this
switch happens simultaneously is crucial: if time was al-
lowed to pass between e.g. not-run pi⊣ and run pi⊢ then
there would be a period during which Ci might be true, but
the effect of pi is not being captured by any executing action.
We also observe, that each event ej with precondition Cj

and effects eff ej , at any point it is either happening at that
time, instantaneously; or its conditions are false. Precisely:

• As events occur as soon as their preconditions are satis-
fied, there is a period prior to ej during which ¬Cj holds;

• When the event occurs, Cj is true – and, as noted earlier,
events must delete one of their own preconditions;

• Thus, begins again a period in which ¬Cj holds.

This could be captured with the use of synchronisation ac-
tions, similar to the mechanism postulated for processes. A
non-temporal action ej , with the preconditions and effects
of ej represents the event itself. Then, only one durative ac-
tion is needed – not-do ej , with pre↔not-do ej=¬Cj . This

2Persistence is guaranteed: no action or event deletes this fact.

36

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

├ ┤not-run-transfer

┤run-transfer

¬on ˅ signal ≤ 5
˅ battery ≤ 10

on ˄ signal > 5
˄ battery > 10

d(data)/dt = 1

├ ┤not-do-warning
warned ˅ battery > 8

w

├

¬warned ˄
battery ≤ 8

warned
├

not-do-warning
warned ˅ battery > 8

┤

Figure 1: Representing Processes (left) and Events (right). Dotted lines denote synchronised actions.

captures the Cj intervals, with not-do ej ending and imme-
diately re-starting at exactly the time ej occurs.
Returning to our running example, the left of Figure 1

shows how synchronised actions can represent the ‘transfer’
process transitioning from not-running to running. To be not
running, one of the terms in its precondition must be false;
to be running, they must all be true. Synchronisation (dotted
lines) then ensures this transition occurs at the right time.
The right of Figure 1 shows the ‘warning’ event, abbreviated
to ‘w’. (The fact ‘warned’ ensures the event only fires once.)
As can be seen, w is synchronised with the ‘not-do-warning’
durative-actions, again ensuring it occurs at the right time:
the first point at which its precondition was met, and no later.

4.1 Achieving Synchronisation in PDDL 2.1

If we wish to reason with processes and events using a
PDDL 2.1 planner we must use a compilation to enforce cor-
rect synchronisation. In fact, there are three requirements:

1. Synchronisation (as in Figure 1);

2. Ensuring that not-run pi (or run pi) and not-do ej are
started immediately, at the start of the plan;

3. Allowing processes/event actions to finish in goal states.

We can achieve synchronisation (1), through the use of
clip actions (Fox, Long, and Halsey 2004):

Action 4.1 — clip f
A (tight) clip for fact f , and auxiliary facts {fe0, . . . , fen},
is a durative action A, with duration 2ǫ, where:

• pre⊢A = ¬f , eff+⊢A = f ;

• pre⊣A = {fe0, . . . , fen}, eff
−
⊣A = ¬f, {¬fe0, . . . ,¬fen}.

f is thus only available, instantaneously, at time ǫ after
starting clip f ; before immediately being deleted. If two
snap-actions with a condition on f are placed inside the clip,
they must therefore be synchronised: there is only one point
during the clip at which their condition is met. The other as-
pect of a clip is its auxiliary facts, which must be true before
it ends. If there are n+1 snap-actions that must occur during
the clip, then each of these is given a distinct fe fact as an ef-
fect. Thus, not only must the snap-actions occur at the same
time; but also, no necessary snap-action can be omitted.
To synchronise the actions from Section 4 in PDDL2.1,

we use a clip for each process or event. For each process pi:

• Create clip fi, with auxiliary facts fie0, fie1;

• Add fi to pre⊢ and pre⊣ of run pi and not-run pi;

• Add fie0 to eff
+

⊣ of run pi and not-run pi.

• Add fie1 to eff
+

⊢ of run pi and not-run pi;

Similarly, for event ej :

• Create clip fj , with auxiliary facts fje0, fje1, fje2;

• Add fi to pre ej , and to pre⊢ and pre⊣ of not-do ej ;

• Add fje0 to eff
+

⊣ not-do ej ;

• Add fje1 to eff
+

⊢ not-do ej ;

• Add fie2 to eff
+ ej .

