
Affordance-based reasoning
for robot task planning

Bonn-Rhein-Sieg University
and B-IT Center
Grantham-Allee 20
53757 Sankt Augustin, Germany

Joachim Hertzberg
Iman Awaad
Gerhard K. Kraetzschmar

Osnabrück University
and DFKI RIC Osnabrück Branch

Albrechtstrasse 28
49076 Osnabrück, Germany

Tuesday, 11 June 13

RESEARCH GOAL

Enable robots to handle
unexpected situations

Affordances

Planning

Description Logics+

Tuesday, 11 June 13

Enable robots to handle unexpected situations
Object substitution

Photo credit: http://blog.comfree.com/2013/05/03/clever-kitchen-storage-solutions/#.Uaekj-uDGJN

Tuesday, 11 June 13

Enable robots to handle unexpected situations
Object substitution as tool usage

Tuesday, 11 June 13

Enable robots to handle unexpected situations
Performance enhancement

Photo credit: http://www.instructables.com/id/Lazy-Line-Dry/step2/Clothes-with-plastic-hangers-How-to-do-it-fast-an/

Tuesday, 11 June 13

Enable robots to handle unexpected situations
Action substitution

Tuesday, 11 June 13

affordances

James J.
Gibson

Affordances
are opportunities for action provided
by a particular object or environment

A closed door
does not afford passage!

Tuesday, 11 June 13

Don
Norman

Perceived affordances
allude to how an object may be interacted

with based on the actor's goals, plans,
values, beliefs and past experiences

It might afford
opening and passage!

perceived affordances

Tuesday, 11 June 13

functional affordances

Don
Norman

Perceived affordances
allude to how an object may be interacted

with based on the actor's goals, plans,
values, beliefs and past experiences

It might afford
opening and passage!

Enab le
in te l l i gent
behav io r

reduce the action
space

handle underspecified
commands

provide a means to represent
& use a priori knowledge

Tuesday, 11 June 13

RESEARCH GOAL

Enable robots to handle
unexpected situations

Affordances

Show how to
model

before , during planning

and use them

Planning
Description Logics+ & at execution

Tuesday, 11 June 13

1. Model the domain
2. Create the planning problem
3. Generate a plan
4. Execute/Monitor it

real domains, especially in service robotics,
are really hard to model

Tuesday, 11 June 13

Model as much as possible
― difficult, time consuming

Model as little as possible
― could lose solutions

Use domain
information to

quickly solve hard
problems

Tuesday, 11 June 13

MODELING
THE DOMAIN

Conven ien t
representa t ion

Practical algorithms

[1] M. Ghallab, D. Nau, and P. Traverso. Automated planning: theory and practice. Morgan Kaufmann Publishers, Elsevier, 2004

m_WaterPlant(?Plant)
precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

Tuesday, 11 June 13

m_WaterPlant(?Plant)
precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

MODELING
THE DOMAIN

 Heterogenous hardware
 Faulty hardware

How do we know this
is possible?

Tuesday, 11 June 13

MODELING
THE DOMAIN

2. The Hybrid Deliberative Layer

Table 2.2.: OWL constructors [BHS08].

Constructor DL syntax Example
intersectionOf C1 � ... � Cn Human � Male
unionOf C1 � ... � Cn Doctor � Lawyer
complementOf ¬C ¬ Male
oneOf {x1...xn} {john,mary}
allValuesFrom ⇤ P.C ⇤ hasChild .Doctor
someValuesFrom ⌅ R.C ⌅ hasChild .Lawyer
hasValue ⌅ R.{x} ⌅ citizenOf .{USA}
minCardinality (⇥ n R) (⇥ 2 hasChild)
maxCardinality (� n R) (� 1 hasChild)
inverseOf R� hasChild�

OWL has three expressive sublanguages, namely OWL-Lite, OWL-DL, and OWL-Full. OWL-
Lite is the least expressive of these. It supports primarily classification hierarchies and simple
constraints. It supports only cardinality constraints with a value of 0 or 1. Hence it is cat-
egorised as DL SHIN . OWL-DL has the maximum expressiveness and still retains computa-
tional completeness. Thus, it is named after the Description Logics DL. It is equivalent to DL

SHOIN . OWL-Full is not really a sublanguage. It permits users to use maximum expressive-
ness and syntactic freedom of RDF, however it cannot guarantee the tractability of the reasoner.
Every valid OWL-Lite is also a valid OWL-DL and every valid OWL-DL is a valid OWL-Full
[MvH04, DSB+04, BHS08].

