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Premises
‣ Planning is a deliberation function

‣ Main purpose of planning is acting

• Planning is valuable for other uses than acting
- Design of tools, assembly, molecules permitting actions
- Video games
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Motion planning in enzyme design
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Critical view of current main stream 
‣ Automated Planning literature

• Numerous “Planners”
• Very few “Actors”
• Search problems: over-explored 
• Acting problems: insufficiently investigated

7



A typical textbook of the field

8



A typical textbook of the field

‣ Planing and Acting:

8



A typical textbook of the field

‣ Planing and Acting:
• Section 24.8

8



A typical textbook of the field

‣ Planing and Acting:
• Section 24.8
• 1.2 page / 630p.
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‣Task planning in robotics:  not the main deliberation bottleneck
• “Precond-Effects” actions: too abstract 

    too far from sensory-motor commands
• In robot platforms  “Precond-Effects” actions

- Not available as plug-&-trigger executable primitives
- Will they be available in future robots ?

• Robot manufacturers focus on 
- Programmable systems and ease of programming
- Not much on autonomous deliberation through planning
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Household robot factotum
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Introduction: Robots, Interaction and Knowledge

Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure 1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence –“Let’s make a brownie
for tonight”– to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts

6
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‣ Map the environment: extend or update the map
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‣ Identify and locate an item 
‣ Grasp and ungrasp an item
‣ Push an item
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38 Part 1, Chapter 2

using typed variables; the notation is that of the PDDL planning language
[390].

Like the previous extension, this one gives no increase in expressive
power. If we want to say that a variable l must be of type location, we
can do this within ordinary classical planning by introducing location as a
new predicate symbol and including location(l) in the precondition of any
operator that uses l. However, it can reduce the programming e↵ort needed
to specify a classical planning domain: if a planning system enforces the
type restrictions, then the domain author has a way to ensure that each
variable has the correct range of values. Furthermore, the extension may
improve the e�ciency of such a planning system, by reducing the number
of ground instances that it needs to create.

(define (domain dwr)
(:requirements :strips :typing)
(:types location pile robot crane container)
(:predicates

(adjacent ?l1 ?l2 - location) (attached ?p - pile ?l - location)
(belong ?k - crane ?l - location)
(at ?r - robot ?l - location) (occupied ?l - location)
(loaded ?r - robot ?c - container) (unloaded ?r - robot)
(holding ?k - crane ?c - container) (empty ?k - crane)
(in ?c - container ?p - pile) (top ?c - container ?p - pile)
(on ?k1 - container ?k2 - container) )

(:action move
:parameters (?r - robot ?from ?to - location)
:precondition (and (adjacent ?from ?to)

(at ?r ?from) (not (occupied ?to)))
:e↵ect (and (at ?r ?to) (not (occupied ?from))

(occupied ?to) (not (at ?r ?from)) ))
(:action load

:parameters (?k - crane ?c - container ?r - robot)
:vars (?l - location)
:precondition (and (at ?r ?l) (belong ?k ?l)

(holding ?k ?c) (unloaded ?r))
:e↵ect (and (loaded ?r ?c) (not (unloaded ?r))

(empty ?k) (not (holding ?k ?c))))

Figure 2.6: A partial PDDL specification of the DWR domain. adjacent is
declared to be a binary predicate symbol whose arguments both are of type
location, attached is declared to be a binary predicate symbol whose first argu-
ments have type pile and location, and so forth.
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this operator with the intervals involved with respect to the duration of the
action. When an endpoint of an interval is not constrained, e.g., t

1

, t
5

, t
3

, it
is left without a vertical bar (these are free variables in the operator).

The two preconditions of the operator require that the robot r should
be at location l during some interval of time until ts, and that there should
be free space available in location l0 during some interval ending at te, since
a location can hold only one robot at a time.

The e↵ects of the move operator are to have the robot in the way (con-
stant routes) from ts to te, to have it at l0 at some interval starting in te and
to have space available in l starting at a time point t

4

between ts and t
2

,
that is before space is required in l0.

