PlanRob, ICAPS 2013

Acting is the Purpose of Planning or The Actor's view of Deliberation

Malik Ghallab

Rome, June 2013

Not a novel research path

- Not a novel research path
- ► Focus Automated Planning research on the *actor's perspective*

Not a novel research path

• Focus Automated Planning research on the *actor's perspective*

Ideas in this presentation stem from

- Not a novel research path
- Focus Automated Planning research on the *actor's perspective*

- Ideas in this presentation stem from
 - Collaboration with Felix Ingrand
 - A Survey on Deliberation Functions for Autonomous Robots

- Not a novel research path
- Focus Automated Planning research on the *actor's perspective*

- Ideas in this presentation stem from
 - Collaboration with Felix Ingrand

A Survey on Deliberation Functions for Autonomous Robots

Collaboration with Dana Nau and Paolo Traverso

A Position Paper on Automated Planning and Acting

- Planning is a deliberation function
- Main purpose of planning is acting
 - Planning is valuable for other uses than acting
 - Design of tools, assembly, molecules permitting actions
 - Video games

Motion planning in car design

[J.Cortes, LAAS]

Premises

- Planning is a deliberation function
- Main purpose of planning is acting
 - Planning is valuable for other uses

- Planning is a deliberation function
- Main purpose of planning is acting
 - Planning is valuable for other uses
 - Planning is always motivated by acting

- Planning is a deliberation function
- Main purpose of planning is acting
 - Planning is valuable for other uses
 - Planning is always motivated by acting
- Acting requires other deliberation functions
 Deliberate action:
 - Intentionally chosen and planned to achieve some objective
 - Pursued for the accomplishment of the robot's task

- Planning is a deliberation function
- Main purpose of planning is acting
 - Planning is valuable for other uses
 - Planning is always motivated by acting
- Acting requires other deliberation functions
 Deliberate action:
 - Intentionally chosen and planned to achieve some objective
 - Pursued for the accomplishment of the robot's task
- Automated Planning research *does not* focus on actual challenges of deliberate action

Automated Planning literature

- Automated Planning literature
 - Numerous "Planners"

- Automated Planning literature
 - Numerous "Planners"
 - Very few "Actors"

- Automated Planning literature
 - Numerous "Planners"
 - Very few "Actors"
 - Search problems: over-explored

- Automated Planning literature
 - Numerous "Planners"
 - Very few "Actors"
 - Search problems: over-explored
 - Acting problems: insufficiently investigated

Planing and Acting:

Planing and Acting:

Section 24.8

- Planing and Acting:
 - Section 24.8
 - 1.2 page / 630p.

Automated Planning literature

Automated Planning literature

Automated Planning literature

Task planning in robotics: not the main deliberation bottleneck

• "Precond-Effects" actions: too abstract too far from sensory-motor commands

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions
 - Not available as plug-&-trigger executable primitives

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions
 - Not available as plug-&-trigger executable primitives
 - Will they be available in future robots ?

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions
 - Not available as plug-&-trigger executable primitives
 - Will they be available in future robots ?
- Robot manufacturers focus on

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions
 - Not available as plug-&-trigger executable primitives
 - Will they be available in future robots ?
- Robot manufacturers focus on
 - Programmable systems and ease of programming

Automated Planning literature

- "Precond-Effects" actions: too abstract too far from sensory-motor commands
- In robot platforms "Precond-Effects" actions
 - Not available as plug-&-trigger executable primitives
 - Will they be available in future robots ?
- Robot manufacturers focus on
 - Programmable systems and ease of programming
 - Not much on autonomous deliberation through planning

Example of Warehouse automation

Kiva Systems
Household robot factotum

[LAAS, Toulouse]

Household robot factotum

[LAAS, Toulouse]

Household robot factotum

- Mission
 - Household services: pick, bring, maintain, sort, clean, cook
 - Support users: help, remind, monitor
- Main features
 - Wide variety of environments and tasks
 - Complex interactions with users

[LAAS, Toulouse]

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Move: {environment features} \rightarrow {navigation strategies}

- plan a path
- localize
- detect and avoid
- update map

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Move: {environment features} \rightarrow {navigation strategies}

- plan a path
- localize
- detect and avoid
- update map

Mapping: dynamic & context-dependent

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "Precond-Effects" primitives?

