

From Task to Motion Planning

David E. Smith NASA Ames Research Center

1997-2000: Marsokhod

2001-2005: K9 rover

2007-2008: ATHLETE

2009-: A Different Kind of Rover

Some Rover Peculiarities

 Hazardous environments Slow rad-hardened processors (200 MHz) Low power (125 Watts)

Limited memory (256 MB) Limited storage (2 GB)

- Unstructured rough terrain
 Navigation/localization difficult
- Limited autonomy
 Local obstacle avoidance
 Opportunistic pictures

Some Rover Peculiarities

- Hazardous environments
 Slow rad-hardened processors (200 MHz)
 Low power (125 Watts)
 Limited memory (256 MB)
 Limited storage (2 GB)
 - Unstructured rough terrain
 Navigation/localization difficult
- Local obstacle avoidance Opportunistic pictures

The Planning Problem

- Temporal Action durations Concurrency
- Time constraints
 Communication windows
 Illumination of targets
 Temperature
- Uncertainty

Terrain & tracking Duration of actions Energy usage Storage available

Oversubscription
 Many conflicting goals
 Goal dependence

- 6 legs, 36 degrees of freedom
- Feet are wheels (walk and roll)
- Tool takeoff on each wheel

- 6 stereo camera pairs outward
- 3 stereo camera pairs inward
- 1 stereo pair on each foot
- 2.75m chassis
- 850 kg

ATHLETE Capabilities

ATHLETE in action

Ames Research

Center

- Raise foot 10 cm
- Raise foot 40 cm
- Rotate hip 60 degrees
- Pitch knee 40 degrees
- Pitch ankle -40 degrees
- Rotate hip 10 degrees
- Lower foot 40 cm
- Lower foot 10 cm

- Given:
 - simple goal point
 - terrain map with varying resolution
 - detailed \leq 5 meters
 - satellite > 5 meters
- Find:
 - command sequence
 - prefer rolling to stepping

Cartesian Space:

Cartesian Space:

Cartesian Space:

Discretization

Cartesian Space: ????

- Collisions of the entire leg
- Not every Cartesian path can be followed
- Not a 1-1 mapping

Configuration Space

Configuration Space

Cons

- Optimality
- Awkward paths
- Narrow channels
- Non-repeatability
- Active compliance

Ames Research

Center

Path Smoothing

- Optimality
 - enough points, A*, smoothing
- Awkward paths
 - smoothing
- Narrow channels

 smarter points
- Non-repeatability
 - roadmap retention
- Active compliance
 - sequencing

Ames Research

Center

- Given:
 - simple goal point
 - terrain map with varying resolution
 - detailed \leq 5 meters
 - satellite > 5 meters
- Find:
 - command sequence
 - prefer rolling to stepping

Joint space planning for entire robot

- (all 6 legs + shifting + rolling)

- 16 minutes on flat terrain
- 27 minutes on rough terrain

Ames Research

Center

- Sequence of locations
- Rolling, Rotating, Shifting, Stepping
- Footfalls
- Joint planning for Steps

- Computational
- Data quality degrades quickly over distance
- Uncertainty regarding future configurations

Route Planner

- Given:
 - simple goal point
 - terrain map at varying resolution
- Find: route
- Simplifications:
 - robot is single point
 - terrain roughness as cost

- Regular tessellation
- For each tile
 - steepness = max min elevation
 - steepness < clearance</p>
 - roughness = std-deviation from mode
 - cost = roughness * steepness
- Overstuffed tiles

- D*-Lite
- distance heuristics
 - n * green

- D*-Lite
- distance heuristics
 - n * green
 - m * color-cost + n-m * green

color-cost = [#g, #y, #o, #r, #b]

- D*-Lite
- distance heuristics
 - n * green
 - m * color-cost + n-m * green
 - n * color-cost

Chassis Planner

- Given:
 - goal direction, horizon, detailed terrain map
- Find:
 - sequence of translations and rotations
 - minimize stepping
- Simplification:
 - fixed leg pose

Ames Research

Center

- Fine tessellation of horizon
- For each tile
 - steepness = max min elevation
 - steepness < clearance (within entire chassis)
 - roughness = std-deviation from mode
 - cost = roughness*steepness
- Overstuffed tiles

- For successive chassis positions, cost is:
 - sum over leg paths of tile transition costs
- Additional penalties when
 - adjacent legs have significant elevation change at same time

- Given: fixed path for chassis
- Find: sequence of moves
 - Roll
 - Shift chassis
 - Step
- Simplification: delay collision checking

. . .

drive 090,1m rotate -20 roll-wheel 2, 20cm raise-leg 1 drive 070,1m lower-leg 1 step-leg 3, loc