The operator requires the two locations to be adjacent3 and to have
free space at destination only after making the origin location free, i.e.,
ts < t

4

< t
2

. Note that the precondition at(r, l)@[t
1

, ts) does not mean
that r is not at location l outside of [t

1

, ts); it only requires it to be there
during this interval: any tqe at(r, l)@[⌧i, ⌧j) in a temporal database that
may support this precondition will not be a↵ected, at this point, by what is
stated in the operator. Similarly, the precondition free(l0)@[t

2

, te) does not
put any requirement on the location l0 outside of the interval [t

2

, te), which
is after the starting point of the action. The constraints for the end points
of the intervals are implicit: ts < te, t

1

< ts, t
2

< te, te < t
3

, and t
4

< t
5

.
2

move(r, l, l0)@[ts, te)
precond: at(r, l)@[t

1

, ts), free(l0)@[t
2

, te)
e↵ects: at(r, routes)@[ts, te)

at(r, l0)@[te, t3)
free(l)@[t

4

, t
5

)
const: ts < t

4

< t
2

, adjacent(l, l0)

Figure 14.2: A temporal planning move operator.

A temporal planning operator is a tuple
o = (name(o), precond(o), e↵ects(o), const(o) ), where:

• name(o) is an expression of the form o(x
1

, . . . , xk, ts, te) such that o is
an operator symbol, and x

1

, . . . , xk are all the objects variables that

3The relations adjacent and free apply here to locations, we assume the constant routes
to be always free and adjacent to and from every location.
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Outline
✓Motivations

‣ Deliberation functions

• Planning
• Refining
• Monitoring
• Perceiving
• Goal reasoning
• Learning
• Integration

‣ Research Challenges

• Representation

• Model acquisition & 
Verification

• Synthesis

• Monitoring and Goal 
reasoning

• Integration
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➡Integration of planners with distinct state and action spaces
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task-level robot control. In this case, these well-defined tasks
could be planned out explicitly, while the less structured
ones could be handled at a higher level with a different sys-
tem. The first step in exploring this strategy was to create an
architecture for developing robust midlevel executives. Not
only should these executives be able to be controlled by
a higher level task-planning system, but they should also
be able to be built very rapidly for doing closed-loop
systems testing.

We began developing a Python application programm-
ing interface (API) based on hierarchical concurrent state
machines. We chose Python because of its shallow learning
curve and native ROS bindings. The library is called SMACH,
a contraction derived from “State MACHine” that is pro-
nounced like “smash.” At its core, SMACH is a ROS-
independent library that can be used not only to build hierarchi-
cal and concurrent state machines but also any other task-state
container that adheres to the provided interfaces. While the
SMACH core is a ROS-independent library, a considerable
amount has been written in the smach_ros package for com-
municating with ROS systems, such as topics, services, and
actionlib actions.

The core SMACH library is lightweight and, along with
logging and utility functions, provides two main interfaces:
State and Container.

SMACH States represent “states of execution,” each
with some set of potential outcomes. SMACH States imple-
ment a blocking execute() function, which runs until it
returns a given outcome.

SMACH containers are collections of one or more states,
which implement some execution policy. The simplest such
execution policy is the StateMachine. A SMACH state
machine can be visualized as a state-flow diagram, where
nodes are states of execution (the robot doing something), and
edges represent transitions from one state to another state via a
given outcome. SMACH state machines are also States,
themselves, so they can be composed hierarchically. This means

Graph View
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Userdata of
Selected State

State Machine
Outcomes

Active State
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FIGURE 11 – Phases successives de production et d’exécution d’un plan temporel d’un robot mar-
tien d’exploration

par les difficultés suivantes :
• l’écriture des opérateurs formels de planification et leur « debugging » est difficile, en

particulier lorsque l’on veut prendre en compte les situations d’exécution non nominales
(i.e. les échecs et la reprise d’erreur).

