
Ames
Research
Center

From Task to Motion Planning

David E. Smith
NASA Ames Research Center

??

Thursday, June 6, 2013

Ames
Research
Center 1997-2000: Marsokhod

Thursday, June 6, 2013

Ames
Research
Center 2001-2005: K9 rover

Thursday, June 6, 2013

Ames
Research
Center 2007-2008: ATHLETE

Thursday, June 6, 2013

Ames
Research
Center 2009-: A Different Kind of Rover

Thursday, June 6, 2013

Ames
Research
Center Some Rover Peculiarities

• Hazardous environments
Slow rad-hardened processors (200 MHz)
Low power (125 Watts)
Limited memory (256 MB)
Limited storage (2 GB)

• Unstructured rough terrain
Navigation/localization difficult

• Limited autonomy
Local obstacle avoidance
Opportunistic pictures

Thursday, June 6, 2013

Ames
Research
Center Some Rover Peculiarities

• Hazardous environments
Slow rad-hardened processors (200 MHz)
Low power (125 Watts)
Limited memory (256 MB)
Limited storage (2 GB)

• Unstructured rough terrain
Navigation/localization difficult

• Limited autonomy
Local obstacle avoidance
Opportunistic pictures

Ig
no

re
Ig

no
re

Thursday, June 6, 2013

Ames
Research
Center The Planning Problem

• Temporal
Action durations
Concurrency

• Time constraints
Communication windows
Illumination of targets
Temperature

• Uncertainty
Terrain & tracking
Duration of actions
Energy usage
Storage available

• Oversubscription
Many conflicting goals
Goal dependence

Thursday, June 6, 2013

Ames
Research
Center

• 6 legs, 36 degrees of freedom
• Feet are wheels (walk and roll)
• Tool takeoff on each wheel

ATHLETE

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Thursday, June 6, 2013

Ames
Research
Center

• 6 stereo camera pairs outward
• 3 stereo camera pairs inward
• 1 stereo pair on each foot
• 2.75m chassis
• 850 kg

ATHLETE
1/

2
sc

al
e

Thursday, June 6, 2013

Ames
Research
Center ATHLETE Capabilities

Thursday, June 6, 2013

Ames
Research
Center ATHLETE in action

Thursday, June 6, 2013

Ames
Research
Center Current Operation

command
center

• Remotely operated
• Rolling: ok
• Walking: slow

Thursday, June 6, 2013

Ames
Research
Center Walking

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

• Raise foot 10 cm
• Raise foot 40 cm
• Rotate hip 60 degrees
• Pitch knee 40 degrees
• Pitch ankle -40 degrees
• Rotate hip 10 degrees
• Lower foot 40 cm
• Lower foot 10 cm

Thursday, June 6, 2013

Ames
Research
Center Simple Planning Problem

• Given:
– simple goal point
– terrain map with varying resolution
• detailed ≤ 5 meters
• satellite > 5 meters

• Find:
– command sequence
– prefer rolling to stepping

Thursday, June 6, 2013

Path Planning

Start Goal

Cartesian Space:

Thursday, June 6, 2013

Discretization

Start Goal

Cartesian Space:

Thursday, June 6, 2013

Discretization

Start Goal

Cartesian Space:

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Discretization

Start

Cartesian Space: ????

• Collisions of the entire leg

• Not every Cartesian path can be followed

• Not a 1-1 mapping

Goal

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Configuration Space

Start

Cartesian Space

Goal

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

Text
walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Configuration Space

Start

Cartesian Space

Goal

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

Text

No collisions with self or environment

Respect physical constraints on robot

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Planning in Configuration Space

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Discretize

A*

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Planning in Configuration Space

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Probabilistic Methods

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Planning in Configuration Space

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Probabilistic Methods

PRMs
 A*

3

1

4

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Planning in Configuration Space

Point in 6D
(joint angles) Points in 6D

Text

Legal path in joint space

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Probabilistic Methods

Grow trees
 (RRT)

?

