Life: play and win in 20 trillion moves

Stuart Russell
Computer Science Division, UC Berkeley

Joint work with Ron Parr, David Andre, Andy Zimdars, Carlos
Guestrin, Bhaskara Marthi, and Jason Wolfe

White to play and win in 2 moves

WA HE
1588 11
ix
iy i3
&Y |
£, iy
zi i
' &

a b ¢ d e f g h

Life

= 100 years x 365 days x 24 hrs x 3600 seconds
X 640 muscles x 10/second = 20 trillion actions

= (Not to mention choosing brain activities!)

= And the world has a very large, partially
observable, uncertain, unknown state space

= So, being intelligent is “provably” hard
= How on earth do we manage?

Hierarchical structure!!
(among other things)

= Deeply nested behaviors give modularity
= E.g., tongue controls for [t] independent of
everything else given decision o say “tongue”

= High-level decisions give scale

- E.g., “go to SARA” ~ 3,000,000,000 actions

= Look further ahead, reduce computation
exponentially

[NIPS 97, ICML 99, NIPS 00, AAAI 02, ICML 03, IJCAI 05,
ICAPS 07, ICAPS 08, ICAPS 10, IJCAI 11, UAI 12]

Outline

= Efficient hierarchical planning
= Hierarchical RL with partial programs
= Next steps

Outline

= Efficient hierarchical planning

High-level actions

= Classical HTN (Hierarchical Task Network)

= A high-level action (HLA) has a set of possible refinements
iInto sequences of actions, primitive or high-level

= Hierarchical optimality = best primitive refinement of Act

[Act]

T

[GoSFO, Act] [GoOAK, Act]

7 NN

[WalkToBART, BARTtoSFO, Act]

7N 7

Semantics of HLAS

= To do offline or online planning with HLAs, need a model
describing outcome of each HLA

Semantics of HLAS

= To do offline or online planning with HLAs, need a model
describing outcome of each HLA

= Drew McDermott (Al Magazine, 2000):

= The semantics of hierarchical planning have never been
clarified ... no one has ever figured out how to reconcile the
semantics of hierarchical plans with the semantics of
primitive actions

Finding correct high-level plans

= Downward refinement property (DRP)

= Every apparently successful high-level plan has a successful
primitive refinement

= “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking

10

Finding correct high-level plans

= Downward refinement property (DRP)

= Every apparently successful high-level plan has a successful
primitive refinement

= “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking

= Bacchus and Yang, 1991: /t is naive to expect DRP to
hold in general

11

Finding correct high-level plans

Downward refinement property (DRP)

= Every apparently successful high-level plan has a successful
primitive refinement

“Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking

Bacchus and Yang, 1991: It is naive to expect DRP to
hold in general

MRW, 2007: Theorem: If assertions about HLAS are true,
then DRP always holds

12

Finding correct high-level plans

Downward refinement property (DRP)

= Every apparently successful high-level plan has a successful
primitive refinement

“Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking

Bacchus and Yang, 1991: It is naive to expect DRP to
hold in general

MRW, 2007: Theorem: If assertions about HLAS are true,
then DRP always holds

Problem: how to say true things about effects of HLAs?

13

Angelic semantics for HLAs

= Start with atomic state-space view, start in s, goal state g
= Central idea is the reachable set of an HLA from each state

= When extended to sequences of actions,
allows proving that a plan can or cannot possibly reach the goal

= May seem related to nondeterminism

= But the nondeterminism is angelic: the “uncertainty” will be resolved
by the agent, not an adversary or nature

State
space S

14

Technical development

NCSTRIPS to describe reachable sets
= STRIPS add/delete plus “possibly add”, “possibly delete”, etc
= E.g., GoSFO adds AtSFO, possibly adds CarAtSFO

Reachable sets may be too hard to describe exactly

Upper and lower descriptions bound the exact
reachable set (and its cost) above and below
= Still support proofs of plan success/failure

= Possibly-successful plans must be refined

Sound, complete, optimal offline planning algorithms
Complete, eventually-optimal online (real-time) search