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "Precond-Effects" primitives? (:action move :parameters (?r - robot ?from ?to - location)

:parameters (?r = robot ?from ?to = rocation) :precondition (and (adjacent ?from ?to) (at ?r ?from) (not (occupied ?to))) :effect (and (at ?r ?to) (not (occupied ?from)) (occupied ?to) (not (at ?r ?from))))

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "*Precond-Effects*" primitives? move $(r, l, l')@[t_s, t_e)$

precond: $at(r, l)@[t_1, t_s)$, $free(l')@[t_2, t_e)$ effects: $at(r, routes)@[t_s, t_e)$ $at(r, l')@[t_e, t_3)$ $free(l)@[t_4, t_5)$ const: $t_s < t_4 < t_2$, adjacent(l, l')

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "*Precond-Effects*" primitives? Not without much refinement!

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "*Precond-Effects*" primitives? Not without much refinement!

These skills require significant deliberation in various forms

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "*Precond-Effects*" primitives? Not without much refinement!

These skills require significant deliberation in various forms

→ the actor's view of deliberation

- Localize itself in the environment map
- Map the environment: extend or update the map
- Move to a target position
- Detect and avoid obstacle
- Identify and Iocate an item
- Grasp and ungrasp an item
- Push an item

Can these skills be circumscribed as "*Precond-Effects*" primitives? Not without much refinement!

These skills require significant deliberation in various forms

→ the actor's view of deliberation not enough addressed in planning

- Planning: Choice and organization of actions
- Ingredients: Prediction + Search
- Precond-Effects models
 - Focus on search
 - Trivialized prediction

- Planning: Choice and organization of actions
- Ingredients: Prediction + Search
- Precond-Effects models
 - Focus on search
 - Trivialized prediction

- Planning: Choice and organization of actions
- Ingredients: Prediction + Search
- Precond-Effects models
 - Focus on search
 - Trivialized prediction

- Planning: Choice and organization of actions
- Ingredients: Prediction + Search
- Precond-Effects models
 - Focus on search
 - Trivialized prediction
- Formalization issue
 - \bullet Planning nicely formalized as mapping Domains \longrightarrow Plans
 - Acting difficult to formalize

- Planning: Choice and organization of actions
- Ingredients: Prediction + Search
- Precond-Effects models
 - Focus on search
 - Trivialized prediction
- Formalization issue
 - \bullet Planning nicely formalized as mapping Domains \longrightarrow Plans
 - Acting difficult to formalize
- Frontier issue
 - Planning easily separated from sensory-motor functions
 - "Acting" vs "Executing" more blurred frontier

Robot's Platform

Robot's Platform Environment

Outline

✓ Motivations

- Deliberation functions
 - Planning
 - Refining
 - Monitoring
 - Perceiving
 - Goal reasoning
 - Learning
 - Integration

- Research Challenges
 - Representation
 - Model acquisition & Verification
 - Synthesis
 - Monitoring and Goal reasoning
 - Integration

Actor's deliberation functions

Actor's deliberation functions

Different types of actions

=> Different predictive models

=> Different planning problems and techniques

- Motion and manipulation planning
- Perception planning
- Navigation planning
- Communication planning
- Task planning

Different types of actions

=> Different predictive models

=> Different planning problems and techniques

- Motion and manipulation planning
- Perception planning
- Navigation planning
- Communication planning
- Task planning

Integration of planners with distinct state and action spaces

Usual context

- Open, dynamic environment
- Interaction with users
- Online, interleaved with acting
- Desirable features
 - Access to external domain knowledge
 - Manage concurrency
 - Reason on uncertainty
- Approaches
 - Hierarchical
 - Temporal
 - Probabilistic

Usual context

- Open, dynamic environment
- Interaction with users
- Online, interleaved with acting
- Desirable features
 - Access to external domain knowledge
 - Manage concurrency
 - Reason on uncertainty
- Approaches
 - Hierarchical
 - Temporal
 - Probabilistic

Usual context

- Open, dynamic environment
- Interaction with users
- Online, interleaved with acting
- Desirable features
 - Access to external domain knowledge
 - Manage concurrency
 - Reason on uncertainty
- Approaches
 - Hierarchical
 - Temporal
 - Probabilistic

=> Sparse probabilistic models

Actor's deliberation functions

How to get the operational models ?