Thursday, June 6, 2013

Ames
Research
Center Problems with Prob. Methods

• Optimality

• Awkward paths

• Narrow channels

• Non-repeatability

• Active compliance

Thursday, June 6, 2013

Path Smoothing

Thursday, June 6, 2013

Path Smoothing

Thursday, June 6, 2013

Path Smoothing

Thursday, June 6, 2013

Path Smoothing

Thursday, June 6, 2013

Ames
Research
Center Problems with Prob. Methods

• Optimality
– enough points, A*, smoothing

• Awkward paths
– smoothing

• Narrow channels
– smarter points

• Non-repeatability
– roadmap retention

• Active compliance
– sequencing

Thursday, June 6, 2013

Ames
Research
Center Simple Planning Problem

• Given:
– simple goal point
– terrain map with varying resolution
• detailed ≤ 5 meters
• satellite > 5 meters

• Find:
– command sequence
– prefer rolling to stepping

Thursday, June 6, 2013

Ames
Research
Center Dumb Idea #1

Joint space planning for entire robot
– (all 6 legs + shifting + rolling)

Thursday, June 6, 2013

Ames
Research
Center Almost as Dumb Idea #2

Joint space planning for all six legs

– 16 minutes on flat terrain

– 27 minutes on rough terrain

Thursday, June 6, 2013

Ames
Research
Center Decomposition

• Sequence of locations

• Rolling, Rotating, Shifting, Stepping
• Footfalls

• Joint planning for Steps

– Computational

– Data quality degrades quickly over distance

– Uncertainty regarding future configurations

Thursday, June 6, 2013

Ames
Research
Center Decomposing the problem

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State Update
Commands

Thursday, June 6, 2013

Ames
Research
Center Route Planner

Thursday, June 6, 2013

Ames
Research
Center Route Planning Approach

• Regular tessellation
• For each tile
– steepness = max - min elevation
– steepness < clearance
– roughness = std-deviation from mode
– cost = roughness * steepness

• Overstuffed tiles

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

m

n

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

• A*
– D*-Lite
– distance heuristics

• n * green

m

n

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

m

n
color-cost = [#g, #y, #o, #r, #b]

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

• A*
– D*-Lite
– distance heuristics

• n * green
• m * color-cost +

n-m * green

m

n
color-cost = [#g, #y, #o, #r, #b]

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

m

n

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

• A*
– D*-Lite
– distance heuristics

• n * green
• m * color-cost +

n-m * green
• n * color-cost

m

n

Thursday, June 6, 2013

Ames
Research
Center Chassis Planner

• Given:
– goal direction, horizon, detailed terrain map

• Find:
– sequence of translations and rotations
– minimize stepping

• Simplification:
– fixed leg pose

Thursday, June 6, 2013

Ames
Research
Center Chassis Planner

Thursday, June 6, 2013

Ames
Research
Center Chassis Planner Approach

• Fine tessellation of horizon
• For each tile

– steepness = max - min elevation
– steepness < clearance (within entire chassis)
– roughness = std-deviation from mode
– cost = roughness*steepness

• Overstuffed tiles

Thursday, June 6, 2013

Ames
Research
Center Chassis Planner Approach

• For successive chassis positions, cost is:
– sum over leg paths of tile transition costs

• Additional penalties when
– adjacent legs have significant elevation change at same time

Thursday, June 6, 2013

Ames
Research
Center Move Planner

• Given: fixed path for chassis
• Find: sequence of moves

– Roll
– Shift chassis
– Step

• Simplification: delay collision checking

drive 090,1m
rotate -20
roll-wheel 2, 20cm
raise-leg 1
drive 070,1m
lower-leg 1
step-leg 3, loc
…

Thursday, June 6, 2013

Ames
Research
Center Finding the best move

• Using depth-first search
1. Roll if possible in the direction dictated by the chassis

plan
2. If lifting a leg will allow further rolling, prefer it
3. If rotation will allow further rolling, prefer it
4. For each leg and the chassis:

• compute the max progress that the leg/chassis can be
advanced in the direction of the chassis plan