Just like RDF, OWL describes the concepts and roles from DL syntax in XML format. Table
2.2 summarises the OWL constructors with their relations to DL syntax. A snapshot of XML

serialisation for expressing Human � Male would be written as follows [BHS08]:

< o w l : C l a s s >
< o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =" C o l l e c t i o n ">

< o w l : C l a s s r d f : a b o u t =" #Human">
< o w l : C l a s s r d f : a b o u t =" #Male ">

< / o w l : i n t e r s e c t i o n O f >
< / o w l : C l a s s >

In the same way (⇥ 2 hasChild) would be written as:

< o w l : R e s t r i c t i o n >
< o w l : o n P r o p e r t y r d f : r e s o u r c e =" # h a s C h i l d ">

< o w l : m i n C a r d i n a l i t y
r d f : d a t a t y p e ="&xsd ; N o n N e g a t i v e I n t e g e r ">2

< / o w l : m i n C a r d i n a l i t y >
< / o w l : o n P r o p e r t y >

22

* Table reproduced from: Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. Handbook of
Knowledge Representation, 2008.

Table reproduced from R. Hartanto, Fusing DL Reasoning with HTN Planning as a Deliberative Layer in Mobile Robots. PhD thesis, University of Osnabrück, August 2009.

2.2. HDL Components

Table 2.1.: Common DL constructors and their correspondence with language name [AGPC04].

Construct Syntax1 Language2
Concept A

FL0

FL�
AL

S

Role name R
Intersection C ⌫D
Value restriction ⇤ R.C
Limited existential quantification ⌅R
Top or Universal ⌃
Bottom ⌥
Atomic Negation ¬A
Negation3 ¬C C
Union C �D U
Existential restriction ⌅ R.C E
Number restrictions (� n R) (⇥ n R) N
Nominals {a1 . . . an} O
Role hierarchy R ⇠ S H
Inverse Role R� I
Qualified number restriction (� n R.C) (⇥ n R.C) Q
1 A refers to atomic concepts, C and D refers to any concept definition, R refers to atomic roles and S

refers to role definitions
2 FL is used for structural DL languages and AL for attributive languages [BCM+03]. S is the name
used for the language ALCR+, which is composed of ALC plus transitive roles.
3 ALC and ALCUE are equivalent languages, since union (U) and existential restriction (E) can be
represented using negation (C).

enumeration, hence it can be categorised as DL SHIQ language. A combination of DArpa
Markup Language (DAML) and OIL, which is known as DAML+OIL, was developed as an ex-
tension of RDF(S). This language extends RDF(S) directly instead of building a layer over it.
DAML+OIL is an extended DL SHIQ. It can also represent datatypes and nominals. The most
recent semantic web language is the Ontology Web Language (OWL), which has been developed
by W3C Web-Ontology Working Group. OWL is a derivative of DAML+OIL which is built upon
RDF(S) [AGPC04].

Heavy OIL
(possible future extensions)

Instance OIL
(Standard OIL + instances)

Standard OIL

Core OIL
(Standard OIL ! RDFS)

reification

RDFS

Figure 2.5.: Layers of OIL [AGPC04].

21

*
*

*

*
*

Knowledge Base

TBox
Concepts

Robot, Place, Container, Functional
Affordance

Subconcepts
Room ⊆ Place

Roles
AdjacentTo Place

ABox
Individuals

Room (Kitchen)

AdjacentTo(Kitchen,DiningRm)

m_WaterPlant(?Plant)

Tuesday, 11 June 13

MODELING
THE DOMAIN

2. The Hybrid Deliberative Layer

Table 2.2.: OWL constructors [BHS08].

