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Task Executions of Robots

@ Advances in technology allow robots to perform
complex tasks

== robotics .,
=<

<PR2: fetching a beer from the fridge> <Baxter: $22k robot needs no programming>
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Task Execution with Multiple Components

@ A task is decomposed into many primitive
- subtask i . Move the body to the fridge.

b

Move the left arm to the handle.

Move the body to open the fridge door.
Move the body to in front of the fridge.
Move the left arm to hold the door.
Move the right arm to the beer.

Grasp the bottle.

Move the right arm to the basket.
Release the bottle.
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<PR2: taking out a beer from the fridge> Most of the subtasks are .movmg
(From Willow Garage) the robot to the next desired pose



Subtask Execution

@ ‘Move the body to the fridge’ subtask

@ Use sensors to recognize the objects and
obstacles in the environment

@ Compute a collision-free path to the pose close to
the fridge

@ Control motors to execute the computed motion
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Task Execution vs. Motion Planning

@ Sense — get the environment information
“ Plan — compute motion to the desired state
“ Move — execute the planned motion

[ Sense

Motion Planning
Task Execution




Motion Planning

@ Find a continuous, collision-free motion
trajectory from an initial pose to a goal pose

@ An important problem in robotics, gaming,
virtual prototyping, CAD/CAM, etc.




Why Real-time Motion Planner?

@ Dynamic, uncertain environments or
control uncertainty

@ Complex task execution needs real-time
feedback

@ Combine with active sensing

[ Sense H Plan H Move ]
A

Feedback =




Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling

@ Parallel Poisson-RRT Motion Planning
@ Experimental results

@ Conclusion



Sampling-based Planning Algorithms

@ PRM [Kavraki et al. 1996]

@ Construct complete roadmap
@ Graph search on roadmap to process query

local path free space

@ Efficient for multiple queries
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Sampling-based Planning Algorithms

@ RRT [Kuffner and LaValle 2000]

©@ No construction phase
@ Expand tree on the fly

@ Efficient for single query



Parallel Planning Algorithms ;

@ Parallel algorithms can benefit from the high
computational power of GPUs
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Parallel Planning Algorithms ’

PRM algorithm

@ Parallel PRM algorithm on GPUs . “ZEZER
“ G‘Planner [Pan et al. 2010] Sample generation ]:

@ 10-100x speed-up from
single-thread CPU algorithm

l s samples

I N1
: [ Milestone construction | !
I J 1

i l m milestones (m<s)
I

i[ Proximity computation |

|
1 m milestones, m-k neighbors
i

| [ Local planning

@ PRM is GPU-friendly

© Alarge number of samples ::2:1’_22::ZZZZI:ZZZIZ;/
“@ Independent computations

Roadmap construction

Query phase
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Parallel RRT Algorithms

@ Two categories of parallel RRTSs [carpin and Pagello 2002]

@ OR Parallel RRT
@ Multiple threads grow multiple trees

@ AND Parallel RRT
@ Multiple threads grow 1 tree
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AND Parallel RRT Algorithm

@ Serial RRT @ AND Parallel RRT
tree expansion tree expansion

2

@ Generate nodes
which are too close

@  Worse effect on GPU algorithm
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Parallel RRT Algorithms

@ RRT with GPU collision checking [sialkowski et al. 2011]
@ Collision checking is the most time-consuming part
@ Multi-link robotic manipulator in 2D

@ Parallel RRT with space partitioning

[Ichnowski and Alterovitz 2012]
@ Partition the configuration space
@ 10 DOF Nao robot
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Qutline
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Poisson-Disk Sampling

@ Widely used in computer graphics

@ Rendering, imaging, and animations

< A field of plants> < Droplets on the glass>




18

Poisson-Disk Sampling

@ Empty disk property
Vae,o; € X,op #xj:||lwg—xj|| >

@ Samples are at least a m|n|mum dlstance r apart from others
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Maximal Poisson-Disk Sampling

@ Maximal property
Ve, € D, de; € Xt ||l — x| < r

@ No uncovered region in the domain by disks of radius r
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Our Approach

@ Use maximal Poisson-disk samples in
parallel RRT tree expansion
@ Empty-disk property
@ Ensure nodes are not too close
@ Maximal property