• order the leg/chassis moves according to progress along the
chassis plan

Thursday, June 6, 2013

Ames
Research
Center Steps Considered

R = Reachable positions
S = Stable positions
D = Desired positions

Reachable and stable regions are computed quickly by
the Configuration Space routines

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Move Planner

Thursday, June 6, 2013

Ames
Research
Center Leg Planner

• Given: specific move
• Find: path in joint space
• No collisions
• Respect angle and torque limits
• Simplification: done in isolation

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Stepping

obstacle

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Stepping

obstacle

Raise 10 cm

Thursday, June 6, 2013

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

Stepping

obstacle

Point in 6D
(joint angles) Points in 6D

Legal path in joint space

Thursday, June 6, 2013

Algorithm 1: SMPL

l SMPL: Try straight line

Point in 6D Point in 6D

Thursday, June 6, 2013

Algorithm 2: SBL

l SBL: Single-query Bi-directional planner with
Lazy collision checking
− Grow two trees, occasionally try connecting

Point in 6D Point in 6D

Thursday, June 6, 2013

Algorithm 3: CFG

l CFG: A* search in discretized 6D

Point in 6D Point in 6D

Thursday, June 6, 2013

Algorithm 4: TSK

Start position
Goal position

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

walking. The specific goal of this paper is to evaluate four
diffent algorithms for generating a single-step sequence of
commands.

Three of our four algorithms search configuration space

(“C-Space”). Each dimension in configuration space repre-
sents the range of angles for one of ATHLETE’s joints. A
path through configuration space represents a sequence of
moves (changes in joint angles) the robot can make to get
from one configuration to another.

Our first algorithm only tries the straight line between
the start and end configurations, our second is a standard
randomized motion planning algorithm, and our third is an
A* search through a discretization of configuration space.

Our fourth and final approach is A* search in task space,
the three-dimensional Euclidean space in which the robot
operates. Notice that in the example command sequence,
the Rotate command moves the robot in configuration space,
while the Raise/Lower commands are done in task space.

In Section 2, we explain the four algorithms used. Sec-
tion 3 describes our experiments, while Sections 4 and 5
present results. Section 6 discusses related work, Section 7
suggests future directions, and we conclude in Section 8.

2. Algorithms

2.1. Preliminaries

The goal for each of our algorithms is to produce a
sequence of commands to move an ATHLETE foot from
one location to another. We assume that the position and
orientation of the chassis remain fixed, and therefore that
we can ignore the configuration of the other five legs.1 This
simplification means we are only concerned with the six-
dimensional configuration space representing the joint angles
shown in Figure 2.

We can represent the location of the foot as either:
• A six-tuple in configuration space, ci, or
• A three-tuple in task space, xyzi.
In addition, we have functions, TO-TSPACE(ci, legj)

and TO-CSPACE(xyzi, legj), that convert between the two
spaces via the forward or inverse kinematics of the leg.
Note that, while one location for the foot in task space,
xyzi, could correspond to many different configurations,
our implementation of TO-CSPACE(xyzi, legj) is one-to-
one and always computes the same ci for a given xyzi.

Finally, we have a function COLLISION-FREE(ci, ci+1)
that determines whether the straight line in configuration
space between ci and ci+1 is free of collisions; the leg must
not collide with itself, other parts of the robot, or the terrain.

As problem input, we assume:

1. Although it might be necessary in tight space to adjust other legs or
the chassis in order to reach a goal, we consider such motions part of
multi-step walking and do not include them here.

Figure 2. The joints on an ATHLETE leg.

• Terrain data. For our experiments, it is auto-generated;
in reality, it is acquired with ATHLETE’s 15 on-board
cameras.

• The leg, legi, to move.
• Current position. This includes the location and orien-

tation of the chassis, and all six joint-angles for each
leg. We assume that this represents a valid and stable
position on the terrain, and that ATHLETE will remain
stable when legi is lifted.