In both of these cases, the clip meets the objectives of Fig-
ure 1: by the use of 2 (resp. 3) auxiliary facts, the correct
actions must occur within the clip; and due to the tight avail-
ability of fi (fj), the actions must be synchronised. Note
that search using this compilation can be made slightly more
efficient through the use of two clip actions for each process:
one forcing a change from run-pi to not-run-pi and the other
vice-versa. (The clip, as presented here, permits clipping
run-pi to run-pi, and not-run-ej to itself, which is pointless.)
The issue with the compilation as it stands is that a clip

cannot end, unless an already-executing ‘run’, ‘not-run’ or
‘not-do’ action ends inside it: each of these adds the zero’th
auxiliary fact of the clip, which is an end-condition of its
execution. This is desirable in the general case, but in the
initial state no such actions are executing. This brings us
to the second of our requirements here, viz. starting the
actions immediately (2). For this, we use:

• A Timed Initial Literal (TIL) (Hoffmann and Edelkamp
2005) go, which is true initially and deleted at time ǫ, cre-
ating a small window at the start of the plan in which go is
available. (NB go is not added by any action/event/TIL.)

• A TIL exec, appearing at time ǫ, and added as an ‘at start’
condition of every non-clip action in the plan.

We create a single ‘go’ clip allowing all process/event
tracking actions to begin. We collate all the clip facts into
a set F . We define the set FE1 as the set of all ‘1’ auxiliary
facts (i.e. each fie1 or fje1). The go clip is defined thus:

Action 4.2 — go-clip
A ‘go’ clip for clip facts F , and 1-auxiliary fact set FE1, is
a durative action A, with duration 2ǫ where:

• pre⊢A = go ∧ ∀f ∈ F ¬f , eff+⊢A = F ;

• pre⊣A = FE 1, eff
−
⊣A = ∀f ∈ F ¬f .

The condition go ensures the go-clip can only occur at
time zero; and exec ensures it precedes all other actions.
The final piece of the puzzle is to allow the run/not-run/do

actions to terminate once the goals have been met (3) –

37

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

the semantics of PDDL 2.1 require there to be no executing
actions in goal states. For this, we use a final, modified clip
action – a ‘goal-clip’. FE 0 is analogous to FE 1 – but for ‘0’
facts – and FE>0 contains all auxiliary facts not in FE0.

Action 4.3 — goal-clip
A ‘goal’ clip for clip facts F , auxiliary fact sets FE 0 and
FE>0, in a problem with goalG, is a durative actionA, with
duration 2ǫ, where:

• pre⊢A = ∀f ∈ F ¬f , eff+⊢A = F , eff
−
⊢A = exec;

• pre⊣A = G ∧ FE 0 ∧ ∀fe ∈ FE>0 ¬fe ,
eff+⊣A = goal reached , eff−⊣A = ∀f ∈ F ¬f .

As a final note we observe that the negation of conjunctive
conditions on processes/events results in disjunctive invari-
ants on the not-run/not-do actions. In the absence of a plan-
ner supporting these, it is possible to create several not-run
actions, each with an invariant comprising a single condi-
tion from the disjunction. Clips can then be used to switch
between not-run actions to change which condition in the
disjunct is satisfied. This has implications when using the
efficient clip model (distinct clips for switching from run
to not-run, and vice versa) – we must also allow different
not-run actions to be clipped to each other. This does not,
however, negate the benefits of the efficient clip model.
While this compilation to PDDL 2.1 is possible, it is

clearly a very unnatural model, and still requires a highly ex-
pressive planner. Indeed several authors have argued that the
model adopted in PDDL+ is much more natural than the pre-
vious model (McDermott 2003a; Boddy 2003). Further, it is
likely to make search computationally inefficient: not only
is the planner forced to reason about the exogenous actions
within the environment as if they were real planning actions,
many extra ‘book-keeping’ actions are added to the domain.
If there are n processes andm events then 3n+ 2m+ 2 ac-
tions are added to the planning problem, of which (m + n)
are applicable in each state. This massively the branching
factor and the length of solution plans. Permutations of such
actions can also cause significant problems in temporal plan-
ning (Tierney et al. 2012). It therefore seems that the native
handling of processes and events is, in theory, far more effi-
cient – and this forms the focus of the rest of the paper. We
will, of course, return to this point in our evaluation.

5 Forward Chaining Partial-Order Planning

In this work, we build upon the planner POPF (Coles et al.
2010). POPF uses an adaptation of a forward-chaining plan-
ning approach where, rather than placing a total-order on
plan steps, the plan steps are partially ordered: ordering con-
straints are inserted on an as-needed basis. To support this
partial-ordering, additional information is stored in states,
associated with the facts and variable values. For facts p:

• F+(p) (F−(p)) records the index of the step that last
added (deleted) p;

• FP+(p), a set of pairs, each �i, d�, notes steps with a pre-
condition p: i is the plan step index, and d ∈ {0, ǫ}. If
d=0, p can be deleted at or after step i; if d=ǫ, p can be
deleted from ǫ after i.

• FP−(p), similarly, records negative preconditions on p.

For the vector of state variables v, the state records lower-
and upper-bound vectors, V min and V max . These reflect
the fact that in the presence of continuous numeric change,
a variable’s value depends on the time; and hence, having
applied some actions, a range of variable values are possible.
With each v ∈ v the state also notes:

• V eff (v), the index of the most recent step to affect v;

• VP(v), a set of plan step indices, of steps that have re-
ferred to v since the last effect on v. A step depends on
v if either: it has a precondition on v; an effect whose
outcome depends on v; or is the start of an action with a
duration depending on v.

