

Decision Making in Non-Deterministic Environments

George Markou

Dept of Applied Informatics

University of Macedonia

Thessaloniki, Greece

gmarkou@uom.gr

Abstract

My PhD research is focused on Web Service Composition
through the use of AI planning techniques, considering the
domain as an inherently non-deterministic one. The main
goal of my research is to build a system in which an end
user will be able to search for suitable web services, add
new ones, and create new composite ones either manually or
automatically. As a practical example of the usefulness of
such a system we plan on integrating it into a personal time
management platform; the goal of this line of research is to
allow for a user to indicate a task that he wants to perform
on his personal time and the system being able to produce
composite web services that may achieve such a task
automatically. The results of my work so far include the
implementation of an online platform that has an integrated
web service registry and allows its users to semi-
automatically create a new, composite web service. We are
currently working on non-deterministic algorithms that will
be integrated into the automatic web service composition
module.

Introduction

The use of Web Services (WSs) has provided a way to

develop flexible and robust systems with reduced costs and

requiring less time than building new, complex

applications from scratch. However, WSs exist and operate

in an ever-changing and expanding environment, and as

such it is difficult to expect from a human user, or even an

expert, to manually complete the goal of a Web Service

Composition (WSC) process.

 The number of WSs is growing continuously and, as

such, the web services’ discovery phase becomes more

difficult. Web services can change interfaces or even part

of their usage multiple times throughout their lifespan;

even if they remain static, there is always the possibility

that their execution is not successful. A WSC process

should automatically detect and respond to such changes in

a way that a human will probably not be able to.

 Our line of work has focused on implementing an

efficient WSC process that takes into account the domain’s

non-determinism, and making use of such a process in a

personal time management system. In the case of WSC, the

most widespread approach to solving the problem is to

compile it into an AI planning one and use the already

available tools and techniques of that field of research. The

reason behind the popularity of such approaches is the fact

that the AI planning community is more advanced than that

of the WSC community, and has produced results that have

become extremely more efficient and scalable in the past

few years.

 So far, an online platform has been implemented that

allows its users to create workflows that can be converted

into composite web services; moreover, a detailed

evaluation process has been defined. We are currently

working on a non-deterministic algorithm that will be used

for the automatic web service composition process. In the

future, this algorithm will be integrated in the existing

application and evaluated against the manual module. The

rest of my research will be focused on using the

aforementioned system in combination with a personal

time management one, so that some of the tasks inserted in

it can be achieved automatically through composited web

services.

Past Work

Our work so far has been towards implementing a WSC

system that would exhibit the following functionalities:

• Advertisement of a new WS in a registry, as well as
online editing and retrieval of the WSs already stored.

• Generation of a workflow based on OWL-S’ (Martin
et al. 2004) control constructs and the WSs stored in
the online registry.

• Translation between the language used to store the
output workflow internally and the one used to
describe the semantic WSs taking part in the
composition, namely BPMN 2.0 (Object Management
Group 2011) and OWL-S, respectively.

Figure 1. Registry Lifecycle – Implemented system screenshots.

• Evaluation of the output WSC process, based on
quantitative criteria (e.g., the number of WSs
considered for the composition, the transformation
time of the WSC domain to a planning one, or the
total planning time) and pre-defined use case
scenarios.

 In accordance with (Sirbu and Hoffmann 2008) we

consider WSC at the functional level, i.e., only taking into

account OWL-S’ service profiles. In summary, the inputs

and outputs of WS are mapped to input and output

parameters on which preconditions and effects are

specified. A more detailed analysis on the translation

process between the web service and the AI planning

domain is presented in the next section.

Online Registry

Web services’ technologies are based on the idea of

maximizing the reuse of loosely coupled components. As

such, our view is that the systems implementing web

services’ functionalities should also be created with the

same approach in mind and incorporate already freely

available components as their sub-elements. Apart from the

additional effort required to create a new component from

scratch, such approaches have led to an abundance of

applications and standards that only slightly differ from

each other, while making the quantitative comparison of

different systems difficult; this fact is illustrated by various

surveys relying only on qualitative criteria to review the

available methodologies (Chan, Bishop, and Baresi 2007).

Our system’s implementation is based on such a notion,

and as such, insures maximum conformance to the current

WS standards and facilitates its quantitative evaluation and

comparison to other WSC systems. To our knowledge, no

other open source web-based WSC system exists.

