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Abstract

Humans are able to come up with plans to achieve their
goals, and to adapt these plans to changes in their en-
vironment, finding fixes, alternatives and taking advan-
tages of opportunities without much deliberation. For
example, they may use a tea kettle to water the plants,
or a mug instead of a glass. Despite decades of research,
artificial agents are not as robust or as flexible. In this
work, we introduce three reasoning phases that use af-
fordances to enable such robustness and flexibility in
robot task planning. The first phase generates a focused
planning problem. The second phase expands the do-
main where necessary while the third and final reason-
ing phase uses affordances during plan execution and
monitoring. This is accomplished by combining Hierar-
chical Task Network planning, description logics, and a
robust execution/monitoring system.

Introduction
A paradigm shift has slowly been taking place among re-
searchers in the various fields of AI, such as perception and
manipulation (in the case of robotics). In recent years, we
have seen an increasing number of approaches that are task
oriented. For example, grasping objects is no longer solely
dependent on the physical properties of the object to be
grasped and that of the manipulator, but now often includes
the purpose for which the grasping is taking place (for exam-
ple, grasping an object to pour from it may require a different
grasp than transporting it would).

In the planning field, the task-based perspective predates
the current change in other robotics fields. The Hierarchi-
cal Task Network (HTN) approach (Ilghami and Nau 2003)
has enabled us to reduce our search space by allowing us to
encode the ‘best way’ of carrying out tasks; thus improving
the quality of the plans as well. Complexity is at a minimum
when there are no choices to be made - when there is exactly
one way to decompose a non-primitive task into primitive
tasks. This may however limit the possibility of generating a
plan at all (if we have no way to decompose a non-primitive
task that is applicable at a given state). What we would like
to do is to make use of another behavior that humans often
exhibit: we find ‘other’ ways to accomplish the task, quite
often not so much by changing how we carry out the task but
with what: we make ‘substitutions’. For example, by using

a mug instead of a glass to drink from or by using a tea ket-
tle to water plants with instead of a watering can. This may
be the equivalent of adding a new method to decompose the
task that uses the substituted object (and depending on the
result at execution, annotating it with a preference index) or
in approaches that use lifting, it would enable additional ob-
jects to be used to ground the methods and operators. How
would we determine what objects to substitute is the ques-
tion.

In our approach, we will use a modified HTN planning
algorithm that aims to re-use the procedural knowledge en-
coded in the methods while at the same time enabling the re-
sourcefulness that humans exhibit when they substitute ob-
jects for other objects. To do this we use justification struc-
tures, as in (Veloso 1994; Fernandez and Veloso 2006), bor-
rowed from explanation-based approaches to annotate the
derivation process of a plan. This provides us with the abil-
ity to understand why a planner made a particular decision
and why it may have failed to generate a plan. In the cases
where this is due to a missing object, the algorithm uses a
reasoning process that employs the concept of affordances
to make effective choices.

Affordances describe opportunities for action (Gibson
1979). In this work, the notion of affordances is kept, al-
though Gibson’s action-perception coupling is not dealt with
directly. Gibson’s original definition has been refined by
many researchers in numerous fields and a generally-agreed
upon interpretation narrows the list of action-possibilities
to the ones that an actor might be conscious of. Using the
refined definition, affordances are neither solely a prop-
erty of the object, nor of the actor, but of their relation-
ship. We adopt Norman’s definition (Norman 2002) (and
the subsequent extensions of this definition by others, such
as (Gaver 1991) and (Hartson 2003)) of “perceived affor-
dances” which allude to “how an object may be interacted
with based on the actors’s goals, plans, values, beliefs and
past experience” (Norman 2002). We propose to include af-
fordances within the domain model and to represent this in
Description Logics (DL) so that we may use the reasoning
powers of existing tools to enable the robust and flexible be-
havior described above.

To this end, we attempt to answer the following specific
questions: How does the agent recognize when it should
make a substitution? How does it acquire the ‘functional



affordance’ of an object? How is this functional affor-
dance represented? When should it attempt to make a pre-
condition true (for example, wash the dirty glass) as opposed
to making a substitution (use a mug instead of the glass)?