• VI (v), a set of plan step indices, of the start of actions
that are currently executing but have not yet finished; and
have an over all condition on v.

The actions applied during search are snap-actions, cor-
responding to either instantaneous actions; the start of a du-
rative action; or ending a (currently executing) durative ac-
tion. When a snap-action is applied, the temporal constraints
recorded are derived from the annotations: the new plan step
is ordered after each fact or variable the action refers in its
conditions, effects, and duration. Similarly, to avoid interfer-
ence with existing plan steps, if the action deletes (adds) p it
is ordered after each FP+(p) (resp. FP−(p)); or if it affects
v (either instantaneously, or by starting/ending a continuous
numeric effect on v) it is ordered after each VP(v), and af-
ter each VI (v). Finally, in addition to these, constraints are
added to respect the duration constraints on actions.
In the absence of continuous (or duration-dependent) nu-

meric effects, the temporal-constraint consistency in POPF
can be checked with a simple temporal network. However,
with linear continuous numeric effects, a MIP solver is re-
quired for the resulting temporal–numeric constraints.
For each step i, t(i) records its time-stamp, and the tem-

poral constraints are encoded directly over these variables.
Additionally, for each i, the variables vi ∈ Vi record the val-
ues of each of v prior to i for variables referred to in the pre-
conditions/effects/duration constraints of step i). Likewise,
v′i ∈ V ′

i record the variable values immediately following
i. The numeric preconditions and effects of actions are then
added as constraints on these:

• preconditions at i form constraints over Vi;

• the invariants of i form constraints over V ′
i if i is a start

snap-action; or over Vi if it is an end snap-action.

• instantaneous numeric effects form constraints relating Vi

to V ′
i ; for instance, v

′
i = vi+xi records that at step i, v is

increased by the value of variable x.

In addition to the constraints for i itself, if i has an ef-
fect on v, it will be ordered after each VI (v): the steps that
have invariants on v. These invariants need to be enforced
at step i: although they do not belong to i itself, they be-
long to currently executing actions, and we need to ensure
i does not adversely interfere with these. Thus, vi and v

′
i

are constrained to obey these invariants. This may necessi-
tate the addition of extra ordering constraints, if an invariant
to be enforced refers to a variable not otherwise relevant to
the action. Hereon, if we state that an invariant must be en-
forced at step i, we mean that vi and v

′
i must be constrained

38

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

step variables constraint

t0 ≥ 0
turn on⊢ battery0 = 30

battery′
0

= battery0 ∧ > 0

t1 ≥ 0
travel⊢ signal1 = 0

signal′
1

= signal1

t2 = t0 + 15
travel⊣ signal2 = signal′

1
+ 0.5 ∗ (t2 − t1)

signal′
2

= signal2

batterynow = battery′
0
− 1 ∗ (tbattery−now − t0)

now tbattery−now > t0
signalnow = signal′

2

tsignal−now > t2

Table 1: Example POPF MIP

to obey the invariant, and any extra ordering constraints must
be added. For conjunctive invariants this neatly exploits the
monotonicity of the continuous numeric change supported:
for some interval in which the invariant on v must hold, it
suffices to check the condition at the start and end of con-
secutive intervals, bounded by either the action to which the
invariant belongs, or between successive effects on v. If, for
example, v ≥ 5 at the start and end of an interval, then under
monotonic change it must have been true throughout.
To capture the interaction between time and variable val-

ues, the final consideration is the continuous numeric change
that occurs over time. During MIP construction, at each
point referring to v, the sum of the gradient effects δv act-
ing on a variable v are noted. As the continuous numeric
change is linear, and any changes to δv are totally ordered,
at each point this is a constant value, known at the time the
MIP is built. With δv′i denoting the gradient active after step
i (assuming i refers to v), the value of v at a future step j is:

vj = v′i + δv′i(t(j)− t(i)) (1)
To illustrate the MIP built we return to our running exam-

ple; since POPF does not handle processes/events we remove
transfer and warning to demonstrate POPF’s MIP. Table 1
shows the MIP that would be built in the state following the
addition of travel⊢, turn on⊢ and travel⊣ to the plan. Notice
that each step only has MIP variables representing variables
in its conditions/effects, or if an invariant is enforced; and
it is only ordered w.r.t. other steps that affect or condition
on the same variables/propositions. Because this ordering is
guaranteed it is possible to compute δ′vi at each ti that has
an effect on v, by working through the plan. In this example,
δsignal ′0=0.5, δbattery

′
1=-1 and δsignal

′
2=0.

