

Using Satisfiability for Non-Optimal Temporal Planning

Masood Feyzbakhsh Rankooh

Advisor: Dr. Gholamreza Ghassem-Sani

Abstract

Using satisfiability for non-optimal temporal planning has
not been investigated so far. The main difficulty in using
satisfiability in temporal planning is the representation of
time, which is a continuous concept. Previously introduced
SAT-based temporal planners employed an explicit repre-
sentation of time in the SAT formulation, which made the
formulation too large for even very small problems. To
overcome this problem, we introduce a novel method for
converting temporal problems into a SAT encoding. We
show how the size of the encoding can be reduced by ab-
stracting out durations of planning actions. We also show
that the new formulation is powerful enough to encode fully
concurrent plans. We first use an off-the-shelf SAT solver to
extract an abstract initial plan out of the new encoding. We
then add the durations of actions to a relaxed version of the
initial plan and verify the resulting temporally constrained
plan by testing consistency of a certain related Simple Tem-
poral Problem (STP). In the case of an inconsistency, a
negative cycle within the corresponding Simple Temporal
Network (STN) is detected and encoded into the SAT for-
mulation to prevent the SAT solver from reproducing plans
with similar cycles. This process is repeated until a valid
temporal plan will be achieved.

 Introduction

While satisfiability checking is a major approach in dealing
with classical planning, it has been insufficiently exploited
in the field of temporal planning. In fact, the only pub-
lished SAT-based temporal planners are STEP [1] and T-
SATPLAN[2], which are both optimal planners. Besides,
none of well-developed techniques for increasing the speed
of SAT-based planners have been used in temporal plan-
ning.

Both STEP and T-SATPLAN use an explicit representa-
tion of time in their encodings. Generally speaking, in
these SAT-based approaches, layer i is exactly one time
unit ahead of layer i+1. If an action has a duration of d and
its starting point is in layer i, then its ending point is re-
stricted to be in layer i+d. Such a representation makes an
enormous number of layers to be present in the SAT for-
mulation while not being used in the final plan. This prob-
lem worsens as the duration ratio between the most dura-
tive action and the least one gets higher. Encoding more
layers increases the size of the produced formula and may

cause the planner to become highly memory sensitive.
Even if the planner is not running out of memory, a line-
arly larger number of variables means an exponentially
larger search space for finding a solution and as a result, a
substantial decrease in the speed of the planner.

In this report, we explain an alternative encoding ap-
proach in which instead of using an explicit representation
of time, layers are used merely for determining the order of
actions. In fact, in our representation, layer i is ahead of
layer i+1, but the actual difference in their times is not
fixed. Therefore, an action can have its start in layer i, and
its end in layer i+1, regardless of its duration. In other
words, the durations of actions are abstracted out at the
time of producing the SAT encoding.

Abstracting the durations of actions is not a new concept
in the field of temporal planning. Some temporal planners
have used such abstractions for guaranteeing the complete-
ness in an important subset of temporal problems, called
problems with required concurrency [3]. CRIKEY [4] was
the first planner that separated the planning and scheduling
processes by eliminating all durations in the planning
phase. CRIKEY tests the validity of the resulting plan later
in the scheduling phase, by solving a simple temporal
problem. POPF [5], a descendant of CRIKEY, uses a linear
programming method in its scheduling phase. Both POPF
and CRIKEY take benefit from an enforced hill-climbing
search method [6] in addition to standard best-first search
mechanism. POPF is regarded as the state-of-the-art plan-
ner for solving the temporal problems with required con-
currency.

 The block diagram of our approach is depicted in fig-
ure 1. Similar to CRIKEY and POPF, our planner, named
ITSAT (Implicit Time SAT planner), will need a schedul-
ing step, when an abstract plan is produced by the SAT
solver. The durations should be given back to the actions
and an exact time value should be assigned to each of them
by solving a simple temporal problem. However, such a
consistent temporal assignment may not exist. As we show
later, the reason of the inconsistency can be easily identi-
fied as negative cycles in the graph representation of the
corresponding STP [7]. We then, add certain variables and
clauses to the SAT formula in order to prevent the SAT
solver from reproducing such cycles.

 2

Fig. 1. The block diagram of ITSAT

Temporal Planning

We now give a formal description of temporal planning.
Before that, we need a formal definition of a classical ac-
tion. The definitions presented here are compatible with
PDDL2.1 [8] where temporal actions can have separate
preconditions and effects upon starting or ending.

