# Planning Surface Cleaning Tasks by Learning Uncertain Drag Actions Outcomes

#### David Martínez, Guillem Alenyà and Carme Torras



CSIC-UPC

23<sup>rd</sup> International Conference on Automated Planning and Scheduling Workshop in Planning and Robotics (PlanRob)



June 11, 2013



1 Introduction

- 2 Problem
- 3 Learning
- 4 Experiments

### 5 Conclusions





#### 1 Introduction

- 2 Problem
- 3 Learning

### 4 Experiments

#### 5 Conclusions



+□ + 48 + 42 + 42 + 2 990 CSIC ()

## Motivation

#### Robot to clean surfaces

- Moving lentils to a container
- Fast execution
  - Planning
  - Minimize cleaning actions



イロト イポト イヨト イヨト 二日





▲□▶ ▲圖▶ ▲園▶ ▲園▶





▲□▶ ▲圖▶ ▲臣▶ ▲臣▶



## Motivation

#### Robot to clean surfaces

- Fast execution
  - Minimize cleaning actions
- Adapts to changes
  - Cloth grasping





▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

<E> E 990 ■SCSIC



## Motivation

#### Robot to clean surfaces

- Fast execution
  - Minimize cleaning actions
- Adapts to changes
  - Cloth grasping





イロト イヨト イヨト イヨト



## Grasp 1





## Grasp 1





## Grasp 2





## Grasp 2





# Objectives

#### Minimize execution time

- Robot actions are expensive
- Planning best sequences of actions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- CSIC

Rules to define actions

#### Adapting to changes

- Adapting rules to grasps
- Learning



# Objectives

#### Minimize execution time

- Robot actions are expensive
- Planning best sequences of actions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- Rules to define actions
- Adapting to changes
  - Adapting rules to grasps
  - Learning





## 2 Problem

3 Learning

#### 4 Experiments

#### 5 Conclusions



#### Arm manipulator: WAM



#### Camera: Kinect



#### Surface to clean

Institut de Robòtica I Informàtica Industrial



#### Setup



#### Arm manipulator: WAM



#### Camera: Kinect



#### Surface to clean





#### Setup



#### Arm manipulator: WAM



#### Camera: Kinect



#### Surface to clean





#### Setup



#### Arm manipulator: WAM



#### Camera: Kinect



#### Surface to clean





## Setup



• Observations  $\rightarrow$  state

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ のへで

- Rules  $\rightarrow$  actions
- Planning
- Learning



#### Kinect image



#### Dirt segmentation



#### Surface segmentation



Extract information about dirty areas

- Position
- Size
- Shape
- Scattered



#### Kinect image



#### Dirt segmentation



#### Surface segmentation



# Extract information about dirty areas

- Position
- Size
- Shape
- Scattered



#### Kinect image



#### Dirt segmentation



#### Surface segmentation



Extract information about dirty areas

- Position
- Size
- Shape
- Scattered



#### Kinect image



#### Dirt segmentation



#### Surface segmentation



# Extract information about dirty areas

- Position
- Size
- Shape
- Scattered



# Actions

#### Cleaning actions

- Straight move
- Fast move



#### Grouping actions

#### Group scattered lentils



#### ■ Join 2 or 3 groups



ヘロト 人間 とうほう 人間 とう

EN E OQC

Institut de Robòtica Informàtica Industrial

# Actions

#### Cleaning actions

- Straight move
- Fast move



#### Grouping actions

#### Group scattered lentils







ヘロア 人間 アメヨア 人間 ア

EN E OQC



# Actions

#### Cleaning actions

- Straight move
- Fast move



#### Grouping actions

Group scattered lentils



■ Join 2 or 3 groups



イロト イヨト イヨト イヨト 三日



#### Probabilistic planner

- Actions are stochastic
- All outcomes are important

#### Example cleaning action

- Outcome 1: clean a group of lentils
- Outcome 2: clean a part of the group

イロト イポト イミト イミト 三日

- CSIC

Outcome 3: scatters the group



#### Probabilistic planner

- Actions are stochastic
- All outcomes are important

#### Example cleaning action

- Outcome 1: clean a group of lentils
- Outcome 2: clean a part of the group

Outcome 3: scatters the group



Video



**Cleaning lentils** 



# Changing conditions

#### Problem

- Cloth grasps change rules
- Solution
  - Learn rules for new grasps
  - Good performance



◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ のへで


# Changing conditions

- Problem
  - Cloth grasps change rules
- Solution
  - Learn rules for new grasps
  - Good performance



・ロト ・御 ト ・ ヨト ・ ヨト … ヨ











### 5 Conclusions



### Robot actions are slow

- Learn with few actions
- Observability
  - 1 Partial observability requires more experience

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- 2 Accurate observations
  - Problem with occlusions



### Robot actions are slow

- Learn with few actions
- Observability
  - 1 Partial observability requires more experience

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- 2 Accurate observations
  - Problem with occlusions