The existing system supports various functionalities

relating to different stages of WSC; the first one is the

ability to store the service descriptions that will be used

later in the discovery of suitable WSs in a registry. We

opted to use iServe (Pedrinaci et al. 2010) as the core of

our application and not a UDDI (Clement et al. 2004)

approach, since its search functionality does not support

the semantic content of Web services. iServe is an open

platform for publishing and discovering services that

supports importing service annotations in a range of

formalisms (e.g., SAWSDL, WSMO-Lite and OWL-S)

through their transformation to linked data expressed in

terms of a simple, common, vocabulary for services.

Specifically, we make use of its web-based application

that allows users to browse, query and upload services,

which, in our case, are semantically described in OWL-S.

We have added an online XML editor to the application,

made several improvements to its interface and

functionality, and populated the registry with version 4.0 of

the OWL-S Service Retrieval Test Collection (OWL-S TC)

(SemWebCentral 2010). Fig. 1 illustrates the basic

functionalities of the implemented registry and its sub-

components.

Evaluation

As mentioned in the previous section, the recent

bibliography suggests a gap in the evaluation process of

the current WSC systems (Chan, Bishop, and Baresi 2007).

Not only is there no standard web service test set

(Hoffmann et al. 2009), but most approaches, especially

the ones related to planning based techniques, simply

evaluate their methodology on a single case study, without

referring to quantitative criteria (McDermott 2002;

McIlraith and Son 2002). Only recently, a few approaches,

such as (Hoffmann et al. 2009; Kona et al. 2008), have

deviated from the rule of evaluating their methodology

without quantitative criteria.

Use Case Scenarios
The lack of a standard web service test bed, concerning
both the scenarios used to test the WSC process, and the
web services that take part in it is detrimental to the WSC
systems’ development, as it is currently not possible to
evaluate a WSC approach efficiently and objectively
against another one. Moreover, this fact has led to the trend
of most WSC approaches not providing any quantitative
data at all concerning their system’s performance.
However, in the past few years OWL-S TC has been used
extensively, as a test set in the recent S3 contests (S3
Contest 2011), or in several aproaches in the recent
literature (Kuzu and Cicekli 2012; Mesmoudi, Mrissa, and
Hacid 2011), a fact that suggests its suitability for use in
our evaluation experiments.

We believe that the definition of specific use case

scenarios in detail, as well as the provision of the actual

web services’ descriptions that will be used, benefit both

the efficiency of our own approach as well as the WSC

community, as it will allow for the reproducibility of our

experiments and the comparison of existing WSC systems

with each other. As such, we have designed three use case

scenarios, each based on the web services contained in a

single domain of OWL-S TC, and with an increasing

amount of non-determinism and complexity than the

previous one.

In order to design useful test cases for our system, we

made several minor modifications to the available web

services’ descriptions and their relative ontologies, and

also added a few descriptions to the collection, albeit

similar to the ones already included in it. A full description

of the use cases and the web services they are based on can

be found in (Markou 2012).

The first use case is fully deterministic, allowing for the

output of a fully serialized composite web service; it refers

to a user who knows part of a movie title and wants to

retrieve all the comedy films that exist with a similar title,

along with their pricing information. This use case uses the

web services in the “Communication” domain of the test

collection, with the relevant ones in regard to its scenario

amounting to a total of 58 semantic web services.

The other two scenarios feature non-deterministic

elements, such as preferences between types of products,

or cases where a web service may have different outcomes.

Particularly, the second one refers to an online bookstore

user who wants to purchase a book with a specific method

of payment (with three different choices being available),

with the output composite web service having different

outcomes depending on whether the book is in stock at the

store or not.

If the book is available, the composite web service

should add it to the user’s shopping cart, purchase it with

the specified method of payment, and output information

regarding it, such as its size and if a reader of the book has

written a review regarding it. If, however, it is not in stock,

no payment should be made, and no further information

concerning it should be displayed to the client. This use

case uses the web services in the “Education” domain of

OWL-S TC, with the relevant ones being 285 in total.

The final use case also concerns the purchase of an item,

but in this case more than one sellers are assumed to exist,

and the composite web service should check with all of

them to determine if the item is in stock. Moreover, this

scenario differs from the previous one in that is also takes

into account the user’s preferences. In specific, the user is

assumed to have a preference towards an analog SLR

camera model, but is willing to settle for other cameras if

that specific one is not in stock.