The now steps are additionally added to the MIP, to allow
the computation of the upper and lower bounds on state vari-
ables: for each numeric problem variable we ask the MIP
solver to maximise and then to minimise its corresponding
MIP variable and use these as the bounds (for brevity, we
omit these from future MIPs in the paper). A solution to
the MIP represents a valid setting of the timestamps of plan
actions t0...tn that respects all of the temporal and numeric
constraints. If no such solution exists the plan to reach that
state cannot be scheduled and the state can be pruned.

6 Search with Processes and Events
In Section 4 we detailed how synchronised actions can in
principle be used for processes and events; and then in Sec-

b s

s+w >12

w

v
b >8

b < 10

s < 5

Figure 2: Condition–Variable Dependency Graph

tion 4.1 detailed how this forms the basis of a compilation to
PDDL 2.1 The drawback of this compilation is the search-
space blow-up it entails. In this section we present an al-
ternative approach: modifying a forward-chaining planning
approach, to eliminate many of the artificial planning deci-
sions entailed by the compilation.

6.1 Managing Invariants of Processes/Events

The run, not-run and not-do actions introduced by processes
and events are, for many purposes, normal durative actions,
with invariants – the only difference is the necessary syn-
chronisation constraints. Thus, first, we need to consider
how to decide when such invariants need to be enforced dur-
ing planning. The basic approach in POPF was described in
Section 5 – we build on this here.

The subset of invariants chosen by POPF to be enforced at
a given step is sound if all invariants are conjuncts of single-
variable constraints, e.g. (battery > 10) ∧ (signal > 5). In
other words, there is a direct relationship between the vari-
ables an action affects, and the constraints that need to be
enforced. However, there are two cases where POPF, as it
stands, cannot handle numeric invariants. These limitations
only arise if variables referred to in the invariant have been
subject to continuous numeric change, but in the context of
processes, this is almost a certainty. POPF cannot handle:

• Invariants that are multi-variate e.g. signal + wifi > 12;

• Disjunctive invariants e.g. (signal ≤ 5)∨(battery ≤ 10).

The latter of these is particularly problematic with pro-
cesses and events: even if a process/event has a condition
that is a conjunct of terms, taking the negation of this, to
mark the intervals during which the process/event is not oc-
curring, leads to a disjunction (c.f. De Morgan’s laws).

To handle such invariants, we require a more general so-
lution to numeric invariants in POPF. Fundamental to our ap-
proach is a condition–variable dependency graph, built from
the invariants of the currently executing actions. An exam-
ple of such a graph is shown in Figure 2 – this is based on our
running example, with an additional action whose invariant
is signal +wifi > 12, the variable names are abbreviated to
b,s, and w. The vertices are:

• One variable vertex for each numeric variable in the prob-
lem (in our example, b, s, w);

• n+1 constraint vertices for each invariantC = (c0∧. . .∧
cn), one for each term ci ∈ C;

• One constraint vertex for each invariant C = (c0 ∨ . . . ∨
cn), containing the entire constraint C.

An edge is added between a constraint vertex and a vari-
able vertex if the constraint refers to that variable. With this
graph, we then have a straightforward way of ascertaining
the indirect relationships between variables, that arise due to

39

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

disjunctive and multi-variate invariants. Simply: if a snap-
action has an effect on a variable v, then any condition (in-
variant) that can be reached in the graph from v needs to be
enforced at the point when the snap-action is applied.

We return to our running example to illustrate why this
mechanism is necessary. Suppose we are in a state where
the currently executing actions are turn on, travel, not-
run transfer and not-do warning. The condition–variable
dependency graph comprises the dark (black) portion on the
left of Figure 2. As turn on and travel both have contin-
uous numeric effects, the values of battery and signal are
not fixed – they depend on the timestamps given to the ac-
tions in the plan, their ranges, as evaluated by the MIP, are
battery ∈ [0, 30] and signal ∈ [0, 7.5]. Suppose the action
travel⊣ is then to be applied – which refers to the variable
signal in its effects. With the prior mechanism of POPF:

• the condition that would be enforced is (battery ≤ 10) ∨
(signal ≤ 5) – as it refers to signal (we omit ‘. . .∨¬on’
from this discussion since on is known to be true);

• as the constraint is disjunctive, it could be satisfied by as-
suming for instance, battery=5: a value that lies within
its range in the current state.

