Integrated Planning and Execution
for an Aerial Service Vehicle

_><O

J. Cacace, A. Finzi, V. Lippiello, G. Loianno, D. Sanzone
DIETI, Universita degli Studi di Napoli Federico II,

via Claudio 21, 80125, Naples, Italy

Introduction

 We present the case study of a high-level control system designed
for an Aerial Service Vehicle (ASV)

* This work is framed within the the AIRobots project (FP7
ICT2486669, Marconi et al. 2012a):
— “A new generation of unmanned service helicopters, equipped with

sensors and end-effectors, and capable not only to fly, but also to achieve
robotic tasks in proximity and in contact with the surface”.

&
f\ AlRobots Domain =

Remote inspection of industrial plants with ASV

 The ASV operates in proximity and in contact with the surfaces:
— visual inspection, contact, manipulation, sample picking

 The autonomous control system should supervise and

orchestrate a new set of operations:

— Not only free-flight navigation, but also wall approach, docking,
undocking, wall scanning, wall sliding, simple manipulation, etc..

f\O< Requirements §

* Reaction time and replanning:
— close interaction with the environment, hence reactive, adaptive,
[J

and flexible planning/ replanning capabilities are needed (task/
path/motion).

Sliding Autonomy and Mixed Initiative Control:

— Both autonomous and human-in-the-loop control modalities
should be supported to allow human interventions and
teleoperation.

 High-level/Low-level integration:

— High-level control strategies should be defined taking into account
the low-level operative modes and constraints;

— Different control modes, smooth task switching, adjustments on-
the-fly.

<

o~ High-level/Low-level integration

* The LL control system can be modeled as a hybrid automaton [Naldi,
Marconi, Gentili 2011].

e Each motion primitive has at least one controller for each operative mode.

* More controllers could be designed for a certain motion primitive depending
on dynamic parameters (max velocity, maximum acceleration, etc).

Higher Levels | states
Linputs
..................... :":'T“ ()pemtive m()de

I] g e e e . e e s '

state ! | 5 :

] 1 | 1

references | ' :Sens. fusioni

RFF, S5 ; : |____________|
]
]

T P o NS g n
‘ I

, ; /.';;’,; —Gs.re) 1 : UAV+Envir.

— .‘il‘ 1\ :

["Tol, FF) fl,

Cont. #in [
5

K ostemarhiecure
7\

— Path Planner, Task Planner, Plan Supervisor (High Level),
Primitive Supervisor manages trajectory planning and execution (Low Level);

— Switches between operative modes depends on HL system decisions;

— Choice of controllers in the current operative mode assigned to the Control
Manager of the Low Level Supervisory Control

High-level Supervisory Control

Mission manager and user interface

Low-level Supervisory Control

mixed-initiative

TELEMANINSTRUCTIONS

H igh-Level TASK REQUEST Low-Level

ASK RESUL

ELEMAN RESULT

PLAN/REPLAN REQUEST

MACRO-ACTIONS PLAN

OPERATIVE MODE +

DESIRED CARTESIAN
COLLISION FREE PATH MICRO-ACTIONS PLAN OPERATIVE MODE + SPACE TRAJECTORY
DESIRED CARTESIAN
SPACE TRAJECTORY

S

3/LOC DATA PATH REQUEST

NOTIFY VIOLATION

TRAJECTORY TRAJECTORY
SPECIFICATIONS CONTRAINTS

MAP/LOC REQUEST

DESIRED CARTESIAN
PACE TRAJECTORY

OPERATIVE MODE +
DESIRED CARTESIAN
SPACE TRAJECTORY

MAP/LOC REQ

MAP/LOC DATA ACTUAL CARTESIAN VARIABLES

ACTUAL CARTESIAN VARIABLES

TORQUE VARIABLES

ACTUAL CARTESIAN VARIABLES

i ROBOT "‘1 ACTUAL CARTESIAN VARIABLES

Task Decomposition

Task Primitives (out: Task Planner, in: Path Planner):

TakeOf f(C, Pos)

Take off from the current pose and hover in the pose Pos;

Land(C, Pos)

Land from the current position to Pos;

Hover(C, Pos)

Keep the pose Pos;

MoveT o(C, Pos)

Move from the current pose to Pos;

MoveCircular(C, Pos, I')

Execute a circular movement around the center P with radius in the interval I ;

Scan(C,Srf)

Scan the surface Srf;

Inspect(C,0Obj, P)

Observe the object Obj in position P;

Brake(C') Execute a hard brake from the current position;
Approach(C, P) Approach the target position P;
Dock(C', P) Dock to a target position P;

UnDock(C')

Undock from the current position;

M anipulate(C, Obj, P)

Manipulate an object Obj in position P.