How to get the operational models ?

• Specification

How to get the operational models ?

- Specification
- Synthesis

Synthesis of skills achieving an action

- Informal specification PRS, RAP, TDL, XFRM
 - Flexible
 - Hand-written

- Informal specification PRS, RAP, TDL, XFRM
 - Flexible
 - Hand-written
- State machine approaches PLEXIL, BPEL, Smach
 - More open to V&V
 - Hand-written

- Informal specification PRS, RAP, TDL, XFRM
 - Flexible
 - Hand-written
- State machine approaches PLEXIL, BPEL, Smach
 - More open to V&V
 - Hand-written
- CSP-based approaches IxTeT-eXeC, IDEA, T-ReX
 - Handle time
 - Dispatching, plan extension, revision

- Informal specification PRS, RAP, TDL, XFRM
 - Flexible
 - Hand-written
- State machine approaches PLEXIL, BPEL, Smach
 - More open to V&V
 - Hand-written
- CSP-based approaches IxTeT-eXeC, IDEA, T-ReX
 - Handle time
 - Dispatching, plan extension, revision
- Stochastic approaches (MDP, DBN/DDN,)
 - Learned from experiences or from teaching

[Smach (ROS)]

- Flexible
- Hand-written
- State machine approaches PLEXIL, BPEL, Smach
 - More open to V&V
 - Hand-written
- CSP-based approaches IxTeT-eXeC, IDEA, T-ReX
 - Handle time
 - Dispatching, plan external
- Stochastic approaches
 - Learned from experie

[Smach (ROS)]

- Informal specification PRS, RAP, TDL, XFRM
 - Flexible
 - Hand-written
- State machine approaches PLEXIL, BPEL, Smach
 - More open to V&V
 - Hand-written
- CSP-based approaches IxTeT-eXeC, IDEA, T-ReX
 - Handle time
 - Dispatching, plan exte
- Stochastic approaches
 - Learned from experie

Approaches	Systems			
Direct	STRIPS/Planex			
	RAP			
	PRS			
Procedure	Cypress/CPEF			
	TCA/TDL			
	XFRM/RPL/SRP			
Petri-Net	IMRS			
	Procosa			
	Petri-Net Plans			
	FSA			
Automata	PLEXIL			
Graph	RMPL			
	SMACH			
Logic	Golex			
	ReadyLog			
	IxTeT			
CSP	RMPL			
USP	IDEA/T-ReX			
	Casper			
	PEARL			
MDP	K9 MDP			
	Robel			
	Ressac			

		Functions			Knowledge Representation			
Approaches	Systems	Refinement	Instantiation	Time handling	Nondeterminism Repair	Hand-Written	Model Based V&V	Similar to Planning KR
Direct	STRIPS/Planex				Х	Х		
Procedure	RAP	Х	Х			X		
	PRS	Х	Х			X		
	Cypress/CPEF	Х	Х			X		ACT
	TCA/TDL	Х	Х	Х		X		
	XFRM/RPL/SRP	Х	Х		Х	X		Х
Petri-Net	IMRS	Х		coordination		X	X X	
	Procosa	Х		coordination		X	X X	
	Petri-Net Plans	Х		coordination		X	X X	
Automata Graph	FSA	Х	Х	Х		X	Х	Link
	PLEXIL	Х	Х	Х		X	X	
	RMPL	Х	Х	Х		X	Х	
	SMACH	Х	Х	Х		X	Х	
Logic	Golex	х	Х			x	x	Same lang. not same model
	ReadyLog	Х	Х			X	X	
CSP	IxTeT	Х	Х	Х	Х		Х	Х
	RMPL	Х	Х	Х	X X		Х	Х
	IDEA/T-ReX	Х	Х	Х	Х		X	Х
	Casper	Х	Х	Х	Х		X	Х
MDP	PEARL				Х			
	K9 MDP				Х			
	Robel				Х			
	Ressac				Х			