However, from the graph we see that if restrictions are
made on the value of b, this may impact other conditions; in
fact, assuming b=5 is incompatible with the invariant b ≥ 8.
This would, however, be captured by the new mechanism:
upon referring to s , all reachable conditions are enforced,
including those on b, due to the disjunctive constraint.
As an illustration of why the new mechanism is needed

for multi-variate conditions too: we have the additional in-
variant shown on the right of Figure 2. Suppose an action is
being applied that assigns w=5. This necessitates enforcing
the invariant s+w > 12. With the prior mechanism of POPF,
we could assume s > 7.1, which is within its range in the
current state. But, from the graph we can see that constraints
on s also need to be enforced. Notably, s ≤ 5 can no longer
be true if s > 7.1; and hence b ≤ 10 has to be true; which,
in turn, may impact whether b ≥ 8 can be true (indeed had
the condition on warning been, for example, b ≥ 12 search
would need to backtrack at this point). Thus, even though
the action only affected w, the multi-variate and disjunctive
invariants lead to indirect relationships with s and b, too.

6.2 Ordering Implications

A side effect of enforcing extra invariants is the addition of
extra ordering constraints when adding actions to the plan.
In our running example, when the action turn on⊢ has been
applied, and we consider applying travel⊢, the disjunctive
invariant condition ¬on ∨ battery ≤ 10 ∨ signal ≤ 5 must
be enforced. This leads to additional ordering constraints:
using the POPF state-update rules, to establish the value of
battery for the purposes of enforcing this invariant, travel⊢
will be ordered after turn on⊢. This would not have been
the case had the disjunctive invariant not been enforced, as
travel⊢ does not otherwise refer to battery . Note that com-
pleteness is not compromised as the state arising from ap-
plying these actions in the opposite order still appears as a
distinct state in the search space. The practical effect of the

ordering constraints is to impose a total order on actions af-
fecting any variable in a set of connected variables in the
condition-variable dependency graph. In the running exam-
ple that means any action affecting b, s or w will be ordered
with respect to any other action affecting b, s or w.
This has useful implications on our obligations to en-

force disjunctive invariants. As a result of these orderings,
we guarantee that we only need to maintain an invariant
C=(c0∨ ...∨ cn) between plan steps at which C is enforced,
and between which no step exists that could affect of the set
of variables VC (those referred to by any cf ∈ C).
To understand this, suppose this invariant C became ac-

tive at step i. Any action ak with an effect on any v ∈
VC is totally ordered after the previous such action (c.f
constraints introduced from condition-variable dependency
graph). Let us name this totally ordered collection of ac-
tions AC=[a0, . . . , am], where t(ak) < t(ak+1), and t(i) <
t(a0). At each ak, C is enforced (when ak is added to the
plan). Therefore, when adding a new action a to the plan,
we need only record the obligation to enforce the invariant
at t(am) (if AC is not empty), and at t(a): where t(am) and
t(a) are adjacently ordered steps. Further, we know that no
other action affecting any v ∈ VC occurs between t(am)
and t(a): if such an action was added to the plan before am
it would be ordered inAC before am; and if it is later added,
after a, it will be ordered in AC after a.

6.3 Maintaining Disjunctive Invariants

In Section 5 we observed that in order to enforce a conjunc-
tive invariant it is sufficient to enforce the invariant at the
start and end of the interval over which it is required. This
is not, however, sufficient for disjunctive invariants.

Consider, for example, meeting the invariant (battery ≤
10)∨(signal ≤ 5) (the condition of not-run transfer) during
the interval between the actions travel⊢ and travel⊣, hereon
step i and step j. This scenario is shown in Table 2. At
this point in the plan, battery is decreasing and signal is
increasing. If we simply insist that the disjunction is true
at each end, we can rely on (signal ≤ 5) at the start and
(battery ≤ 10) at the end but in fact both constraints could
be false at some time during the interval: signal could be-
come too large before battery becomes sufficiently small.
Conversely, if we were to insist that either one of the con-
ditions hold at both i and at j, we would preclude the pos-
sibility that for the first part of the interval we can rely on
(signal ≤ 5); and then later, but before step j, rely on
(battery ≤ 10). That is, we must allow changing of which
condition we rely on part way through the interval.

Allowing for a potentially infinite number of such changes
would be infeasible. Fortunately, in the general case for a
disjunction C of |C| numeric terms c1...c|C| we need only

include |C|-1 possible changing points. This result arises
from the monotonicity of continuous numeric change: if we
rely on a condition ci until it becomes false, we will never
be able to later rely on ci as it cannot become true again. In
our example, when (signal ≤ 5) becomes false, it cannot
become true again until some later action affects signal or
the gradient on signal . As we saw in the previous section,
there is a guarantee that between two adjacently ordered plan

40

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

step variable constraints

t0 ≥ 0
turn on⊢ battery0 = 30

battery′
0

= battery0 ∧ ≥ 8

t1 > t0
signal1 = 0

travel⊢ signal′
1

= signal1
battery1 = battery′

0
− 1 ∗ (t1 − t0)∧ ≥ 8

battery′
1

= battery1∧ ≥ 8
battery1 ≤ 10 ∨ signal1 ≤ 5
battery′

1
≤ 10 ∨ signal′

1
≤ 5

t2 = t1 + 15
signal2 = signal′

1
+ 0.5*(t2-t1)

travel⊣ signal′
2

= signal2
battery2 = battery′

0
− 1 ∗ (t2 − t0)∧ ≥ 8

battery′
2

= battery2 ∧ ≥ 8
battery2 ≤ 10 ∨ signal2 ≤ 5
battery′

2
≤ 10 ∨ signal′

2
≤ 5

tψ0 ≥ t1∧ ≤ t2
batteryψ0 = battery′

0
- 1*(tψ0 − t0) ∧ ≥ 8

signalψ0 = signal′
1
+ 0.5*(tψ0-t1)

