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What We Consider: Heuristic (Forward) Search
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→ Heuristic function h maps world states s to an estimate h(s) of goal
distance. Search prefers to explore states with small h.

Jörg Hoffmann and Michael Katz Distance Estimation in Planning Lecture 1: Overview 4/39



Intro 4 Families of heuristics h Combining h Comparing h Concl References

What We Consider: Heuristic Functions

Problem: Find a route from Saarbruecken To Edinburgh.
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What We Consider: Heuristic Functions

Simplified Problem: Throw away the map.
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What We Consider: Heuristic Functions

Heuristic function: Straight line distance.
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What We Consider: Heuristic Functions

→ Heuristic functions h are computed as solutions to simplified versions
of the problem at hand.

How to do this in planning?

The “problem at hand” is anything that can be described in the
declarative input language.

We will consider STRIPS and Finite-Domain Representation (FDR)
(aka “SAS+”, multi-valued variables) interchangeably.

We want to generate h fully automatically, given only that input.

→ It’s a long way to the goal, but how long exactly?

→ For simplicity, we will mostly stick to distance, i.e., plan length. Most
of what we’ll talk about can be done for arbitrary additive action costs.
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Why Consider Heuristic Search Planning?

IPC = The International Planning Competition:

IPC 2000 Winner: heuristic search.
IPC 2002 Winner: heuristic search.
IPC 2004 Winner: satisficing: heuristic search, optimal: SAT.
IPC 2006 Winner: satisficing: heuristic search, optimal: SAT.
IPC 2008 Winner: satisficing: heuristic search, optimal: symbolic search.
IPC 2011 Winner: satisficing: heuristic search (first 12 places), optimal:
heuristic search (first 9 places).

ATTENTION!

This is only for the fully-automatic deterministic tracks of the IPC.
This does NOT mean heuristic search is universally better; it’s only the
IPC setup.
”Winner” is a very inadequate summary of such huge and complex events.

→ All I’m saying is: This approach has been mainstream in academic planning
research during the last decade, and has produced a lot of interesting results.
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Warning!!

This is an advanced lecture. If you’re not at least vaguely familiar with
heuristic search planning, you’re not likely to understand much.

In this introductory lecture, I will give a brief overview of the area,
that you should be able to follow in any case. (Although you won’t
be able to answer my questions if you’re a beginner.)

In the technical lectures, we will assume familiarity with the basics.

Sorry, but if we cover all the basics in detail, then we won’t get
around to say much about the recent stuff.
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The 4 Families (That We Know Up To Now)

Ignoring Deletes
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Ignoring Deletes: Example

→ h = Minimum Spanning Tree
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Ignoring Deletes: Details

How is h+ defined? (in STRIPS)

→ Given a world state s, h+(s) is the length of an optimal relaxed plan for
s, i.e., a plan for s in the relaxed task where the delete lists are assumed to
be empty.

Can we compute h+ efficiently?

→ No, the corresponding decision problem is NP-hard.

If not, what approximations are known?

→ hmax approximates the cost of a set of > 1 facts by the cost of the most
difficult single fact in the set; hadd instead approximates the cost of the set
by the sum of the costs of its facts. The relaxed plan heuristic generates
some not necessarily optimal plan for the relaxed task.

How is h+ defined for FDR planning?

→ In FDR, ignoring deletes means assuming that state variables
accumulate their values, rather than switching between them.
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Ignoring Deletes: (Some) Recent Results

“Recent”: The last 5 or so years.

“Some”: A sample of results that we personally find important.

(a) Automatic h+ search space surface analysis [Hoffmann (2011)]: One
can identify classes of planning tasks whose surface has particular properties
(absence of local minima) based on properties of the causal graph and the
domain transition graphs. This connection can be exploited for automatic
analysis predicting “how difficult” a task is for delete relaxation heuristics.