As such, if a store is found that sells the analog SLR

model and has it in stock, that product should be added to

the user’s shopping cart. If it is not in stock, the search

should continue for another store that sells it, and if one

cannot be found, the process should be repeated, this time

searching for the camera’s compact version, or, if all else

fails, for any camera available in stock. The third use case

scenario makes use of the test collection’s “Economy”

domain and of a total of 359 semantic web services.

Although the first two scenarios can be considered as

special cases of the last one, it is important to showcase

that the system can indeed cope with the generation of both

sequential and conditional plans, with and without

preferences. Moreover, the importance of the scenarios lies

in that they exhibit that this particular set of web services

can be used to produce meaningful use cases that can

evaluate the capabilities of WSC approaches efficiently

and in a manner that is reproducible and extensible.

Manual Web Service Composition Module

Since the literature does not suggest a standard test bed or

any WSC systems that are directly comparable to ours in

terms of motivation (that is, regarding the WSC problem as

an inherently non-deterministic one), use of standards and

test sets/use case scenarios, we decided to further evaluate

our automatic WSC approach against a manual one.
Specifically, we made use of an existing open source

BPMN 2.0 modeler, Petals BPM (EBM Websourcing
2012), which we modified so as to satisfy the needs of a
manual OWL-S composer; that is, we created the necessary
OWL-S constructs, as well as some “helper” constructs that
are used to provide a more intuitive interface.

The OWL-S constructs currently supported by the

application are the 〈Sequence〉 (implicitly), 〈If-Then-Else〉,

〈Split+Join〉, and 〈Repeat-While〉 control constructs, along
with the necessary inputs, outputs and web services’
elements. The “helper” constructs comprise of an

〈End Split+Join〉 and an 〈End Repeat-While

in conjunction with the regular

〈Repeat-While〉 constructs to enclose other elements in

them, and dedicated 〈If〉 and 〈Else〉 sequence flows that are

only used along with an 〈If-Then-Else〉 gateway. Moreover,

there are 〈Start〉 and 〈End〉 constructs to signify the
beginning and end of a workflow. That is, with the

exception of input data that can precede a
to signify that the input is valid for the whole workflow, no

other construct can be used before a 〈Start

after an 〈End〉 one.

Since the purpose of the automatic WSC module is to

help even a non-expert user create composite web services,

our aim was to implement the manual WSC module with

the same principal in mind. For this reason, during the

manual creation of the workflows the users are guided in

regard to the correct use of the avail

whenever they input one in a workflow. Moreover, the

created graphical workflows are also validated against pre

defined rules whenever the users save them.

Some of the rules, such as that a 〈Start

have at least one outgoing sequence flow and the
construct must have at least 1 incoming sequence flow,
were maintained from the original Petals BPM application.

Others, such as that an 〈If-Then-Else〉 construct can only

have one outgoing 〈If〉 sequence flow and one

〈Else〉 sequence flow, or that every 〈Split+Join

must be accompanied by the related
construct, were added in order to help the user export a
valid composite web service.

Finally, the web service constructs that are added to the

workflows can be bound to specific web services already

in the registry of our online application, and in a similar

manner, the data input/output constructs that are used can

also be bound to relevant ontologies’ concepts present in

Fig. 2 illustrates part of the interface of the manual web

service composition module along with the workflow

representing the second use case scenario

Figure 2. Online bookstore scenario workflow.

While〉 construct used

in conjunction with the regular 〈Split+Join〉 and

to enclose other elements in

sequence flows that are

gateway. Moreover,

constructs to signify the
beginning and end of a workflow. That is, with the

ption of input data that can precede a 〈Start〉 construct
to signify that the input is valid for the whole workflow, no

〈Start〉 construct or

Since the purpose of the automatic WSC module is to

expert user create composite web services,

our aim was to implement the manual WSC module with

the same principal in mind. For this reason, during the

manual creation of the workflows the users are guided in

regard to the correct use of the available constructs

whenever they input one in a workflow. Moreover, the

created graphical workflows are also validated against pre-

defined rules whenever the users save them.