15

Example — Warehouse World

T T2 T3 T4

Left, Down, Pickup,

Up, Turn, Down, Putdown
Right, Right, Down,
Pickup, Left, Put, Up,
Left, Pickup, Up, Turn,
Right, Down, Down,
Putdown

A J

Has similarities to blocks and
taxi domains, but more
choices and constraints

= Gripper must stay in bounds

= Can'’t pass through blocks

= Can only turn around at top row

Goal: have C on T4

= Can'’t just move directly
= Final plan has 22 steps

16

NCSTRIPS for warehouse world

= An efficient algorithm exists to progress state sets
(represented as DNF formulae) through descriptions

Navigate(x,y,) (Pre: At(X,Ys))

Upper: -At(Xq,Y), +At(X,Y,), EFacingRight

Lower: IF (Free(x,Yy, AVX Free(X,¥max)):
-At(Xs,Ys), +At(X,Yy), ZFacingRight,

ELSE:
nil

Experiment

Instance 3
= 5x8 world
= 90-step plan

Flat/hierarchical without descriptions did not terminate within 10,000 seconds

Upper+Lower
Executable

Upper+Lower

Upper

Hierarchy only

Flat

o

0 2000 4000 6000 8000 10000

Time (seconds) 18

Online search: warehouse world

Cost to reach goal (avg of 7 instances)

1000 |

100 |

Online Warehouse World

LRTA* ——
AHLRTA* — % —

0

1000 2000 3000

Allowed refinements per env step

4000

19

Online search: 500x500 nav-switch

500x500 Online Nav Switch
4200 | | |

4000 LRTA* —— |
3800 AHLRTA* - x -

3600
3400
3200
3000
2800
2600
2400
2200 Yy —x= 3 K =Xm = =X = = K= = = = = = ¥ = = = = = = X

2000 | | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Allowed refinements per env step

Cost to reach goal (avg of 10 random instances)

20

Summary of Part 1

= Temporal abstraction is crucial for behaving
well over long time scales

= Hierarchical planning was designed to take
advantage of temporal abstraction

= Angelic descriptions of reachable sets ...
= Capture the inherent flexibility of abstract plans
= Support provably correct/optimal abstract planning

22

Outline

= Hierarchical RL with partial programs

23

Temporal abstraction in RL

= Basic theorem (Forestier & Varaiya 78; Parr & Russell 98):
= @Given an underlying Markov decision process with primitive actions
= Define temporally extended choice-free actions
= Agentis in a choice state whenever an extended action terminates
= Choice states + extended actions form a semi-Markov decision process

= Hierarchical structures with unspecified choices = know-how
= Hierarchical Abstract Machines [Parr & Russell 98] (= recursive NDFAS)
= Options [Sutton & Precup 98] (= extended choice-free actions)
= MAXQ [Dietterich 98] (= HTN hierarchy)

= (General partial programs: agent program falls in a designated
restricted subset of arbitrary programs [Genesereth & Hsu, 1991]
= Alisp [Andre & Russell 02]
= Concurrent Alisp [Marthi et al 05]

24

Running example

Peasants can move,
pickup and dropoff

Penalty for collision
Cost-of-living each step

Reward for dropping off
resources

Goal : gather 10 gold +
10 wood

(BL)"++ states s
/" primitive actions a

RL and partial programs

Partial
program

Learning >
algorithm | <5+

/ Completior/

RL and partial programs

Partial
program

Learning >
algorithm | <5+

/ Completior/

Hierarchically optimal
for all terminating programs

27

Standard MDP in ALisp

(defun top ()
(loop do
(choose (N S E W NoOp PickUp DropOff)))

28

An example SlogitheabdésA lospgpangram

(defun top () (defun gather-gold ()
(lLoop do (with-choice ‘mine-choice
(uvhbaie (mpopfcbaioes) (dest *goldmine-list¥*)
(¢hebker-dumnmy)) (nav dest)
(setffiapeas-wood)))) (action ‘get-gold)
(first (my-effectors)) (nav *base-loc*)
(choose ‘top—choice (action 'dropoff)))