#### Robot actions are slow

- Learn with few actions
- Observability
  - 1 Partial observability requires more experience

(ロ) (部) (目) (日) (日) (の)

- 2 Accurate observations
  - Problem with occlusions



- Robot actions are slow
  - Learn with few actions
- Observability
  - 1 Partial observability requires more experience

(ロ) (部) (目) (日) (日) (の)

- 2 Accurate observations
  - Problem with occlusions



- Robot actions are slow
  - Learn with few actions
- Observability
  - 1 Partial observability requires more experience

(ロ) (部) (目) (日) (日) (の)

- 2 Accurate observations
  - Problem with occlusions



# Learning

### Learning requirements

- Learning a model
- State has many objectsSymbolic domain
- Robot actions are stochastic
  - Action uncertainty

## Different approaches

- Model-based RL
- Object-oriented RL
  - Diuk et al, ICML 08
- RL in Relational world
  - Lang et al, JMLR 13

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

EN E OQC



- Learning a model
- State has many objects
  - Symbolic domain
- Robot actions are stochastic
  - Action uncertainty

## Different approaches

- Model-based RL
- Object-oriented RL
  - Diuk et al, ICML 08
- RL in Relational world
  - Lang et al, JMLR 13

・ロト ・聞ト ・ヨト ・ヨト

EN E OQC



- Learning a model
- State has many objects
  - Symbolic domain
- Robot actions are stochastic
  - Action uncertainty

Different approaches

- Model-based RL
- Object-oriented RL
  - Diuk et al, ICML 08
- RL in Relational world
  - Lang et al, JMLR 13

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

EN E OQC



### Exploration-explotation

- Initial steps are exploration
  - Random behaviour
- Once some experience is obtained
  - Good results
- Problem in robotics
  - Actions are expensive
  - Poor performance during exploration

イロト イヨト イヨト イヨト 三日

- CSIC



### Exploration-explotation

- Initial steps are exploration
  - Random behaviour
- Once some experience is obtained
  - Good results
- Problem in robotics
  - Actions are expensive
  - Poor performance during exploration

イロト イヨト イヨト イヨト 二日

- CSIC



### Exploration-explotation

- Initial steps are exploration
  - Random behaviour
- Once some experience is obtained
  - Good results
- Problem in robotics
  - Actions are expensive
  - Poor performance during exploration

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC



### Exploration-explotation

- Initial steps are exploration
  - Random behaviour
- Once some experience is obtained
  - Good results
- Problem in robotics
  - Actions are expensive
  - Poor performance during exploration

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC



### Exploration-explotation

- Initial steps are exploration
  - Random behaviour
- Once some experience is obtained
  - Good results
- Problem in robotics
  - Actions are expensive
  - Poor performance during exploration

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC



# Initial learning

- Improving initial learning steps
- We know some information about the model
  - Initial rules
- Start with optimistic initial rules
  - Get initial experiences
- Fast heuristic to refine the rules
- Until enough experience is obtained

### Initial rule example:

```
Action: <u>Fast clean</u>
Preconditions:
dirt(X)
Outcomes:
1.0 -dirt(X)
0.0 Nothing
```

・ロト ・聞ト ・ヨト ・ヨト



# Initial learning

- Improving initial learning steps
- We know some information about the model
  - Initial rules
- Start with optimistic initial rules
  - Get initial experiences
- Fast heuristic to refine the rules
- Until enough experience is obtained

## Initial rule example:

```
Action: <u>Fast clean</u>
Preconditions:
dirt(X)
Outcomes:
1.0 -dirt(X)
0.0 Nothing
```

・ロト ・聞ト ・ヨト ・ヨト

≣⊧ ≣ ୭ WCSIC



- Improving initial learning steps
- We know some information about the model
  - Initial rules
- Start with optimistic initial rules
  - Get initial experiences
- Fast heuristic to refine the rules
- Until enough experience is obtained

### Initial rule example:

```
Action: <u>Fast clean</u>
Preconditions:
dirt(X)
Outcomes:
1.0 -dirt(X)
0.0 Nothing
```

(日)

CSIC



- Improving initial learning steps
- We know some information about the model
  - Initial rules
- Start with optimistic initial rules
  - Get initial experiences
- Fast heuristic to refine the rules
- Until enough experience is obtained

### Initial rule example:

```
Action: <u>Fast clean</u>
Preconditions:
dirt(X)
Outcomes:
1.0 -dirt(X)
0.0 Nothing
```

・ロト ・聞ト ・ヨト ・ヨト

EFE 9 **CSIC** 



# Initial rules refinement

### Requirements

- Few experiences available
- Rule refinement after every execution
- Fast

#### Decreasing-m-estimate

Learning heuristic to update probabilities

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC

Based on m-estimate

## Very fast



# Initial rules refinement

### Requirements

- Few experiences available
- Rule refinement after every execution
- Fast

### Decreasing-m-estimate

Learning heuristic to update probabilities

(ロ) (部) (目) (日) (日) (の)