Constructor DL syntax Example
intersectionOf C1 � ... � Cn Human � Male
unionOf C1 � ... � Cn Doctor � Lawyer
complementOf ¬C ¬ Male
oneOf {x1...xn} {john,mary}
allValuesFrom ⇤ P.C ⇤ hasChild .Doctor
someValuesFrom ⌅ R.C ⌅ hasChild .Lawyer
hasValue ⌅ R.{x} ⌅ citizenOf .{USA}
minCardinality (⇥ n R) (⇥ 2 hasChild)
maxCardinality (� n R) (� 1 hasChild)
inverseOf R� hasChild�

OWL has three expressive sublanguages, namely OWL-Lite, OWL-DL, and OWL-Full. OWL-
Lite is the least expressive of these. It supports primarily classification hierarchies and simple
constraints. It supports only cardinality constraints with a value of 0 or 1. Hence it is cat-
egorised as DL SHIN . OWL-DL has the maximum expressiveness and still retains computa-
tional completeness. Thus, it is named after the Description Logics DL. It is equivalent to DL

SHOIN . OWL-Full is not really a sublanguage. It permits users to use maximum expressive-
ness and syntactic freedom of RDF, however it cannot guarantee the tractability of the reasoner.
Every valid OWL-Lite is also a valid OWL-DL and every valid OWL-DL is a valid OWL-Full
[MvH04, DSB+04, BHS08].

Just like RDF, OWL describes the concepts and roles from DL syntax in XML format. Table
2.2 summarises the OWL constructors with their relations to DL syntax. A snapshot of XML

serialisation for expressing Human � Male would be written as follows [BHS08]:

< o w l : C l a s s >
< o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =" C o l l e c t i o n ">

< o w l : C l a s s r d f : a b o u t =" #Human">
< o w l : C l a s s r d f : a b o u t =" #Male ">

< / o w l : i n t e r s e c t i o n O f >
< / o w l : C l a s s >

In the same way (⇥ 2 hasChild) would be written as:

< o w l : R e s t r i c t i o n >
< o w l : o n P r o p e r t y r d f : r e s o u r c e =" # h a s C h i l d ">

< o w l : m i n C a r d i n a l i t y
r d f : d a t a t y p e ="&xsd ; N o n N e g a t i v e I n t e g e r ">2

< / o w l : m i n C a r d i n a l i t y >
< / o w l : o n P r o p e r t y >

22

* Table reproduced from: Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. Handbook of
Knowledge Representation, 2008.

2.2. HDL Components

Table 2.1.: Common DL constructors and their correspondence with language name [AGPC04].

Construct Syntax1 Language2
Concept A

FL0

FL�
AL

S

Role name R
Intersection C ⌫D
Value restriction ⇤ R.C
Limited existential quantification ⌅R
Top or Universal ⌃
Bottom ⌥
Atomic Negation ¬A
Negation3 ¬C C
Union C �D U
Existential restriction ⌅ R.C E
Number restrictions (� n R) (⇥ n R) N
Nominals {a1 . . . an} O
Role hierarchy R ⇠ S H
Inverse Role R� I
Qualified number restriction (� n R.C) (⇥ n R.C) Q
1 A refers to atomic concepts, C and D refers to any concept definition, R refers to atomic roles and S

refers to role definitions
2 FL is used for structural DL languages and AL for attributive languages [BCM+03]. S is the name
used for the language ALCR+, which is composed of ALC plus transitive roles.
3 ALC and ALCUE are equivalent languages, since union (U) and existential restriction (E) can be
represented using negation (C).

enumeration, hence it can be categorised as DL SHIQ language. A combination of DArpa
Markup Language (DAML) and OIL, which is known as DAML+OIL, was developed as an ex-
tension of RDF(S). This language extends RDF(S) directly instead of building a layer over it.
DAML+OIL is an extended DL SHIQ. It can also represent datatypes and nominals. The most
recent semantic web language is the Ontology Web Language (OWL), which has been developed
by W3C Web-Ontology Working Group. OWL is a derivative of DAML+OIL which is built upon
RDF(S) [AGPC04].