Actor's deliberation functions

Monitoring

Functions

Survey actor's predictions

in plans, skills and environment models

- Detect discrepancies = predictions observations
- Explain and diagnose discrepancies
- Recover: trigger first reactions and repair actions

 Hand-written procedures to monitor applicability/maintenance conditions

- Hand-written procedures to monitor applicability/maintenance conditions
- Model-based supervision and diagnosis, e.g., DS1 more proprioceptive then exteroceptive

- Hand-written procedures to monitor applicability/maintenance conditions
- Model-based supervision and diagnosis, e.g., DS1 more proprioceptive then exteroceptive
- Monitor plan invariants

- Hand-written procedures to monitor applicability/maintenance conditions
- Model-based supervision and diagnosis, e.g., DS1 more proprioceptive then exteroceptive
- Monitor plan invariants
- Synthesize additional invariants from extended planning problems which guarantees the plan execution, e.g., TALPIan

- Hand-written procedures to monitor applicability/maintenance conditions
- Model-based supervision and diagnosis, e.g., DS1 more proprioceptive then exteroceptive
- Monitor plan invariants
- Synthesize additional invariants from extended planning problems which guarantees the plan execution, e.g., TALPIan
- Model checking execution traces with LTL

- Hand-written procedures to monitor applicability/maintenance conditions
- Model-based supervision and diagnosis, e.g., DS1 more proprioceptive then exteroceptive
- Monitor plan invariants
- Synthesize additional invariants from extended planning problems which guarantees the plan execution, e.g., TALPIan
- Model checking execution traces with LTL
- Constraint Based Automata + Control programs, e.g., RMPL

	Knowledge Representation	Search & Algorithm	Link with other Deliberative Functions
Planex	Triangular table		with planning and exec
Livingstone	Qualitative model Transition automata with probabilities and costs	ITMS with conflict directed best-first search	
RMPL	RMPL Hierarchical constraint- based automata		with planning
[Fraser et al., 2005]	Logical invariant	Logical satisfiability	with planning
[Fichtner et al., 2003]	Fluent Calculus	Prioritized non monotonic default logic	
[Lamine and Kabanza, 2002]	Linear Temporal Logic	Delayed formula progression	same technique used for planning
[Petterssonetal.,2003]	Neural net		
SKEMon	Description Logic & Bayesian Belief		
TALplanner	Temporal Action Logics	Formula progression	with planning and observing
Actor's deliberation functions

Observing

- Role
 - Process signals needed in closed loop servoing
 - Detect and structure environment features Recognize, categorize,
 - Link signals to symbols: anchoring
 - Recognize situations and plans in observed sequences of events
- Bottom-up to from signal to symbols
- Top-down to focus attention and trigger observation actions

Observing

- Anchoring problem
 - Relate perceptual data and symbolic attribute corresponding to the same physical object

• Track anchors overtime and refine/revise hypothesis

Perception Engine

- Comprehensive and coherent approach for observing
- Data flow architecture
- Stream-based formalism on perception processes:
 - primitive, refinement, configuration processes
 - policies over processes, temporal constraints
- Integration to planning and monitoring,
- Opens V&V perspectives

[Dyknow, Linköping U.]