- Based on m-estimate
- Very fast



## m-estimate

#### m-estimate

$$P = rac{p+mP_0}{p+n+m}.$$

(1)

- CSIC

イロト イポト イミト イミト 三日

#### Parameters:

- *m* Learning parameter
- P Probability
- P<sub>0</sub> Probability
- p Positive examples
- n Negative examples

Initial probability has much influence



## m-estimate

#### m-estimate

$$P=rac{p+mP_0}{p+n+m}.$$

(1)

- CSIC

イロト イポト イヨト イヨト 二日

#### Parameters:

- *m* Learning parameter
- P Probability
- P<sub>0</sub> Probability
- p Positive examples
- n Negative examples
- Initial probability has much influence



# Decreasing m-estimate

#### Decreasing m-estimate

$$P = \frac{p + (m/\sqrt{p+n})P_0}{p+n+(m/\sqrt{p+n})}$$

(2)

- CSIC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### m decreases as experience is obtained

#### Parameters:

- *m* Learning parameter
- P Probability
- P<sub>0</sub> Probability
- p Positive examples
- n Negative examples



# Pre-trained initial rules

## Only grasps changes

- Pre-trained initial rules
- Using
  - Optimistic initial rules
  - Good cloth grasp
- Obtain new rule set
  - Already learned some dynamics of the system



# Pre-trained initial rules

- Only grasps changes
- Pre-trained initial rules
- Using
  - Optimistic initial rules
  - Good cloth grasp
- Obtain new rule set
  - Already learned some dynamics of the system

イロト イヨト イヨト イヨト 三日



# Pre-trained initial rules

- Only grasps changes
- Pre-trained initial rules
- Using
  - Optimistic initial rules
  - Good cloth grasp
- Obtain new rule set
  - Already learned some dynamics of the system

(ロ) (部) (目) (日) (日) (の)



# Learning requires

### Accurate perception

- No occlussions
- Overhead

## Stop learning

- Enough samples are obtained
- Hoeffding bound

## Occlusion



#### Moved arm





# Learning requires

- Accurate perception
- No occlussions
- Overhead

## Stop learning

- Enough samples are obtained
- Hoeffding bound

## Occlusion





#### Moved arm







# Learning requires

- Accurate perception
- No occlussions
- Overhead

## Stop learning

- Enough samples are obtained
- Hoeffding bound

## Occlusion





#### Moved arm







## Learning requires

- Accurate perception
- No occlussions
- Overhead
- Stop learning
  - Enough samples are obtained
  - Hoeffding bound

## Occlusion





#### Moved arm



イロト イポト イミト イミト 三日





## 2 Problem

### 3 Learning

### 4 Experiments

### 5 Conclusions



# Pre-trained rules



### Generating pre-trained rules



イロト イヨト イヨト イヨト

E



# Rule adaptation

titut de Robòtica formàtica industrial



Refining rules with grasp 1





### Refining rules with grasp 2



・ロト ・ 日 ト ・ ヨ ト ・

EN E DAC CSIC

# Performance tests

#### Actions executed and learned



#### Execution time



イロト イヨト イヨト イヨト

E I SAC SIC



# Performance tests (decreasing m-estimate)

Comparing m-estimate vs decreasing m-estimate



æ




#### 3 Learning

#### 4 Experiments

#### 5 Conclusions



## Conclusions

#### Improved performance for robotic applications

#### Stochastic actions

- Online learning
  - Improving initial learning steps with simple rules

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC

- Fast heuristic to refine them
  - Decreasing m-estimate
- Robotic surface cleaning



## Conclusions

#### Improved performance for robotic applications

- Stochastic actions
- Online learning
  - Improving initial learning steps with simple rules

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- Fast heuristic to refine them
  - Decreasing m-estimate

Robotic surface cleaning



#### Improved performance for robotic applications

- Stochastic actions
- Online learning
  - Improving initial learning steps with simple rules

(ロ) (部) (目) (日) (日) (の)

- Fast heuristic to refine them
  - Decreasing m-estimate
- Robotic surface cleaning



### Future work

#### Have a prelearned set of grasps

- Find a similar grasp
- Better integration with other learning methods
  Incrementally update preconditions and outcomes

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()

- CSIC

Partial observability



- Have a prelearned set of grasps
  - Find a similar grasp
- Better integration with other learning methods
  - Incrementally update preconditions and outcomes

(ロ) (部) (目) (日) (日) (の)

Partial observability



- Have a prelearned set of grasps
  - Find a similar grasp
- Better integration with other learning methods
  - Incrementally update preconditions and outcomes

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Partial observability





# **Questions?**



۹۵×۹۶×۹۶×۹۶×۹۶×۹۶×۹۵×۹۹×

## Planning Surface Cleaning Tasks by Learning Uncertain Drag Actions Outcomes

#### David Martínez, Guillem Alenyà and Carme Torras



CSIC-UPC

23<sup>rd</sup> International Conference on Automated Planning and Scheduling Workshop in Planning and Robotics (PlanRob)



June 11, 2013

