
Dissertation Abstract - Automated Planning for Planetary Rovers

Juan M. Delfa Victoria
Technische Universität
Darmstadt, Germany

delfa@sim.tu-darmstadt.de

Introduction
Along the brief history of Space Exploration the expertise
of Space Agencies has grown, from small rockets, not even
able to escape the atmosphere, to missions beyond the solar
system. At present, robots are gaining prominence in several
scenarios as planetary exploration or ISS exploitation. Satel-
lites are endowed with autonomous systems to improve their
performance and safety. On the horizon, we start to catch
sight of one of the most challenging mission ever undertaken
by the mankind, a manned mission to mars.

Regarding robotic missions, their complexity lay in dif-
ferent factors:

- Spacecraft: Future missions are becoming more and more
complex in terms of payload and operations. As an exam-
ple, Curiosity weights 900 kg, has 17 cameras and around
13 instruments, has nuclear power, the CPU runs at 132
MHz with 4 GB of internal memory while MER weights
185 kg, has 10 cameras and a total of 7 instruments, has
solar power, the CPU runs at 20 MHz with 256 MB of
internal memory.

- Environment: Regarding rover missions, the inherent un-
certainty of an unknown, unstructured and dynamic en-
vironment makes planning much harder. It has several
consequences: Planning based in a complete understand-
ing of the world is not feasible, initial conditions might
be unknown, some of the assumptions considered during
planning might be wrong, outcome of the actions is based
on estimations rather than exact models and new relevant
information for the plan might be discovered only dur-
ing execution time. As a consequence, re-planning is fre-
quently needed due to flaws in the plan or new opportunis-
tic goals.

- Performance: An improvement in the performance of the
spacecrafts becomes mandatory. For example, MER rover
is stopped most of the time during traverses while pro-
cessing pictures, generating the map and calculating the
path.

- Duration: Long term missions like MER or Curiosity
rovers represent a challenge for the operations team: pro-
ducing day-to-day command sequences is a very demand-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing task that requires a huge team of experts. Automated
tools could help to ease this problem.

- Communications: The delay of communications in deep
space missions makes teleoperation impossible. For ex-
ample, the round trip of a radio signal from Earth to Mars
can take more than forty minutes.

- Low CPU performance: Space-oriented processors have
much lower performance than those integrated in conven-
tional computers. As an example, the latest, state-of-the-
art space processor runs at around 132 MHz.

- Failure recovery: The possibilities to recover a mission in
case of a spacecraft failure are very limited. Therefore,
safety and V&V play a major roll in space missions.

- Cost: Increasing the number of missions and their com-
plexity while maintaining the manpower present a number
of challenges in terms of operations.

All these facts make robotic missions specially challeng-
ing, demanding the introduction of new, more sophisticated
technologies. In the past decades Automated Planning &
Scheduling (P&S) has become a well studied field. Nev-
ertheless, there is an important gap between academic and
real-world systems that needs to be continuously bridged in
both directions to make planning theory aware of the com-
plexity of real-world problems and to transfer innovations in
theory to applied planners.

In an effort to develop new solutions, ESA supported the
development of APSI (Fratini, Pecora, and Cesta 2008), a
framework to develop timeline-based automated planning
and scheduling applications. In APSI, a planner requires two
inputs: model and problem and produce one output, the
plan. The model contains a formal description of all the sys-
tems which activities must be planned. Each system is mod-
eled as an automaton (named component in APSI) com-
posed of states (component decisions (cd) in APSI) and re-
lations (rlt) between the cd’s, which represent a super-set of
the classical transitions in automata theory. Each component
has related a timeline that represents a more or less flexible
sequence of cd’s that represent the plan.

A problem is represented as a decision network (dn), that
is, a graph that contains a set of initial conditions ic repre-
senting facts that the planner does not need to justify, and
goals, which the planner must justify using the model. Both



Figure 1: Component Camera automaton

ic’s and goals are represented as sets of cd’s (the nodes)
and/or rlt’s (the edges) of the graph.

In case all goals are satisfied, the result is a fully supported
dn called plan from which the timelines are extracted.

QuijoteExpress - Novel planner for space
missions

The author’s thesis ”Automated Planning for Planetary
Rovers”, aims to provide a novel planner able to generate
valid plans for temporal problems. Some of the key concepts
to be addressed are:

- Plan complexity: Provide novel planning architectures
and algorithms to handle NP-complete problems.

- Uncertainty: The planner should be able to generate ro-
bust plans for execution under uncertainty. Uncertainty is
present in scenarios where the initial conditions are un-
known, or where making assumptions is hard due to the
environment properties (unknown, unstructured and dy-
namic).

