
1

Life: play and win in 20 trillion moves!

 Stuart Russell!
Computer Science Division, UC Berkeley!
!
Joint work with Ron Parr, David Andre, Andy Zimdars, Carlos
Guestrin, Bhaskara Marthi, and Jason Wolfe!

White to play and win in 2 moves!

2

Life!
§  100 years x 365 days x 24 hrs x 3600 seconds

x 640 muscles x 10/second = 20 trillion actions!
§  (Not to mention choosing brain activities!)!
§  And the world has a very large, partially

observable, uncertain, unknown state space!
§  So, being intelligent is “provably” hard!
§  How on earth do we manage?!

3

4

Hierarchical structure!!  
(among other things)!

§  Deeply nested behaviors give modularity!
§  E.g., tongue controls for [t] independent of

everything else given decision to say “tongue”!
§  High-level decisions give scale!

§  E.g., “go to SARA” ≈ 3,000,000,000 actions!
§  Look further ahead, reduce computation

exponentially!
[NIPS 97, ICML 99, NIPS 00, AAAI 02, ICML 03, IJCAI 05,

ICAPS 07, ICAPS 08, ICAPS 10, IJCAI 11, UAI 12]!

5

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!

6

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!

7

High-level actions!
§  Classical HTN (Hierarchical Task Network)!
§  A high-level action (HLA) has a set of possible refinements

into sequences of actions, primitive or high-level!
§  Hierarchical optimality = best primitive refinement of Act!

[Act]

[GoSFO, Act] [GoOAK, Act]

[WalkToBART, BARTtoSFO, Act]

8

Semantics of HLAs!
§  To do offline or online planning with HLAs, need a model

describing outcome of each HLA

9

Semantics of HLAs!
§  To do offline or online planning with HLAs, need a model

describing outcome of each HLA!
§  Drew McDermott (AI Magazine, 2000):!

§  The semantics of hierarchical planning have never been
clarified … no one has ever figured out how to reconcile the
semantics of hierarchical plans with the semantics of
primitive actions

10

Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking!

11

Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking!

§  Bacchus and Yang, 1991: It is naïve to expect DRP to
hold in general!

12

Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking!

§  Bacchus and Yang, 1991: It is naïve to expect DRP to
hold in general!

§  MRW, 2007: Theorem: If assertions about HLAs are true,
then DRP always holds!

13

Finding correct high-level plans!

§  Downward refinement property (DRP)!
§  Every apparently successful high-level plan has a successful

primitive refinement!

§  “Holy Grail” of HTN planning: allows commitment to
abstract plans without backtracking!

§  Bacchus and Yang, 1991: It is naïve to expect DRP to
hold in general!

§  MRW, 2007: Theorem: If assertions about HLAs are true,
then DRP always holds!

§  Problem: how to say true things about effects of HLAs?!

14

s0

g

S

s0

g

S

s0

g

S

h2	h1	 h1h2	
h2	

h1h2 is a solution

Angelic semantics for HLAs !
§  Start with atomic state-space view, start in s0, goal state g!
§  Central idea is the reachable set of an HLA from each state!

§  When extended to sequences of actions, !
!allows proving that a plan can or cannot possibly reach the goal!

§  May seem related to nondeterminism!
§  But the nondeterminism is angelic: the “uncertainty” will be resolved

by the agent, not an adversary or nature!

a4 a1 a3 a2	

State !
space!

15

Technical development!
§  NCSTRIPS to describe reachable sets!

§  STRIPS add/delete plus “possibly add”, “possibly delete”, etc!
§  E.g., GoSFO adds AtSFO, possibly adds CarAtSFO!

§  Reachable sets may be too hard to describe exactly!
§  Upper and lower descriptions bound the exact

reachable set (and its cost) above and below!
§  Still support proofs of plan success/failure!
§  Possibly-successful plans must be refined!

§  Sound, complete, optimal offline planning algorithms!
§  Complete, eventually-optimal online (real-time) search!

16

Example – Warehouse World!
§  Has similarities to blocks and

taxi domains, but more
choices and constraints!
§  Gripper must stay in bounds!
§  Can’t pass through blocks!
§  Can only turn around at top row!