Definition 1. A classical action o is a triple (pre(o), add(o),
del(o)). All pre(o), add(o), and del(o) are sets of facts and
each fact is an atomic proposition. The set pre(o) includes
all the preconditions of o. The sets add(o) and del(o) con-
tain the add and delete effects of o, respectively.

Definition 2. A temporal action a is defined by a positive
rational duration d(a), a starting event as, an ending event
ae, and an over-all condition over(a). Each event is a clas-
sical action and the over-all condition is defined as a clas-
sical precondition. We also have: action(as)=action(ae)=a.
Action a is applicable in time t, if pre(as) and pre(ae) are
respectively held in time t and t+d(a); and furthermore,
over(a) is held in open interval (t,t+d(a)). The application
of a will cause the effects of as and ae to take place in time
t and t+d(a), respectively.

Definition 3. A temporal planning problem is a quadruple
P=(A,F,I,G), where A is a set of temporal actions, F is the
set of all the given facts, I is a classical initial state, and G
is a set of classical goal conditions.

Definition 4. Suppose that P=(A,F,I,G) is a temporal plan-
ning problem. A plan is represented by
π={(a1,t1),…,(an,tn)}, which means that action ai is per-
formed in time ti.

SAT Encoding

We now explain how a temporal planning problem
P=(A,F,I,G) is encoded into its corresponding SAT for-
mula. Suppose that E is the set of all starting and ending

events of P, and we are constructing a formula with n con-
ceptual layers. Variables and clauses that are essential for
the soundness and completeness of the encoding are de-
fined as follows.
 We define some variables to represent all the facts of P.
 For every fact f ϵ F, and every 1≤i≤n, a variable Xf,i is

defined. Assigning 1 to Xf,i means that the fact f is true
in the conceptual layer i.

Although previous SAT-based temporal planners, STEP
and T-SATPLAN, encode each temporal action with a sin-
gle variable, our encoding has two variables for the starting
and ending events of each action, and another variable for
representing the situations when the action is still running
i. e., it is open.
 For every event e ϵ E, and every 1≤i<n, a variable Ye,i is

defined. Assigning 1 to Ye,i means that the event e is
performed in the conceptual layer i.

 For every action a ϵ A, and every 1≤i<n, a variable Wa,i
is defined. Assigning 1 to Wa,i means that the action a
is open (started but has not yet finished) in the concep-
tual layer i .

We also need some clauses for constraining the values
of the variables of the first and the last layers in an appro-
priate way.
 For every fact f ϵ I, a clause Xf,1 is asserted to ensure the

presence of initial facts in layer 1.

 For every fact f ϵ F-I, a clause ¬Xf,1 is added to ensure
that only the facts of initial state can be present at layer
1.

 For every fact g ϵ G, a clause Xg,n is asserted to ensure
the presence of all the goal conditions in the last layer.

 For every action a ϵ A, a clause ¬Wa,1 is asserted to en-
sure that no action is open in layer 1.

 For every action a ϵ A, a clause Wa,n→ ,ea nY is added to
ensure that no action is remained unfinished in layer n.

We need certain clauses to handle the necessary condi-
tions of performing an event in a layer and propagating the
effects of that event to the next layer. The following
clauses guarantee that if an event e is being performed in

 3

layer i, then its preconditions are available in layer i, and
its effects are held in layer i+1.
 For every event e ϵ E, every fϵ pre(e), and every 1≤i<n,

a clause Ye,i→ Xf,i is added.

 For every event e ϵ E, every fϵ add(e), and every 1≤i<n,
a clause Ye,i→ Xf,i+1 is asserted.

 For every event e ϵ E, every fϵ del(e), and every 1≤i<n,
a clause Ye,i→ ¬Xf,i+1 is asserted.

Note that these constraints are not sufficient to make a
valid plan. Many planning representations, including
PDDL2.1 [8], forbid a proposition to be deleted by an
event if it is needed by at least one other event at the same
time. If the effects of each event take place only in the next
layer, detecting such conflicts will be impossible. To over-
come this flaw, quite similar to previous classical and tem-
poral SAT-based planners, we use clauses that explicitly
encode the mutual exclusion between conflicting events.
As an example, if event a deletes a precondition of event b,
then the clause Ya,i→¬ Yb,i is added to the formula for every
i to ensure a and b will never be performed at the same
layer.