Heavy OIL
(possible future extensions)

Instance OIL
(Standard OIL + instances)

Standard OIL

Core OIL
(Standard OIL ! RDFS)

reification

RDFS

Figure 2.5.: Layers of OIL [AGPC04].

21

*
*

*

*
*

3.3. Exploiting the HDL system

the navigation domain with the extended concepts. Six additional concepts are defined in order
to model the domain. Additionally, there are the three concepts in orange, which instances are
inferred by the DL reasoner from the asserted instances (ABox).

Figure 3.6.: Extended navigation domain’s states concepts.

The concepts Door, V aluePartition, and DoorStatus represent doors and their status.
Door is defined as:

Door ⇤ Building ⇥

� hasState.DoorStatus ⇥

= 1 hasState

Each instance of Door has exactly one state either “open” or “closed”. This property is defined
by the instances of the DoorStatus, namely {DoorStatus(isOpen), DoorStatus(isClose)}.
The doors are inserted into the ABox as follows: {Door(door_1), Door(door_2), Door(door
_2_4), ... Door(door_12)}. In addition, the state of every door is defined as {hasState(door_1,
isOpen), hasState(door_2, isClose), hasState(door_2_4, isClose), ... hasState(door_12,
isClose)}.

The doors are modelled and asserted in the HDL system. However, the Room concept is
not yet included. In order to accommodate additional information like Door and Building,
Room is redefined as follows:

Room ⇤ Building ⇥

� adjacentto.Room ⇥

� hasDoor.Door ⇥

� inBuilding.Building

Two instances of Building are asserted in the model, namely {Building(building-1), Build-
ing (building-2)}. The properties hasDoor and inBuilding are filled with this knowledge:
{inBuilding(room-1, building-1), inBuilding(room-2, building-1), ... hasDoor (room- 1,
door_1), hasDoor (building-1, door_1), ... hasDoor (room-12, door_12)}.

The navigation domain, as shown in Figure 3.5, is now modelled in the HDL system. This
knowledge is just inserted into the ABox. Retrieving an instance of a concept is done merely by
reading the asserted knowledge from the ABox. The DL reasoner can do more than just return

53

Knowledge Base

TBox
Concepts

Robot, Place, Container, Functional
Affordance

Subconcepts
Room ⊆ Place

Roles
AdjacentTo Place

ABox
Individuals

Room (Kitchen)

AdjacentTo(Kitchen,DiningRm)

m_WaterPlant(?Plant)

Ontology reproduced from R. Hartanto, Fusing DL Reasoning with HTN Planning as a Deliberative Layer in Mobile Robots. PhD thesis, University of Osnabrück, August 2009.

Tuesday, 11 June 13

1. Model the domain
2. Create the planning problem
3. Generate a plan
4. Execute/Monitor it

Use DL to infer
relevant aspects of

the domain

our initial state
is HUGE

Tuesday, 11 June 13

1. Model the domain
2. Create the planning problem
3. Generate a plan
4. Execute/Monitor it

Tuesday, 11 June 13

m_WaterPlant(?Plant)
precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

GENERATE
A PLAN

What if we have
no watering can?

Tuesday, 11 June 13

1. Model the domain
2. Create the planning problem
3. Generate a plan
4. Expand the domain and try again
5. Execute/Monitor it

Tuesday, 11 June 13

EXPAND
THE DOMAIN

Use affordances

...and Conceptual
Similaritym_WaterPlant(?Plant)

precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

Tuesday, 11 June 13

FUNCTIONAL
AFFORDANCES

watering can |ˈwɔd!rɪŋ ˌkæn|
noun
a portable water container with a long spout and a
detachable perforated cap, used for watering plants.