Start〉 construct must

sequence flow and the 〈End〉
construct must have at least 1 incoming sequence flow,
were maintained from the original Petals BPM application.

construct can only

sequence flow and one (optional)

Split+Join〉 construct

must be accompanied by the related 〈End Split+Join〉
construct, were added in order to help the user export a

Finally, the web service constructs that are added to the

workflows can be bound to specific web services already

in the registry of our online application, and in a similar

manner, the data input/output constructs that are used can

be bound to relevant ontologies’ concepts present in it.

the interface of the manual web

service composition module along with the workflow

scenario.

Current Research

Since PDDL and OWL-S are, respectively, the de facto

planning language and the most widely used semantic

description language, it is to be expected that several

attempts that utilize them together in order to automatically

solve WSC problems exist. Moreover, as the latter has

been heavily influenced from planning languages, a

(perhaps partial) mapping from OW

relatively intuitive.
We plan on using PPDDL

the planning language used in the non
of the 2006 and 2008 International Planning Competitions
for the purposes of the automatic WSC. PPDDL
essentially a syntactic extension of PDDL2.1,
modeling non-deterministic actions through the introduction
of probabilistic effects, which can be arbitrarily interleaved
with conditional effects and universal quanti
the time being we have created two planning domains,
based on variations of the o
of which is available in both (PPDDL) probabilistic and
deterministic (PDDL) versions (Markou

Since the WSs in the registry are described semantically
through OWL-S, we have to
between the two languages.
and Schmidt 2005) is arguably the mos
incorporating such a translation. The system presented
includes a conversion tool that translates OWL
descriptions to corresponding PDDL 2.1 ones; we plan to
follow an approach similar to
in (Hatzi et al. 2011).

A second approach is presented in
2012); its authors acknowledge that the WSC process
cannot ignore the inherent non
and present a methodology that interleaves planning and
execution to tackle it, based on an exis
(Simplanner).

After the aforementioned

techniques can be used to generate the outp

plan/composite web service. Since composite web services

Current Research

S are, respectively, the de facto

planning language and the most widely used semantic

description language, it is to be expected that several

attempts that utilize them together in order to automatically

solve WSC problems exist. Moreover, as the latter has

been heavily influenced from planning languages, a

perhaps partial) mapping from OWL-S to PDDL is

PPDDL (Younes and Littman 2004),
the planning language used in the non-deterministic tracks
of the 2006 and 2008 International Planning Competitions

e purposes of the automatic WSC. PPDDL is
tially a syntactic extension of PDDL2.1, capable of

deterministic actions through the introduction
of probabilistic effects, which can be arbitrarily interleaved
with conditional effects and universal quantification. For

created two planning domains,
based on variations of the online bookstore scenario, each
of which is available in both (PPDDL) probabilistic and
deterministic (PDDL) versions (Markou 2013).

Since the WSs in the registry are described semantically
have to adopt a translation pattern

 OWLS-Xplan (Klusch, Gerber
is arguably the most known approach

translation. The system presented
includes a conversion tool that translates OWL-S

to corresponding PDDL 2.1 ones; we plan to
similar to that one and analogous to that

A second approach is presented in (Kuzu and Cicekli
ts authors acknowledge that the WSC process

ignore the inherent non-determinism in the domain,
and present a methodology that interleaves planning and
execution to tackle it, based on an existing PDDL planner

aforementioned translation, AI planning

techniques can be used to generate the output

plan/composite web service. Since composite web services

may fail to execute correctly for various reasons, such as

the unavailability of an atomic web service involved in a

plan, or simply because the output of their successful

execution is not the expected one, an AI planning

algorithm used should take into consideration the non-

determinism of the domain.

For this purpose, we are currently considering the

incorporation of a contingent planner (Hoffmann and

Brafman 2005; Weld, Anderson and Smith 1998), so as to

generate plans that can cope with the most influential and

likely contingencies. Our goal is not to develop a plan for

every possible contingency, as the WSC domain has too

many sources of uncertainty for such an approach to

succeed.

The approach we plan to follow consists of the use of a

complete algorithm, such as A* (Hart, Nilsson and Raphael

1968), to generate all the possible plans in a given period

of time, starting from an optimal one, with an increasing

cost, until we reach a time limit set by the application’s

user. A - suboptimal – contingency plan can be constructed

by linking these plans by searching for natural join points,

i.e., when search nodes share a predecessor through

different sets of outcomes, and by removing any plans that

contain redundant actions, i.e., repetitive actions or ones

that do not produce any useful results. A somewhat similar

approach using GraphPlan (Blum and Furst 1997) is used

in (Little 2006).

