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Abstract 

Using satisfiability for non-optimal temporal planning has 
not been investigated so far. The main difficulty in using 
satisfiability in temporal planning is the representation of 
time, which is a continuous concept. Previously introduced 
SAT-based temporal planners employed an explicit repre-
sentation of time in the SAT formulation, which made the 
formulation too large for even very small problems. To 
overcome this problem, we introduce a novel method for 
converting temporal problems into a SAT encoding. We 
show how the size of the encoding can be reduced by ab-
stracting out durations of planning actions. We also show 
that the new formulation is powerful enough to encode fully 
concurrent plans. We first use an off-the-shelf SAT solver to 
extract an abstract initial plan out of the new encoding. We 
then add the durations of actions to a relaxed version of the 
initial plan and verify the resulting temporally constrained 
plan by testing consistency of a certain related Simple Tem-
poral Problem (STP). In the case of an inconsistency, a 
negative cycle within the corresponding Simple Temporal 
Network (STN) is detected and encoded into the SAT for-
mulation to prevent the SAT solver from reproducing plans 
with similar cycles. This process is repeated until a valid 
temporal plan will be achieved.  

 Introduction 

While satisfiability checking is a major approach in dealing 
with classical planning, it has been insufficiently exploited 
in the field of temporal planning. In fact, the only pub-
lished SAT-based temporal planners are STEP [1] and T-
SATPLAN[2], which are both optimal planners. Besides, 
none of well-developed techniques for increasing the speed 
of SAT-based planners have been used in temporal plan-
ning. 

Both STEP and T-SATPLAN use an explicit representa-
tion of time in their encodings. Generally speaking, in 
these SAT-based approaches, layer i is exactly one time 
unit ahead of layer i+1. If an action has a duration of d and 
its starting point is in layer i, then its ending point is re-
stricted to be in layer i+d. Such a representation makes an 
enormous number of layers to be present in the SAT for-
mulation while not being used in the final plan. This prob-
lem worsens as the duration ratio between the most dura-
tive action and the least one gets higher. Encoding more 
layers increases the size of the produced formula and may 

cause the planner to become highly memory sensitive. 
Even if the planner is not running out of memory, a line-
arly larger number of variables means an exponentially 
larger search space for finding a solution and as a result, a 
substantial decrease in the speed of the planner. 

In this report, we explain an alternative encoding ap-
proach in which instead of using an explicit representation 
of time, layers are used merely for determining the order of 
actions. In fact, in our representation, layer i is ahead of 
layer i+1, but the actual difference in their times is not 
fixed. Therefore, an action can have its start in layer i, and 
its end in layer i+1, regardless of its duration. In other 
words, the durations of actions are abstracted out at the 
time of producing the SAT encoding.  

Abstracting the durations of actions is not a new concept 
in the field of temporal planning. Some temporal planners 
have used such abstractions for guaranteeing the complete-
ness in an important subset of temporal problems, called 
problems with required concurrency [3]. CRIKEY [4] was 
the first planner that separated the planning and scheduling 
processes by eliminating all durations in the planning 
phase. CRIKEY tests the validity of the resulting plan later 
in the scheduling phase, by solving a simple temporal 
problem. POPF [5], a descendant of CRIKEY, uses a linear 
programming method in its scheduling phase. Both POPF 
and CRIKEY take benefit from an enforced hill-climbing 
search method [6] in addition to standard best-first search 
mechanism. POPF is regarded as the state-of-the-art plan-
ner for solving the temporal problems with required con-
currency. 

 The block diagram of our approach is depicted in fig-
ure 1. Similar to CRIKEY and POPF, our planner, named 
ITSAT (Implicit Time SAT planner), will need a schedul-
ing step, when an abstract plan is produced by the SAT 
solver.  The durations should be given back to the actions 
and an exact time value should be assigned to each of them 
by solving a simple temporal problem. However, such a 
consistent temporal assignment may not exist. As we show 
later, the reason of the inconsistency can be easily identi-
fied as negative cycles in the graph representation of the 
corresponding STP [7]. We then, add certain variables and 
clauses to the SAT formula in order to prevent the SAT 
solver from reproducing such cycles.  