The solution we propose incorporates ideas from each of
these domains:

• Planning in highly dynamic domains where they need to
consider actions which may or may not be possible due
to changes in the state of the world. In our case, alterna-
tive actions and alternative objects also need to be con-
sidered in order to enable successful plan generation and
execution. In our case, the choice is based on affordances,
spatial proximity and preferences.

• Explanation-based approaches where information deal-
ing with the decisions made by the planner are noted to
help diagnose the planning process. Information such as
the unavailability of objects with which variables can be
grounded with can provide us with the necessary cue to
expand the domain to include other types of objects. Un-
satisfied preconditions and the affordance a method or op-
erator was meant to enable would provide us with the in-
formation needed to make appropriate substitutions.

• Case-based planning where previous plans, or sub-plans,
are used instead of new ones being generated. In our case
in particular, with the ‘creative’ solutions which could re-
sult, it is desirable to keep track of both the plans that were
considered good solutions as well as the ones that were
not. Moreover, in any domain with tasks that are often re-
peated, such as making coffee every morning, it makes
sense to avoid deriving a plan each time.

• Closely-related is planning by analogy where the similar-
ity in problem descriptions identifies and enables a previ-
ous plan’s structure to be adapted to the new case. To-
gether with case-based planning and explanation-based
planning, this approach provides us with a means to adapt
the existing plans according to given guidelines.

• Opportunistic planning and reasoning approaches which
focus on making use of opportunities to achieve goals that
at a previous time were unachievable. This approach in
particular seems well-suited to planning with affordances
in mind as they would serve as the cues that trigger op-
portunistic behavior.

The goal of this work is to demonstrate the utility of using
the powerful concept of affordances in the planning process
to reduce complexity and increase flexibility - two tasks that
may appear to be impossible to achieve simultaneously.

Application Scenarios
The scenarios presented below demonstrate how an
affordance-based agent within the area of domestic service
robotics would benefit from enhanced performance and in-
creased robustness.

Object substitution A common household task involves
fetching an object, for example, a glass. If one is not found
during execution, an agent would have failed in achieving
its goal. One equipped with affordance-based reasoning

however, would use the affordances of a glass and substi-
tute another item, such as a mug for it. In this case, the
agent might use the functional affordances and/or phys-
ical properties of the objects to arrive at viable substitu-
tions.

Action substitution The existence of an affordance de-
pends as much on the morphology of the actor as it does
on a particular set of features of the object. An object
may be graspable for one embodiment but not for another.
Even with the necessary morphology to allow grasping, a
fault (be it temporary or not) with the system may prohibit
the use of the manipulator. The object may also be too
heavy to afford picking up. A human faced with a similar
situation might attempt to push an object to its destination
(assuming that its current and final positions allow this).
Here, it is the similarity of the effects of the original action
with its possible substitutes that has the greatest impact.
The use of an action-ontology might help in enabling this
use case.

Object substitution as tool usage Taking Norman’s defi-
nition, the use of an actor’s goals to pick up affordances
can result in interesting uses of everyday objects. For ex-
ample, the use of a magazine instead of a coaster for plac-
ing a bottle on a table is an affordance of a magazine that a
human might take advantage of in order to achieve his/her
goal of placing a cup on something other than the table.
This use case illustrates this emergent behavior. Knowing
the functional affordances of the original object and using
the physical affordances of the substituted object would
enable this use case.

Object substitution or use as performance enhancement
Another common task involves fetching a cup of coffee,
for example. If one uses affordances for planning, an
agent could reason that a more appropriate object would
be a mug for the coffee as opposed to the cup. In this
case, the agent might use the functional affordances
and/or physical properties of the objects to arrive at the
most appropriate object.

