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Overview
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Rules → actions
Planning
Learning



Observations

Kinect image

Surface segmentation

Dirt segmentation

Extract information about dirty
areas

Position
Size
Shape
Scattered



Observations

Kinect image

Surface segmentation

Dirt segmentation

Extract information about dirty
areas

Position
Size
Shape
Scattered



Observations

Kinect image

Surface segmentation

Dirt segmentation

Extract information about dirty
areas

Position
Size
Shape
Scattered



Observations

Kinect image

Surface segmentation

Dirt segmentation

Extract information about dirty
areas

Position
Size
Shape
Scattered



Actions

Cleaning actions

Straight move
Fast move

Grouping actions

Group scattered lentils

Join 2 or 3 groups



Actions

Cleaning actions

Straight move
Fast move

Grouping actions

Group scattered lentils

Join 2 or 3 groups



Actions

Cleaning actions

Straight move
Fast move

Grouping actions

Group scattered lentils

Join 2 or 3 groups



Planning

Probabilistic planner
Actions are stochastic
All outcomes are important

Example cleaning action

Outcome 1: clean a group of lentils
Outcome 2: clean a part of the group
Outcome 3: scatters the group



Planning

Probabilistic planner
Actions are stochastic
All outcomes are important

Example cleaning action

Outcome 1: clean a group of lentils
Outcome 2: clean a part of the group
Outcome 3: scatters the group



Video

Cleaning lentils
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Model-based RL
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Lang et al, JMLR 13
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Decreasing m-estimate

Decreasing m-estimate

P =
p + (m/

√
p + n)P0

p + n + (m/
√

p + n) . (2)

m decreases as experience is obtained
Parameters:

m - Learning parameter
P - Probability
P0 - Probability
p - Positive examples
n - Negative examples
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Pre-trained rules

Generating pre-trained rules



Rule adaptation

Refining rules with grasp 1 Refining rules with grasp 2



Performance tests

Actions executed and learned Execution time



Performance tests (decreasing m-estimate)

Comparing m-estimate vs decreasing m-estimate
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Incrementally update preconditions and outcomes
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Thanks!

Questions?
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