Real-Time GPU-Based Motion Planning
for Task Execution

Chonhyon Park, Jia Pan, Ming Lin, Dinesh Manocha
University of North Carolina at Chapel Hill

Task Executions of Robots

@ Advances in technology allow robots to perform
complex tasks

== robotics .,
=<

<PR2: fetching a beer from the fridge> <Baxter: $22k robot needs no programming>

3
Task Execution with Multiple Components

@ A task is decomposed into many primitive
- subtask i . Move the body to the fridge.

b

Move the left arm to the handle.

Move the body to open the fridge door.
Move the body to in front of the fridge.
Move the left arm to hold the door.
Move the right arm to the beer.

Grasp the bottle.

Move the right arm to the basket.
Release the bottle.

©ONOUAWNE

<PR2: taking out a beer from the fridge> Most of the subtasks are .movmg
(From Willow Garage) the robot to the next desired pose

Subtask Execution

@ ‘Move the body to the fridge’ subtask

@ Use sensors to recognize the objects and
obstacles in the environment

@ Compute a collision-free path to the pose close to
the fridge

@ Control motors to execute the computed motion

(o b 7o o)
B

Task Execution vs. Motion Planning

@ Sense — get the environment information
“ Plan — compute motion to the desired state
“ Move — execute the planned motion

[Sense

Motion Planning
Task Execution

Motion Planning

@ Find a continuous, collision-free motion
trajectory from an initial pose to a goal pose

@ An important problem in robotics, gaming,
virtual prototyping, CAD/CAM, etc.

Why Real-time Motion Planner?

@ Dynamic, uncertain environments or
control uncertainty

@ Complex task execution needs real-time
feedback

@ Combine with active sensing

[Sense H Plan H Move]
A

Feedback =

Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling

@ Parallel Poisson-RRT Motion Planning
@ Experimental results

@ Conclusion

Sampling-based Planning Algorithms

@ PRM [Kavraki et al. 1996]

@ Construct complete roadmap
@ Graph search on roadmap to process query

local path free space

@ Efficient for multiple queries

10

Sampling-based Planning Algorithms

@ RRT [Kuffner and LaValle 2000]

©@ No construction phase
@ Expand tree on the fly

@ Efficient for single query

Parallel Planning Algorithms ;

@ Parallel algorithms can benefit from the high
computational power of GPUs

Theoretical
GFLOP/s
3250

3000

«=4==NVIDIA GPU Single Precision
2750 =g NVIDIA GPU Double Predision

=g |ntel CPU Single Precision
2500 ==t |ntel CPU Double Precision

2250
2000
1750
1500
1250
1000

750

Tesla C2050 .
Sandy Bridge
500

Tesla C1060 "
Woodcrest Bigdmfield

250 Gefo 6300 Ultra

0 - arpertown . Yestmere e qe .
SepBFIHUMY Jun-04 Mar-07'°"P'™ pec 09 Aug:12 <Nvidia Kepler Architecture>

<Floating-Point Operations per Second @
for the CPU and GPU> 1536 CUDA cores

Parallel Planning Algorithms ’

PRM algorithm

@ Parallel PRM algorithm on GPUs . “ZEZER
“ G‘Planner [Pan et al. 2010] Sample generation]:

@ 10-100x speed-up from
single-thread CPU algorithm

l s samples

I N1
: [Milestone construction | !
I J 1

i l m milestones (m<s)
I

i[Proximity computation |

|
1 m milestones, m-k neighbors
i

| [Local planning

@ PRM is GPU-friendly

© Alarge number of samples ::2:1’_22::ZZZZI:ZZZIZ;/
“@ Independent computations

Roadmap construction

Query phase
<
«Q
3
e
b~

13

Parallel RRT Algorithms

@ Two categories of parallel RRTSs [carpin and Pagello 2002]

@ OR Parallel RRT
@ Multiple threads grow multiple trees

@ AND Parallel RRT
@ Multiple threads grow 1 tree

14

AND Parallel RRT Algorithm

@ Serial RRT @ AND Parallel RRT
tree expansion tree expansion

2

@ Generate nodes
which are too close

@ Worse effect on GPU algorithm

15

Parallel RRT Algorithms

@ RRT with GPU collision checking [sialkowski et al. 2011]
@ Collision checking is the most time-consuming part
@ Multi-link robotic manipulator in 2D

@ Parallel RRT with space partitioning

[Ichnowski and Alterovitz 2012]
@ Partition the configuration space
@ 10 DOF Nao robot

16

Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling

@ Parallel Poisson-RRT Motion Planning
@ Experimental results

@ Conclusion

17

Poisson-Disk Sampling

@ Widely used in computer graphics

@ Rendering, imaging, and animations

< A field of plants> < Droplets on the glass>

18

Poisson-Disk Sampling

@ Empty disk property
Vae,o; € X,op #xj:||lwg—xj|| >

@ Samples are at least a m|n|mum dlstance r apart from others

19

Maximal Poisson-Disk Sampling

@ Maximal property
Ve, € D, de; € Xt ||l — x| < r

@ No uncovered region in the domain by disks of radius r

20

Our Approach

@ Use maximal Poisson-disk samples in
parallel RRT tree expansion
@ Empty-disk property
@ Ensure nodes are not too close
@ Maximal property

