Using Classical Planners for Tasks
with Continuous Actions in Robotics

Stuart Russell

Joint work with Siddharth Srivastava, Lorenzo Riano, Pieter Abbeel

Using Classical Planners for Tasks
with Continuous Actions in Robotics

Stuart Russell

Real work done by
Jloint-work-with-Siddharth Srivastava, Lorenzo Riano, Pieter Abbeel

Outline

Can we apply classical planners to robotics problems?
" Challenges: continuous action arguments, geometric reasoning
Main ideas:

= Symbolic references to continuous values

= Optimistic model with symbolic corrections from low-level
geometric motion planner, followed by replanning

Why does this idea work? Can it be generalized?
= Roughly analogous to theorem-proving with quantifier elimination
= Current algorithm complete under strong assumptions

Will it work for real-world problems?
= Results on PR2 simulator, PR2

Combining Task and Motion Planners

* Discrete/classical planners:

+ Effective algorithms for combinatorial discrete spaces (e.g.,
automated heuristic generation)

— Not directly applicable to continuous spaces

e Continuous/motion planners:

+ Effective algorithms for high-dimensional continuous space (e.g.,
PRM, RRT)

- Not directly applicable to discrete spaces induced by contact
changes (e.g., pickup/putdown)

Combining Task and Motion Planners

* Discrete/classical planners:

+ Effective algorithms for combinatorial discrete spaces (e.g.,
automated heuristic generation)

— Not directly applicable to continuous spaces

e Continuous/motion planners:

+ Effective algorithms for high-dimensional continuous space (e.g.,
PRM, RRT)

— Not directly applicable to discrete spaces induced by contact
changes (e.g., pickup/putdown)

e Obvious solution:
= Use task planner for discrete actions
" Implement those actions using continuous planner

Discrete blocks-world PickUp

PickUp(block1):

precondition OnTable(blockl) A Empty(gripper)

effect Holding(block1) A
- OnTable(block1) A

- Empty(gripper)

Geometric locations of robot, hand, or object

not considered

A Continuous Version of Blocks World

PickUp(b1, I1, 12, I3, p):
precondition GripperAt(l1) A
Empty(gripper) A
IsGraspingPose(l2, b1) A 1
At(b1, 13) A 5
vb2 - Obstructs(b2, p, 11, 12)

effect Holding(b1) A
- At(bl, I3) A

- Empty(gripper) A
GripperAt(12)

A Continuous Version of Blocks World

PickUp(b1, 11, 12, 13, p):
precondition GripperAt(l1) A
Empty(gripper) A
IsGraspingPose(l2, b1) A 1
At(b1, 13) A 5
vb2 - Obstructs(b2, p, 11, 12)

effect Holding(b1) A
- At(bl, I3) A

- Empty(gripper) A
GripperAt(l2)

Oops: infinitely many facts, infinite branching factor

A Continuous Version of Blocks World

PickUp(b1, I1, 12, I3, p):
precondition GripperAt(l1) A
Empty(gripper) A
IsGraspingPose(l2, b1) A 1
At(b1, 13) A 5
vb2 - Obstructs(b2, p, 11, 12)

effect Holding(b1) A
- At(bl, I3) A

- Empty(gripper) A
GripperAt(l2)

Oops: infinitely many facts, infinite branching factor
Solution: discretization

Discretization

= 10 points eachinx, y

= Precompute
o IsGraspingPose(l, b)
o Obstructs(b, p, |1, 12)

= 5 objects = 50,000 facts

Discretization

= 10 points each inx, y

= Precompute

o IsGraspingPose(l, b)
o Obstructs(b, p, |1, 12)

= 5 objects = 50,000 facts

l_I_l

7DOF arm + 4DOF base/torso
+ 80 objects =~ 104 facts

Creating
input...

Our approach

 PDDL planner uses “location references”

= Number of references depends on number of objects
and on discrete plan size — no discretization

" Low-level motion planner interprets these references

* Low-level infeasibility is re-expressed as new PDDL
facts about obstructions

= Expressed using location references

 PDDL planner replans with new information

A SIMPLE EXAMPLE

Discrete state: GripperAt(initLoc), At(blockl, block1 loc), At(block2, block2_loc)

* High level intuitive plan:
" pick blockl after going to its 1
grasping pose

Discrete state: GripperAt(initLoc), At(block1, block1 loc), At(block2, block2_loc)

-
* High level intuitive plan:

= pick block1 after going to its
grasping pose

1. Low level instantiates a grasping

pose for block 1 independent of
other block

Low level searches for a motion
plan to reach grasping pose; finds
no collision-free solution

Discrete state += “block2 obstructs grasping pose for block1l in path from
initial location”

* High level intuitive plan:

. oick blockl af . .
Failed aracning nase

Low level instantiates a grasping
pose for block 1 independent of
other block

Low level searchers for a motion

plan to reach grasping pose; finds
no collision-free solution

“block2 obstructs
grasping pose for blockl
from initial location”

Discrete state += “block2 obstructs grasping pose for block1l in path from
initial location”

* High level intuitive plan:

. pick blocklaf : :)
graspiigpese
2
REPLAN
= pick block2 after going.to its
grasping pose

= release block2 in after going
to release pose for free arec il

Low level searchers for a motion

. : :
pick block1 after going to its plan to reach grasping pose; finds

grasping pose no collision-free solution
3. Reports obstruction to high level

Discrete state diff: GripperAt “grasping pose for block2”, Holding(block?2)

* High level intuitive plan:
. pick blocklaf . .)