ψ0−transfer (battery′
1
≤ 10 ∧ batteryψ0 ≤ 10 ∨

signal′
1
≤ 5 ∧ signalψ0 ≤ 5)

∧ (batteryψ0 ≤ 10 ∧ battery2 ≤ 10 ∨
signalψ0 ≤ 5 ∧ signal2 ≤ 5)

Table 2: Example MIP featuring a Disjunctive Invariant

steps at which a disjunctive invariant is enforced, no actions
affecting the variables referred to in that invariant are ap-
plied. Therefore, if we select a true condition to rely on,
and maintain that for as long as possible before switching to
another condition, we need only |C|-1 changing points for
each adjacently ordered pair of plan steps.
To maintain a disjunctive invariant in the interval between

two adjacently ordered plan steps i,j at which it was en-
forced, we add changing points, each ψm, as totally ordered
time-points in the MIP such that:

ti ≤ t(ψ0) . . . ≤ t(ψ|C|-1) ≤ t(j)

Between each adjacent pair of steps [y, z] in this total order,
we insist that there is a condition ci ∈ C which is true at
y and true at z. In doing so, at least one c ∈ C is true at
all points over the interval [t(i), t(j))]. Table 2 shows the
changing point ψ0−transfer and its associated constraints
that enforce the satisfaction of the disjunction (battery ≤
10) ∨ (signal ≤ 5) between travel⊢ and travel⊣. Notice
it is possible to either rely on one condition for the whole
interval if desired; or to switch conditions at ψ0−transfer.

6.4 Synchronising Process/Event Actions

As discussed in Section 4, the action analogues used for
processes and events must be synchronised. By modify-
ing the planner, we can achieve this quite readily. Suppose
not-run pi is executing, and the decision is made to apply
run pi⊢, as step k of a plan. We can treat this as a special
case, insisting that, at step k, we simultaneously apply not-
run pi⊣. The constraints on the resulting plan step are:

• Due to not-run pi⊣, Vk (the values of the variables imme-
diately at step k) must satisfy the invariants of not-run pi;

• Due to run pi⊢, V
′
k (the values of the variables immedi-

ately after step k) must satisfy the invariants of run pi.

This slightly abuses the PDDL 2.1 semantics: strictly, the
invariants of not-run pi only need to hold to the end of the

half-closed interval ending at step k, i.e. up to, but exclud-
ing, the values of the variables at Vk. This is not an issue per
se when dealing with processes, but is an issue with events.
Suppose not-do ej is executing, with invariants ¬Cj – the
negation of the condition Cj on event ej . Then, suppose ej⊣
is applied as step k – we would want to synchronise this with
ending and restarting not-do, as shown in Figure 1. But:

1. Due to not-do ej⊣, we would say that Vk must satisfy ¬C:
the invariants of not-do ej ;

2. Due to ej itself, Vk must also satisfy C, i.e. pre ej ;

3. Due to not-do ej⊢, V
′
k must then satisfy ¬C.

The first two of these are mutually exclusive: they require
Vk to satisfy C ∧¬C. Thus, we tweak the constraints, creat-
ing variables ǫ prior to step k – denoted V -ǫk – and apply the
constraints of not-do ej⊣ to V

-ǫ
k rather than Vk.

The constraints to give the values of V -ǫk can be calculated
almost in the same way as those for Vk, with a slight modifi-
cation to calculate the values of variables ǫ in the past rather
than now. With a small substitution into Equation 1 we get:

v-ǫk = v′i + δv′i((t(k)− ǫ)− t(i)) (2)

...where step i was the last step to have an effect on v. This
is correct unless t(k)=t(i)+ǫ, in which case:

v-ǫk = vi (3)

Or, in other words, v-ǫk takes the value of v immediately
before the last effect on v (i.e. step i). To capture this choice
over v-ǫk , each invariant of not-do ej⊣ referring to v is re-
placed with a disjunction of two conditions:

• The invariant with v-ǫk from Equation 2 ∧ t(k) > t(i)+ǫ;

• The invariant with v-ǫk from Equation 3 ∧ t(k)=t(i)+ǫ;

