

Closed Loop Configuration Planning with **Time and Resources**

M. Di Rocco

F. Pecora A. Saffiotti

COGNETIVE ROBOTIC SYSTEMS

Center for Applied Autonomous Sensor Systems (AASS) Örebro University, SWEDEN

Configuration... multi robot scenario

A simple example

Propagating consequences...

40 mins delay led to 43H trip!

Planning...

Each subsystem can:

- Interact with the environment (causal constraints), e.g. light on
- Take time into consideration(temporal constraints), e.g. deadlines, rendez-vous

- Exploit resources (resource constraints)
 e.g. a pan-tilt camera, CPU usage
- Exchange information (information dependencies)
 e.g. motion controller must know position of robot

Closed loop

Most fundamental features:

Adapting to the state of the environment

Dynamic goals

 React to contingencies at adequate levels

Architecture

Several solvers reason about the same constraint network

Activities

Activities exchange information, consume resources and require causal requirements

Configuration process

Activities need requisites about:

- Information
- Environment (EV)

Requisites can be specified through recipes

Operator

HEAD: (MoveTo_entrance->kitchen,ON, ..., ...,NULL)

A:

- A1
 (..., ..., ..., Robot.position)

 A2
 (..., ..., ..., Range_data)

 A3
 (Robot.Location, entrance, ..., ...)
- A4 (Robot.Location, kitchen, ..., ...)

C:

C1	During
C2	During
С3	After
C4	Before

Conflicts...

STATE VARIABLE INCONSISTENCIES

RESOURCE OVERUSE

Conflicts...

Execution observer – How?

Perception is integrated into the same constraint network

Execution observer – How?

Perception is integrated into the same constraint network

Closed-loop architecture

It is possible to describe the plan progress in terms of moves from the goal

Conflicts at execution time

Conflicts are handled by multiple solvers

Conflicts at execution time

3 robots must transport goods from Rs to Re. Doors are actuated and rooms have a limited capacity.

Activities are perturbed by random delays

Resource collapse

Randomly collapse resources are present at plan execution

Exogenous events

Specifically, at regular intervals $\mathsf{T}_{_{door}}$, each door can be closed with probability p

P _{close}	0	0.2	0.4	0.6	1.0
Success rate	1	0.76	0.47	0.3	0.03

Tracking

Rooms are dynamically put under surveillance (two robots must be in the same room to declare a room surveilled)

Two robots inside...

Future work

Which solver to choose depending on the situation (i.e.variable / value ordering heuristics)

Ongoing application in fully integrated robotic systems (Rubicon, Robot-ERA, Race)

Contact: maurizio.di-rocco@aass.oru.se