• la recherche de solutions dans l’espace des plan partiels doit être guidée par des heuris-
tiques adaptées,

• la contrôlabilité temporelle du STN doit être prise en compte. En effet, ces STN com-
portent des variables dites contrôlables et d’autres contingentes. Les valeurs des pre-
mières sont choisies par le robot, alors que les valeurs des variables contingentes sont
fixées par l’environnement, dans leurs domaines admissibles 5. Un STN est contrôlable

5. Par exemple, dans le graphe figure 11(c), pour le déplacement entre t0 et t1, l’instant de départ t0 est contrô-
lable, mais pas l’instant d’arrivée t1. La durée du déplacement a été réduite par propagation de 90 à 85 (figure 11(c)),
mais seule l’observation après exécution donnera de la valeur exacte.

[T-Rex / IDEA]

task-level robot control. In this case, these well-defined tasks
could be planned out explicitly, while the less structured
ones could be handled at a higher level with a different sys-
tem. The first step in exploring this strategy was to create an
architecture for developing robust midlevel executives. Not
only should these executives be able to be controlled by
a higher level task-planning system, but they should also
be able to be built very rapidly for doing closed-loop
systems testing.

We began developing a Python application programm-
ing interface (API) based on hierarchical concurrent state
machines. We chose Python because of its shallow learning
curve and native ROS bindings. The library is called SMACH,
a contraction derived from “State MACHine” that is pro-
nounced like “smash.” At its core, SMACH is a ROS-
independent library that can be used not only to build hierarchi-
cal and concurrent state machines but also any other task-state
container that adheres to the provided interfaces. While the
SMACH core is a ROS-independent library, a considerable
amount has been written in the smach_ros package for com-
municating with ROS systems, such as topics, services, and
actionlib actions.

The core SMACH library is lightweight and, along with
logging and utility functions, provides two main interfaces:
State and Container.

SMACH States represent “states of execution,” each
with some set of potential outcomes. SMACH States imple-
ment a blocking execute() function, which runs until it
returns a given outcome.

SMACH containers are collections of one or more states,
which implement some execution policy. The simplest such
execution policy is the StateMachine. A SMACH state
machine can be visualized as a state-flow diagram, where
nodes are states of execution (the robot doing something), and
edges represent transitions from one state to another state via a
given outcome. SMACH state machines are also States,
themselves, so they can be composed hierarchically. This means
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‣ Functions

• Survey actor’s predictions 
in plans, skills and environment models

• Detect discrepancies = predictions - observations

• Explain and diagnose discrepancies

• Recover: trigger first reactions and repair actions
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‣ Constraint Based Automata + Control programs, e.g., RMPL
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Planex

Livingstone

RMPL

 [Fraser et al., 2005]

 [Fichtner et al., 2003] 

[Lamine and Kabanza, 2002] 

[Petterssonetal.,2003]

SKEMon
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Knowledge
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Algorithm
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ITMS with conflict 
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search

 Hierarchical constraint-
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Observing
‣ Role

• Process signals needed in closed loop servoing

• Detect and structure environment features
Recognize, categorize, 
Link signals to symbols: anchoring

• Recognize situations and plans in observed sequences of events
‣ Bottom-up to from signal to symbols
‣ Top-down to focus attention and trigger observation actions

33



Observing
‣ Anchoring problem

• Relate perceptual data and symbolic attribute corresponding to 
the same physical object