 



 2 

 
 

 
 
 
 
 
 
 
 

Fig. 1. The block diagram of ITSAT 

 

Temporal Planning 

We now give a formal description of temporal planning. 
Before that, we need a formal definition of a classical ac-
tion. The definitions presented here are compatible with 
PDDL2.1 [8] where temporal actions can have separate 
preconditions and effects upon starting or ending. 
 
Definition 1. A classical action o is a triple (pre(o), add(o), 
del(o)). All pre(o), add(o), and del(o) are sets of facts and 
each fact is an atomic proposition. The set pre(o) includes 
all the preconditions of o. The sets add(o) and del(o) con-
tain the add and delete effects of o, respectively. 

 
Definition 2.  A temporal action a is defined by a positive 
rational duration d(a), a starting event as, an ending event 
ae, and an over-all condition over(a). Each event is a clas-
sical action and the over-all condition is defined as a clas-
sical precondition. We also have: action(as)=action(ae)=a. 
Action a is applicable in time t, if pre(as) and pre(ae) are 
respectively held in time t and t+d(a); and furthermore, 
over(a) is held in open interval (t,t+d(a)). The application 
of a will cause the effects of as and ae to take place in time 
t and t+d(a), respectively. 
 
Definition 3.  A temporal planning problem is a quadruple 
P=(A,F,I,G), where A is a set of temporal actions, F is the 
set of all the given facts, I  is a  classical initial state, and G 
is a set of classical goal conditions.  
 
Definition 4. Suppose that P=(A,F,I,G) is a temporal plan-
ning problem. A plan is represented by 
π={(a1,t1),…,(an,tn)}, which means that action ai is per-
formed in time ti. 

SAT Encoding 

We now explain how a temporal planning problem 
P=(A,F,I,G) is encoded into its corresponding SAT for-
mula. Suppose that E is the set of all starting and ending 

events of P, and we are constructing a formula with n con-
ceptual layers. Variables and clauses that are essential for 
the soundness and completeness of the encoding are de-
fined as follows. 
 We define some variables to represent all the facts of P. 
 For every fact f ϵ F, and every 1≤i≤n, a variable Xf,i is 

defined. Assigning 1 to Xf,i means that the fact f is true 
in the conceptual layer i. 

Although previous SAT-based temporal planners, STEP 
and T-SATPLAN, encode each temporal action with a sin-
gle variable, our encoding has two variables for the starting 
and ending events of each action, and another variable for 
representing the situations when the action is still running 
i. e., it is open. 
 For every event e ϵ E, and every 1≤i<n, a variable Ye,i is 

defined. Assigning 1 to Ye,i means that the event e is 
performed in the conceptual layer i. 

 For every action a ϵ A, and every 1≤i<n, a variable Wa,i 
is defined. Assigning 1 to Wa,i means that the action a 
is open (started but has not yet finished) in the concep-
tual layer i . 

We also need some clauses for constraining the values 
of the variables of the first and the last layers in an appro-
priate way. 
 For every fact f ϵ I, a clause Xf,1 is asserted to ensure the 

presence of initial facts in layer 1. 

 For every fact f ϵ F-I, a clause ¬Xf,1  is added to ensure 
that only the facts of initial state can be present at layer 
1. 

 For every fact g ϵ G, a clause Xg,n is asserted to ensure 
the presence of all the goal conditions in the last layer. 

 For every action a ϵ A, a clause ¬Wa,1 is asserted to en-
sure that no action is open in layer 1.   

 For every action a ϵ A, a clause Wa,n→ ,ea nY  is added to 
ensure that no action is remained unfinished in layer n.   

We need certain clauses to handle the necessary condi-
tions of performing an event in a layer and propagating the 
effects of that event to the next layer. The following 
clauses guarantee that if an event e is being performed in 
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layer i, then its preconditions are available in layer i, and 
its effects are held in layer i+1. 
 For every event e ϵ E, every fϵ pre(e), and every 1≤i<n, 

a clause Ye,i→ Xf,i is added.  

 For every event e ϵ E, every fϵ add(e), and every 1≤i<n, 
a clause Ye,i→ Xf,i+1 is asserted. 

 For every event e ϵ E, every fϵ del(e), and every 1≤i<n, 
a clause Ye,i→ ¬Xf,i+1 is asserted. 

