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Life: play and win in 20 trillion moves!

                      Stuart Russell!
Computer Science Division, UC Berkeley!
!
Joint work with Ron Parr, David Andre, Andy Zimdars, Carlos 
Guestrin, Bhaskara Marthi, and Jason Wolfe!



White to play and win in 2 moves!
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Life!
§  100 years x 365 days x 24 hrs x 3600 seconds 

x 640 muscles x 10/second = 20 trillion actions!
§  (Not to mention choosing brain activities!)!
§  And the world has a very large, partially 

observable, uncertain, unknown state space!
§  So, being intelligent is “provably” hard!
§  How on earth do we manage?!
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Hierarchical structure!!  
(among other things)!

§  Deeply nested behaviors give modularity!
§  E.g., tongue controls for [t] independent of 

everything else given decision to say “tongue”!
§  High-level decisions give scale!

§  E.g., “go to SARA” ≈ 3,000,000,000 actions!
§  Look further ahead, reduce computation 

exponentially!
[NIPS 97, ICML 99, NIPS 00, AAAI 02, ICML 03, IJCAI 05, 

ICAPS 07, ICAPS 08, ICAPS 10, IJCAI 11, UAI 12]!



5 

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!
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High-level actions!
§  Classical HTN (Hierarchical Task Network)!
§  A high-level action (HLA) has a set of possible refinements 

into sequences of actions, primitive or high-level!
§  Hierarchical optimality = best primitive refinement of Act!

[Act] 

[GoSFO, Act] [GoOAK, Act] 

[WalkToBART, BARTtoSFO, Act] 
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Semantics of HLAs!
§  To do offline or online planning with HLAs, need a model 

describing outcome of each HLA 
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Semantics of HLAs!
§  To do offline or online planning with HLAs, need a model 

describing outcome of each HLA!
§  Drew McDermott (AI Magazine, 2000):!

§  The semantics of hierarchical planning have never been 
clarified … no one has ever figured out how to reconcile the 
semantics of hierarchical plans with the semantics of 
primitive actions 
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Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful 

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to 
abstract plans without backtracking!
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Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful 

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to 
abstract plans without backtracking!

§  Bacchus and Yang, 1991: It is naïve to expect DRP to 
hold in general!

§  MRW, 2007: Theorem: If assertions about HLAs are true, 
then DRP always holds!

§  Problem: how to say true things about effects of HLAs?!
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h1h2 is a solution 

Angelic semantics for HLAs !
§  Start with atomic state-space view, start in s0, goal state g!
§  Central idea is the reachable set of an HLA from each state!

§  When extended to sequences of actions, !
!allows proving that a plan can or cannot possibly reach the goal!

§  May seem related to nondeterminism!
§  But the nondeterminism is angelic: the “uncertainty” will be resolved 

by the agent, not an adversary or nature!

a4 a1 a3 a2	

State !
space!
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Technical development!
§  NCSTRIPS to describe reachable sets!

§  STRIPS add/delete plus “possibly add”, “possibly delete”, etc!
§  E.g., GoSFO adds AtSFO, possibly adds CarAtSFO!

§  Reachable sets may be too hard to describe exactly!
§  Upper and lower descriptions bound the exact 

reachable set (and its cost) above and below!
§  Still support proofs of plan success/failure!
§  Possibly-successful plans must be refined!

§  Sound, complete, optimal offline planning algorithms!
§  Complete, eventually-optimal online (real-time) search!
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Example – Warehouse World!
§  Has similarities to blocks and 

taxi domains, but more 
choices and constraints!
§  Gripper must stay in bounds!
§  Can’t pass through blocks!
§  Can only turn around at top row!

§  Goal: have C on T4 
§  Can’t just move directly!
§  Final plan has 22 steps!T1 T2 T3 T4
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Navigate(xt,yt)                                        (Pre: At(xs,ys))!
!
Upper:      -At(xs,ys), +At(xt,yt), ±FacingRight!
                 !
!

Lower:  IF (Free(xt,yt) ∧∀x Free(x,ymax)):!
!    -At(xs,ys), +At(xt,yt), ±FacingRight, !

                 !
             ELSE:!
                 nil!

NCSTRIPS for warehouse world!
§  An efficient algorithm exists to progress state sets 

(represented as DNF formulae) through descriptions!

~! s!
t

~! s!
t!

s!
t!

x!
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Experiment!
§  Instance 3!

§  5x8 world!
§  90-step plan!

§  Flat/hierarchical without descriptions did not terminate within 10,000 seconds!
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Online search: warehouse world!
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Online search: 500x500 nav-switch!
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Summary of Part 1!
§  Temporal abstraction is crucial for behaving 

well over long time scales!
§  Hierarchical planning was designed to take 

advantage of temporal abstraction!
§  Angelic descriptions of reachable sets …!