§  Goal: have C on T4
§  Can’t just move directly!
§  Final plan has 22 steps!T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B C

T1 T2 T3 T4

A B C

Left, Down, Pickup,	
Up, Turn, Down, Putdown,
Right, Right, Down,
Pickup, Left, Put, Up,
Left, Pickup, Up, Turn,
Right, Down, Down,
Putdown	

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

T1 T2 T3 T4

A B

C

17

Navigate(xt,yt) (Pre: At(xs,ys))!
!
Upper: -At(xs,ys), +At(xt,yt), ±FacingRight!
 !
!

Lower: IF (Free(xt,yt) ∧∀x Free(x,ymax)):!
! -At(xs,ys), +At(xt,yt), ±FacingRight, !

 !
 ELSE:!
 nil!

NCSTRIPS for warehouse world!
§  An efficient algorithm exists to progress state sets

(represented as DNF formulae) through descriptions!

~! s!
t

~! s!
t!

s!
t!

x!

18

Experiment!
§  Instance 3!

§  5x8 world!
§  90-step plan!

§  Flat/hierarchical without descriptions did not terminate within 10,000 seconds!

19

Online search: warehouse world!

 100

 1000

 0 1000 2000 3000 4000 5000

C
o
s
t
to

 r
e
a

c
h
 g

o
a
l
(a

v
g
 o

f
7
 i
n
s
ta

n
c
e
s
)

Allowed refinements per env step

Online Warehouse World

LRTA*
AHLRTA*

20

Online search: 500x500 nav-switch!

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 200 400 600 800 1000 1200 1400 1600 1800 2000

C
o

s
t

to
 r

e
a

c
h

 g
o

a
l
(a

v
g

 o
f

1
0

 r
a

n
d

o
m

 i
n

s
ta

n
c
e

s
)

Allowed refinements per env step

500x500 Online Nav Switch

LRTA*
AHLRTA*

Summary of Part 1!
§  Temporal abstraction is crucial for behaving

well over long time scales!
§  Hierarchical planning was designed to take

advantage of temporal abstraction!
§  Angelic descriptions of reachable sets …!

§  Capture the inherent flexibility of abstract plans!
§  Support provably correct/optimal abstract planning!

22

23

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!

24

Temporal abstraction in RL!
§  Basic theorem (Forestier & Varaiya 78; Parr & Russell 98):!

§  Given an underlying Markov decision process with primitive actions!
§  Define temporally extended choice-free actions!
§  Agent is in a choice state whenever an extended action terminates!
§  Choice states + extended actions form a semi-Markov decision process!

§  Hierarchical structures with unspecified choices = know-how !
§  Hierarchical Abstract Machines [Parr & Russell 98] (= recursive NDFAs)!
§  Options [Sutton & Precup 98] (= extended choice-free actions)!
§  MAXQ [Dietterich 98] (= HTN hierarchy)!

§  General partial programs: agent program falls in a designated
restricted subset of arbitrary programs [Genesereth & Hsu, 1991]!
§  Alisp [Andre & Russell 02]!

§  Concurrent Alisp [Marthi et al 05]!

25

Running example!
§  Peasants can move,

pickup and dropoff!
§  Penalty for collision!
§  Cost-of-living each step!
§  Reward for dropping off

resources!
§  Goal : gather 10 gold +

10 wood!
§  (3L)n++ states s!
§  7n primitive actions a!

26

RL and partial programs!

Learning
algorithm

Completion

a

s,r

Partial
program

27

RL and partial programs!

Learning
algorithm

Completion

a

s,r

Partial
program

Hierarchically optimal
for all terminating programs

Standard MDP in ALisp!