Note that these constraints are not sufficient to make a 
valid plan. Many planning representations, including 
PDDL2.1 [8], forbid a proposition to be deleted by an 
event if it is needed by at least one other event at the same 
time. If the effects of each event take place only in the next 
layer, detecting such conflicts will be impossible. To over-
come this flaw, quite similar to previous classical and tem-
poral SAT-based planners, we use clauses that explicitly 
encode the mutual exclusion between conflicting events. 
As an example, if event a deletes a precondition of event b, 
then the clause Ya,i→¬ Yb,i is added to the formula for every 
i to ensure a and b will never be performed at the same 
layer. 

Beside preconditions of an event, some other conditions 
must hold to enable that event to occur in a certain layer. 
We assume that two copies of the same ground action can 
never be concurrent. Even though PDDL2.1 allows this 
kind of concurrency, none of the domains we observed 
during our empirical analysis had such requirements.  
 For every 1≤i<n and every event e ϵ E, if e is the starting 

event of action a, a clause Ye,i → ¬Wa,i ∧ Wa,i+1 is added 
to ensure that two copies of action a will not be concur-
rent. This clause also assures us that if a is started in 
layer i, it will be considered as an open action in layer 
i+1.   

 For every 1≤i<n and every event e ϵ E, if e is the ending 
event of action a, a clause Ye,i → Wa,i ∧ ¬Wa,i+1 is added 
to ensure that only open actions can be ended; more-
over, if an action is ended in layer i, it will no longer be 
considered as an open action in layer i+1. 

 For every 1≤i<n, every action a ϵ A, and every fact f ϵ 
over(a), we add  a clause Wa,i → Xf,i. This clause assures 
us that when an action is still open, its over-all condi-
tions are maintained.  

Finally, several kinds explanatory frame axioms are 
needed for preventing the values of the variables from 
changing without any reason. 
 For every 1≤i<n and every f ϵ F,  we add  a clause     

¬Xf,i ∧ Xf,i+1→(⋁fϵ add(e) Ye,i) to prevent any fact from 
being arbitrarily asserted in layer i. 

 For every 1≤i<n and every f ϵ F,  we add  a clause       
Xf,i ∧ ¬Xf,i+1→(⋁fϵdel(e) Ye,i) to prevent any fact from be-
ing arbitrarily deleted from layer i. 

 For every 1≤i<n and every a ϵ A, we add a clause     
¬Wa,i ∧ Wa,i+1→  Ye,i , where e is the starting event of 
action a. This clause ensures that no action can become 

open in layer i+1, without having its starting event in 
layer i. 

 For every 1≤i<n and every a ϵ A, we add a clause      
Wa,i ∧ ¬Wa,i+1→  Ye,i , where e is the ending event of 
action a. This clause ensures that if an action is open in 
layer i but not open in layer i+1, its ending event must 
be present in layer i.  

It should be obvious from our SAT encoding that durations 
of actions play no role in the encoding. However, every 
other constraint of temporal planning is encoded into the 
SAT formulation. In other words, if we solve the SAT 
formula with a SAT solver, the resulting plan will be a 
valid temporal plan, unless there is an inconsistency among 
the durations of actions. We will discuss this issue in more 
details later.   

The Scheduling Phase 

Assume that we have solved a SAT formula produced by 
the encoding phase described is section 3 and obtained a 
solution for it. Let e1,…,em be the events whose corre-
sponding SAT variables have a value of 1 in the solution. 
Suppose that we have given different names to different 
occurrences of the same action in the solution, so all the 
events e1,…,em are unique. Let layer(ei) be the number of  
layer in which ei has occurred. 

Events e1,…,em  must then be scheduled in order to pro-
duce a valid temporal plan. In other words, exact time val-
ues should be assigned to the events. However, these time 
values cannot be assigned arbitrarily. In fact, there exist 
certain constraints between these values. 

Let the time value assigned to event ei be T(ei). Since it 
is assumed in the generation of a SAT formula, that layer i 
is ahead of layer i+1, a straightforward way to maintain the 
validity of the final plan is to schedule each event of layer 
i, before all events of layer i+1. Now, suppose that layer(e-

k)=i, and layer(ej)=i+1 and furthermore, ej and ek have no 
causal relationship with each other. Now, if the order be-
tween ej and ek is eliminated, not only will the validity of 
the plan remain unchanged, but also it will be more likely 
to find a consistent assignment of time values for the 
events. 

