Multi-Robot Exploration in the Polygonal Domain

Tomáš Juchelka, Miroslav Kulich, Libor Přeučil

Division of Intelligent and Mobile Robotics - (IMR) Gerstner Laboratory for Intelligent Decision Making and Control Department of Cybernetics Czech Technical University in Prague

10/06/2013

Outline

- Problem definition
- Exploration framework
- Polygonal domain
- Exploration strategies
- Experimental results
- Conclusion

Mobile Robot Exploration

- · Create a map of the environment
- · Frontier-based approach

Yamauchi (1997)

Occupancy grid

Moravec and Elfes (1985)

- Laser scanner sensor
- Next-best-view approach

Select the next robot goal

Time to create the map of the whole environment

search and rescue mission

The Algorithm

Exploration is an iterative procedure:

while unexplored areas exist do read current sensor information; update map with the obtained data; determine new goal candidates; assign the goals to the robots; plan paths for the robots; move the robots towards the goals;
end

Polygonal Domain

- The environment represented as a polygon with holes
- · Sensor measurement represented as a polygon:
 - Successive Edge Following
 - Ramer-Douglas-Peucler algorithm
 - Least Squares Fit
- · Map is incrementally built as a union of measurements

Map Building

- Vatti clipping algorithm
- Clipper library
- · Problem: storing information about edges
- Operations: clipping, offsetting (Minkowski sum): output edges post-processing:

$$P = p_1 + p_2 + |d_1| + |d_2|$$

Comparison Optimization

- Rules applied:
 - The bounds with *y*-coordinate of its local minimum higher than *y*-coordinate of the top vertex of the output edge can be completely skipped.
 - If *y*-coordinate of the bottom vertex of the edge from the bound is higher than the top vertex of the output edge then the rest of the bound can be skipped.
 - If the penalty value is zero then skip further comparison of the output edge.

Miroslav Kulich, 2013

ICAPS 2013 - Workshop on Planning and Robotics

7 / 18

Map Management

- · All-in-one map is not robust due to uncertainty of sensors
- · Separate maps of the free space and obstacles
- Maps are merge before planning
- The number of vertices grows fast →→
 Ramer-Douglas-Peucker algorithms for reduction
- The map is used for:
 - · Determination of goal candidates
 - Evaluation of goal candidates: Visibility graph + several runs of Dijkstra *We use distance cost only.*
 - Planning

Multi-Robot Exploration Strategy

- A set of *m* robots at positions $\mathbf{R} = \{r_1, r_2, \dots, r_m\}$
- A set of *n* goal candidates $\boldsymbol{G} = \{g_1, g_2, \dots, g_n\}$
- The exploration strategy (at each planning step):

Select a goal $g \in G$ for each robot $r \in R$ that will minimize the required time to explore the environment

The problem is formulated as the task-allocation problem

$$(\langle r_1, g_{r_1} \rangle, \ldots, \langle r_m, g_{r_m} \rangle) = \operatorname{assign}(\boldsymbol{R}, \boldsymbol{G}, \mathcal{M}),$$

where \mathcal{M} is the map

Comparison - Goal Assignment Strategies

1. Greedy Assignment

Yamauchi B, Robotics and Autonomous Systems 29, 1999

Randomized greedy selection of the closest goal candidate

2. Iterative Assignment

Werger B, Mataric M, Distributed Autonomous Robotic Systems 4, 2001

 Centralized variant of the broadcast of local eligibility algorithm (BLE)

3. Hungarian Assignment

 Optimal solution of the task-allocation problem for assignment of *n* goals and *m* robots in O(n³)

4. K-means Clustering

• (cluster-first, route-second) Solanas A, Garcia M. A. IROS, 2004.

Miroslav Kulich, 2013

ICAPS 2013 - Workshop on Planning and Robotics

Evaluation Methodology

Experimental setup

- 4,6,8,10 robots, 4 goal-assignment strategies, 4 environments, 30 runs
- sensor range: 5 m, FOV: 270°, SND driver
- Planning period: 1 sec
- CPU 4x3.3GHz, 8GB RAM, x86_64 GNU/Linux kubuntu 3.0.0-20, ROS electric
- total number of runs: 1440 (speeded up 3x: 240 hours)

Performance metrics

- texp total required exploration time
- *d_{max}* maximal distance:

$$L=\max\{I_1,I_2,\ldots I_m\},$$

where m is the number of robots and l_i the traveled distance. ICAPS 2013 - Workshop on Planning and Robotics

Experiments

- a portion of hospital map
- map size: 138x110 m
- 8 robots, sensor range: 10 m

Experiments

Miroslav Kulich, 2013

ICAPS 2013 - Workshop on Planning and Robotics

Hospital-section Map

- map size: 271x110 m
- 10 robots, Hungarian strategy, sensor range 10 m
- the final map contains 1226 vertices

Graphical Comparison

(a) Greedy

(b) BLE

(c) Hungarian

Miroslav Kulich, 2013

ICAPS 2013 - Workshop on Planning and Robotics

15/18

Comparision of a Polygonal and Grid-based Representation

- Hospital-section map, 1 robot
- size 271x110 m

Polygonal

1226 vertices

Occupancy Grid

• 1 cell: 5 cm \Rightarrow 12 076 800

	Polygonal		Grid	
S [m ²]	t _{plan} [ms]	t _{total} [ms]	t _{plan} [ms]	t _{total} [ms]
1000	10	35	274	471
3000	22	50	985	1224
5000	14	70	2141	2410
10000	45	116	3369	3854
13000	36	132	4902	5611

Conclusion

- Multi-robot exploration framework for the polygonal domain implemented in ROS
- Extension of Clipper with user-defined information
- Implementation of several goal-assignment strategies
- Experimental evaluation

Future work

- Code cleaning \leadsto code publication
- · Statistical evaluation of strategies on real robots
- Implement more strategies

Conclusion

- Multi-robot exploration framework for the polygonal domain implemented in ROS
- Extension of Clipper with user-defined information
- Implementation of several goal-assignment strategies
- Experimental evaluation

Future work

- Code cleaning ~> code publication
- · Statistical evaluation of strategies on real robots
- Implement more strategies

Multi-Robot Exploration in the Polygonal Domain

Conclusion

Thank You!

The presented work is supported under Project No. TE01020197