Beside preconditions of an event, some other conditions
must hold to enable that event to occur in a certain layer.
We assume that two copies of the same ground action can
never be concurrent. Even though PDDL2.1 allows this
kind of concurrency, none of the domains we observed
during our empirical analysis had such requirements.
 For every 1≤i<n and every event e ϵ E, if e is the starting

event of action a, a clause Ye,i → ¬Wa,i ∧ Wa,i+1 is added
to ensure that two copies of action a will not be concur-
rent. This clause also assures us that if a is started in
layer i, it will be considered as an open action in layer
i+1.

 For every 1≤i<n and every event e ϵ E, if e is the ending
event of action a, a clause Ye,i → Wa,i ∧ ¬Wa,i+1 is added
to ensure that only open actions can be ended; more-
over, if an action is ended in layer i, it will no longer be
considered as an open action in layer i+1.

 For every 1≤i<n, every action a ϵ A, and every fact f ϵ
over(a), we add a clause Wa,i → Xf,i. This clause assures
us that when an action is still open, its over-all condi-
tions are maintained.

Finally, several kinds explanatory frame axioms are
needed for preventing the values of the variables from
changing without any reason.
 For every 1≤i<n and every f ϵ F, we add a clause

¬Xf,i ∧ Xf,i+1→(⋁fϵ add(e) Ye,i) to prevent any fact from
being arbitrarily asserted in layer i.

 For every 1≤i<n and every f ϵ F, we add a clause
Xf,i ∧ ¬Xf,i+1→(⋁fϵdel(e) Ye,i) to prevent any fact from be-
ing arbitrarily deleted from layer i.

 For every 1≤i<n and every a ϵ A, we add a clause
¬Wa,i ∧ Wa,i+1→ Ye,i , where e is the starting event of
action a. This clause ensures that no action can become

open in layer i+1, without having its starting event in
layer i.

 For every 1≤i<n and every a ϵ A, we add a clause
Wa,i ∧ ¬Wa,i+1→ Ye,i , where e is the ending event of
action a. This clause ensures that if an action is open in
layer i but not open in layer i+1, its ending event must
be present in layer i.

It should be obvious from our SAT encoding that durations
of actions play no role in the encoding. However, every
other constraint of temporal planning is encoded into the
SAT formulation. In other words, if we solve the SAT
formula with a SAT solver, the resulting plan will be a
valid temporal plan, unless there is an inconsistency among
the durations of actions. We will discuss this issue in more
details later.

The Scheduling Phase

Assume that we have solved a SAT formula produced by
the encoding phase described is section 3 and obtained a
solution for it. Let e1,…,em be the events whose corre-
sponding SAT variables have a value of 1 in the solution.
Suppose that we have given different names to different
occurrences of the same action in the solution, so all the
events e1,…,em are unique. Let layer(ei) be the number of
layer in which ei has occurred.

Events e1,…,em must then be scheduled in order to pro-
duce a valid temporal plan. In other words, exact time val-
ues should be assigned to the events. However, these time
values cannot be assigned arbitrarily. In fact, there exist
certain constraints between these values.

Let the time value assigned to event ei be T(ei). Since it
is assumed in the generation of a SAT formula, that layer i
is ahead of layer i+1, a straightforward way to maintain the
validity of the final plan is to schedule each event of layer
i, before all events of layer i+1. Now, suppose that layer(e-

k)=i, and layer(ej)=i+1 and furthermore, ej and ek have no
causal relationship with each other. Now, if the order be-
tween ej and ek is eliminated, not only will the validity of
the plan remain unchanged, but also it will be more likely
to find a consistent assignment of time values for the
events.

In order to pursue the above idea, we define new order-
ing constrains between different pairs of events. For satis-
fying all these constraints, we solve an instance of a Sim-
ple Temporal Problem (STP) [7]. Each STP is associated
with a weighted graph named a Simple Temporal Network
(STN). We construct an STN in which each node corre-
sponds to an event. For each i, let xi be the node that is cor-
responding to event ei in the STN. Let ϵ be an arbitrary
small rational number and ej and ek be different events such
that layer(ej)≥ layer(ek). The constraint T(ej) ≥ T(ek)+ϵ
must hold if one of following condition is satisfied:
1. ek adds a precondition of ej .
2. ej deletes a precondition of ek.