• A goal position in task space, xyzgoal, for legi.
Given this data, we compute start and goal configurations,

cstart and cgoal. We get cstart by lifting legi 10 cm above
its current position, and cgoal is a configuration 10 cm above
xyzgoal. We include these 10 cm buffers because a weight-
bearing leg must be raised by about this much before it is
truly free of the ground, due to the way the chassis will sag
and the tire will expand as the leg is lifted.

The goal for each algorithm is to produce a path
(cstart, ..., cgoal) through configuration space such that each
edge (ci, ci+1) is collision free. Ultimately, the solution path
is converted to a sequence of low-level commands, which
move legi to cgoal. In the next four subsections, we outline
our different approaches to generate the path.

2.2. Straight line approach

Our baseline algorithm, SMPL,2 simply calls
COLLISION-FREE(cstart, cgoal). If the straight line
between cstart and cgoal has no collisions, it is returned as
the solution path. If not, the algorithm fails.

2.3. SBL

Our second approach is a Single-query Bi-directional
planner with Lazy collision checking (SBL), and is outlined
in Algorithm 1.

2. We use the abbreviation SMPL as shorthand for “Simple”.

l TSK: A* search in discretized 3D

Thursday, June 6, 2013

l TSK: A* search in discretized 3D

Algorithm 4: TSK

Point in 3D Point in 3D

Thursday, June 6, 2013

Ames
Research
Center Comparison of path planning

SMPL SBL CFG TSK

Space 6D 6D 6D 3D

Speed Fast Fast Slow and
variable Fast

Quality Terrible
Good but

variable
Mediocre Good

Smoothing NA Crucial Helpful Helpful

Thursday, June 6, 2013

Ames
Research
Center Decomposing the problem

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State Update
Commands

Thursday, June 6, 2013

Ames
Research
Center

Example

At

Path Planner

Travel ...TravelAt TravelAt

Thursday, June 6, 2013

Ames
Research
Center

Example

At

Path Planner

Travel ...

Chassis Planner ...

Travel

At

At TravelAt

At

Thursday, June 6, 2013

Ames
Research
Center

Example

At

Path Planner

Travel ...

Chassis Planner ...

Travel

At

At TravelAt

AtTranslate Rotate TranslateAt At

Thursday, June 6, 2013

Ames
Research
Center

Example

Chassis Planner ...At AtTranslate Rotate TranslateAt At

Thursday, June 6, 2013

Ames
Research
Center

Example

Chassis Planner ...At AtTranslate Rotate TranslateAt At

Move Planner ...At At

Thursday, June 6, 2013

Ames
Research
Center

Example

Chassis Planner ...At AtTranslate Rotate TranslateAt At

Move Planner ...At AtRoll Shift body StepAt At

Thursday, June 6, 2013

Ames
Research
Center

Example

Move Planner ...At AtRoll Shift body StepAt At

Thursday, June 6, 2013

Ames
Research
Center

Example

Move Planner ...At AtRoll Shift body StepAt At

Leg Planner ...At AtRoll Shift body aAt At b c ...
Raise foot 10 cm
Raise foot 40 cm
Rotate hip 50 degrees
Lower foot 40 cm
Lower foot 10 cm

Thursday, June 6, 2013

Ames
Research
Center

Problem 1: Planning

Move Planner ...At AtRoll Shift body StepAt At

Leg Planner ...At AtRoll Shift bodyAt At

Thursday, June 6, 2013

Ames
Research
Center

Problem 1: Planning

Move Planner ...At AtRoll Shift body StepAt At

...At AtRoll Shift bodyAt At
Leg Planner

Thursday, June 6, 2013

Ames
Research
Center

Problem 2: Execution

Move Planner ...At AtRoll Shift body StepAt At

...At AtRoll Shift body aAt At b c ...
End up in different place or

configuration

Leg Planner

Thursday, June 6, 2013

Ames
Research
Center Levels

More levels than usual

Point

Hexagon

Body pose

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Individual leg

Route Planner Arm Planner

Task Planner

Typical

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• Level boundaries
– Chassis x Move
– Sequential vs Interleaved

• Move & Leg Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• Assymmetry
– Inoperative Joint
– Tool usage

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

{Combine

Traversability Heuristics

More stability checking

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• Collision checking
– Route planner
– Chassis planner

• none
• check frame

– Move planner
• none
• check frame & non-moving legs

– Leg planner
• wheels only
• leg
• everything

Dependent on terrain difficulty ?