Finally, we will convert the PPDDL plan back to an

OWL-S (composite) web service, that is, create an OWL-S

profile and its process description, without, however,

providing a corresponding WSDL definition, in a fashion

analogous to that described in (Kona et al. 2008; Ziaka,

Vrakas and Bassiliades 2011).

In short, the profile description of the new composite

web service will treat it as an atomic service with IOPEs,

while the process model will be based on OWL-S control

constructs that describe the way the web services that

compose the composite one interact with each other. The

OWL-S API (University of Basel - Database and

Information Systems Group 2012) that will be used to

implement the conversion supports composite processes

that use OWL-S control constructs, such as 〈Split+Join〉,

and conditional constructs like 〈If-Then-Else〉, which will

be necessary to produce correct solutions to the use cases

already presented.

Future Research Ideas

An example of a practical use of web services in real life is

the case of the well known “virtual travel agency”; in such

a scenario, a user would require to book his tickets to travel

to and from a specific destination, as well as his hotel and

means of transportation there. Since there is an extensive

collection of alternative options for each of these aspects,

e.g., airplane or train tickets, different hotels at each

destination or various car leasing companies, and a correct

combination of them in a manner that results in a minimum

cost is difficult, an automated solution would be

beneficent.

 This scenario, as well as other everyday use cases, such

as the booking of concert tickets, the purchase of different

parts of a PC, or the comparison of prices of a specific

product in several websites, could be efficiently added in a

personal time management system by its users as tasks that

can be achieved automatically through composite web

services. Our aim is to incorporate the system described in

the previous section in such a platform, namely

SELFPLANNER (Refanidis and Alexiadis 2011). The fact

that the final composite web services will take into account

the non-determinism in the domain makes our approach

even more suitable for such a purpose, as it will be fault-

resilient, requiring less or none intervention from the end

user.

Conclusion

The work described here stems from the fact that the recent

bibliography suggests a lack of real world implemented

web service composition systems, as well as a gap in the

evaluation of existing ones. To the best of our knowledge,

the final system will be the first online application of its

kind able to support various stages of Web Service

Composition.

 Moreover, we have already presented an evaluation

framework based on pre-defined scenarios, quantitative

criteria, and a comparison between manual and automatic

WSC, as well as a standard test set. It is our hope that it

can be used by other WSC works as a common test bed, as

they provide detailed descriptions of the web services used

and their intended goals, and can be used by systems

supporting either deterministic or non-deterministic

planning.

 Our current and future work that treats web service

composition as an inherently non-deterministic process and

aiming to apply such an approach in a practical real world

application is unique. However, several problems can arise

in such an effort, the most important being the lack of real

world freely available semantic web services that can be

used efficiently in a personal time management system.

Such problems can be tackled through the use of dummy

tailored made WSs or simple use case scenarios,

specifically designed to conform to the actual availability

of real world semantic web services.

 We expect that in the near future we will be able to

demonstrate the first results of this effort through a

publicly available online prototype.

Acknowledgements

This research has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds

through the Operational Program “Education and Lifelong

Learning” of the National Strategic Reference Framework

(NSRF) - Research Funding Program: Heracleitus II.

Investing in knowledge society through the European

Social Fund.

References

Blum, A.; and Furst, M. 1997. Fast planning through planning

graph analysis. Artif. Intell. 90:281–300.

Chan, M.; Bishop, J.; and Baresi, L. 2007: Survey and
comparison of planning techniques for web services composition,
Technical Report, University of Pretoria.

Clement, L.; Hately, A.;von Riegen, C.; and Rogers, T. 2004.
UDDI version 3.0.2, http://uddi.org/pubs/uddi_v3.htm

EBM Websourcing 2012. Petals BPM architecture overview,
http://research.petalslink.org/display/petalsbpm/Architecture+ove
rview

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Trans. Syst. Sci., Cybern. 4 (2): 100–107.

Hatzi, O.; Vrakas, D.; Nikolaidou, M. et al., 2011. An integrated

approach to automated semantic web service composition through

planning, IEEE Trans. Service Computing 301-308.

Hoffmann J.; and Brafman, R. 2005. Contingent planning via

heuristic forward search with implicit belief states. In

Proceedings of the 15th International Conference on Automated

Planning and Scheduling (ICAPS '05), 71-80.