Actor's deliberation functions

Higher level monitoring wrt objectives, criteria and constraints

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator
 - Goal generator to address new conditions

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator
 - Goal generator to address new conditions
 - Goal manager

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator
 - Goal generator to address new conditions
 - Goal manager
 - Decision theory: tradeoff between conflicting goals

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator
 - Goal generator to address new conditions
 - Goal manager
 - Decision theory: tradeoff between conflicting goals
 - Explicit choice

- Higher level monitoring *wrt* objectives, criteria and constraints
- Goal Driven Autonomy: global mission assessment
 - Discrepancy detector
 - Explanation generator
 - Goal generator to address new conditions
 - Goal manager
 - Decision theory: tradeoff between conflicting goals
 - Explicit choice
- Found in large systems, e.g., CPEF, DS1
 Function often embedded in acting/monitoring/planning

Actor's deliberation functions

Reinforcement Learning of sensory motor functions

[MPI Bio-Cybernetics, Tübingen]

Reinforcement Learning of sensory motor functions

Reinforcement Learning of sensory motor functions

Helicopter Aerobatics Apprenticeship Learning

Aerobatics Apprenticeship Learning

Simple linear rigid dynamic models of helicopter

- ▶ Learn dynamic models, one for each type of maneuver
 - Regression from teacher's demonstrations
 - Improvement by reinforcement learning in autonomous flight
- Learn reference trajectories, one for each aerobatic figure
 - Expectation-Maximization on teacher's demonstrations
 - Temporal alignment and optimization
- Learn controllers, one for each aerobatic figure
 - *Differential dynamic programming* continuous MDPs solved by iterative approximation of receding horizon LQR problems

Sensory-motor commands

Actor's deliberation functions

Actor's deliberation functions

Integration

Integration

Organizational principle: actor as a hierarchy of agents

✓ Motivations

- ✓ Deliberation functions
 - Planning
 - Refining
 - Monitoring
 - Perceiving
 - Goal reasoning
 - Learning
 - Integration

- Research Challenges
 - Representation
 - Model acquisition & Verification
 - Synthesis & Refinement
 - Monitoring and Goal reasoning
 - Integration

Representation Challenges

Descriptive models

- \bullet Map known representations: PDDLx, ANML, RDDL, ${\mathcal K}$
 - Where in the actors hierarchy
 - Link to monitoring, sensing, control
 - Suitability for online plan repair
 - Criticality issues
- Link to open domain representations: ontologies/DL, e.g.,RoboEarth, OMRKF, ORO, RACE
- Operational models: procedural, automata and graphical
- Relationships between descriptive and operational models
- Simulation and sampling techniques

Model Acquisition, Learning and Verification

- Tools for the specification of descriptive and operational models
- Learning to acquire or improve these models
 - Reinforcement Learning: hierarchical, relation RL, factored MDP
 - Learning from demonstration: teleoperation, external observation
- Verification
 - Hierarchy of actors: of the consistency of their models
 - Heterogeneity of representations
 - Program verification techniques
 - Model checking

Synthesis and refinement

- Online plan synthesis, extension and repair, while acting
- Online skill selection and adaptation
- Integrate temporal dimensions:
 - Time in reasoning about a peculiar resource
 - Time as a computational resource for reasoning
 - Real-time constraints on acting and deliberation
- Planning with sensing and information gathering actions
- Integrate risk and criticality considerations to plan horizon and optimization issues

Monitoring and goal reasoning

- Derive monitoring conditions from descriptive and operational models
- Focus of attention mechanism and link to perceiving for acquiring information needed for monitoring
- Model-based diagnosis for the robot-environment interactions
- Recovery actions and link to criticality analysis issues
- Qualify current goals with respect of longer term objectives and motivations, express reservations and conditions to be monitored
- How to synthesize new goals for current mission
- Map monitoring functions to the actor's hierarchy

Integration

- How to organize actors hierarchy
- Static, i.e., mapped to the robot architecture, or dynamic
- Actor's enablers, including executors
- Concurrency of actors
- Temporal constraints

Other Deliberation challenges in robotics

- Observing the environment semantics
- Interacting
- Learning
 - Models of the robot and the environment
 - Categories
 - Functions, skills and behaviors
- Architecture
 - Specification
 - Robust adaptation

Other Deliberation challenges in robotics

- Observing the environment semantics
- Interacting
- Learning
 - Models of the robot and the environment
 - Categories
 - Functions, skills and behaviors
- Architecture
 - Specification
 - Robust adaptation

Actor's view of deliberation: numerous challenges Planning is just the tip of the iceberg