From the use cases presented in the scenarios above, it is
clear that modeling functional affordances are a necessity.
These functional affordances can be seen as a subcategory
of what Norman called “perceived affordances” which are
based on experience and goals (not to be confused with the
affordances which are perceived by the senses directly from
the environment) . They are extremely important for a num-
ber of reasons. Firstly, they enable intelligent behavior by
using objects for carrying out tasks that they were meant
to. Secondly, the concept of affordances could very easily
lead to an explosion in computational complexity as the ac-
tion possibilities of objects are numerous (a chair can be sat
on, but also thrown, stood on, etc.). By using functional af-
fordances, the action space is successfully reduced (in the
case when the substitution of objects is needed). In addi-
tion to functional affordances, real affordances which may
be picked up from the environment through the perception
process are also needed. A means to measure the similarity
between objects would enable the synergistic use of these



affordances for the object substitution, and object substitu-
tion as tool usage scenarios. For action substitution, the af-
fordances are mainly related to the effects of the actions and
a similarity measure between these would then robustly en-
able the scenario.

Generating the planning problem
The task of generating a problem description for planners
is key. Part of this description is the domain. Modeling the
domain is difficult and time consuming. The increasing com-
plexity due to the size of the search space (caused by both
the number of operators and the sheer number of objects in
real world domains) remains a challenge - so much so that
much of the benchmarking problems that are often used for
planners can still be considered “toy problems” (Mastrogio-
vanni et al. 2010) .

Domain knowledge has long been used to help constrain
the size of the planning problems. Hartanto takes this further
by coupling DL reasoning with task planning. In (Hartanto
2009), he represents the domain in DL which enables him to
infer a constrained planning domain by selecting only rele-
vant elements (for example, only considering rooms whose
doors are open in a navigation domain). The modeling of the
domain is thus a crucial element in handling computational
complexity. By linking affordances to tasks and representing
these in DL we increase the use of domain knowledge and
are thus able to improve the robustness of the system.

As mentioned above, complexity increases when a choice
is necessary; when there is more than one way to accomplish
a task or achieve a goal (when we have more flexibility). The
generated plans’ costs may differ greatly. The Hierarchical
Task Network (HTN) planning approach improves the situ-
ation by providing an expert’s way of carrying out the task;
thus improving the quality of the plans. Moreover, in an en-
vironment shared by humans and artificial agents, this ap-
proach is beneficial as it is more human-readable and a good
agent should be able to communicate their plan at all times
(Bradshaw, Feltovich, and Johnson 2011). In addition, it en-
ables the human user to specify the way he/she wishes to
have a task accomplished in an intuitive way.

Let us take the task of watering plants as an example. The
domain modeler would specify methods which provide both
procedural knowledge (how the task is to be accomplished)
and domain knowledge (specifying that a watering can in
particular should be used) resulting in a task network such
as that shown in Figure 1. If there is no watering can in our
domain (or despite all of our methods and operators no de-
composition is found to accomplish the task), the plan gen-
eration process will fail (for example, the watering can exists
but is inaccessible and we have no means by which to make
it accessible).

In our approach, we propose a modified HTN planning al-
gorithm that aims to re-use the procedural knowledge of the
methods while at the same time exhibiting the resourceful-
ness that humans show when they substitute objects for other
objects. First, we need to answer the question of how the
agent recognizes when it should make a substitution. To do
this we will use justification structures, as in (Veloso 1994;

Fernandez and Veloso 2006), borrowed from explanation-
based approaches to annotate the derivation process of a
plan. This provides us with the ability to understand why
a planner made a particular decision and why it may have
failed to generate a plan. In the cases where this is due to
a missing object, the algorithm uses a reasoning process
that employs the concept of affordances to expand the do-
main accordingly to make effective choices (this might be
the most appropriate, or the cheapest choice).

Expanding the domain
In (Magnenat, Chappelier, and Mondada 2012), the authors
use the HTN domain to constrain the search space and then
learn the probabilities of success in order to enable more
robust plans. The lifting process is done over categories of
objects rather than instances, thus reducing the complexity.
The proposed use of this lifting over categories of objects
and/or their functional affordances in our approach provides
us with the chance to increase the number of possible ob-
jects to be ground and at the same time remain focused on
achieving the task by choosing a more general category or a
functional affordance.