28

(defun top ()
 (loop do
 (choose ‘(N S E W NoOp PickUp DropOff)))

29

(defun top ()
 (loop do
 (until (my-effectors)
 (choose ‘dummy))
 (setf peas
 (first (my-effectors))

 (choose ‘top-choice
 (spawn gather-wood peas)
 (spawn gather-gold peas))))

(defun gather-wood ()
 (with-choice ‘forest-choice
 (dest *forest-list*)
 (nav dest)
 (action ‘get-wood)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun top ()
 (loop do
 (choose ‘top-choice
 (gather-gold)
 (gather-wood))))

(defun gather-wood ()
 (with-choice ‘forest-choice
 (dest *forest-list*)
 (nav dest)
 (action ‘get-wood)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun gather-gold ()
 (with-choice ‘mine-choice
 (dest *goldmine-list*)
 (nav dest)
 (action ‘get-gold)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun nav (dest)
 (until (= (my-pos) dest)
 (with-choice ‘nav-choice
 (move ‘(N S E W NOOP))
 (action move))))

An example Concurrent ALisp program!An example single-threaded ALisp program!

30

Technical development!

31

Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ] environment state + program state

(cf. [Russell & Wefald 1989]) !
!

32

Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ] environment state + program state

(cf. [Russell & Wefald 1989]) !
§  MDP + partial program = SMDP over {ω}, learn Qπ(ω,u) !

33

Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ] environment state + program state

(cf. [Russell & Wefald 1989]) !
§  MDP + partial program = SMDP over {ω}, learn Qπ(ω,u) !

§  Additive decomposition of value functions!

34

Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ] environment state + program state

(cf. [Russell & Wefald 1989]) !
§  MDP + partial program = SMDP over {ω}, learn Qπ(ω,u) !

§  Additive decomposition of value functions!
§  by subroutine structure [Dietterich 00, Andre & Russell 02]

Q is a sum of sub-Q functions per subroutine!

35

Technical development!

§  Decisions based on internal state!
§  Joint state ω = [s,θ] environment state + program state

(cf. [Russell & Wefald 1989]) !
§  MDP + partial program = SMDP over {ω}, learn Qπ(ω,u) !

§  Additive decomposition of value functions!
§  by subroutine structure [Dietterich 00, Andre & Russell 02]

Q is a sum of sub-Q functions per subroutine!
§  across concurrent threads [Russell & Zimdars 03] !

 Q is a sum of sub-Q functions per thread, with
decomposed reward signal !

36

Internal state!
§  Availability of internal state (e.g., goal stack) can

greatly simplify value functions and policies!
§  E.g., while navigating to (x,y), moving towards

(x,y) is a good idea!
§  “while navigating to (x,y)” is not a state of the

world; it’s purely internal!!!
§  Natural heuristic (distance from destination)

impossible to express in external terms!

37

Temporal decomposition and state abstraction!

Q

Standard Q predicts sum of rewards over all time

38

Temporal decomposition and state abstraction!

•  Temporal decomposition of Q-function: local
components capture sum-of-rewards per
subroutine [Dietterich 00, Andre & Russell 02]

•  => State abstraction - e.g., when navigating,
local Q independent of gold reserves

§  Small local Q-components => fast learning

Q

39

Get-wood

Handling multiple effectors!

Multithreaded agent programs !
§  Threads = tasks!
§  Each effector assigned to a thread!
§  Threads can be created/destroyed!
§  Effectors can be reassigned!
§  Effectors can be created/destroyed!

Get-gold

Get-wood

(Defend-Base)

40

(defun top ()
 (loop do
 (until (my-effectors)
 (choose ‘dummy))
 (setf peas
 (first (my-effectors))

 (choose ‘top-choice
 (spawn gather-wood peas)
 (spawn gather-gold peas))))

(defun gather-wood ()
 (with-choice ‘forest-choice
 (dest *forest-list*)
 (nav dest)
 (action ‘get-wood)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun top ()
 (loop do
 (choose ‘top-choice
 (gather-gold)
 (gather-wood))))

(defun gather-wood ()
 (with-choice ‘forest-choice
 (dest *forest-list*)
 (nav dest)
 (action ‘get-wood)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun gather-gold ()
 (with-choice ‘mine-choice
 (dest *goldmine-list*)
 (nav dest)
 (action ‘get-gold)
 (nav *base-loc*)
 (action ‘dropoff)))

(defun nav (dest)
 (until (= (my-pos) dest)
 (with-choice ‘nav-choice
 (move ‘(N S E W NOOP))
 (action move))))

An example Concurrent ALisp program!An example single-threaded ALisp program!