• Track anchors overtime and refine/revise hypothesis

34
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current context. The importance of this distinction ap-
pears mainly when more than one object satisfies the
description: this can be a problem in the case of defi-
nite description, but not in the case of indefinite ones.
One may consider several more types of descriptions,
for instance, descriptions that use functional proper-
ties like ‘something to hold water’. The many ways
of giving a reference brings about the problem of how
the anchoring process should treat different kinds of
descriptions.
In Fig. 1 just one object and one observer are

present. This is clearly a simplified case. In general,
it may be necessary to anchor several objects at the
same time and identify objects on the basis of the
relations among them. Moreover an agent could ob-
serve an object with different sensors and/or from
different points of view, and then need to integrate
this information to be able to establish an anchor. We
have an example in this issue in the paper by Fritsch
et al. [11]. A similar problem arises if robots with
different sensors need to exchange information about
the objects in the environment. A robot could anchor
an object on the basis of properties that cannot be
discriminated by another one.
Difficult issues of communication and negotiation

may arise if several robots need to not only anchor
symbols internally but also exchange information
among them and agree on a shared language. Com-
mon agreement about the meaning of the symbols
used to refer to objects in the environment is also
needed for efficient human–robot cooperation. Some
of the papers in this special issue deal with systems
that involve communication among multiple robots
[13,21,22] or between robots and humans [2].

Fig. 2. The ingredients of anchoring in our framework. α is the anchor.

Finally, a fundamental challenge of the anchoring
problem is to investigate the formal properties of the
anchoring process. Intuitively one may feel that some
correspondences between the symbols and the sen-
sor data are correct while some are not. How to ex-
press this formally, and prove the correctness of a
specific system are open problems. Engaging in this
study would probably require the ability to model both
the anchoring system and physical environment in the
same formal system, in which we can define and prove
formal properties.

4. Anchoring in practice

In order to get a better understanding of how the
general concept of anchoring can be instantiated in
different tasks and domains, we present below a few
implemented systems that perform anchoring. First,
however, we need to outline the main ingredients of
the framework for anchoring which is used in all ex-
amples. A detailed description of this framework and
examples can be found in [4,6,7].

4.1. Ingredients and functionalities of anchoring

According to our framework the anchoring process
is performed in an intelligent embedded system that
comprises a symbol system Σ and a perceptual sys-
tem Π (see Fig. 2). The symbol system manipulates
individual symbols, like ‘x’ and ‘cup22’, which
are meant to denote physical objects. It also asso-
ciates each individual symbol with a set of symbolic
predicates, like ‘red’, that assert properties of the
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Figure 6: Image of road section

as follows:

• Orientation 2φ

• Curvature φ

• Rotation 0

It should be observed that a characteristic object of rotation such as a circle, is
scale dependent, while a corner is essentially scale independent. The corner itself is
fully scale independent, but it is generally part of some object of limited size, which
indirectly imposes a restriction with respect to scale.

A successful use of rotation requires more attention to proper scale, as well as a use
of multiple scales. Given proper selective mechanisms for this, the rotation feature
should be useful.

In Figure 8 is illustrated the computed curvature using divcons from the orientation
transform in Figure 8. The operation divcons computes the normalized divergence
from an orientation transform image[7, 8].

92 S. Coradeschi, A. Saffiotti / Robotics and Autonomous Systems 43 (2003) 85–96

autonomous surveillance tasks in a simulated environ-
ment developed within the WITAS project [8]. The
UAV system integrates a planner, a reactive plan ex-
ecutor, a vision system and a control system.
In terms of our framework, the symbol system con-

sists of the planner; individual symbols denote cars
and elements of the road network. The perceptual
system is a reconfigurable active vision system able
to extract information about car-like objects in aerial
images; percepts are regions in the image, and they
have attributes like position, width, and color. The
predicate grounding relation is given as a hand-coded
table that associates each predicate symbol with a
fuzzy set of admissible values for the corresponding
attribute. An anchor is a Lisp structure that stores
an individual symbol, the index of a region, and
an association list recording the current estimates
of the values of the object’s attributes (signature).
The signature in the anchor is used to configure
the vision system, control the camera, and control
the UAV.
In the example shown in Fig. 5, the task of the UAV

is to follow a specific car that was previously anchored
using the Find functionality. At time t0 two identical
cars are present in the image, one traveling along a
road which makes a bend under a bridge, and the other
one traveling on the bridge. The UAV is keeping un-
der observation the car traveling along the road using
the Track functionality. At t1 this car disappears under
the bridge and the second car is almost in the position
in the image where the first one was expected to be.
The Track functionality has access to the symbolic
information about road topology and can therefore
recognize that this car cannot be the car previously
tracked. The Reacquire functionality is then invoked
in order to find again the tracked car. Reacquire uses
high-level knowledge to infer the presence of the oc-
cluding bridge, and predict the next visible position of

Fig. 5. Anchoring a moving object. The followed car disappears under a bridge and a similar car appears at its place over the bridge.