Invariants referring to n variables are replaced with a disjoint
of 2n options: one for each combination of choosing some
v-ǫk , and enforcing the appropriate temporal side-constraint.
So far, the focus has been on the general case: choosing

to apply an event or to switch the running state of a pro-
cess. In some cases such choices are inevitable, and for ef-
ficiency, we can exploit this. For instance, suppose run pi is
executing, and has an invariant battery ≥ 8, and an action
assigns battery=0 – that invariant is immediately broken. In
this case, we need not branch over what to apply next in
the state reached: the only sensible thing to do is to force
the (synchronised) application of run pi⊣ and not-run pi⊢,
to change the process from running to not-running, or vice
versa as appropriate. Similarly, if the invariant was attached
to not-do ej , and is now broken, we can force the application
of not-do ei⊣, ej , not-do ej⊢. This eliminates the increase
in branching factor due to process/event steps in such cases.
As a final note, we need to consider what happens at the

start and end of the plan. In the compilation (Section 4.1),
this was achieved with clips. Here, it is far easier:

• In the initial state I , for each pi, if its condition Ci is
satisfied, apply run pi⊢; otherwise, apply not-run pi⊢. In
both cases, fix the time of this step to zero.

• In the initial state I , for each ej , its condition Cj is false
(c.f. PDDL semantics). Thus, apply not-do ej⊢, at t=0.

• A state satisfies goals G, if an action with precondition G
could be applied, and if there are no currently executing
actions other than run, not-run or do actions.

41

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

Domain Ver 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#S/#G 1/3 1/5 2/5 2/8 3/8 3/7 4/9 4/11 4/12 4/13 4/14 4/15 4/16 4/17 5/3 5/6 5/9 6/4 7/4 8/4
Satellite P/E 0.30 1.42 1.39 2.89 8.54 3.40 247.58 62.85 34.91 34.66 37.00 41.82 42.89 74.83 36.71 471.23 42.93 25.64 27.27 364.96
Satellite comp - 9.33 - - - - - - - - - - - - - - - - - -

Transformer P/E 0.01 0.02 0.29 0.30 1.19 0.29 4.67 0.27 13.27 1.5 43.30 5.91 598.96 17.91 - 61.68 - 395.59 - 1465.89
Transformer comp -

LSFRP P/E 0.03 0.04 2.33 5.32 5.58 2.88 5.58 5.58 5.25 5.74 5.52 x x x x x x x x x
LSFRP comp 0.29 0.34 - - - - - - - - - x x x x x x x x x

Table 3: Results of running the planner on PDDL+ Domains. P/E denotes ‘Processes and Events’. comp denotes ‘Compiled’.
‘-’ indicates that the problem was unsolved, ‘x’ marks problems that do not exist.

Note that the initial state checks do not require recourse
to the MIP, as variables (and hence the truth values of condi-
tions) hold definite values, namely those of the initial state:
there is initially no active continuous numeric change.

7 Evaluation

In this section we empirically demonstrate the performance
of our implemented planner on PDDL+ domains. In do-
mains without processes and events our planner will perform
exactly as the planner POPF, runner up in the IPC2011 tem-
poral track. Thus, we refer the reader to the published re-
sults for that planner (Coles et al. 2010) and the results of
IPC2011 (Jimenez and Linares-Lopez 2011) for details of
its performance on these domains, and comparisons to other
existing planners. Unfortunately we are unable to compare
the performance of our planner on PDDL+ domains with
that of any other existing planner as TM-LPSAT, the only
other fully-automated PDDL planner to support these fea-
tures, is not available in a runnable form. As a guide to
the reader, however, the limited published results for TM-
LPSAT on available benchmarks (Shin 2004) report that the
best configuration solves IPC2000 Driverlog Numeric Prob-
lems 2,3 and 4 in 149.82, 29.28 and 139.97 seconds respec-
tively; whereas our planner solves these instances in 0.16,
0.01 and 0.05 seconds (albeit on slightly different hardware).

As a baseline for comparison we therefore use POPF, rea-
soning with the ‘efficient’ version of the clip compilation de-
scribed in Section 4.1. POPF (and its siblings) are the only
currently available systems for solving such problems, even
when compiled. As there are no available standard PDDL+
problem sets we have created three domains and problem
sets of our own based on those in the existing literature. Ta-
ble 3 shows the time taken to solve these problems with pro-
cesses and events (P/E) and using the compilation (comp).

The first of these is the cooled satellite domain described
in (Coles et al. 2012). Originally based on the IPC2000
satellite domain, the cooled version allows active cooling
of imaging sensors to be used to reduce the exposure time
needed; at the expense of increased power demands. In our
version of this domain, sunrise/sunset are processes, with
preconditions on the time elapsed thus far, and that increase
and decrease the (solar) power available to satellites. The
results for this domain show that the compilation scales very
poorly, indeed the planner using this solves only 1 problem.
The #S/#G row shows the number of satellites and goals in
each of the problem files: the P/E configuration scales well
and to much larger problems than the compilation.