 4

3. either ej or ek delete any effect of the other.
4. ej is a starting event and ek deletes an all-over condition

of action(ej)
Consequently, an edge with the weight -ϵ will be pre-

sent in the STN from the node xk to the node xj . Moreover,
if one of the following conditions holds, the constraint
T(ej)≥T(ek) will be necessary, and an edge with weight 0
will be present in the STN from the node xk to the node xj.
5. ek is an ending event and ej deletes an all-over condition

of action(ek).
6. ej is a starting event and ek adds an all-over condition of

action(ej).
As before, in addition to the constraints stated above, the

following constraint must also hold if ek and ej are respec-
tively the starting and ending effect of certain action a to
ensure that the durations of a in the final plan is set cor-
rectly:
7. T(ej)≥T(ek)+d(a)
8. T(ek)+d(a)≥ T(ej)

These constraints will be inserted into the STN by add-
ing an edge with the weight –d(a) from node xk to node xj,
and another edge with weight d(a) from node xj to node xk.
We also add a reference node x0 to the constructed STN
which has an edge with weight 0 to every other node. A so-
lution of the STP can be found by computing the length of
the shortest path form x0 to all other nodes. Suppose that
such shortest paths exist and the length of the shortest from
x0 to xi is shown by distance(x0 , xi). For each event ei, we
assign -distance(x0 , xi) to T(xi). Constraints 1 to 8 guaran-
tee that the resulting plan has all the specifications of a
valid temporal plan. However, there are situations in which
such shortest paths do not exist. It happens when the STN
has a negative cycle. In these situations the STP is incon-
sistent and consequently, all temporal constraints can not
be satisfied at the same time. An example of such cases is
depicted in figure 2.

Fig. 2. Negative cycle in an STN, and the detecting FSM

Suppose that 1) action a adds proposition p and g re-

spectively by its starting and ending event. 2) a needs
proposition q as a precondition for its ending event. 3) ac-
tion b that requires p upon beginning and adds q upon end-
ing. 4) durations of actions a, and b, are 5 and 10, respec-
tively. 5) action c is identical to b except for its duration
which is 15. 6) The goal of planning is reaching fact g. If a
SAT formula with four layers is produced for this problem,
then a SAT solver can satisfy the formula by putting the
starting event of a in layer 1, the starting event of b in layer
2, the ending event of b in layer 3, and the ending event of
a in layer 4. This means action b must be entirely per-
formed inside of action a. However, this situation is im-
possible considering the fact that duration of a is less than
that of b. The abstract plan produced by SAT solver is de-
picted in figure 2(a). Preconditions and effects of each ac-
tion are respectively written above and below it.
The invalidity of this plan is caused by the fact that all the
durations are abstracted out when the formula is being pro-
duced. In fact, the SAT solver assumes that the execution
of ending event of a can be postponed, as long as is

needed. The STN constructed for the plan of figure 2(a) is
depicted in figure 2(b). asbsbeaeas is a negative cycle with
total weight -5-2ϵ. Note that if action b had been replaced
by action c in fig 1(a), we would have had another negative
cycle with weight -10-2ϵ.
According to definition 7, although planners such as STEP,
T-SATPLAN, and TM-LPSAT allow parallel execution of
actions, they are in fact using the 1-step encoding. That is
because these planners assume simultaneous execution of
all events in each step.

Negative Cycle Prevention

As it was stated before, if the STN of an abstract plan has a
negative cycle, it cannot be transformed to a valid temporal
plan. In such cases, we run the SAT solver again to find a
different solution. This can be done by adding an extra
blocking clause to the SAT formula so that at least one of
the events of invalid plan cannot occur in its current layer.
Nevertheless, after adding such a blocking clause, the SAT