Fig. 6. Anchoring “a red ball” to perform a ball collection task.

the car. This position is stored in the signature of the
anchor, and used to direct the UAV and the camera
towards the end of the bridge. When the car reappears
from under the bridge at t2, a percept is generated by
the vision system that is compatible with the signature
in the anchor. Normal tracking is then resumed.

4.4. Anchoring an indefinite description

Our last example is intended to illustrate some
of the subtleties of the anchoring problem in the
case of an indefinite reference and multiple identical
objects [7]. The task is one of the three “technical
challenges” of the RoboCup 2002 competition in the
Sony four-legged robot league. A Sony AIBO robot
is in a soccer field and 10 identical balls are placed in
the field. The task is to score all the balls. When a ball
is scored, it is removed from the field (see Fig. 6).
With respect to anchoring, the problem can be de-

scribed as follows. The robot is given an indefinite de-
scription of a ball, for instance, ‘x : Ball(x)∧Red(x)’.
Any of the 10 balls is suitable for the task. The Find
functionality selects the first ball to act upon, for in-
stance the nearest one, and anchors the symbol x to it.
The created anchor includes in its signature the rela-
tive position of this ball, which is used by the motion

[Linköping Univ.]

[Örebro Univ.]



In this article, we propose using the term knowledge processing
middleware for a principled and systematic software framework
for bridging the gap between sensing and reasoning in a physical
agent. We claim that knowledge processing middleware should
provide both a conceptual framework and an implementation
infrastructure for integrating a wide variety of functionalities and
managing the information that needs to flow between them. It
should allow a system to incrementally process low-level sensor
data and generate a coherent view of the environment at increas-
ing levels of abstraction, eventually providing information and
knowledge at a level which is natural to use in symbolic delibera-
tive functionalities.

In addition to defining the concept of knowledge processing
middleware, we describe one particular instance called DyKnow.
DyKnow is a fully implemented stream-based knowledge process-
ing middleware framework providing both conceptual and practi-
cal support for structuring a knowledge processing system as a set
of streams and computations on streams. Streams represent as-
pects of the past, current, and future state of a system and its envi-
ronment. Input can be provided by a wide range of distributed
information sources on many levels of abstraction, while output
consists of streams representing objects, attributes, relations, and
events.

In the next section, a motivating example scenario is presented.
Then, desirable properties of knowledge processing middleware
are investigated and stream-based middleware is proposed as suit-
able for a wide range of systems. As a concrete example, the formal
conceptual framework of our knowledge processing middleware
DyKnow is described. The article is concluded with some related
work and a summary.
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(GPS) to determine the current position and attitude of the helicop-
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the camera state to determine where the camera is currently point-
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analyzed in order to extract vision objects representing hypotheses

regarding moving and stationary physical entities, including their
approximate positions and velocities.

To use symbolic chronicle recognition, it is necessary to deter-
mine which vision objects are likely to represent cars. Such objects
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autonomous UAV system developed at the Unmanned Aircraft Sys-
tems Technologies (UASTech) Lab at Linköping University [7], a
considerable number of distinct processes are involved in bridging
the sense-reasoning gap. However, in order to fully appreciate the
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wards the smaller end of the scale, what is represented as a single
process in Fig. 1 is sometimes merely an abstraction of what is in
fact a set of distinct processes. Anchoring is a prime example,
encapsulating a variety of tasks that could also be viewed as sepa-
rate processes. At the other end of the scale, a complete UAV sys-
tem also involves numerous other sensors and information
sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and
reactive goal achieving procedures. Consequently, what is seen in
Fig. 1 is merely an abstraction of the full complexity of a small part
of the system.