(b) Marriage of hm with h+ [Haslum (2012); Keyder et al. (2012)]:
Allows to interpolate between h+ and h∗; see below under critical-path
heuristics.

(c) Relaxing only some of the state variables [Katz et al. (2013b,a)]: Red
variables accumulate their values, black variables switch between them.
Allows to interpolate between h+ and h∗.

→ All of (a–c) are covered in Lecture 2.
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The 4 Families (That We Know Up To Now)
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Abstractions: Example
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Abstractions: Example
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→ h = Solution to Smaller (and Easier) Puzzle
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Abstractions: Details

What is an abstraction, formally?

→ An abstraction is a function α mapping between the state space (all
world states) and a (smaller) set of abstract world states.

How is the corresponding heuristic function hα defined?

→ Given a world state s, hα(s) = h∗θα(α(s)) where h∗θα is goal distance in
the abstract state space θα induced by α. (E.g., Transitions (s, a, s′) in
the state space yield transitions (α(s), a, α(s′)) in θα.)

What is a pattern database heuristic?

→ A pattern database heuristic (PDB) is an abstraction heuristic hα where
α is a projection, i.e., α(s) = α(t) iff s and t agree on a subset of the state
variables (e.g., those encoding the positions of 1, . . . , 7 and the blank).

What is a merge-and-shrink heuristic?

→ A merge-and-shrink heuristic (M&S) is an abstraction heuristic hα

conbsructed by starting with projections on single variables, then iteratively
merging two abstractions (replacing them with their synchronized product)
and shrinking an abstraction (replacing it with an abstraction of itself).
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Abstractions: (Some) Recent Results

(a) Automatic generation of pattern database heuristics [Haslum et al.
(2007)]: The canonical heuristic gets the maximal additive sum from a
pattern collection. Find that collection by hill-climbing in the space of
pattern collections, pruning useless choices based on the causal graph.

(b) Merge-and-shrink heuristics [Helmert et al. (2007)]: Basic framework
and a simple instantiation (merging strategy and shrinking strategy).

(c) Shrinking by bisimulation [Nissim et al. (2011)]: Bisimulation is a
well-known concept from Verification. Using it for shrinking yields perfect
heuristics but is prohibitively expensive; conservative label reduction can
yield exponential savings at no information loss (happens e.g. in Gripper).

(d) Shrinking by approximate bisimulation [Katz et al. (2012)]: To trade
accuracy for speed, need coarser notion of state similarity. K-catching
bisimulation is bisimulation relative to an action subset K; choosing K
enables the trade-off (and is loss-free in certain cases).

→ None of this is covered in the technical lectures.
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The 4 Families (That We Know Up To Now)
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Landmarks: Example

Problem: Bring key B to position 1.

Landmarks:

robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7.

Lock-open.

Have-key-A.

Have-key-B.

. . .

→ h = “Number of open items on the to-do list”
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Landmarks: Details

What is a fact landmark?

→ A fact landmark for a state s is a fact that must be true at some point
along any plan for s.

What is a disjunctive action landmark?

→ A disjunctive action landmark for a state s is a set of actions L at least
one of which must be used by any plan for s.

How can we turn a fact landmark into a disjunctive action landmark?

→ If p is a fact landmark for s, and p is not true in s, then the set L of all
actions whose effect includes p is a disjunctive action landmark for s.

Can all disjunctive action landmarks be derived that way?

→ No! (Simple counting argument; alternative solution paths.)

What is the heuristic defined by a disjunctive action landmark L?

→ The elementary landmark heuristics hLM
L returns 1 (respectively the cost

of the cheapest action in L) if L is a disjunctive action landmark for s, and
returns 0 otherwise.
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Landmarks: (Some) Recent Results

(a) Inadmissble LM h for satisficing planning in LAMA [Richter and
Westphal (2010)]: Find fact LMs for initial state, incremental
maintenance of open LMs for search states. h =count of open LMs.