5 | i &1 2
REPLAN

" pick block2 after going to its
grasping pose

" release block2 in after going
to release pose for free area

" pick blockl after going to its
grasping pose

Discrete state diff: At(block2, FreeArea), Empty(gripper)

* High level intuitive plan:

. oick blocklaf . .
graspiigpoese

REPLAN

" pick block2 after going to its
grasping pose

" release block2 in after going to
release pose for free area

" pick blockl after going to its
grasping pose

Discrete state diff: GripperAt “grasping pose for 1”, Holding(block1)

* High level intuitive plan:
" piekblockl-aftergowngto-ts |
grasphgpese
REPLAN
" pick block2 after going to its
grasping pose

" release block2 in after going
to release pose for free area

" pick blockl after going to its Goal Reached!
grasping pose

SAME EXAMPLE IN FORMAL SYNTAX

Discrete state += Obstructs(block2, initLoc, gp(block1), path(initLoc, gp(block1)))
* High level intuitive plan:

4 V4 4

FaiLedI (|| |J} ||{' " E|| | ::}
REPLAN !

= PickUp(block2, initLoc, gp(block2), 2
loc(block2),path(initLoc,gp(block2)))

= PutDown(gp(block?2), free area,
rp(free_area),path(gp(block2), rp(free _area)))

= PickUp(blockl, rp(free _area), gp(block1),
loc(block1), path(rp(free_area), gp(block1)))

Discrete state diffs: GripperAt(gp(block1)), Empty(gripper), Holding(block1)

* High level intuitive plan:
L . 5

leetbloekd)pathiinitbocgptblockih

REPLAN I

= PickUp(block2, initLoc, gp(block?2),
loc(block2),path(initLoc,gp(block2)))

= PutDown(gp(block?2), free area,
rp(free_area),path(gp(block2), rp(free _area)))

, Goal Reached!
= PickUp(blockl, rp(free _area), gp(block1),

loc(blockl), path(rp(free_area), gp(block1)))

WHY DOES IT WORK??

Actions with Continuous Arguments

e Effect axioms for actions like “grasp” have the form

V x ¥y (plxy) = alx) A r(xg(y)))
where p is the precondition, g is the post-condition
X: object, y: continuous arguments

* |n order to apply the action to achieve g(x), need to
find some y (from infinitely many) satisfying p(x,y)

* Treat low-level motion planner as an unknown
function f() s.t. p(x, f(x)) holds

* Planner can assume facts: p(x, f(x)) for each x
" Treat “f(x)” like any other object in the world

Overall Approach

, Classical Planner ,
PDDL Problem Formulation Discrete Plan

Update State

Failed precons of
unsuccessful action

Sampling based interpreter

Plan with reference terms

Low levellexecutor

Success

Sufficient Conditions for Guaranteed Solutions

Standard limitations of replanning:
= |nitial PDDL model is incorrect, but algorithm may act anyway
= (Can fail with dead ends and infinite loops

BUT the model does improve with every non-executable action
Theorem: Algorithm is sound and complete provided:

= Low level sampling terminates, succeeds when possible

" Problem has no dead ends

= Negative geometric preconditions can be deleted but not added

= Positive geometric preconditions can be added but not deleted
For details, see paper or ask Siddharth

RESULTS ON A PR2 SIMULATOR

Experiments

* Used OpenRave for simulation, IK and grasp
computation
e Scenario 1: pick and place with obstructions

= Many (50, 65, 80) randomly placed objects
= 3 tests (50, 65, 80 objects), 10 runs each
= Used FF planner (optimality not a concern)
e Scenario 2: setting a dinner table
= 2 cups, 2 mugs, 2 plates to be placed at predefined locations

= Tray available to carry multiple objects
= Stability constraints for item stacking not known a priori
= Used FD anytime planner with timeout

Cluttered Table, 50 Objects

Results

* Cluttered table, averages over 10 runs:

#Objects Time(s) #Replan # Obstrns

50 139 2.1 1.8
65 228 2.6 2.0
30 602 2.3 2.6

= Most of the time spent in low level planning*
* Dinner table: planning + execution time ~230s

= Most of the time was spent in high level planning

Simulations

Non-simulations

Conclusions

A method for using classical planners with motion
planners in a modular fashion

= Avoiding exponential discretization complexity

= Solution based on naming just the discrete-plan-relevant
locations with uninterpreted functions

= Execution errors must be observable and expressible as
new PDDL facts

e Still works with no internal low-level model

* Alternative algorithmic approaches could yield
stronger guarantees given a low-level simulator