Hoffmann, J.; Bertoli, P.; M. Helmert; and M. Pistore 2009.
Message-based web service composition, integrity constraints,
and planning under uncertainty: a new connection. J. Artif. Intell.
Res. 35:49-117.

Klusch, M.; Gerber, Α.; and Schmidt, M. 2005. Semantic web

service composition planning with OWLS-Xplan. In Proceedings

of the First International AAAI Fall Symposium on Agents and

the Semantic Web.

Klusch, M.; Gerber, Α.; and Schmidt, M. 2005. Semantic web

service composition planning with OWLS-Xplan. In Proceedings

of the First International AAAI Fall Symposium on Agents and

the Semantic Web.

Kona, S.; Bansal, A.; Blake, M.B.; and Gupta, G. 2008.
Generalized Semantics-Based Service Composition. In
Proceedings of IEEE International Conference on Web Services
(ICWS’08).

Kuzu M.; and Cicekli, N. 2012. Dynamic planning approach to

automated web service composition. J. Appl. Intell. 36:1-28.

Little, I. 2006. Paragraph: A graphplan based probabilistic

planner. In Proceedings of the Fifth International Planning

Competition (IPC-5).

Markou, G. 2012. Heracleitus II - WSC Use Case Scenarios,
Technical Report. Department of Applied Informatics, University

of Macedonia. http://ai.uom.gr/gmarkou/Files/Mad_Swan_
Use_Case_Scenarios.pdf

Markou, G. 2013. Heracleitus II – (P)PDDL Use Case Scenarios,
http://ai.uom.gr/gmarkou/Files/(P)PDDL%20domains/

Martin, D.; Burstein, M.; Hobbs, J. et al. 2004. OWL-S: Semantic
Markup for Web Services, http://www.w3.org/
Submission/OWL-S/

McDermott, D.V. 2002. Estimated-regression planning for
interactions with web services. In Proceedings of the Sixth
International Conference on Artificial Intelligence Planning
Systems (AIPS ’02), 204-211.

McIlraith S.; and Son, T. 2002. Adapting Golog for composition
of semantic web services. In Proceedings of the Eighth
International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), 482-496.

Mesmoudi, A.; Mrissa, M.; and Hacid, M. 2011. Combining

configuration and query rewriting for web service composition. In

Proceedings of IEEE International Conference on Web Services

(ICWS '11), 113-120.

Object Management Group 2011. Business Process Model And
Notation (BPMN) Version 2.0, http://www.omg.org/spec/
BPMN/2.0/

Pedrinaci, C.; Liu, D.; Maleshkova, M. et al. 2010. iServe: a
linked services publishing platform. In Proceedings of the
Ontology Repositories and Editors for the Semantic Web
Workshop at the 7th Extended Semantic Web Conference (ORES
'10).

Refanidis, I.; and Alexiadis, A. 2011. Deployment and Evaluation

of SelfPlanner, an Automated Individual Task Management

System. Comput. Intell. 27(1): 41-59.

S3 Contest 2011. Retrieval performance evaluation of

matchmakers for semantic web services, http://www-ags.dfki.uni-

sb.de/~klusch/s3/html/2011.html

SemWebCentral 2010. OWL-S Service Retrieval Test Collection,
http://semwebcentral.org/frs/?group_id=89

Sirbu, A.; and Hoffmann, J. 2008: Towards Scalable Web Service

Composition with Partial Matches. In Proceedings of the IEEE

International Conference on Web Services (ICWS), 29-36.

University of Basel - Database and Information Systems Group

2012. OWL-S API introduction, http://on.cs.unibas.ch/owls-api/

index.html

Weld, D.S.; Anderson, C.R.; and Smith, D.E. 1998. Extending

Graphplan to handle uncertainty and sensing actions. In

Proceedings of the 15th National/10th Conference on Artificial

Intelligence/ Innovative Applications of Artificial Intelligence

(AAAI/ IAAI '98), 897-904.

Younes, H. L. S.; and Littman, M. L. 2004: PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects, Technical Report CMU-CS-04-167, School
Of Computer Science, Carnegie Mellon University.

Ziaka, E.; Vrakas, D.; and Bassiliades, N. 2011. Translating web

services composition plans to OWL-S descriptions. In

Proceedings of the Third International Conference on Agents and

Artificial Intelligence (ICAART ’11), 167-176.