(b) Admissible LM h for optimal planning [Karpas and Domshlak
(2009)]: Find fact LMs for initial state, incremental maintenance of open
LMs for search states; consider the induced disjunctive action LMs.
h =admissible combination, using cost partitioning (see next section).

(c) LM-cut [Helmert and Domshlak (2009)]: Find disjunctive action LMs
anew for every search state, using cuts in a graph that defines hmax.
Combine admissibly using cost partitioning. Empirically, the best admissible
heuristic we have at this point!

(d) From landmarks via hitting sets to h+ [Bonet and Helmert (2010);
Bonet and Castillo (2011); Haslum et al. (2012)]: Find disjunctive
action LMs. Combine admissibly using the minimum-cost hitting set. Given
the set of LMs is “complete”, this is equal to h+.

→ (c) and (d), and the cost partitionings of (b), are covered in Lecture 3.
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The 4 Families (That We Know Up To Now)
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Critical Paths: Example

→ h1 = Most Expensive 1-Sub-Tour
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Critical Paths: Example

→ h2 = Most Expensive 2-Sub-Tour
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Critical Paths: Example

→ hm = Most Expensive m-Sub-Tour
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Critical Paths: Details

How is h1 defined?

h1(s) := h1(s,G) where h1(s, g) is the point-wise greatest function that
satisfies h1(s, g) = 0 g ⊆ s

mina∈A,regr(g,a) is defined c(a) + h1(s, regr(g, a)) |g| = 1
maxg′∈g h

1(s, {g′}) |g| > 1

Which previously discussed heuristic is h1 equivalent to? hmax.

How is hm defined?

hm(s) := hm(s,G) where hm(s, g) is the point-wise greatest function that
satisfies hm(s, g) = 0 g ⊆ s

mina∈A,regr(g,a) is defined c(a) + hm(s, regr(g, a)) |g| ≤ m
maxg′⊆g,|g′|≤m h

m(s, g′) |g| > m
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Critical Paths: (Some) Recent Results

(a) Compiling hm into h1 [Haslum (2009)]: Given planning task Π,
construct a compiled task Πm such that h1(Πm) = hm(Π).

(b) Marriage of hm with h+ [Haslum (2012)]: Given planning task Π,
choose a set C of fact conjunctions and construct a compiled task ΠC

representing C explicitly, such that:

(1) If C consists of the size-m conjunctions, then h1(ΠC) = hm(Π).
(2) h+(Π) ≤ h+(ΠC) ≤ h∗(Π).
(3) For suitable C, h+(ΠC) = h∗(Π).

Unfortunately, ‖ΠC‖ grows exponentially in |C|.

(c) Efficient marriage of hm with h+ [Keyder et al. (2012)]: Given
planning task Π, choose a set C of fact conjunctions and construct a
compiled task ΠC

ce with (1–3), plus being polynomial in |C|.

→ All of (a–c) are (briefly) covered in Lecture 2.
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Cost Partitionings: Example

Planning task: Shoot films A and B at the right (gotA, gotB). “Normal” car
A/B can only do film A/B, “fancy” car can do both A and B. Each move of
normal car costs 1.5, each move of fancy car costs 2.

Cost partitioning: Normal car X: 1.5 in PX , 0 in other pattern. Fancy: 1 in
each of PA, PB . → hPA(I) = hPB (I) =
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Cost Partitionings: Example

Planning task: Shoot films A and B at the right (gotA, gotB). “Normal” car
A/B can only do film A/B, “fancy” car can do both A and B. Each move of
normal car costs 1.5, each move of fancy car costs 2.

Heuristics: PA = {carA, fancy , gotA} and PB = {carB , fancy , gotB}.

PA:

PB :

→ hPA(I) = hPB (I) = 4.5. → Are PA and PB additive? No.

Cost partitioning: Normal car X: 1.5 in PX , 0 in other pattern. Fancy: 1 in
each of PA, PB . → hPA(I) = hPB (I) = 3 and hPA(I)+ hPB (I) = 6 = h∗(I).
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Cost Partitionings: Details

How can we always combine admissible heuristics h1, h2 into a dominating
admissible heuristic? By max.