41

Q-functions!

§  To complete partial program, at each choice state ω, need
to specify choices for all choosing threads!

§  So Q(ω,u) as before, except u is a joint choice!
§  Suitable SMDP Q-learning gives optimal completion!

Example Q-function

ω u Q(ω,u)
...

Peas1 at NavChoice, Peas2 at
DropoffGold, Peas3 at ForestChoice,
Pos1=(2,3), Pos3=(7,4), Gold=12, Wood=14

(Peas1:East,
Peas3:Forest2)

15.7

...

42

Q-decomposition w/ concurrency?!

§  Temporal decomposition of Q-function lost!!!
§  No credit assignment among threads!

§  Peasant 1 brings back gold, Peasant 2 twiddles thumbs!
§  Peasant 2 thinks he’s done very well!!!
§  => learning is hopelessly slow with many peasants!

43

Threadwise decomposition!

§  Idea : decompose reward among threads [Russell & Zimdars 03]!
§  E.g., rewards for thread j only when peasant j drops off

resources or collides with other peasants!
§  Qj

π(ω,u) = “Expected total reward received by thread j if we
make joint choice u and then do π”!

§  Threadwise Q-decomposition Q = Q1+…Qn!

§  Recursively distributed SARSA => global optimality!

44 Num steps learning (x 1000)

Reward
of
learnt
policy

Flat

Undecomposed
Threadwise

Threadwise +
Temporal

Resource gathering with 15 peasants!

45

46

Summary of Part 2!
§  Structure in behavior seems essential for scaling up!
§  Partial programs!

§  Provide natural structural constraints on policies!
§  Decompose value functions into simple components !
§  Include internal state (e.g., “goals”) that further simplifies

value functions, shaping rewards!
§  Concurrency!

§  Simplifies description of multieffector behavior!
§  Messes up temporal decomposition and credit assignment

(but threadwise reward decomposition restores it)!

47

Outline!

§  Efficient hierarchical planning!
§  Hierarchical RL with partial programs!
§  Next steps!

Extending angelic semantics!
§  For most real “hierarchically interesting”

domains, need more expressive power!
§  nondeterminism / probabilistic uncertainty / conditioning!
§  partial observability !
§  partial ordering / concurrency !

48

Learning high-level behavioral structures!

§  Where do the HLAs and Alisp programs come from?!
§  Many researchers have been looking for tabula rasa

solutions to this problem!
§  Cumulative learning of partial knowledge structures!

§  Even very weak theories support derivations of very loose abstract
plans and descriptions [Ryan, 2004] !

§  Unifying know-how and know-what!
§  Basal ganglia!!!!

49

Controlling expensive deliberation!
§  Rational metareasoning: !

§  View computations as actions; agent chooses the ones
providing maximal utility !
§  ≈ expected decision improvement minus time cost!

§  Myopic metalevel control somewhat effective for search and
games [Russell and Wefald, 1989, MoGo 2009]!
§  NB selection theory not bandit theory!!

§  Can metalevel RL provide effective non-myopic control for
deliberation over long time scales?!

50

51

Implementing metalevel RL!
What if the agent program is allowed to deliberate? !
E.g., an agent that does tree search to choose actions:!
!
(defun top ()!
 (let ((nodes (list (make-node (get-state)))))!
!(loop until (choose ‘(nil t))!
! !...!
! !(setq leaf-to-expand (choose nodes))!
! !...!

Tricky issues!
§  Program state θ is a tree of arbitrary size!

§  Need recursively defined Q-function?!
§  Very long computation sequences occur before

each external reward!
§  Provide metalevel shaping rewards for “progress”!
§  Make the deliberation hierarchical!!

§  High-level, long-time-scale decisions have a big and
reasonably predictable effect on expected utility!

§  Planning needs to be detailed for the near future, can
remain abstract for the long term!

52