It is clear that a systematic means for integrating all forms of
knowledge processing, and handling the necessary communication

Fig. 1. Incremental processing for the traffic surveillance task.
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Abstract—Many complex robot motor skills can be represented
using elementary movements, and there exist efficient techniques
for learning parametrized motor plans using demonstrations and
self-improvement. However, in many cases, the robot currently
needs to learn a new elementary movement even if a parametrized
motor plan exists that covers a similar, related situation. Clearly,
a method is needed that modulates the elementary movement
through the meta-parameters of its representation. In this paper,
we show how to learn such mappings from circumstances to
meta-parameters using reinforcement learning. We introduce an
appropriate reinforcement learning algorithm based on a ker-
nelized version of the reward-weighted regression. We compare
this algorithm to several previous methods on a toy example and
show that it performs well in comparison to standard algorithms.
Subsequently, we show two robot applications of the presented
setup; i.e., the generalization of throwing movements in darts, and
of hitting movements in table tennis. We show that both tasks
can be learned successfully using simulated and real robots.

I. INTRODUCTION

In robot learning, motor primitives based on dynamical
systems [1], [2] allow acquiring new behaviors quickly and re-
liably both by imitation and reinforcement learning. Resulting
successes have shown that it is possible to rapidly learn motor
primitives for complex behaviors such as tennis-like swings
[1], T-ball batting [3], drumming [4], biped locomotion [5],
ball-in-a-cup [6], and even in tasks with potential industrial
applications [7]. The dynamical system motor primitives [1]
can be adapted both spatially and temporally without changing
the overall shape of the motion. While the examples are
impressive, they do not address how a motor primitive can be
generalized to a different behavior by trial and error without
re-learning the task. For example, if the string length has been
changed in a ball-in-a-cup [6] movement1, the behavior has to
be re-learned by modifying the movements parameters. Given
that the behavior will not drastically change due to a string
length variation of a few centimeters, it would be better to
generalize that learned behavior to the modified task. Such
generalization of behaviors can be achieved by adapting the
meta-parameters of the movement representation2.

In machine learning, there have been many attempts to
use meta-parameters in order to generalize between tasks [8].

1In this movement, the system has to jerk a ball into a cup where the ball
is connected to the bottom of the cup with a string.

2Note that the tennis-like swings [1] could only hit a static ball at the end
of their trajectory, and T-ball batting [3] was accomplished by changing the
policy’s parameters.

Figure 1: This figure illustrates a 2D dart throwing task. The
situation, described by the state s corresponds to the relative
height. The meta-parameters � are the velocity and the angle
at which the dart leaves the launcher. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function �(s), which maps the state to
the meta-parameters, is learned.

Particularly, in grid-world domains, significant speed-up could
be achieved by adjusting policies by modifying their meta-
parameters (e.g., re-using options with different subgoals) [9].
In robotics, such meta-parameter learning could be particularly
helpful due to the complexity of reinforcement learning for
complex motor skills with high dimensional states and actions.
The cost of experience is high as sample generation is time
consuming and often requires human interaction (e.g., in
cart-pole, for placing the pole back on the robots hand) or
supervision (e.g., for safety during the execution of the trial).
Generalizing a teacher’s demonstration or a previously learned
policy to new situations may reduce both the complexity of
the task and the number of required samples. For example, the
overall shape of table tennis forehands are very similar when
the swing is adapted to varied trajectories of the incoming
ball and a different targets on the opponent’s court. Here, the
human player has learned by trial and error how he has to adapt
the global parameters of a generic strike to various situations
[10]. Hence, a reinforcement learning method for acquiring
and refining meta-parameters of pre-structured primitive move-
ments becomes an essential next step, which we will address
in this paper.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-
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Figure 4: This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot
motion as well as a kinesthetic teach-in. The green arrows show the directions of the current move-
ments in that frame. The human cup motion was taught to the robot by imitation learning with
31 parameters per joint for an approximately 3 seconds long trajectory. The robot manages to re-
produce the imitated motion quite accurately, but the ball misses the cup by several centimeters.
After ca. 75 iterations of our Policy learning by Weighting Exploration with the Returns (PoWER)
algorithm the robot has improved its motion so that the ball goes in the cup. Also see Figure 5.