- Exploit knowledge: Several years of operations resulted
in a lot of knowledge of the operators that is written
nowhere. The planner must be able to represent and use
this knowledge.

- Domain&Problem independent: The solving algorithms
and heuristic should retain as much generality as possi-
ble in order to be reusable in other scenarios.

The author has implemented a planner called QuijoteEx-
press that represents a new timeline planning paradigm for
real-world scenarios such as the rover-world problem. Qui-
joteExpress is a heuristically&knowledge-based, domain-
independent timeline planner that takes advantages from dif-
ferent planning techniques such as HTN, CSP or Plan Space.
It presents the following novelties, further detailed in next
subsections:

- HTLN: Hierarchical timeline networks represent an ap-
plication of HTN for temporal planning.

- Parallelism: Identification of independent parts of the
problem that can be solved in parallel.

- Sufficient-plan: It represents a problem that has been par-
tially solved, but still represents a valid output of the plan-
ner.

- Heuristically-based: The planner departs from other tem-
poral planners in that it follows a heuristically-based ap-
proach, close to traditional Plan Space algorithms.

Hierarchical Timeline Networks
HTLN relies on the idea of merging timeline planning and
HTN (Erol, Hendler, and Nau ) techniques. With respect to
timeline planning, HTLN is based on the formalism of APSI
(Fratini, Pecora, and Cesta 2008). Regarding HTN, we have
used cyclic hypergraph structures to represent the hierarchi-
cal decomposition of goals into sub-goals. Hierarchical Task
Networks (HTN) allows the human operator to define a plan
in terms of complex goals while the planner is in charge
of decomposing them into commands. This technique pro-
vides several advantages. First, it represents an improvement
on the planner performance, as HTN simplifies the search
space. For all the complex goals which decompositions are
known, the planner does not need to perform search any-
more, as it just need to replace the goal by its decomposition.
Second, it also simplifies the modeling which is one of the
major problems that engineers need to face to deploy auto-
mated tools. Finally, it makes plans easier to understand and
validate by humans.

Parallelism
A key concept for the design of the planner is the hyper-
graph. It allows the representation of complex goals as both,
a goal on its own and as a sub-problem. Hypergraphs are
also useful to achieve parallel planning. By reasoning over
the underlying hypergraph structure of an HTLN problem it
is possible to identify independent sub-problems, allowing
the use of parallel planning. As explained in (Dechter and
Pearl 1987), a graph G = (V,E) has a separation vertex v
if there exist vertices a and b, a 6= v, b 6= v such that all
the paths connecting a and b pass through v (see Figure 2).
A graph that has a separation vertex is called separable. Let
V ′ ⊆ V , the induced sub-graph G′ = (V ′, E′) is called a
non-separable component if G′ is non-separable and if for
every larger V ′′, V ′ ⊆ V ′′ ⊆ V , the induced sub-graph
G′′ = (V ′′, E′′) is separable.

An efficient algorithm to generate valid temporal plans
(not considering resource consumption) and computing the
minimal network is to first find the non-separable compo-
nents C1..Cm and then solve each one of them indepen-
dently. If all the components are found to be consistent, then
the entire network is consistent, and the minimal networks
of the individual components coincide with the overall min-
imal network.

Sufficient plan
Traditional timeline planners search for fully justified plans,
which are complete, fully ordered and valid:

- Complete: All variables are grounded. The plan always
specifies how to proceed (the timelines have no gaps).

- Fully ordered: All the decisions are sequenced.

- Valid: All the constraints are satisfied.



Figure 2: Articulation points in a graph

This definition might represent an unachievable condition
for real-world P&S systems. In order to deal with non de-
terministic, dynamic and partially observable environments,
more flexibility is required. Our planning system is based on
the concept of Sufficient Plan, defined as follows:

All variables and relations are sufficiently grounded, all
fully grounded relations are satisfied, all sub-plans are suf-
ficiently decomposed and all the mandatory goals can be
achieved for at least one specific instantiation of the suffi-
cient plan.

The underlying concepts of this definition are:

- Sufficiently grounded: All decisions d ∈ D and relations
r ∈ R that appear as goals in the problem must spec-
ify whether they should be grounded or not at planning
time. A cd is grounded when its value and parameters
are grounded; a relation is grounded when all its elements
are grounded. A partially grounded relation has two im-
portant consequences: (1) the relation cannot be satisfied,
(2) in case of temporal relations, the resulting dn is par-
tially ordered.

