A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task Descriptions

June 10th, 2013

D. Di Marco*, R.J.M. Janssen°, A.C. Perzylo[®], M.J.G. van de Molengraft°, P. Levi*

 $^\circ$ Eindhoven University of Technology, The Netherlands

[®] Technische Universität München, Germany

* Universität Stuttgart, Germany

dimarco@ipvs.uni-stuttgart.de

Primary question: How can task descriptions be shared among different service robot platforms in different environments?

- Represent task descriptions in an abstract way (action recipe)
- Decouple from environment & robot hardware specifics
- Store information in a globally accessible database

How use these to generate execution plans tailored to the current situation?

Action Recipe

Abstract (i.e. independent of robot platform and environment) task descriptions¹

- Formulated in **OWL**, based on a common ontology
- Can be composed of other recipes or primitive actions, sub-actions are partially ordered
- Annotated with description of requirements, to check whether a given robot is capable of executing these

¹M. Tenorth et al.: "The RoboEarth language: Representing and Exchanging Knowledge about Actions, Objects, and Environments", ICRA 2012

Action Recipe

Abstract (i.e. independent of robot platform and environment) task descriptions¹

Example Recipe

```
Class: BringSomethingSomewhere
EquivalentTo:
(knowrob:toLocation some
robotPose-handover1)
SubClassOf:
roboearth:IntentionalAction
...
Individual: ServeADrinkOrder10
Types:
knowrob:PartialOrdering-Strict
Facts:
knowrob:occursBeforeInOrdering MoveBaseToGraspPose,
knowrob:occursAfterInOrdering GraspBottle
```

¹M. Tenorth et al.: "The RoboEarth language: Representing and Exchanging Knowledge about Actions, Objects, and Environments", ICRA 2012

Action Instantiation

- Task: navigate into the next room
- How to infer that "Navigate" has to be instantiated as "open door, pass open door"?
- \Rightarrow we need more knowledge

Action Recipe Annotation

HTN decompositions for actions with preconditions & effects, fully encoded in OWL and linked to recipes.

Plan Instantiation Process

- Semantic Maps: basic topology of environment
- SRDL: Semantic Robot Description Language¹
- Off-the-shelf HTN planner: SHOP2¹
- CRAM Plan Language (CPL) to specify execution plans

¹L. Kunze et al.: "Towards semantic robot description languages". ICRA 2011 ²D. Nau et al.: "SHOP2: An HTN planning system". JAIR, 2003

Plan Instantiation Process

- Semantic Maps: basic topology of environment
- SRDL: Semantic Robot Description Language¹
- Off-the-shelf HTN planner: SHOP2¹
- CRAM Plan Language (CPL) to specify execution plans

¹L. Kunze et al.: "Towards semantic robot description languages". ICRA 2011 ²D. Nau et al.: "SHOP2: An HTN planning system". JAIR, 2003 Extension of Common Lisp for robot execution plans

- Control structures for executing/synchronizing tasks in parallel
- Implementation of the Rete algorithm for Prolog-like reasoning facilities
- Designators: symbolic description of objects, locations, task parts
 - Based on ideas from Firby²
 - Created from action specifications in recipe
 - Get resolved at the latest possible instant during plan execution
 - Independent of Hardware/Environment

¹M. Beetz, L. Mösenlechner, M. Tenorth, "CRAM - A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments". IROS, 2010 ²R.J. Firby, "Adaptive execution in complex dynamic worlds". PhD thesis, Yale University, 1989

Architecture

Simulation Experiment

- Gazebo simulator¹ used
- Fraunhofer IPA's Care-o-Bot 3-4 (1 arm, 1 tray) and TU/e's Amigo (2 arms) prototype
- Task description: "bring something somewhere"
- Both robots use same top-level recipe, but need to select different decompositions

¹http://gazebosim.org

Experiment Environment

The door can be opened by touching the green button. The used arm has to be free.

Differences in generated Plans

MoveTo

No door: navigation between rooms trivial

Differences in generated Plans

2 manipulators: grasp object with left, open door with right arm

Differences in generated Plans

1 manipulator + tray: put object on tray, open door, pickup object

- Video Demo -

Conclusion

- Increase applicability of abstract task descriptions using off-the-shelf HTN planning
- Separation of sources of knowledge
- Experiment required about 4K lines of OWL
- Classic symbolic reasoning, e.g. no temporal aspects

Future work:

- Apply approach to more difficult scenarios
- Integrate plan generation and task execution for more robust behavior

Discussion

Thank you for your attention