Is that a good idea?

→ Possibly, but it is much better to take the sum. There are notions of
independence for particular families of heuristic functions (e.g., additive
PDBs), where independent heuristics can be admissibly summed.

What is a cost partitioning and why is that useful?

→ Given planning task Π and heuristics h1, . . . , hn a cost partitioning
distributes the cost of each action across n copies Πi of Π; the partitioned
sum then is

∑n
i=1 hi(Πi). Cost partitioning applies to any heuristics, and

subsumes the earlier notions of independence as special cases.

How can we find optimal cost partitionings?

Given a world state s, an optimal cost partitioning is such that the
partitioned sum is maximal for s. Such cost partitionings can be found for
landmarks and abstractions using Linear Programming (LP).
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Cost Partitionings: (Some) Recent Results

(a) Optimal cost partitionings can be found in polynomial time [Katz
and Domshlak (2008)]: LP-encoding for abstraction heuristics.

(b) Optimal cost partitionings for elementary LM heuristics [Karpas and
Domshlak (2009)]: LP-encoding for disjunctive action landmarks.

(c) Targeted practical use of optimal cost partitionings [Karpas et al.
(2011)]: Optimal cost partitionings are great, but they depend on the
state. Calling an LP solver for every search state causes enormous runtime
overhead. Typically more practical: Solve an LP for some sample states, use
a combination/selection of the resulting cost partitionings for each search
state.

→ (a) and (b) are covered in Lecture 3.
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Compilability Between Admissible Heuristic Functions

Ignoring Deletes

hmax ≤
h+
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PDB �
M&S
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h3 ≤
. . .
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hLM
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hmax 6�PDB

hmax �M&S

hmax ≡ hLM
L

hmax = h1

hLM
L 6�PDB

hLM
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L

h1 6�PDB
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PDB6� hm

h1 ≡ hLM
L
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Compilability: Details

When can a family H of admissible heuristics be compiled into another
family H ′ of admissible heuristics?

→ If there exists a polynomial-time algorithm that, given as input any
planning task Π, world state s, and h ∈ H, constructs h′1, . . . , h

′
n ∈ H ′

along with a cost partitioning so that h(s) ≤
∑n
i=1 h

′
i(Πi).

So what about partitioned sums of heuristics h1, . . . , hm ∈ H?

→ Just compile each of them individually, and sum up.

The standard notion of “heuristic dominance” is the special case where?

→ We need only one h′ ∈ H ′, and the inequality holds for all states s.
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Compilability: (Some) Recent Results

(a) Framework introduction and most proofs [Helmert and Domshlak
(2009)]: Devises the compilability framework, and proves all results stated
except hm 6�M&S. Invents LM-cut as a side effect of proving that h1 can
be compiled into elementary LM heuristics. Wonderful paper!

(b) h2 (and thus hm) cannot be compiled into merge-and-shrink:
Soon-to-be-published result proved by Patrik Haslum.

→ LM-cut (but nothing else of this) is covered in Lecture 3.
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Summary

Heuristic search is a prominent approach to planning, with lots of success
in the IPC (and also, successes in applications).

A key question is how to generate the goal distance estimator, i.e., the
heuristic function h.

The investigation of that question is reasonably mature, with 4 families of
methods, along with general techniques for combining and comparing
these methods.

Many exciting results have been published very recently. Some of them are
covered in detail in the following two technical lectures.

For timing reasons, the technical lectures have to (a) assume a basic
familiarity with the subject, and (b) gloss over/omit many details.

To counter (b), following the citations is strongly recommended!

If you don’t qualify for (a), you can have a look at my lecture slides, which
introduce all the basic concepts in detail:

http://fai.cs.uni-saarland.de/teaching/winter12-13/planning.html
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