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• Horizon
– Route planner
– Chassis planner

• visual horizon ~ 5 meters
– Move Planner

• 2-5 meters
– Leg planner

• a few moves

Dependent on terrain difficulty ?

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• How often to replan at levels
– Route planner

• terrain detail changes roughness
• cost of Chassis plan is higher than

predicted
– Chassis planner

• cost of move plan is higher than
predicted

• advancement by more than 2
meters

– Move Planner
• after each command

Dependent on terrain difficulty ?

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Thursday, June 6, 2013

Ames
Research
Center Architectural Questions

• Level breakdown
– More than usual
– Boundaries?

• Chassis x Move
• Sequential vs Interleaved

Point

Hexagon

Body pose

Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Individual leg

Thursday, June 6, 2013

Ames
Research
Center Planning Assumptions

• Temporal
Action durations
Concurrency

• Time constraints
Communication windows
Illumination of targets
Temperature

• Uncertainty
Terrain & tracking
Duration of actions
Energy usage
Storage available

• Oversubscription
Many conflicting goals
Goal dependence

Levels of planning

Thursday, June 6, 2013

Ames
Research
Center Making it more Real

• Temporal
Action durations
Concurrency

• Time constraints
Communication windows
Illumination of targets
Temperature

• Uncertainty
Terrain & tracking
Duration of actions
Energy usage
Storage available

• Oversubscription
Many conflicting goals
Goal dependence

Thursday, June 6, 2013

Ames
Research
Center Complicating the Planning Problem

• Given:
– collection of goals with utilities
– time & resource constraints
– uncertain durations & resource usage

• Find:
– command sequence
– prefer rolling to stepping

Thursday, June 6, 2013

Ames
Research
Center Impact

• Route Planner
– need oversubscription planner

goals have utility
constraints on time & resources
maximize utility subject to constraints on time & resources

choose which goals to satisfy

Thursday, June 6, 2013

Ames
Research
Center Impact

• Route Planner
– need oversubscription planner

goals have utility
constraints on time & resources
maximize utility subject to constraints on time & resources

choose which goals to satisfy
goals have utility
actions have costs
maximize utility of goals

Net-Benefit Planner

not the same!

Thursday, June 6, 2013

Ames
Research
Center Impact

• Other Levels ?
– Uncertainty in time and resource usage

• impacts time constraints
• constantly simulate expectations
• more replanning required Route Planner

Chassis Planner

Move Planner

Leg Planner

Goals

Goals

Goals Viability

Viability

Viability

State
Update

Commands

Thursday, June 6, 2013

Ames
Research
Center Contingency Planning

• Uncertainty in continuous quantity
• Discretization usually not viable
• Uncertainty is cumulative

– the condition needs to be predictive
– if probability of completing this goal drops below x,

do plan2 instead

Thursday, June 6, 2013

Ames
Research
Center Making it more Real

• Temporal
Action durations
Concurrency

• Time constraints
Communication windows
Illumination of targets
Temperature

• Uncertainty
Terrain & tracking
Duration of actions
Energy usage
Storage available

• Oversubscription
Many conflicting goals
Goal dependence

Thursday, June 6, 2013

Ames
Research
Center The Tracking Problem

• Navigation and localization difficult
– beyond horizon - only gross features from satellite images
– choose paths near trackable features

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

Thursday, June 6, 2013

Ames
Research
Center Route Planning Search

cost = steepness * roughness * navigation-cost

Thursday, June 6, 2013

Ames
Research
Center Take Home Messages

• Multiple levels of planning
– 4 levels of path planning
– 3T+++

• Good abstraction is key
– allows feedback from lower level failures
– minimizes backtracking between layers

• Task planning interacts primarily with highest layer
– more serious with time constraints and duration uncertainty

• Levels break down with tool usage or damage
Thursday, June 6, 2013