4
i\

Motion Primitives (out: Path Planner, in: Motion Planner):

TakeOf f(p)

take off and hover at the altitude p

Land

land from the current position

FlyLinearT o(ps)

free flight from an initial pose till the final one through a set of poses ps.

FlyCircular(pi,p2,p3)

circular flight along the circumference passing through the points py, p2, and pa.

FlyAre(py.p2, pa)

circular flight along the circumference arc from py to p2, through pa.

Brake

hard brake.

Escape(ps)

escape from the current position following the waypoints in the set of poses ps.

ReplanFlyLinearT o(ps)

free flight replan following the set of poses ps.

Approach(p, d)

approach the wall towards the point p and hover at distance of d (before docking).

Docking

dock to the wall.

UnDocking

undock from the wall.

< .
4 High-Level Execution Cycle

* The high-level executive system exploits a Belief-Desire-
Intention (BDI) architecture to coordinate task decomposition,
task replanning, path planning, and plan monitoring:

— Belief base as the current abstract state, plan library, goals are mission
tasks, and the intention base rap. the plan to be executed;

— BDI engine based on PRS. USER
GOAL BELIEFS
- (Current ——————STATE UPDATE
flyTo (Mission Task) State)
| :
Approach—»{i/wpf ooooooo \ ‘ 1 »

“TASK FEEDBACK__

/] Pan
| EXECUTIVE § | SUPERVISOR
) . » . 'y

hoock \ —
P -~ EXEC FEEDBACK
/f.‘
Docking
-\ |
L ndoc 1
a
MACRO ACTION
PLAN LIBRARY I(T{ITE,:Q :;(3:: - PLAN
(Methods) 6

Plan)

&
4 Path Planner

* The Path Planner expands each macro-action into micro-actions;
e Rapidly-exploring Random Tree (RRT) [Lavalle 98]

* non-convex, high-dimensional search space, efficient, sub-optimal,
plan refinement, replanning;

Discretized 4D search space (N x M x Q grid map + yow)

Constraints:
— Min distance from obstacles;

— Max angles (yow, pitch);

— Max time to compute (timeout);
— Cost threshold.

Path Planner

 The RRT planning process generates several solutions to refine
the current one (until cost threshold or timeout)

Algorithm 1 Refine RRT(init,qg0a1,threshold timeout)

mitialize(path,time): , ‘
while ((tzme < timeout) A (preempted = false) A (pathCost > | |
threshold)) do "
n e.-wP ath < solveRRT(g;nit.9g0al timeout); u
if C(newPath) < path then \
path + newPath: g
pathCost + C(newPath):
end if
end while [
return path f“ %

* Optimization function minimizes:
c(path) = cing(path) - Ping + Cang(Path) - Pang + Cway(Path) - Puway + Cobs(Path) - pobs + Cunk(path) - punik

i.e. path length ; angular variations; number of waypoints; obstacle distance; unknown space

* Constraints for each segment (max speed, min distance, error tolerance).

Mapping and Execution

 The 3D grid-map is continuously updated (stereoscan [Geiger et al. 2011])
 The path monitor checks for deviations or collisions

* If collision/deviation detected then replanning

Old map

New data

—

MAFFING AND

LOCALIZATION
‘_/ New map

. -
o~ Path Replanning

* Path replanning is managed with different strategies depending on
the time available for path generation;

* Given the time to collision t_ we distinguish the following cases:
« if (t <t) Brake
 if (t,<t,) Escape
e Otherwise Replan

t.= collision time
t, = time to brake Brake Escape

t, = time to escape

Replanning

Path Replanning

trajectory with a new one while the robot is flying;

Algorithm 3 Replan(qgoat, Pathord, qobs, tece)

g. < getPosition();

typ «— estimatedRepTime(q., Ggoal, PAthoid, Gobs);
wp,p < selectDeviationWP(q., Gops, pathoid, trp);
threshold < setThreshold(wp,,, Ggoal, trp, tete);
pathy.., < Refine_RRT(wp,, , Ggoal, threshold, t,,);
return path,ecuw

I e Path replanning should find an alternative path that connects the old

* Deviation wp:

— Given the estimated time t, for replanning, a deviation Wwp,, is selected: far
enough from g, to replan from WP, but not too close to the obstacle

O X
* Video ,

I
UAVpose Cpoint

O
X Low Level Supervisory Control

The Primitive Supervisor receives a sequence of micro-actions and constraints
from the Plan Supervisor and selects the controller, generates and executes
the trajectory.