 5

solver can produce new plans that are not essentially dif-
ferent from previous one. For instance, consider the exam-
ple given in figure 2(a). Suppose as,bs,be, and ae are true in
layers 1 to 4, respectively. Assume that the SAT formula
have 5 layers. If we forbid the exact occurrence of this
plan, a new temporally invalid abstract plan can still be
produced by shifting ae to layer 5 and maintaining other
events in their current layers. The new solution will have
the same negative cycle. In fact, the main cause of the in-
validity of the plan has remained unchanged. On the other
hand, by replacing action b by action c, another temporally
invalid abstract plan can be produced. This time, the cycle
asbsbeaeas has been replaced by cycle ascsceaeas. However,
since b and c have identical preconditions and effects, and
c has a longer duration, we could have inferred from struc-
ture of asbsbeaeas that ascsceaeas is also a negative cycle. We
now show that negative cycles of particular structure can
be prevented more effectively. We also explain how other
similar negative cycles can prevented.
 The negative cycles in which we are interested are quite
similar to the one depicted in figure 2(b). Such cycles hap-
pen when several actions of a temporal plan are to be exe-
cuted consecutively within the execution of another action.
These cycles can be regarded as sequences of events. For
instance, in the previous example, each time that the as, ae,
bs, and be occur with the order asbsbeae, we can be sure that
the corresponding STN has a negative cycle. Fortunately,
such sequences can be detected by using a simple Finite
State Machine (FSM). For example, the FSM depicted in
figure 2(c) can detect the negative cycle of figure 2(b).
On the other hand, in the STN depicted in figure 2(b) there
exists an edge from as to bs only because condition number
1 (stated in section 4.1) is held between the two events.
The same condition causes an edge from be to ae. It should
be clear that if we replace action b by any other action with
the same conditions but with a longer duration, the result
will be again a negative cycle. Here, action c fulfills the
stated requirements. We call c an alternative for b. In fact,
ITSAT automatically detects all the alternatives for each
action in a given negative cycle. The FSM that detects both
asbsbeae and ascsceae is depicted in figure 2(d). Note that in
general, more than one action, each of which having sev-
eral alternatives, can occur consecutively inside a covering
action.

To prevent a cycle, one can start from the first layer and
follow the transitions that occur in the FSM. A certain
transition occurs in layer i, only if the value of the variable
corresponding to the label of that transition is equal to one.

If the FSM is constructed, its corresponding negative
cycles can be prevented by making the SAT solver simu-
late the function of the FSM and banning it from being in
the terminal state. In order to do so, we must add extra
variables and clauses to the SAT formula.

Let s0,…,sm be the states of an FSM that detects a certain
negative cycle. Suppose that s0 and sm are the initial state
and the terminal state of the FSM, respectively. Let T be

the set of all transitions of the FSM, and label(si,sj) denote
the event that causes the transition from si to sj. Further-
more, assume that exit(si) denotes all the transitions
through which the FSM goes from si to another state. The
following variables and clauses are sufficient for prevent-
ing the SAT solver from reproducing negative cycles that
are associated with the FSM.
 For every 1≤i≤n and every 0≤j≤m, we define a variable

Sj,i. Assigning one to Sj,i means that the FSM can be in
state j after observing all the events that are present in
the layers prior to i.

 For every 1≤i≤n, every 0≤j≤m, and every (sj,sk) ϵ exit(sj),
we add a clause Sj,i∧e→¬Sj,i+1∧Sk,i+1 , where
e=lable(sj,sk), to ensure that in each layer, FSM per-
forms only correct transitions.

 For every 1≤i≤n and every 0≤j≤m, we add a clause
Sj,i∧(¬⋁eϵE e)→Sj,i+1 , where E={label(sj,sk) | (sj,sk) ϵ
exit(sj)} , to ensure that FSM stays in state sj when it is
necessary.

 For every 1≤i≤n and every 0≤j≤m, we assert a
clause¬Sj,i∧Sj,i+1→⋁(k,e)ϵN(Sk∧e) where N={(k,e) |
e=lable(sk,sj)}. This clause prevents the FSM from arbi-
trarily moving to some state.

 We assert a clause S0,1 to ensure that the FSM will start
from its initial state in layer one. We also add ¬Sj,1 for
every 1≤j≤m, to prevent FSM from being in any other
state in layer one.

 For every 1≤i≤n, we assert a clause ¬Sm,i to ensure that
the FSM will never go to its terminal state, detecting a
negative cycle.

After constructing the SAT formulation of the FSM, we
add it to our previous encoding of the problem. Then, SAT
solver is called again to satisfy the new formula. The proc-
ess of solving the formula and adding negative cycle detec-
tors (i. e., appropriate FSMs) is repeated until a valid plan
will be achieved.

 Empirical Results

ITSAT has been implemented using C++ programming
language. We have used an open source SAT solver,
MINISAT2 [9] for solving SAT formulas. To evaluate IT-
SAT, it has been compared with POPF [5] on the temporal
problem sets of recent international planning competitions
plus two more domains (i.e., driverlogshift and matchlift)
defined by the Strathclyde planning group [10]. POPF is
currently one of the most efficient heuristic temporal plan-
ners. The experiments were conducted on a 3.1GHz corei5
CPU with 4GB main memory and 30 minutes time-limit
for solving each problem. All the results are presented in
Table 1.