- Sufficiently decomposed: A complex goal should also
specify whether it must be or not fully decomposed. It
is fully decomposed if all its sub− cd’s are fully decom-
posed and partially decomposed in other case.

- Valid plan: If there is one instantiation of the partial plan
where every decision and relation can be grounded, all
constraints satisfied, all sub-plans can be fully decom-
posed and all mandatory goals are achieved.

This represents an extension of the definition provided in
(Frank and Jónsson 2003), where a partial plan is fully de-
fined up to a certain point called plan horizon, ignoring ac-
tivities that fall outside it. In our case, any goal, decision or
constraint might be partially defined according to an initial
definition. These partially defined elements of the problem
should be completed prior to the execution.

With this technique, it is possible to generate plans under
situations in which the information about the system or the
environment is not complete.

QuijoteExpress
QuijoteExpress extends the AP2 temporal planner developed
in the frame of the ESA Goal Oriented Autonomous Con-
troller Study (GOAC) with the properties presented in the
previous section. It is divided in a strategic planner that leads
the search and four resolvers used to fix the plan (see Fig-
ure 3):

- Unfolder: Add/remove elements (decisions or relations)
from the problem in order to make a goal valid.

- Scheduler: Guarantees the consistency of the timelines
and resource consumption.

- Timeline completer: Fill in the gaps of the timelines.

- Decomposer: Decomposes a complex goal into sub-goals.
The problem can be evolved to different layers, being each
layer more detailed than the previous one.

Figure 3: QuijoteExpress structure

QuijoteExpress follows an iterative approach. Given a
problem and model as inputs to the planner, it first divides
the problem in its independent components and assign each
one to a tactical-solver. If all the components are solved, then
they are joined and the relations between them repaired in
case it is necessary (see Algorithm 1).

For each sub-problem, the tactical-solver first computes
the flaws, and then iterates selecting non-deterministically
a flaw and a resolver for it. At this point, the planner has
constructed an evolution of the problem. In case the problem
is not sufficiently decompose, it proceeds to decompose all
complex goals in sub-goals, possibly introducing new flaws
that will need to be planned (see Algorithm 2).

Figure 4 represents the search tree generated by the plan-
ner. Red nodes represent problems with flaws, labeled pf ,
blue nodes represent problems not sufficiently decomposed



Algorithm 1: QuijoteExpress(searchSpace, δ)
begin

while (¬endCondition) do
π ← chooseNode(searchSpace)
π[] = calcSeparationV ertex(π)
[parallel]
for eachπ[] do

π1[i]← TacticalSolver(π[i], δ)

π2 ← joinComponents(π1)

πvalid ← TacticalSolver(π2, δ)

calculateScore(πvalid)

if (πvalid is Solution) then
solutions← πvalid

πdecomposed ← decompose(πvalid)

searchSpace← πdecomposed

return chooseBest(solutions)

Algorithm 2: TacticalSolver(π, δ)
begin

flaws← OpenGoals(π) ∪ Threats(π)
if flaws = ∅ then return(π)
select φ ∈ flaws
select r ∈ Resolvers
if r = ∅ then return(failure)
π′ ← r.solve(π, δ, φ)
return TacticalSolver(π′, δ)

pnd, dark green nodes represent problems sufficiently valid
psv , that is, sufficiently valid plans and light green nodes rep-
resent full-valid plans. Each node contains an evolution of
the problem and some extra information, including a score
assigned by the planner that helps to lead the search or
choose between different solution nodes. The edges repre-
sent the transition from a less-evolved version to a more-
evolved one and contain information about the modifica-
tions undertaken. The root represents the initial problem.
Each layer is divided in two sub-layers, one that generates
fixed problems but not sufficiently decomposed and a sec-
ond which decomposes the previous one at the cost of intro-
ducing new flaws. The planner can stop following different
criteria, returning a valid solution if it has found either a psv
or pv . pv will be always chosen over psv regardless of their
scores, while the score will be used in case there are several
pv’s or in case there are only psv .

Future work
What to do first, either decomposing a layer or fixing it has
not yet been determined. Heuristics to choose the next flaw
must be improved and backtracking techniques to the appro-
priate layer in case no solution is found implemented.

References
Dechter, R., and Pearl, J. 1987. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelligence 34:1–38.

Figure 4: Search Tree

Erol, K.; Hendler, J.; and Nau, D. S. Htn planning: Complexity and
expressivity. In In Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94, 1123–1128. AAAI Press.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute and
interval planning. Constraints 8:339–364.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying planning
and scheduling as timelines in a component-based perspective.
Archives of Control Sciences 18(2):231–271.