(spawn gather-wood peas)
(spawn gather-gold peas))))

(defun gather-wood () (defun nav (dest)
(with-choice ‘forest-choice (until (= (my-pos) dest)
(dest *forest-list¥*) (with-choice ‘nav-choice
(nav dest) (move ‘(N S E W NOOP))
(action ‘get-wood) (action move))))

(nav *base-loc*)

(action ‘dropoff))) 29

Technical development

30

Technical development

= Decisions based on internal state

= Joint state w =[s,6] environment state + program state
(cf. [Russell & Wefald 1989])

31

Technical development

= Decisions based on internal state

= Joint state w =[s,6] environment state + program state
(cf. [Russell & Wefald 1989])

= MDP + partial program = SMDP over {w}, learn Q™(w,u)

32

Technical development

= Decisions based on internal state

= Joint state w =[s,6] environment state + program state
(cf. [Russell & Wefald 1989])

= MDP + partial program = SMDP over {w}, learn Q™(w,u)
= Additive decomposition of value functions

33

Technical development

= Decisions based on internal state

= Joint state w =[s,6] environment state + program state
(cf. [Russell & Wefald 1989])

= MDP + partial program = SMDP over {w}, learn Q™(w,u)
= Additive decomposition of value functions

= by subroutine structure [Dietterich 00, Andre & Russell 02]
Q is a sum of sub-Q functions per subroutine

34

Technical development

= Decisions based on internal state

= Joint state w =[s,6] environment state + program state
(cf. [Russell & Wefald 1989])

= MDP + partial program = SMDP over {w}, learn Q™(w,u)

= Additive decomposition of value functions

= by subroutine structure [Dietterich 00, Andre & Russell 02]
Q is a sum of sub-Q functions per subroutine

= across concurrent threads [Russell & Zimdars 03]

Q is a sum of sub-Q functions per thread, with
decomposed reward signal

35

Internal state

Availability of internal state (e.g., goal stack) can
greatly simplify value functions and policies

E.g., while navigating to (x,y), moving towards
(X,y) is a good idea

“while navigating to (x,y)” is not a state of the
world; it’ s purely internal!!

Natural heuristic (distance from destination)
iImpossible to express in external terms

36

Temporal decomposition and state abstraction

Standard Q predicts sum of rewards over all time

37

Temporal decomposition and state abstraction

T EE . EENNE_

» Temporal decomposition of Q-function: local
components capture sum-of-rewards per
subroutine [Dietterich 00, Andre & Russell 02]

« => State abstraction - e.g., when navigating,
local Q independent of gold reserves

= Small local Q-components => fast learning

38

Handling multiple effectors

Multithreaded agent programs

= Threads = tasks

= Each effector assigned to a thread
= Threads can be created/destroyed
= Effectors can be reassigned

= Effectors can be created/destroyed

Get-wood

Get-gold

Get-wood

(Defend-Base)

39

An example SlogaitreabdéisALlospgpangram

(defun top () (defun gather-gold ()

(lLoop do (with-choice ‘mine-choice
(Ghbbie (Hyopsehotos 5y (dest *goldmine-1ist¥)
_(¢bether‘dudmy)) . (nav dest)

(Satgaphas waod)])i 5 (action ‘get-gold)
; Kﬁ%EEFMlEXNEffﬁgEQFﬁl) (nav *base-loc¥)
(étisose AR ? (action ‘dropoff)))

(spawn gather-wood peas) :
(spawn gather-gold peas)))):

(defun gather-wood () (defun nav (dest)
(with-choice ‘forest-choice (until (= (my-pos) dest)
(dest *forest-list¥) (with-choice ‘nav-choice
(nav dest) (move ‘(N S E W NOOP))
(action ‘get-wood) (action move))))

(nav *base-loc*)

(action ‘dropoff))) 40

Q-functions

w u Q(w,u)
Peasl at NavChoice, Peas2 at (Peasl:East, 15.7
DropoffGold, Peas3 at ForestChoice, Peas3:Forest2)

Posl=(2,3), Pos3=(7,4), Gold=12, Wood=1l4

Example Q-function

= To complete partial program, at each choice state w, need
to specify choices for all choosing threads

= So Q(w,u) as before, except u is a joint choice
= Suitable SMDP Q-learning gives optimal completion

41

Q-decomposition w/ concurrency?