As it is shown in Table 1, ITSAT significantly outper-
forms POPF2 in both the total number of solved problems

 6

and the total score. In fact, ITSAT solves 53 more prob-
lems than POPF2. Moreover, the total score of ITSAT is
32 percent higher than that of POPF2. These results show a
major improvement in temporally expressive temporal
planning. The only domains in which POPF2 has a consid-
erable lead over ITSAT are parking and elevators. These
two domains are inherently difficult for SAT-based plan-
ners, as the number of actions that provide each preposition
is relevantly high in their problems.

Conclusion

In this report, we introduced a new method for producing
SAT encoding of a given temporal planning problem. In
the new encoding, durations of all actions are initially ab-
stracted out in order to construct a compact SAT formula.
The produced SAT formula is then solved by an off-the-
shelf SAT solver. The resulting abstract plan is then re-
laxed by deleting unnecessary ordering constraints. In or-
der to assign the exact time values to the events of the re-
laxed plan, based on their order and action durations, a
Simple Temporal Network is constructed and resolved. We
showed that possible negative cycles of such STNs can be
detected by using certain Finite State Machines. We also
introduce an automatic method for encoding such FSMs.
We showed how adding FSMs encodings to the SAT for-
mula could prevent the SAT solver from reproducing solu-
tions with similar negative cycles. Our empirical results
showed that our new planner ITSAT, while not using any
planning based heuristic functions, is comparable with

POPF, which is currently the state-of-the-art in non-
optimal temporal planning.

References

[1] Huang, R., Chen, Y., and Zhang, W., An optimal temporally
expressive planner: Initial results and application to P2P
network optimization, Proceedings of 19th International
Conference on Automated Planning and Scheduling, AAAI
press, 2009.

[2] Mali, A.D., and Liu, Y., T-SATPLAN: A SAT-based
Temporal Planner, International Journal of Artificial
Intelligence Tools 15(5): 779-802, 2006.

[3] Cushing, W., Kambhampati, and Weld, D.S., When is
temporal planning really temporal?, Proceedings of 20th
International Joint Conference on Artificial Intelligence,
1852-1859, AAAI press, 2007.

[4] Halsey, K., Long, D., and Fox, M. , Managing Concurrency
in Planning Using Planner-Scheduler interaction, Artificial
Intelligence 173(1): 1-44, 2009.

[5] Coles, A.J., Coles, A., Fox, M., and Long, D., Forward-
Chaining Partial-Order Planning, Proceedings of 20th
International Conference on Automated Planning and
Scheduling, 42-49, AAAI press, 2010.

[6] Hoffmann, J., Nebel, B., The FF Planning System: Fast Plan
Generation Through Heuristic Search, Journal of Artificial
Intelligence Research 14: 253-302, 2001.

[7] Dechter, R., Meiri, I., and Pearl, J., Temporal Constraint
Networks, Artificial Intelligence 49(1-3): 61-95, 1991.

[8] Fox, M. and Long, D., PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains, Journal of
Artificial Intelligence Research 20: 61-124, 2003.

[9] Eén, N., and Sörensson, N., An extensible SAT-solver,
Proceedings of 6th International Conference on Theory and
Applications of Satisfiability Testing, 502-518, Springer,
2003.

[10] Strathclyde Planning Group, http://planning.cis.strath.ac.uk

Solved Score
Domain IPC Problems

ITSAT POPF2 ITSAT POPF2

zenotravel 20 13 13 12.41 11.46
driverlog 20 15 15 13.70 11.84

rovers 20 20 19 20 13.91
depots

2004

22 13 7 12.84 5.53
airport 50 37 15 37 13.40
satellite

2006
36 14 14 13.35 8.96

pegsol 20 20 19 20 18.62
crewplanning 20 20 20 19.11 20

openstacks 20 8 20 6.47 20
parking 20 1 20 0.53 20

elevators 20 0 2 0 2
floortile 20 20 5 18.78 5
storage 20 6 0 6 0

matchcellar 20 20 20 20 20
sokoban 20 4 3 4 2.89

parcprinter 20 20 0 20 0
turnandopen 20 6 9 6 8.52

tms

2011

20 20 4 20 4
driverlogshift 10 10 10 10 8.99

matchlift

14 14 13 14 12.06

total 482 281 228 274.19 207.18

Table 1. Comparing ITSAT with POPF2