The Control Manager selects the right controller depending on the
waypoint constraints and the operative mode

QUEST

MACRO-ACTI('x'(Op, wp, Wp_CnSt) ol S% trajectory OP:

N QO

OPERATIVE MODE +
DESIRED CARTESIAN
SPACE TRAJECTORY

"" SULT TRAIECTORY TRAJECTOR) e T
VIOLATION PECIFICATIONS ~ CONTRAINTS 3 63
TRAJECTORY |
— SUPERVISOR
L A

' ‘ ' CONTROL
. MANAGER
)ESIRED CARTESIAN OPERATIVE MODE
ACE TRAIECTORY - JESIRED CARTESIAI
\ DA AJECTORY

(contr, trj_cnst)

4
~

The Control Manager selects the right controller depending on the
constraints and the operative mode:

Low Level Supervisory Control

* Each controller has trajectory constraints (maximum velocity, acceleration, etc.) to
guarantee the maximum position error and cruise velocity

* The Control Manager sends to the Primitive Supervisor the controller and the
associated trajectory constraints so that the trajectory can be generated.

[ml I'”.""'-"l Im s] lIN‘.v“I.\‘I I”’.""‘ .~'2] lI’l,.""NQI [ml,."s?] [/n',"'.w'f;] Im".v".w'rsl l”'.""‘-"gl
Cont.1 | 0.25 0.5 0.5 0.3 0.29 0.2g 0.29 2000 2000 2000
Cont.2 | 0.15 | 0.25 0.25 0.2 0.1g 0.1g 0.1g 1000 1000 1000

Cont.3 | 0.1 0.1 0.1 0.1 0.05g | 0.05g | 0.05¢g 500 500 500

Ag,]la.r 0,7!(]_1‘ 07’!(1..[’ -é. max
[rad] | [rad/s| | [rad/s?] | [rad/s®]
All 0.1 0.2 0.2g 2000

¥ - -
P4 Motion Planning

* Constraints:
— Smoothness: The trajectory needs to be continuous up to the acceleration;

— Limits: Limits on the absolute values of velocities, accelerations and jerk;

— On-line and incremental: Both a point-to-point and fly motions; addition of new points
for a multi-fly movement without modifying the already generated trajectory.

 Approach:

— The motion trajectory is generated as fifth-order polynomials
concatenations [Macfalane Croft 2003] (smoothness, jerk-bounded, on-
line)

— Number of waypoints can be incrementally added (dynamic and
incremental). This horizon is regulated by the Plan Supervisor.

Test: Inspection Tasks

* Inspection tasks (physical contact, visual inspection)

Wall detection and
Visual Inspection in the real
scenario

. . -
o~ Test: Inspection Tasks

 Docking and physical inspection

 Wall detection and visual inspection

T— - =soo - > ._‘::‘ T—

Test: Inspection Task

trategy for wall detection and visual inspection

File View Plugins Help

Interact Select 2D NavGoal 2D Pose Estimate

Background Colc [l (0,0,0)
FixedFrame /world
Target Frame /world
Global Status: OK

os Markera 04
o7 Markerss 4]
o5 Markers? 04

B 11. MarkerMapg
Status: OK
Marker Topic visualizatiol

Elapsed: |164,699775 ROS Time: | 1363951438,474461 ROS Elapsed: | 164,699774 | [Reset

dynamicobs

dynamicobst
dynamicobst
dynamicobst

11. MarkerMappaDinamica
(Marker)

Approach for docking

Add | [Remove | [Manage..

Time

wallTime: | 1363776320,582633 Wall Elapsed: |276,125609 ROS Time: | 1363776320,582630 | RosElapsed: [276,125609 Reset:

& -
f\ Conclusion

Aerial Service Robotics is a novel application for plan-based
autonomy;

 We presented the challenges of the ASV domain along with the
solutions provided within the AlRobot project;

 The proposed high-level system combines hierarchical task
decomposition, mixed-initiative control, BDI execution, RRT path

planning/replanning to allow reactivity, flexibility, and sliding
autonomy;

* Future work:
— Deeper integration between high-level and low-level system;
— Learning methods for parameters setting;
— More complex mixed initiative and sliding autonomy.

O
= SHERPA 77 SHERPA

Smart collaboration between Humans and ground-aErial Robots

for imProving rescuing activities in Alpine environments

Collaborative project ICT-248669 supported by the European Community under the 7th Framework Programme (31-01-2013 - 31-01-2017)

WWW.SsSherpa=proij laciacal |

The goal of SHERPA i to develop a mixed ground and aerial robotic platform to support search and rescue activities in a real-world hostile environment like the
alpine scenario. The project deals with how a “busy genius” (the human rescuer) and the “SHERPA animals” (the robotic platforms) interact and collaborate with
each other to form an integrated team with advanced control and cognitive capabilities.