Figure 5: This figure shows the expected
return of the learned policy in the Ball-in-
a-Cup evaluation averaged over 20 runs.

Due to the complexity of the task, Ball-in-a-Cup is
even a hard motor learning task for children who usu-
ally only succeed at it by observing another person
playing and a lot of improvement by trial-and-error.
Mimicking how children learn to play Ball-in-a-Cup,
we first initialize the motor primitives by imitation and,
subsequently, improve them by reinforcement learn-
ing. We recorded the motions of a human player by
kinesthetic teach-in in order to obtain an example for
imitation as shown in Figure 4 (middle row). From the
imitation, it can be determined by cross-validation that
31 parameters per motor primitive are needed. As ex-
pected, the robot fails to reproduce the the presented
behavior and reinforcement learning is needed for self-improvement. Figure 5 shows the expected
return over the number of rollouts where convergence to a maximum is clearly recognizable. The
robot regularly succeeds at bringing the ball into the cup after approximately 75 iterations.

4 Conclusion

In this paper, we have presented a new perspective on policy learning methods and an application
to a highly complex motor learning task on a real Barrett WAMTM robot arm. We have generalized
the previous work in [17, 18] from the immediate reward case to the episodic case. In the process,
we could show that policy gradient methods are a special case of this more general framework.
During initial experiments, we realized that the form of exploration highly influences the speed of
the policy learning method. This empirical insight resulted in a novel policy learning algorithm,
Policy learning by Weighting Exploration with the Returns (PoWER), an EM-inspired algorithm
that outperforms several other policy search methods both on standard benchmarks as well as on a
simulated Underactuated Swing-Up.

We successfully applied this novel PoWER algorithm in the context of learning two tasks on a
physical robot, i.e., the Underacted Swing-Up and Ball-in-a-Cup. Due to the curse of dimensionality,
we cannot start with an arbitrary solution. Instead, we mimic the way children learn Ball-in-a-Cup
and first present an example for imitation learning which is recorded using kinesthetic teach-in.
Subsequently, our reinforcement learning algorithm takes over and learns how to move the ball into
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consuming and often requires human interaction (e.g., in
cart-pole, for placing the pole back on the robots hand) or
supervision (e.g., for safety during the execution of the trial).
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In robotics, such meta-parameter learning could be particularly
helpful due to the complexity of reinforcement learning for
complex motor skills with high dimensional states and actions.
The cost of experience is high as sample generation is time
consuming and often requires human interaction (e.g., in
cart-pole, for placing the pole back on the robots hand) or
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Fig. 3 This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned
robot motion as well as a motion-captured human motion. The green arrows show the di-
rections of the momentary movements. The human cup motion was taught to the robot by
imitation learning with 91 parameters for 1.5 seconds. Please also refer to the video on the
first author’s website.

in [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert,
Nakanishi, and Schaal, Schaal et al (2007)Schaal, Mohajerian, and Ijspeert] and
only need minor modifications. We also make use of locally-weighted regression
in order to determine the optimal motor primitives, use the same weighting and
compute the targets based on the dynamical systems. However, unlike in [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal], we need a bootstrapping step as we determine first the parameters for
the system described by Equation (5) and, subsequently, use the learned results in
the learning of the system in Equation (4). These steps can be performed efficiently
in the context of dynamical systems motor primitives as the transformation functions
(8) of Equations (4) and (5) are linear in parameters. As a result, we can choose the
weighted squared error