§  Capture the inherent flexibility of abstract plans!
§  Support provably correct/optimal abstract planning!

22 



23 

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!
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Temporal abstraction in RL!
§  Basic theorem (Forestier & Varaiya 78; Parr & Russell 98):!

§  Given an underlying Markov decision process with primitive actions!
§  Define temporally extended choice-free actions!
§  Agent is in a choice state whenever an extended action terminates!
§  Choice states + extended actions form a semi-Markov decision process!

§  Hierarchical structures with unspecified choices = know-how !
§  Hierarchical Abstract Machines [Parr & Russell 98] (= recursive NDFAs)!
§  Options [Sutton & Precup 98] (= extended choice-free actions)!
§  MAXQ [Dietterich 98] (= HTN hierarchy)!

§  General partial programs: agent program falls in a designated 
restricted subset of arbitrary programs [Genesereth & Hsu, 1991]!
§  Alisp [Andre & Russell 02]!

§  Concurrent Alisp [Marthi et al 05]!
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Running example!
§  Peasants can move, 

pickup and dropoff!
§  Penalty for collision!
§  Cost-of-living each step!
§  Reward for dropping off 

resources!
§  Goal : gather 10 gold + 

10 wood!
§  (3L)n++ states s!
§  7n primitive actions a!
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RL and partial programs!

Learning 
algorithm 

Completion 

a 

s,r 

Partial 
program 
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RL and partial programs!

Learning 
algorithm 

Completion 

a 

s,r 

Partial 
program 

Hierarchically optimal 
for all terminating programs 



Standard MDP in ALisp!
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(defun top () 
 (loop do 
  (choose ‘(N S E W NoOp PickUp DropOff)))  
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(defun top () 
  (loop do 
    (until (my-effectors) 
      (choose ‘dummy)) 
    (setf peas 
  (first (my-effectors)) 

    (choose ‘top-choice 
       (spawn gather-wood peas) 
       (spawn gather-gold peas)))) 
  
 
(defun gather-wood () 
  (with-choice ‘forest-choice 
  (dest *forest-list*) 
   (nav dest) 
   (action ‘get-wood) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 

 
 
 

 
(defun top ()   
  (loop do 
    (choose ‘top-choice 
       (gather-gold) 
       (gather-wood)))) 
 
 
 
 
 
 
(defun gather-wood () 
  (with-choice ‘forest-choice 
  (dest *forest-list*) 
   (nav dest) 
   (action ‘get-wood) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 

 
 
 

 
 
(defun gather-gold () 
  (with-choice ‘mine-choice 
  (dest *goldmine-list*) 
   (nav dest) 
   (action ‘get-gold) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 
 
 
(defun nav (dest) 
  (until (= (my-pos) dest) 
    (with-choice ‘nav-choice 
        (move ‘(N S E W NOOP)) 
      (action move)))) 
   

 
 
 

An example Concurrent ALisp program!An example single-threaded ALisp program!
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Technical development!
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Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ]  environment state + program state 

(cf. [Russell & Wefald 1989] ) !
!
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Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ]  environment state + program state 

(cf. [Russell & Wefald 1989] ) !
§  MDP + partial program = SMDP over {ω}, learn Qπ(ω,u) !

§  Additive decomposition of value functions!
§  by subroutine structure [Dietterich 00, Andre & Russell 02] 

Q is a sum of sub-Q functions per subroutine!
§  across concurrent threads [Russell & Zimdars 03]  !

    Q is a sum of sub-Q functions per thread, with 
decomposed reward signal            !
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Internal state!
§  Availability of internal state (e.g., goal stack) can 

greatly simplify value functions and policies!
§  E.g., while navigating to (x,y), moving towards 

(x,y) is a good idea!
§  “while navigating to (x,y)” is not a state of the 

world; it’s purely internal!!!
§  Natural heuristic (distance from destination) 

impossible to express in external terms!



37 

Temporal decomposition and state abstraction!

Q 

Standard Q predicts sum of rewards over all time 
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Temporal decomposition and state abstraction!

•  Temporal decomposition of Q-function: local 
components capture sum-of-rewards per 
subroutine [Dietterich 00, Andre & Russell 02] 

•  => State abstraction - e.g., when navigating, 
local Q independent of gold reserves 

§  Small local Q-components => fast learning 

Q 
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Get-wood 

 

Handling multiple effectors!

Multithreaded agent programs !
§  Threads = tasks!
§  Each effector assigned to a thread!
§  Threads can be created/destroyed!
§  Effectors can be reassigned!
§  Effectors can be created/destroyed!