Our second domain is the transformer domain described
in (Bell et al. 2009). This domain lends itself naturally to

processes and events: the voltage on the circuit changes
throughout the day due to customer demand. Our encoding
uses processes based on the current time to update the volt-
age linearly over each half-hour period, using a piecewise-
linear demand curve: an improvement on the original dis-
crete model. The goal in this problem is to keep the voltage
within a specified range, until a specified time, by switch-
ing transformers and capacitors in response to demand. We
model the voltage going out of range using an event (one
for each of bound) with the precondition voltage > max
(or < min), that deletes a fact required by the goal. From
the table we see that the compilation leads to poor perfor-
mance – no problems are solved – whilst the P/E configu-
ration performs well. For guidance, within the problem set,
even-numbered problems model winter demand, whilst odd
problems model summer demand. Also, problem n+2 has
one additional half-hour period of demand change compared
to problem n. Performance on the winter configuration does
not scale quite as far as summer, as more control actions are
needed in winter to keep the voltage in range.
Finally, we consider the LSFRP domain (Tierney et al.

2012), based on the movement of ocean liners from one
shipping service to another, around the world. The key as-
pect of this domain with respect to processes is the ‘hotel-
cost’ of a vessel, paid from when it leaves one service until it
reaches another. There may be several actions between these
two points and the ship might have to wait to join its desti-
nation service at an appropriate point in the timetable. Fur-
ther, if ‘sail-on-service’ actions are used, available on certain
routes at certain times, hotel cost is not payable for the du-
ration of these actions. The most natural model of this cost
is as a process, which starts when the ship leaves its initial
service; and stops when it either joins its destination service,
or while sailing-on-service. Whilst the compilation success-
fully solves the 2 smallest problems in this domain it quickly
becomes unable to scale. The P/E configuration solves all
11 problems in the suite – a set of real-world-sized prob-
lems developed working with industry – in under 6 seconds,
although it is not attempting to optimise quality.
In conclusion, we have shown that direct handling of pro-

cesses and events can lead to a significant advantage in terms
of scalability in solving problems in which exogenous hap-
penings are involved. Since the compilation solved so few
problems it is difficult to make conclusions about solution
quality, but on the 3 problems that were mutually solved, 2
had identical quality solutions, and in the other, the P/E con-
figuration found the better solution. In future work we intend
to consider optimising the quality of plans in the presence of
processes and events and to extend our reasoning to consider
a wider class of continuous functions.

42

ICAPS 2013: Proceedings of the 1st Workshop on Planning in Continuous Domains

References

Bell, K. R. W.; Coles, A. J.; Coles, A. I.; Fox, M.; and Long,
D. 2009. The role of AI planning as a decision support
tool in power substation management. AI Communications
22(1):37–57.

Boddy, M. S. 2003. Imperfect match: PDDL 2.1 and real ap-
plications. Journal of Artificial Intelligence Research 20:61–
124.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS).

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research 44:1–96.

Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.

Fox, M., and Long, D. 2006. Modelling mixed discrete
continuous domains for planning. Journal of Artificial Intel-
ligence Research 27:235–297.

Fox, M.; Long, D.; and Halsey, K. 2004. An Investigation
into the Expressive Power of PDDL2.1. In Proceedings of
the European Conference of Artificial Intelligence (ECAI).

Hoffmann, J., and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research 24:519–579.

Jimenez, S., and Linares-Lopez, C. 2011. IPC-
2011 results. http://www.plg.inf.uc3m.es/

ipc2011-deterministic/Results.

Li, H., and Williams, B. 2011. Hybrid planning with tem-
porally extended goals for sustainable ocean observing. In
Proceedings of AAAI.

McDermott, D. 2003a. PDDL2.1-The Art of the Possible?
Commentary on Fox and Long. Journal of Artificial Intelli-
gence Research 20:61–124.

McDermott, D. 2003b. Reasoning about Autonomous Pro-
cesses in an Estimated Regression Planner. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS).

Penberthy, S., and Weld, D. 1994. Temporal Planning with
Continuous Change. In Proceedings of AAAI.

Penna, G. D.; Intrigila, B.; Magazzeni, D.; and Merco-
rio, F. 2009. UPMurphi: a tool for universal planning on
PDDL+ problems. In Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).

Shin, J., and Davis, E. 2005. Processes and Continu-
ous Change in a SAT-based Planner. Artificial Intelligence
166:194–253.

Shin, J. 2004. TM-LPSAT: Encoding Temporal Metric Plan-
ning in Continuous Time. Ph.D. Dissertation, NewYork Uni-
versity.

Tierney, K.; Coles, A. J.; Coles, A. I.; Kroer, C.; Britt, A.;
and Jensen., R. M. 2012. Automated planning for liner

shipping fleet repositioning. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling (ICAPS).

43