In order to pursue the above idea, we define new order-
ing constrains between different pairs of events. For satis-
fying all these constraints, we solve an instance of a Sim-
ple Temporal Problem (STP) [7]. Each STP is associated 
with a weighted graph named a Simple Temporal Network 
(STN). We construct an STN in which each node corre-
sponds to an event. For each i, let xi be the node that is cor-
responding to event ei in the STN. Let ϵ be an arbitrary 
small rational number and ej and ek be different events such 
that layer(ej)≥ layer(ek). The constraint T(ej) ≥ T(ek)+ϵ 
must hold if one of following condition is satisfied: 
1. ek adds a precondition of  ej . 
2. ej deletes a precondition of  ek. 
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3. either ej  or  ek  delete any effect of the other. 
4. ej is a starting event and  ek  deletes an all-over condition 

of action(ej) 
Consequently, an edge with the weight -ϵ  will be pre-

sent in the STN from the node xk to the node xj . Moreover, 
if one of the following conditions holds, the constraint 
T(ej)≥T(ek) will be necessary, and an edge with weight 0 
will be present in the STN from the node xk to the node xj. 
5. ek is an ending event and  ej deletes an all-over condition 

of action(ek). 
6. ej is a starting event and  ek  adds an all-over condition of 

action(ej). 
As before, in addition to the constraints stated above, the 

following constraint must also hold if ek and ej are respec-
tively the starting and ending effect of certain action a to 
ensure that the durations of a in the final plan is set cor-
rectly: 
7. T(ej)≥T(ek)+d(a) 
8. T(ek)+d(a)≥ T(ej) 

These constraints will be inserted into the STN by add-
ing an edge with the weight –d(a) from node xk to node xj, 
and another edge with weight d(a) from node xj to node xk. 
We also add a reference node x0 to the constructed STN 
which has an edge with weight 0 to every other node. A so-
lution of the STP can be found by computing the length of 
the shortest path form x0 to all other nodes. Suppose that 
such shortest paths exist and the length of the shortest from 
x0 to xi is shown by distance(x0 , xi). For each event ei, we 
assign -distance(x0 , xi) to T(xi). Constraints 1 to 8 guaran-
tee that the resulting plan has all the specifications of a 
valid temporal plan. However, there are situations in which 
such shortest paths do not exist. It happens when the STN 
has a negative cycle. In these situations the STP is incon-
sistent and consequently, all temporal constraints can not 
be satisfied at the same time. An example of such cases is 
depicted in figure 2. 

 

 
Fig. 2. Negative cycle in an STN, and the detecting FSM 

 
Suppose that 1) action a adds proposition p and g re-

spectively by its starting and ending event. 2) a needs 
proposition q as a precondition for its ending event. 3) ac-
tion b that requires p upon beginning and adds q upon end-
ing. 4) durations of actions a, and b, are 5 and 10, respec-
tively. 5) action c is identical to b except for its duration 
which is 15. 6) The goal of planning is reaching fact g. If a 
SAT formula with four layers is produced for this problem, 
then a SAT solver can satisfy the formula by putting the 
starting event of a in layer 1, the starting event of b in layer 
2, the ending event of b in layer 3, and the ending event of 
a in layer 4. This means action b must be entirely per-
formed inside of action a. However, this situation is im-
possible considering the fact that duration of a is less than 
that of b. The abstract plan produced by SAT solver is de-
picted in figure 2(a). Preconditions and effects of each ac-
tion are respectively written above and below it. 
The invalidity of this plan is caused by the fact that all the 
durations are abstracted out when the formula is being pro-
duced. In fact, the SAT solver assumes that the execution 
of ending event of a can be postponed, as long as is 

needed. The STN constructed for the plan of figure 2(a) is 
depicted in figure 2(b). asbsbeaeas is a negative cycle with 
total weight -5-2ϵ. Note that if action b had been replaced 
by action c in fig 1(a), we would have had another negative 
cycle with weight -10-2ϵ. 
According to definition 7, although planners such as STEP, 
T-SATPLAN, and TM-LPSAT allow parallel execution of 
actions, they are in fact using the 1-step encoding. That is 
because these planners assume simultaneous execution of 
all events in each step. 