ToWater

Plant

WateringCan hasPrimaryFunctionalAffordance

isObjectOfToWater

isPrimaryFunctionalAffordanceOf

hasObjectToActOn

Tuesday, 11 June 13

CONCEPTUAL
SIMILARITY

Red
Blue

Green
YellowBrightness

Intensity

Hue

Gärdenfors, P., and Warglien, M. 2012. Using Conceptual Spaces to Model Actions and Events. Journal of Semantics.

Multi-dimensional feature space:
points denote objects
regions denote concepts

Conceptual spaces are
composed by quality

dimensions

Can we determine a relation between quality dimensions and given tasks?

E.g. Capacity to hold water;
handle; spout

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g. only “my_teacup”

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g. closest instance of a “teacup”

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g.closest object “for drinking from”,
that matches “small, bowl-shaped,
container, handle” (e.g. “mug”)

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g. closest object “for drinking from”
(e.g. “bottle”)

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g. “small, bowl-shaped,container,
handle” (e.g. “measuring cup”)

Tuesday, 11 June 13

Increasing flexibility & Decreasing Constraints

Inferred Conceptual Similarity

Unique Instance

Common Instance

Same Functional Affordance
& Conceptually Similar

Same Functional Affordance

Conceptually Similar

E.g. objects used “for drinking from”
are usually “small, cylindrical, container,
glass” (e.g. “jar”)

Tuesday, 11 June 13

1. Model the domain
2. Create the planning problem
3. Generate a plan
4. Execute/Monitor it

Combine generated plans
with action behaviors

incomplete information about
the environment

Tuesday, 11 June 13

EXECUTE/
MONITOR
PLANS

Use Proximity

F ind a l te r na t i ves
in case o f fa i l u res

Take advantage
of opportunities

m_WaterPlant(?Plant)
precond: empty ?WCan

m_Get(?WCan)

m_Fill(?WCan)

m_WaterPlant(Plant)
precond: full ?WCan

o_GoTo(?KitchenSink,ForFilling) o_OpenTap(?ColdTap)o_Position(?WCan,ForFilling) o_CloseTap(?ColdTap)

o_Position(?WCan,ForWatering)o_GoTo(?WCan,ForGrasping) o_Grasp(?WCan,ForTransport)

o_Grasp(?WCan,ForTransport)

o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

m_Regrasp(?WCan)

o_Place(?WCan,ForRegrasping) o_Grasp(?WCan,ForPouring)

Tuesday, 11 June 13

USE ABSTRACT
AFFORDANCES

To reduce complex i ty
dur ing p lann ing

1. Cluster behaviors by their effect on objects
2. Create one operator per cluster
3. Generate plans with these operators
4. Executed as the closest-matching behavior

Tuesday, 11 June 13

[1] R. Hartanto, Fusing DL Reasoning with HTN Planning as a Deliberative Layer in Mobile Robots. PhD thesis, University of Osnabrück, August 2009.

Mobile Manipulator
(Hi-level capabilities through low level control of sensors and actuators)

Hybrid Deliberative Layer
Plan Management

User & Environment

Affordance-based
Control

Perception Manipulation ...DriveHuman Robot
Interaction

Planner
(JSHOP2)

Knowledge Base
(OWL-DL Ontology Model,

and Plan Library)

Inference Module

(Pellet)

Ontology to Planning
Domain/Problem

Generator

Action Execution/Monitoring
(SMACH)

Plan Execution/Monitoring

1. Receive command
2. Check plan library
3. Create planning problem
4. Generate Plan
5. Execute and monitor it

Tuesday, 11 June 13

Design the plan library (including preferences)

Test domain expansion phase

Extend this to enable action substitution

Enable instantiation of affordance behaviors at
execution time using Conceptual Spaces

Enable object substitution as tool usage

Enable the performance enhancement use case

Architecture design

Proof of concept integrating
planning with execution &
monitoring

Integration into our b-it-bots
RoboCup @Home framework

Modeling functional affordances
in DL

Abstraction hierarchy for action
substitution

Extend planner to lift over
functional afffordances and use
justification structures

Tuesday, 11 June 13

THANK YOU

Tuesday, 11 June 13

