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Robot to clean surfaces

m Moving lentils to a container
m Fast execution

m Planning
m Minimize cleaning actions
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Plan examples
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Robot to clean surfaces
m Fast execution
® Minimize cleaning actions
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Robot to clean surfaces
m Fast execution
® Minimize cleaning actions
m Adapts to changes
m Cloth grasping
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Plan examples

Grasp 1
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Grasp 1
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Plan examples

Grasp 2
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Plan examples

Grasp 2
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Objectives

m Minimize execution time

m Robot actions are expensive
m Planning best sequences of actions

m Rules to define actions
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Objectives

m Minimize execution time

m Robot actions are expensive
m Planning best sequences of actions

m Rules to define actions
m Adapting to changes

m Adapting rules to grasps
m Learning
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Problem
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Arm manipulator: WAM

_[ \ ‘| Institut de inlk:‘l:’t‘:csz‘ o} CcsicC @




Arm manipulator: WAM

Surface to clean

-
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Arm manipulator: WAM
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Surface to clean
P
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Arm manipulator: WAM

Surface to clean
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Observations — state

=
m Rules — actions
m Planning
[

Learning
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Observations
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Observations

Surface segmentation
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Surface segmentation
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Observations

Surface segmentation Extract information about dirty
areas

m Position

m Size
m Shape
m Scattered
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Cleaning actions

m Straight move

m Fast move
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Cleaning actions Grouping actions

m Straight move m Group scattered lentils

m Fast move
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Cleaning actions Grouping actions

m Straight move m Group scattered lentils
e

m Fast move

m Join 2 or 3 groups
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Planning

Probabilistic planner
m Actions are stochastic

m All outcomes are important
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Planning

Probabilistic planner
m Actions are stochastic

m All outcomes are important

Example cleaning action

m Outcome 1: clean a group of lentils
m Outcome 2: clean a part of the group
m Outcome 3: scatters the group
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Segmented surface’ Belief state 3D perceptionand jplans’

External camera

Cleaning lentils
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Changing conditions

m Problem
m Cloth grasps change rules
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Changing conditions

m Problem
m Cloth grasps change rules
m Solution

m Learn rules for new grasps
m Good performance
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Learning
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Learning requirements

m Robot actions are slow
m Learn with few actions
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Learning requirements

m Robot actions are slow
m Learn with few actions

m Observability
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Learning requirements

m Robot actions are slow
m Learn with few actions
m Observability
Partial observability requires more experience
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Learning requirements

m Robot actions are slow
m Learn with few actions
m Observability

Partial observability requires more experience
Accurate observations

m Problem with occlusions
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Learning requirements

m Robot actions are slow
m Learn with few actions
m Observability
Partial " . .

Accurate observations
m Problem with occlusions
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Learning

Learning requirements Different approaches

m Learning a model m Model-based RL
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Learning

Learning requirements

m Learning a model
m State has many objects
m Symbolic domain
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m Model-based RL

m Object-oriented RL
m Diuk et al, ICML 08
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Learning

Learning requirements
m Learning a model
m State has many objects
m Symbolic domain
m Robot actions are stochastic
m Action uncertainty
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Different approaches
m Model-based RL
m Object-oriented RL
m Diuk et al, ICML 08
m RL in Relational world
m Lang et al, JMLR 13
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Rule learning in robotics

m Exploration-explotation
m Initial steps are exploration
m Random behaviour
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Rule learning in robotics

m Exploration-explotation
m Initial steps are exploration
m Random behaviour
m Once some experience is obtained
m Good results

_[ 1§ e todtca ] “CSsIC @




Rule learning in robotics

m Exploration-explotation
m Initial steps are exploration
m Random behaviour
m Once some experience is obtained
m Good results
m Problem in robotics
m Actions are expensive
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Rule learning in robotics

m Exploration-explotation
m Initial steps are exploration
m Random behaviour
m Once some experience is obtained
m Good results
m Problem in robotics

m Actions are expensive
m Poor performance during exploration
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Rule learning in robotics

m Exploration-explotation
m Initial steps are exploration
m Random behaviour
m Once some experience is obtained
m Good results
m Problem in robotics

m Actions are expensive
m Poor performance during exploration
m Guidance during initial steps
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Initial learning

m Improving initial learning steps

m We know some information about
the model

m [nitial rules
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Initial rule example:

Action: Fast clean

Preconditions:
dirt(X)
Outcomes :
1.0 -dirt(X)
0.0 Nothing
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Initial learning

m Improving initial learning steps

m We know some information about
the model

m Initial rules
m Start with optimistic initial rules
m Get initial experiences
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Initial rule example:

Action: Fast clean

Preconditions:
dirt(X)
Outcomes :
1.0 -dirt(X)
0.0 Nothing
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Initial learning

. . Initial rule example:
m Improving initial learning steps

m We know some information about Action: Fast clean
h del Preconditions:
the mode dirt(x)
m [nitial rules Outcomes :
. e 1.0 -dirt(X)
m Start with optimistic initial rules 0.0 Nothing

m Get initial experiences

m Fast heuristic to refine the rules
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Initial learning

Initial rule example:

m Improving initial learning steps
m We know some information about Action: Fast clean
h del Preconditions:
the mode dirt(x)
Initial rul Outcomes :
" |t-|a Ue? o 1.0 -dirt(x)
m Start with optimistic initial rules 0.0 Nothing
m Get initial experiences
m Fast heuristic to refine the rules
m Until enough experience is obtained
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Initial rules refinement

m Requirements

m Few experiences available
m Rule refinement after every execution
m Fast
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Initial rules refinement

m Requirements

m Few experiences available
m Rule refinement after every execution
m Fast

Decreasing-m-estimate

m Learning heuristic to update probabilities

m Based on m-estimate

m Very fast
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m-estimate

p_ Pt mfo (1)

ptn+m

m Parameters:
® m - Learning parameter
P - Probability
Py - Probability
p - Positive examples
n - Negative examples
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m-estimate

p+ mPy

m Parameters:

m m - Learning parameter
m P - Probability

m Py - Probability

m p - Positive examples

m n - Negative examples

m Initial probability has much influence
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Decreasing m-estimate

p+(m/Vp+n)Po

()

T ptnt(m/\Jptn)

m m decreases as experience is obtained
m Parameters:
m m - Learning parameter
P - Probability
Py - Probability
p - Positive examples
n - Negative examples
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Pre-trained initial rules

m Only grasps changes

m Pre-trained initial rules
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Pre-trained initial rules

m Only grasps changes
m Pre-trained initial rules
m Using

m Optimistic initial rules
m Good cloth grasp
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Pre-trained initial rules

Only grasps changes
Pre-trained initial rules

Using
m Optimistic initial rules
m Good cloth grasp
Obtain new rule set
m Already learned some dynamics of the system
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Learning overhead

Occlusion

m Learning requires
m Accurate perception
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Learning overhead

Occlusion Moved arm

m Learning requires

m Accurate perception
m No occlussions
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Learning overhead

Occlusion Moved arm

m Learning requires
m Accurate perception
m No occlussions
m Overhead
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Learning overhead

Occlusion Moved arm

m Learning requires

m Accurate perception
m No occlussions
m Overhead

m Stop learning

m Enough samples are
obtained
m Hoeffding bound
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Experiments
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Pre-trained rules
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Rule adaptation

J

Refining rules with grasp 1 Refining rules with grasp 2
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Performance tests

Actions executed and learned Execution time
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Performance tests (decreasing m-estimate)

Comparing m-estimate vs decreasing m-estimate
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Conclusions
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m Improved performance for robotic applications
m Stochastic actions
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m Improved performance for robotic applications
m Stochastic actions

m Online learning

m Improving initial learning steps with simple rules
m Fast heuristic to refine them

B Decreasing m-estimate
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m Improved performance for robotic applications
m Stochastic actions

m Online learning

m Improving initial learning steps with simple rules
m Fast heuristic to refine them

B Decreasing m-estimate

m Robotic surface cleaning
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m Have a prelearned set of grasps
m Find a similar grasp
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m Have a prelearned set of grasps
m Find a similar grasp

m Better integration with other learning methods
m Incrementally update preconditions and outcomes
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m Have a prelearned set of grasps
m Find a similar grasp

m Better integration with other learning methods
m Incrementally update preconditions and outcomes

m Partial observability
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Questions?
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