Negative Cycle Prevention 

As it was stated before, if the STN of an abstract plan has a 
negative cycle, it cannot be transformed to a valid temporal 
plan. In such cases, we run the SAT solver again to find a 
different solution. This can be done by adding an extra 
blocking clause to the SAT formula so that at least one of 
the events of invalid plan cannot occur in its current layer. 
Nevertheless, after adding such a blocking clause, the SAT 
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solver can produce new plans that are not essentially dif-
ferent from previous one. For instance, consider the exam-
ple given in figure 2(a). Suppose as,bs,be, and ae are true in 
layers 1 to 4, respectively. Assume that the SAT formula 
have 5 layers. If we forbid the exact occurrence of this 
plan, a new temporally invalid abstract plan can still be 
produced by shifting ae to layer 5 and maintaining other 
events in their current layers. The new solution will have 
the same negative cycle. In fact, the main cause of the in-
validity of the plan has remained unchanged. On the other 
hand, by replacing action b by action c, another temporally 
invalid abstract plan can be produced. This time, the cycle 
asbsbeaeas has been replaced by cycle ascsceaeas. However, 
since b and c have identical preconditions and effects, and 
c has a longer duration, we could have inferred from struc-
ture of asbsbeaeas that ascsceaeas is also a negative cycle. We 
now show that negative cycles of particular structure can 
be prevented more effectively. We also explain how other 
similar negative cycles can prevented. 
 The negative cycles in which we are interested are quite 
similar to the one depicted in figure 2(b). Such cycles hap-
pen when several actions of a temporal plan are to be exe-
cuted consecutively within the execution of another action. 
These cycles can be regarded as sequences of events. For 
instance, in the previous example, each time that the as, ae, 
bs, and be occur with the order asbsbeae, we can be sure that 
the corresponding STN has a negative cycle. Fortunately, 
such sequences can be detected by using a simple Finite 
State Machine (FSM). For example, the FSM depicted in 
figure 2(c) can detect the negative cycle of figure 2(b). 
On the other hand, in the STN depicted in figure 2(b) there 
exists an edge from as to bs only because condition number 
1 (stated in section 4.1) is held between the two events. 
The same condition causes an edge from be to ae. It should 
be clear that if we replace action b by any other action with 
the same conditions but with a longer duration, the result 
will be again a negative cycle. Here, action c fulfills the 
stated requirements.  We call c an alternative for b. In fact, 
ITSAT automatically detects all the alternatives for each 
action in a given negative cycle. The FSM that detects both 
asbsbeae and ascsceae is depicted in figure 2(d). Note that in 
general, more than one action, each of which having sev-
eral alternatives, can occur consecutively inside a covering 
action.  

To prevent a cycle, one can start from the first layer and 
follow the transitions that occur in the FSM. A certain 
transition occurs in layer i, only if the value of the variable 
corresponding to the label of that transition is equal to one. 

If the FSM is constructed, its corresponding negative 
cycles can be prevented by making the SAT solver simu-
late the function of the FSM and banning it from being in 
the terminal state. In order to do so, we must add extra 
variables and clauses to the SAT formula. 

Let s0,…,sm be the states of an FSM that detects a certain 
negative cycle. Suppose that s0 and sm are the initial state 
and the terminal state of the FSM, respectively. Let T be 

the set of all transitions of the FSM, and label(si,sj) denote 
the event that causes the transition from si to sj. Further-
more, assume that exit(si) denotes all the transitions 
through which the FSM goes from si to another state. The 
following variables and clauses are sufficient for prevent-
ing the SAT solver from reproducing negative cycles that 
are associated with the FSM. 
 For every 1≤i≤n and every 0≤j≤m, we define a variable 

Sj,i. Assigning one to Sj,i means that the FSM can be in 
state j after observing all the events that are present in 
the layers prior to i.  

 For every 1≤i≤n, every 0≤j≤m, and every (sj,sk) ϵ exit(sj), 
we add a clause Sj,i∧e→¬Sj,i+1∧Sk,i+1 , where 
e=lable(sj,sk), to ensure that in each layer, FSM per-
forms only correct transitions. 

 For every 1≤i≤n and every 0≤j≤m, we add a clause 
Sj,i∧(¬⋁eϵE e)→Sj,i+1 , where E={label(sj,sk) | (sj,sk) ϵ 
exit(sj)} , to ensure that FSM stays in state sj when it is 
necessary. 