-
TR R R T TR

= Temporal decomposition of Q-function lost!!

= No credit assignment among threads
= Peasant 1 brings back gold, Peasant 2 twiddles thumbs
= Peasant 2 thinks he’s done very well!!
= => |earning is hopelessly slow with many peasants

42

Threadwise decomposition

-
S B B B B B me me B En

ldea : decompose reward among threads [Russell & Zimdars 03]

E.g., rewards for thread j only when peasant | drops off
resources or collides with other peasants

Q™w,u) = "Expected total reward received by thread j if we
make joint choice u and then do T’

Threadwise Q-decomposition Q = Q,+...Q,
Recursively distributed SARSA => global optimality

43

Resource gathering with 15 peasants

0 ' , r Threadwise +
Temporal
Threadwise
400! | Undecomposed
Reward
of
learnt
policy -800
e e

'12000 50 100 150 200

Num steps learning (x 1000) 44

+ Stratagus

_Mepu (FHZI)

-y r e,

Stratagus
Cycle: 550

[J0 Person

Summary of Part 2

= Structure in behavior seems essential for scaling up

= Partial programs
= Provide natural structural constraints on policies
= Decompose value functions into simple components

= Include internal state (e.g., “goals”) that further simplifies
value functions, shaping rewards

= Concurrency
= Simplifies description of multieffector behavior

= Messes up temporal decomposition and credit assignment
(but threadwise reward decomposition restores it)

46

Outline

= Efficient hierarchical planning
= Hierarchical RL with partial programs
= Next steps

47

Extending angelic semantics

= For most real “hierarchically interesting”

domains, need more expressive power
= nondeterminism / probabilistic uncertainty / conditioning
= partial observability
= partial ordering / concurrency

48

Learning high-level behavioral structures

= Where do the HLAs and Alisp programs come from?

= Many researchers have been looking for tabula rasa
solutions to this problem

= Cumulative learning of partial knowledge structures

= Even very weak theories support derivations of very loose abstract
plans and descriptions [Ryan, 2004]

= Unifying know-how and know-what
= Basal ganglia!!!

49

Controlling expensive deliberation

= Rational metareasoning:
= View computations as actions; agent chooses the ones
providing maximal utility
= =~ expected decision improvement minus time cost

= Myopic metalevel control somewhat effective for search and
games [Russell and Wefald, 1989, MoGo 2009]

= NB selection theory not bandit theory!

= Can metalevel RL provide effective non-myopic control for
deliberation over long time scales?

50

Implementing metalevel RL

What if the agent program is allowed to deliberate?
E.g., an agent that does tree search to choose actions:

(defun top ()
(let ((nodes (list (make-node (get-state)))))

(loop until (choose ‘(nil t))

(setqg leaf-to-expand (choose nodes))

51

Tricky issues

= Program state O is a tree of arbitrary size
= Need recursively defined Q-function?

= Very long computation sequences occur before
each external reward

= Provide metalevel shaping rewards for “progress”

= Make the deliberation hierarchical!

= High-level, long-time-scale decisions have a big and
reasonably predictable effect on expected utility

= Planning needs to be detailed for the near future, can
remain abstract for the long term

52

T SR VS T T TR - ey

Mar.29,1976 T H E Price 75 cents

NEW YORKER

1IN e i e
= 2 T JAPAN

p/IC/Flg

, Los ANGELES j ’
- S 4s VEGAS

N /,'72"/”;" uTAY VEBRASKA | | y \?-\,1
NGz n & fal f s,
Y 2 E'l/{ Aansas Ciry Cmeage b “,
P) .- -
Wag H&Gron, §
JLEBSEX X
/—/ UDJ ON =

g e A\/E“ S s