ε2
m = ∑n

i=1ψm
i

(
f ref
i − zT

i wm
)2

(11)

as cost function and minimize it for all parameter vectors wm with m∈ {1,2, . . . ,M}.
Here, the corresponding weighting function are denoted by ψm

i and the basis func-
tions by zT

i . The reference or target signal f ref
i is the desired transformation function

and i ∈ {1,2, . . . ,n} indicates the number of the sample. The error in Equation (11)
can be rewritten as

ε2
m =

(
fref−Zwm

)T
Ψ
(

fref−Zwm
)

(12)
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Aerobatics Apprenticeship Learning
Simple linear rigid dynamic models of helicopter
‣ Learn dynamic models, one for each type of maneuver

• Regression from teacher’s demonstrations

• Improvement by reinforcement learning in autonomous flight
‣ Learn reference trajectories, one for each aerobatic figure

• Expectation-Maximization on teacher’s demonstrations

• Temporal alignment and optimization
‣ Learn controllers, one for each aerobatic figure

• Differential dynamic programming continuous MDPs solved by 
iterative approximation of receding horizon LQR problems
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Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.
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‣ Organizational principle: actor as a hierarchy of agents



Outline
✓Motivations

✓Deliberation functions

• Planning
• Refining
• Monitoring
• Perceiving
• Goal reasoning
• Learning
• Integration

‣ Research Challenges

• Representation

• Model acquisition & 
Verification

• Synthesis & Refinement

• Monitoring and Goal 
reasoning

• Integration
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Representation Challenges
‣ Descriptive models

• Map known representations: PDDLx, ANML, RDDL, K 
- Where in the actors hierarchy
- Link to monitoring, sensing, control
- Suitability for online plan repair
- Criticality issues

• Link to open domain representations: ontologies/DL, 
e.g.,RoboEarth, OMRKF, ORO, RACE

‣ Operational models: procedural, automata and graphical
‣ Relationships between descriptive and operational models
‣ Simulation and sampling techniques
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Model Acquisition, Learning and Verification
‣ Tools for the specification of descriptive and operational models
‣ Learning to acquire or improve these models

• Reinforcement Learning: hierarchical, relation RL, factored MDP
• Learning from demonstration: teleoperation, external observation

‣ Verification 
• Hierarchy of actors: of the consistency of their models
• Heterogeneity of representations
• Program verification techniques
• Model checking
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Synthesis and refinement
‣ Online plan synthesis, extension and repair, while acting
‣ Online skill selection and adaptation
‣ Integrate temporal dimensions: 

• Time in reasoning about a peculiar resource

• Time as a computational resource for reasoning

• Real-time constraints on acting and deliberation
‣ Planning with sensing and information gathering actions
‣ Integrate risk and criticality considerations to plan horizon and 

optimization issues
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Monitoring and goal reasoning
‣ Derive monitoring conditions from descriptive and operational 

models
‣ Focus of attention mechanism and link to perceiving for acquiring 

information needed for monitoring
‣ Model-based diagnosis for the robot-environment interactions
‣ Recovery actions and link to criticality analysis issues
‣ Qualify current goals with respect of longer term objectives and 

motivations, express reservations and conditions to be monitored
‣ How to synthesize new goals for current mission
‣ Map monitoring functions to the actor’s hierarchy
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Integration

‣ How to organize actors hierarchy
‣ Static, i.e., mapped to the robot architecture, or dynamic
‣ Actor’s enablers, including executors
‣ Concurrency of actors
‣ Temporal constraints
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Other Deliberation challenges in robotics 

‣ Observing the environment semantics
‣ Interacting
‣ Learning

• Models of the robot and the environment
• Categories
• Functions, skills and behaviors

‣ Architecture
• Specification
• Robust adaptation
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Actor’s view of deliberation: numerous challenges
Planning is just the tip of the iceberg