 For every 1≤i≤n and every 0≤j≤m, we assert a 
clause¬Sj,i∧Sj,i+1→⋁(k,e)ϵN(Sk∧e) where N={(k,e) | 
e=lable(sk,sj)}. This clause prevents the FSM from arbi-
trarily moving to some state. 

 We assert a clause S0,1 to ensure that the FSM will start 
from its initial state in layer one. We also add ¬Sj,1 for 
every 1≤j≤m, to prevent FSM from being in any other 
state in layer one.  

 For every 1≤i≤n, we assert a clause ¬Sm,i to ensure that 
the FSM will never go to its terminal state, detecting a 
negative cycle. 

After constructing the SAT formulation of the FSM, we 
add it to our previous encoding of the problem. Then, SAT 
solver is called again to satisfy the new formula. The proc-
ess of solving the formula and adding negative cycle detec-
tors (i. e., appropriate FSMs) is repeated until a valid plan 
will be achieved. 

 Empirical Results  

ITSAT has been implemented using C++ programming 
language. We have used an open source SAT solver, 
MINISAT2 [9] for solving SAT formulas. To evaluate IT-
SAT, it has been compared with POPF [5] on the temporal 
problem sets of recent international planning competitions 
plus two more domains (i.e., driverlogshift and matchlift) 
defined by the Strathclyde planning group [10]. POPF is 
currently one of the most efficient heuristic temporal plan-
ners. The experiments were conducted on a 3.1GHz corei5 
CPU with 4GB main memory and 30 minutes time-limit 
for solving each problem. All the results are presented in 
Table 1. 

As it is shown in Table 1, ITSAT significantly outper-
forms POPF2 in both the total number of solved problems 
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and the total score. In fact, ITSAT solves 53 more prob-
lems than POPF2. Moreover, the total score of ITSAT is 
32 percent higher than that of POPF2. These results show a 
major improvement in temporally expressive temporal 
planning. The only domains in which POPF2 has a consid-
erable lead over ITSAT are parking and elevators. These 
two domains are inherently difficult for SAT-based plan-
ners, as the number of actions that provide each preposition 
is relevantly high in their problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 

In this report, we introduced a new method for producing 
SAT encoding of a given temporal planning problem. In 
the new encoding, durations of all actions are initially ab-
stracted out in order to construct a compact SAT formula. 
The produced SAT formula is then solved by an off-the-
shelf SAT solver. The resulting abstract plan is then re-
laxed by deleting unnecessary ordering constraints. In or-
der to assign the exact time values to the events of the re-
laxed plan, based on their order and action durations, a 
Simple Temporal Network is constructed and resolved. We 
showed that possible negative cycles of such STNs can be 
detected by using certain Finite State Machines. We also 
introduce an automatic method for encoding such FSMs. 
We showed how adding FSMs encodings to the SAT for-
mula could prevent the SAT solver from reproducing solu-
tions with similar negative cycles. Our empirical results 
showed that our new planner ITSAT, while not using any 
planning based heuristic functions, is comparable with 

POPF, which is currently the state-of-the-art in non-
optimal temporal planning.  
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Solved Score 
Domain IPC Problems 

ITSAT POPF2 ITSAT POPF2 

zenotravel 20 13 13 12.41 11.46 
driverlog 20 15 15 13.70 11.84 

rovers 20 20 19 20 13.91 
depots 

2004 

22 13 7 12.84 5.53 
airport 50 37 15 37 13.40 
satellite 

2006 
36 14 14 13.35 8.96 

pegsol 20 20 19 20 18.62 
crewplanning 20 20 20 19.11 20 

openstacks 20 8 20 6.47 20 
parking 20 1 20 0.53 20 

elevators 20 0 2 0 2 
floortile 20 20 5 18.78 5 
storage 20 6 0 6 0 

matchcellar 20 20 20 20 20 
sokoban 20 4 3 4 2.89 

parcprinter 20 20 0 20 0 
turnandopen 20 6 9 6 8.52 

tms 

2011 

20 20 4 20 4 
driverlogshift 10 10 10 10 8.99 

matchlift 
--- 

14 14 13 14 12.06 

total  482 281 228 274.19 207.18 
 

Table 1. Comparing ITSAT with POPF2 

 