“@ Ensure samples cover the entire
space
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Maximal Poisson-Disk Sampling

@ ‘State of the art’ sampling algorithm
[Ebeida et al. 2012]

@ Generate samplesin
high-dimensions

@ Not real-time performance
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Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling
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Poisson-RRT Planning Algorithm

@ AND Parallel RRT
Use GPU many-cores

@ Use precomputed maximal Poisson-disk
samples
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Precomputed MPS for Planning

@ Dispersion
@ The largest empty “ball” of unoccupied space

§(P, p) = sup min p(z,p)
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@ Dispersion of MPS <r
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Precomputed MPS for Planning

@ Low-dispersion samplings

.....

.....
vvvvv

Sukharev grid | Anongrldlattlce | AMPS.
@ Maximum Poisson-disk sampling
@ Low-discrepancy : Not aligned to certain axis
@ Less sensitive to the environment
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Poisson-RRT Planning Algorithm

@ Poisson-RRT Algorithm
0. Precomputed MPS T~ 777
1. sampling AR
2. Find neighbor DU SR
Poisson-disk samples

3. Expand tree
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Parallel Poisson-RRT Algorithm

@ AND Parallel RRT Tree @ Poisson-RRT Tree

X goal

. . Xini ) .
y2 Y3
2 y3 y2 Y4
Y4
Vv

No nodes which are too close to each other
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Adaptive Sampling

@ No guaranteed solution with
precomputed samples

@ Samples may be in collision

@ Edges connecting samples may be
in collision
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Adaptive Sampling

@ When a collision check fails
“@ Apply adaptive sampling template

@ Template has MPS samples of
half radius in a MPS disk

©@ Add the closest template sample to
the collision point
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Adaptive Sampling

@ Add randomness to the tree
@ Node is chosen by random sample

@ Different order of tree expansion makes the
adaptive sampling generates different samples
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Poisson-RRT Planning Algorithm

@ Primitive procedures in RRT

@ GPU parallel computation improves the performance
@ Collision checking using BVH with OBB trees
@ Nearest neighbor search using Locality-Sensitive Hashing
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Qutline
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Experimental Results

@ Implementation with CUDA

@ Integrated in OMPL and ROS simulator
@ 3D(6-DOFs) OMPL benchmarks
@ HRP-4 robot planning(23-DOFs)

@ System
@ CPU: Intel Sandy Bridge i7-2600 (Single thread)
@ GPU: NVIDIA Geforce GTX580
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Experimental Results
@ OMPL Benchmarks (6 DOFs)

<AlphaPuzzle> <Apartment>
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Experimental Results

@ Planning Time for OMPL Benchmarks

24.9x
25 7 ™ RRT (Single CPU core)
|
50 | | MGPUAND Parallel RRT 18,
GPU Poisson-RRT 16.1x
o .
sb 12.1x 12,
@
()]
&10 - 8.3
6.4x
5 - 4.2
O T T T T
Absolute planning time Easy Cubicle AlphaPuzzle  Apartment
for GPU Poisson-RRT 0.028s 0.361s 1.314s 11.877s
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Experimental Results

@ HRP-4 robot planning (23 DOFs)




Experimental Results

@ Performance of Sample Processing

Parallel RRT with

RRT with GPU e
collision checkin space partitioning GPU
. . & [Ichnowski and Alterovitz | Poisson-RRT
[Bialkowski et al. 2011]
2012]
Platform GPU CPU GPU
Nvidia Quadro Nvidia Geforce
Processor EX1800M Intel 2.0GHz 8 core x 4 GTX580
Time 25s 11.6s 6.9s
Processed 40K 100K 160K
Samples
Time/Sample 0.625ms 0.116ms 0.043ms
Algorithm RRT* RRT* RRT
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Conclusion

@ A GPU-friendly RRT planning algorithm
@ Parallel algorithm to exploit GPUs

@ Poisson-disk sampling improves the performance
@ 20x better than CPU-based algorithm
@ 50-100% better than prior GPU-based RRT algorithm

“@ Application to task planning

@ Applied for 23 DOFs robot task planning & active sensing
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Future Work

@ Integration with task planning applications

@ Apply to complex task execution problems in
challenging scenarios

@ Dynamic environment
@ Multiple constraints
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Thank you

Questions?