- Using depth-first search
 - 1. Roll if possible in the direction dictated by the chassis plan
 - 2. If lifting a leg will allow further rolling, prefer it
 - 3. If rotation will allow further rolling, prefer it
 - 4. For each leg and the chassis:
 - compute the max progress that the leg/chassis can be advanced in the direction of the chassis plan
 - order the leg/chassis moves according to progress along the chassis plan

Reachable and stable regions are computed quickly by the Configuration Space routines

Thursday, June 6, 2013

Ames Research

Center

- Given: specific move
- Find: path in joint space
- No collisions
- Respect angle and torque limits
- Simplification: done in isolation

Raise 10 cm

• SMPL: Try straight line

Point in 6D

Point in 6D

- SBL: Single-query Bi-directional planner with Lazy collision checking
 - Grow two trees, occasionally try connecting

• CFG: A* search in discretized 6D

• TSK: A* search in discretized 3D

• TSK: A* search in discretized 3D

	SMPL	SBL	CFG	TSK
Space	6D	6D	6D	3D
Speed	Fast	Fast	Slow and variable	Fast
Quality	Terrible	Good but variable	Mediocre	Good
Smoothing	NA	Crucial	Helpful	Helpful

Thursday, June 6, 2013

Lower foot 40 cm

Lower foot 10 cm

Move Planner							
At	Roll	At	Shift body	At	\mathbf{X}	×	•••
					•		
			1		†		
	▼		*				
Leg Planner							
At	Roll	At	Shift body	At	\times	$\mathbf{\times}$	•••

End up in different place or configuration

- Level boundaries
 - Chassis x Move
 - Sequential vs Interleaved
 - Move & Leg

- Assymmetry
 - Inoperative Joint
 - Tool usage

- Collision checking
 - Route planner
 - Chassis planner
 - none
 - check frame
 - Move planner
 - none
 - check frame & non-moving legs
 - Leg planner
 - wheels only
 - leg
 - everything

Dependent on terrain difficulty ?

- Horizon
 - Route planner
 - Chassis planner
 - visual horizon ~ 5 meters
 - Move Planner
 - 2-5 meters
 - Leg planner
 - a few moves

Dependent on terrain difficulty ?

Ames Research

Center

Architectural Questions

- How often to replan at levels
 - Route planner
 - terrain detail changes roughness
 - cost of Chassis plan is higher than predicted
 - Chassis planner
 - cost of move plan is higher than predicted
 - advancement by more than 2 meters
 - Move Planner
 - after each command
 - Dependent on terrain difficulty ?

- Level breakdown
 - More than usual
 - Boundaries?

Sequential vs Interleaved

Planning Assumptions

Making it more Real

- Temporal Action durations Concurrency
- Time constraints
 Communication windows
 Illumination of targets
 Temperature
- Uncertainty
 Terrain & tracking
 Duration of actions
 Energy usage
 Storage available
- Oversubscription
 Many conflicting goals
 Goal dependence

mes

Research Center

Research Center Complicating the Planning Problem

- Given:
 - collection of goals with utilities
 - time & resource constraints
 - uncertain durations & resource usage
- Find:
 - command sequence
 - prefer rolling to stepping

- Route Planner
 - need oversubscription planner

goals have utility constraints on time & resources maximize utility subject to constraints on time & resources

choose which goals to satisfy

Impact

- Route Planner
 - need oversubscription planner

goals have utility constraints on time & resources maximize utility subject to constraints on time & resources

choose which goals to satisfy

Net-Benefit Planner

goals have utility actions have costs maximize utility of goals

not the same!

- Other Levels ?
 - Uncertainty in time and resource usage
 - impacts time constraints
 - constantly simulate expectations
 - more replanning required

- Uncertainty in continuous quantity
- Discretization usually not viable
- Uncertainty is cumulative
 - the condition needs to be predictive
 - if probability of completing this goal drops below x, do plan2 instead

Making it more Real

 Temporal Action durations Concurrency

mes

Research Center

- Time constraints
 Communication windows
 Illumination of targets
 Temperature
- Uncertainty
 Terrain & tracking
 Duration of actions
 Energy usage
 Storage available
- Oversubscription
 Many conflicting goals
 Goal dependence

- Navigation and localization difficult
 - beyond horizon only gross features from satellite images
 - choose paths near trackable features

Ames Research

Center

Route Planning Search

cost = steepness * roughness * navigation-cost

Take Home Messages

- Multiple levels of planning •
 - 4 levels of path planning
 - 3T+++
- Good abstraction is key
 - allows feedback from lower level failures
 - minimizes backtracking between layers
- Task planning interacts primarily with highest layer
 - more serious with time constraints and duration uncertainty
- Levels break down with tool usage or damage ٠

mes Research

Center