Get-gold 

 

Get-wood 

 
(Defend-Base) 
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(defun top () 
  (loop do 
    (until (my-effectors) 
      (choose ‘dummy)) 
    (setf peas 
  (first (my-effectors)) 

    (choose ‘top-choice 
       (spawn gather-wood peas) 
       (spawn gather-gold peas)))) 
  
 
(defun gather-wood () 
  (with-choice ‘forest-choice 
  (dest *forest-list*) 
   (nav dest) 
   (action ‘get-wood) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 

 
 
 

 
(defun top ()   
  (loop do 
    (choose ‘top-choice 
       (gather-gold) 
       (gather-wood)))) 
 
 
 
 
 
 
(defun gather-wood () 
  (with-choice ‘forest-choice 
  (dest *forest-list*) 
   (nav dest) 
   (action ‘get-wood) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 

 
 
 

 
 
(defun gather-gold () 
  (with-choice ‘mine-choice 
  (dest *goldmine-list*) 
   (nav dest) 
   (action ‘get-gold) 
   (nav *base-loc*) 
   (action ‘dropoff))) 

 
 
 
(defun nav (dest) 
  (until (= (my-pos) dest) 
    (with-choice ‘nav-choice 
        (move ‘(N S E W NOOP)) 
      (action move)))) 
   

 
 
 

An example Concurrent ALisp program!An example single-threaded ALisp program!
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Q-functions!

§  To complete partial program, at each choice state ω, need 
to specify choices for all choosing threads!

§  So Q(ω,u) as before, except u is a joint choice!
§  Suitable SMDP Q-learning gives optimal completion!

Example Q-function 

ω u Q(ω,u) 
... ... ... 

Peas1 at NavChoice, Peas2 at 
DropoffGold, Peas3 at ForestChoice, 
Pos1=(2,3), Pos3=(7,4), Gold=12, Wood=14 

(Peas1:East, 
Peas3:Forest2) 

15.7 

... ... ... 
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Q-decomposition w/ concurrency?!

§  Temporal decomposition of Q-function lost!!!
§  No credit assignment among threads!

§  Peasant 1 brings back gold, Peasant 2 twiddles thumbs!
§  Peasant 2 thinks he’s done very well!!!
§  => learning is hopelessly slow with many peasants!
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Threadwise decomposition!

§  Idea : decompose reward among threads [Russell & Zimdars 03]!
§  E.g., rewards for thread j only when peasant j drops off 

resources or collides with other peasants!
§  Qj

π(ω,u) = “Expected total reward received by thread j if we 
make joint choice u and then do π”!

§  Threadwise Q-decomposition Q = Q1+…Qn!

§  Recursively distributed SARSA => global optimality!



44 Num steps learning (x 1000) 

Reward 
of   
learnt 
policy 

Flat 

Undecomposed 
Threadwise 

Threadwise + 
Temporal 

Resource gathering with 15 peasants!
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Summary of Part 2!
§  Structure in behavior seems essential for scaling up!
§  Partial programs!

§  Provide natural structural constraints on policies!
§  Decompose value functions into simple components !
§  Include internal state (e.g., “goals”) that further simplifies 

value functions, shaping rewards!
§  Concurrency!

§  Simplifies description of multieffector behavior!
§  Messes up temporal decomposition and credit assignment 

(but threadwise reward decomposition restores it)!
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Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!



Extending angelic semantics!
§  For most real “hierarchically interesting” 

domains, need more expressive power!
§  nondeterminism / probabilistic uncertainty / conditioning!
§  partial observability !
§  partial ordering / concurrency !
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Learning high-level behavioral structures!

§  Where do the HLAs and Alisp programs come from?!
§  Many researchers have been looking for tabula rasa 

solutions to this problem!
§  Cumulative learning of partial knowledge structures!

§  Even very weak theories support derivations of very loose abstract 
plans and descriptions [Ryan, 2004] !

§  Unifying know-how and know-what!
§  Basal ganglia!!!!
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Controlling expensive deliberation!
§  Rational metareasoning: !

§  View computations as actions; agent chooses the ones 
providing maximal utility !
§  ≈ expected decision improvement minus time cost!

§  Myopic metalevel control somewhat effective for search and 
games [Russell and Wefald, 1989, MoGo 2009]!
§  NB selection theory not bandit theory!!

§  Can metalevel RL provide effective non-myopic control for 
deliberation over long time scales?!
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Implementing metalevel RL!
What if the agent program is allowed to deliberate? !
E.g., an agent that does tree search to choose actions:!
!
(defun top ()!
 (let ((nodes (list (make-node (get-state)))))!
!(loop until (choose ‘(nil t))!
! !...!
! !(setq leaf-to-expand (choose nodes))!
! !...!



Tricky issues!
§  Program state θ is a tree of arbitrary size!

§  Need recursively defined Q-function?!
§  Very long computation sequences occur before 

each external reward!
§  Provide metalevel shaping rewards for “progress”!
§  Make the deliberation hierarchical!!

§  High-level, long-time-scale decisions have a big and 
reasonably predictable effect on expected utility!

§  Planning needs to be detailed for the near future, can 
remain abstract for the long term!
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