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In recent years, the use of autonomous underwater vehicles 

(AUVs) has become increasingly popular for a wide 

variety of applications, ranging from geological surveys 

and environmental monitoring to pipeline and hull 

inspection. This is in part due to their ability to act 

independently from the support ship and crew, allowing 

multiple tasks and experiments to be undertaken 

simultaneously, saving valuable ship time. As the cost of 

deploying a vehicle and the risk of loss or damage are 

often high, AUV missions typically consist of simple pre-

scripted behaviours (Pebody 2007), such as 'lawnmower' 

surveys (where the vehicle surveys a section of the sea 

floor in a series of overlapping parallel passes). By 

analysing data from the vehicle between deployments, 

operators could tailor subsequent missions to further 

investigate areas of interest. The recent development of 

long-range vehicles, such as Autosub Long-Range 

(Furlong  et al. 2012), designed to perform missions lasting 

many days or weeks, has the potential to revolutionise the 

collection of oceanographic data. However, as the progress 

of long-duration missions cannot be periodically reviewed 

by human operators, long-range vehicles will require an 

increased level of autonomy to fully capitalise on their 

increased capabilities. AUV missions can be thought of as 

oversubscribed planning problems, where finite amounts of 

battery power and data storage space limit the number and 

duration of data-collection tasks achievable by the vehicle. 

Designed to safeguard the vehicle whilst operating in 

inherently uncertain environments, pre-scripted missions 

are inevitably over-conservative, reserving a significant 

proportion of battery as a contingency should usage be 
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higher than expected. This means that in the average case, 

the vehicle is not being used to its full potential.  

 We can formally represent the AUV planning domain as 

a Markov Decision Process (MDP) (Russell and Norvig 

2003), in which at any given time the vehicle is considered 

to be in one of many states. The vehicle may transition 

between states by performing various actions, such as 

moving to a new location, collecting a data set, travelling 

to and from the surface, and transmitting data sets back to a 

support vessel or laboratory. Upon transitioning to certain 

states, such as following the successful transmission of a 

data set, the vehicle receives a reward. Data sets are only of 

value to scientists if they are successfully recovered from 

the vehicle, either by being present on the hard-drive at the 

point of vehicle collection or by being transmitted by the 

vehicle mid-mission. Without this stipulation, the potential 

value of the data and the cost of losing it (such as through 

the corruption of onboard storage or the total loss of the 

vehicle) would not be represented within the problem. The 

vehicle has two resources, battery power and data storage 

space, which are each represented as a continuous state 

variable. All actions will consume battery power; however, 

the exact amount consumed is not known in advance but 

modelled with a probability distribution specific to each 

action. For example, there is much less uncertainty in the 

power used while surfacing than in collecting data from a 

survey area. Similarly, the amount of memory a data-set 

will consume once compressed is also uncertain. 

 For large-scale planning domains with continuous state 

variables and a high degree of resource uncertainty it is 

infeasible to compute the optimal course of action for 

every possible eventuality in advance.  This prevents the 

use of an MDP solver to generate a full policy for the AUV 

planning domain. Instead, we have focussed on the 

development of an online planning algorithm, which 



revises and refines the plan during execution in response to 

fluctuating vehicle resources and changing mission goals. 

An online approach allows us to reason about goals and 

reduce the uncertainty of future states using observations 

made during the execution of the plan. If a state is 

observed to have more resources available than previously 

expected, an additional goal may be included to increase 

the scientific data return and consequently the reward 

available to the vehicle. Conversely, if resource usage has 

been higher than expected, actions and goals may be 

removed to avert plan and mission failure. 

 We hypothesized that by allowing the vehicle to change 

its planned behaviour during execution in response to 

unexpected situations, the expected reward achieved by the 

vehicle for this ‘switching-plan’ would increase above and 

beyond that of any single straight-line plan. Following on 

from work by Bresina et al. (2002), in which the authors 

computed the optimal value function associated with the 

Mars rover planning problem as a function of continuous 

resource variables, we performed an investigation to 

compare the optimal value functions for a hand-

constructed subset of both straight-line and branching 

plans within the AUV domain. For any combination of 

initial resources the optimal value function represents the 

expected reward obtained by following a particular plan. 

The optimal value function of the switching plan was 

found to completely dominate that of the straight-line 

plans, exceeding the expected reward for all resource 

combinations (Harris and Dearden 2012). This showed that 

changing the plan during execution is at least as good as 

the best straight-line plan. For some combinations of 

resources, the switching plan significantly outperformed 

the best straight-line plan as it was able to either utilise 

resources to achieve greater rewards or avert failure by 

branching to a simpler plan, depending on the observed 

resource usage prior to the branch point. 

 As stated earlier, the large state space in the AUV 

planning domain means that the use of an MDP solver 

would be computationally infeasible. Conversely, although 

the use of classical planning algorithms such as GraphPlan 

(Blum and Furst 1997) would be feasible, they do not 

represent uncertain resource usage.  Instead, we theorised 

that a better solution might be to quickly generate 

candidate plans using a modified classical planner, before 

evaluating the quality of each plan using the MDP model. 

As the benefits of planning are often hard to quantify in 

advance, it is important that any online plan generation 

does not require the vehicle to invest significant time and 

resources mid-mission. Rather than using the classical 

planner to generate a new full plan during execution in 

response to an unexpected situation, we are researching the 

development of an algorithm which makes online 

modifications to an existing plan by interleaving existing 

actions with those of rapidly generated sub-plans, each 

solving a single additional goal. The initial plan would be 

generated offline (prior to the deployment of the vehicle) 

using GraphPlan. To minimise online computation, we 

hope to re-use information from GraphPlan's planning 

graph representation, such as causal relationships and 

possible orderings, to efficiently combine the initial plan 

with new sub-plans during execution. We are currently 

investigating using techniques from the field of partial-

order planning, such as threat-resolution (Penberthy and 

Weld 1992), in combination with information contained 

within the planning graph representation to generate a 

partially-ordered plan, listing all valid orderings of the 

actions within both plans. Full orderings can then be 

extracted and evaluated using the MDP model to select an 

ordering which maximises reward without violating 

resource constraints. We are also investigating how to 

optimise the quality of the eventual solution; for example, 

by detecting additional causal links which might allow the 

removal of a redundant action. However, the 

computational complexity of the algorithm remains an 

important consideration as online planning algorithms 

ultimately have to successfully balance the inevitable 

trade-off between quality and run-time complexity. 
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