“@ Ensure samples cover the entire
space

21

Maximal Poisson-Disk Sampling

@ ‘State of the art’ sampling algorithm
[Ebeida et al. 2012]

@ Generate samplesin
high-dimensions

@ Not real-time performance

22

Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling

@ Parallel Poisson-RRT Motion Planning
@ Experimental results

@ Conclusion

23

Poisson-RRT Planning Algorithm

@ AND Parallel RRT
Use GPU many-cores

@ Use precomputed maximal Poisson-disk
samples

24

Precomputed MPS for Planning

@ Dispersion
@ The largest empty “ball” of unoccupied space

§(P, p) = sup min p(z,p)

zeX P
- -
o o .2 . o
° ’ 'y
’ 0
0 X 1l
' '
o o . o
V- - -

@ Dispersion of MPS <r

25

Precomputed MPS for Planning

@ Low-dispersion samplings

.....

.....
vvvvv

Sukharev grid | Anongrldlattlce | AMPS.
@ Maximum Poisson-disk sampling
@ Low-discrepancy : Not aligned to certain axis
@ Less sensitive to the environment

26

Poisson-RRT Planning Algorithm

@ Poisson-RRT Algorithm
0. Precomputed MPS T~ 777
1. sampling AR
2. Find neighbor DU SR
Poisson-disk samples

3. Expand tree

27

Parallel Poisson-RRT Algorithm

@ AND Parallel RRT Tree @ Poisson-RRT Tree

X goal

. . Xini) .
y2 Y3
2 y3 y2 Y4
Y4
Vv

No nodes which are too close to each other

28

Adaptive Sampling

@ No guaranteed solution with
precomputed samples

@ Samples may be in collision

@ Edges connecting samples may be
in collision

29

Adaptive Sampling

@ When a collision check fails
“@ Apply adaptive sampling template

@ Template has MPS samples of
half radius in a MPS disk

©@ Add the closest template sample to
the collision point

30

Adaptive Sampling

@ Add randomness to the tree
@ Node is chosen by random sample

@ Different order of tree expansion makes the
adaptive sampling generates different samples

31

Poisson-RRT Planning Algorithm

@ Primitive procedures in RRT

@ GPU parallel computation improves the performance
@ Collision checking using BVH with OBB trees
@ Nearest neighbor search using Locality-Sensitive Hashing

32

Qutline

@ Sampling-based Motion Planning

@ Poisson-disk Sampling

@ Parallel Poisson-RRT Motion Planning
@ Experimental results

@ Conclusion

33
Experimental Results

@ Implementation with CUDA

@ Integrated in OMPL and ROS simulator
@ 3D(6-DOFs) OMPL benchmarks
@ HRP-4 robot planning(23-DOFs)

@ System
@ CPU: Intel Sandy Bridge i7-2600 (Single thread)
@ GPU: NVIDIA Geforce GTX580

34

Experimental Results
@ OMPL Benchmarks (6 DOFs)

<AlphaPuzzle> <Apartment>

35

Experimental Results

@ Planning Time for OMPL Benchmarks

24.9x
25 7 ™ RRT (Single CPU core)
|
50 | | MGPUAND Parallel RRT 18,
GPU Poisson-RRT 16.1x
o .
sb 12.1x 12,
@
()]
&10 - 8.3
6.4x
5 - 4.2
O T T T T
Absolute planning time Easy Cubicle AlphaPuzzle Apartment
for GPU Poisson-RRT 0.028s 0.361s 1.314s 11.877s

36
Experimental Results

@ HRP-4 robot planning (23 DOFs)

Experimental Results

@ Performance of Sample Processing

Parallel RRT with

RRT with GPU e
collision checkin space partitioning GPU
. . & [Ichnowski and Alterovitz | Poisson-RRT
[Bialkowski et al. 2011]
2012]
Platform GPU CPU GPU
Nvidia Quadro Nvidia Geforce
Processor EX1800M Intel 2.0GHz 8 core x 4 GTX580
Time 25s 11.6s 6.9s
Processed 40K 100K 160K
Samples
Time/Sample 0.625ms 0.116ms 0.043ms
Algorithm RRT* RRT* RRT

37

38
Conclusion

@ A GPU-friendly RRT planning algorithm
@ Parallel algorithm to exploit GPUs

@ Poisson-disk sampling improves the performance
@ 20x better than CPU-based algorithm
@ 50-100% better than prior GPU-based RRT algorithm

“@ Application to task planning

@ Applied for 23 DOFs robot task planning & active sensing

39

Future Work

@ Integration with task planning applications

@ Apply to complex task execution problems in
challenging scenarios

@ Dynamic environment
@ Multiple constraints

40

Acknowledgements

@ This research is supported by
@ Army Research Office
@ National Science Foundation
@ Willow Garage

41

Thank you

Questions?