The question is, how does the robot decide which sub-
stitutions are admissible? We argue that the most appro-
priate substitutions are the ones that are meant to be used
for the same task. For example, glasses and mugs are both
used to drink from. This is knowledge that humans learn
and that may be found in the dictionary for example, or
possibly through projects that aim to make common-sense
knowledge available to artificial agents (such as OpenCyc
(Cycorp 2013), RoboEarth (Hubel et al. 2010), ConceptNet
and WordNet). These knowledge sources may be used to
provide Norman’s (Norman 2002)“values, beliefs” and even
“past experience”. Objects that are used for the same task
(i.e. share the same ‘functional affordance’) would provide
the most ‘appropriate’ substitutions. In addition, they can of
course also come from the humans co-inhabiting the envi-
ronment (for example, they might ask the robot to only clean
the bathrooms with the blue cleaning cloths (restricting it to
the subcategory), or to only serve them tea in their favorite
cup (a single instance)). This answers the question of where
the functional affordances of objects come from.

Some objects, such as watering cans, are used for a very
specific task. In this example, for watering plants. The only
other object which is used for the same task would be a
‘hose’, and this is only for watering plants outdoors. In this
case, both share the same functional affordance of watering
plants, but whereas it may be desirable to substitute the wa-
tering can for the hose, the opposite is not true, and so a sub-
stitution using only functional affordances may fail. Here,
we would need to look for objects which are conceptually
similar to the watering can. The similarity measures which
are often used may not yield the results we have in mind
(we may not care about the color of an object, but rather the
presence of a handle for example).

We propose the use of Conceptual Spaces (Gärdenfors
2004) which provide a multi-dimensional feature space
(each base or axis is referred to as a quality dimension, for



m_WaterPlant(?Plant)
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o_GoTo(?Plant,ForWatering) o_Pour(?WCan,ForWatering)

Figure 1: Task network for the WaterPlant method

example color, or height) that can be used to describe con-
ceptual similarity. Here, points in a space would represent
objects, and regions would refer to concepts. As conceptual
spaces provide various quality dimensions (some or all of
which may be sensed by the agent, depending on their sens-
ing capabilities), the idea is to see if we can determine a re-
lation between these quality dimensions and given tasks (for
example, for the task of lifting an object, the most impor-
tant quality dimension would be its weight - its color would
be irrelevant). These relations could then be used as weight-
ing factors to determine how good an object would be as
a substitute for another in achieving a given task. Concep-
tual spaces can also be used to represent shape, such as han-
dles, or spouts for example. The detection of these quality
dimensions would obviously require more processing by the
perception components than the simple detection of hue for
example. This would serve as a more robust and ‘focused’
similarity measure for achieving a given task. In the case of
finding a substitute for the watering can, and given that for
such a task, the capacity to hold water is perhaps the most
important affordance, followed by the presence of a handle
and a spout, conceptual spaces could find that the most sim-
ilar item would be the tea kettle.

If we are to make use of the reasoning power of DL,
it would be beneficial to represent the Conceptual Spaces
(with the information they hold) in DL. There exists al-
ready the Conceptual Spaces Markup Language (Adams and
Raubal 2009). The use of this standard and the ability to rea-
son with it will be investigated.

Plan execution and monitoring
Having successfully provided a compact planning problem
to the planner and generated a plan, its execution and careful
monitoring thereof is necessary. During this phase, a number
of issues need to be addressed. We would like the system to
robustly handle unexpected situations and to take advantages
of opportunities.

Unexpected situations could occur due to partial observ-
ability of the environment or as a result of a dynamic envi-

ronment (for example, a door which was previously known
to be open may be closed at the time of execution, or the
watering can which was known to be in a given location can
no longer be found). In this case, the system behaves much
as it might during the plan generation phase, with a slight
difference.

Just as humans prefer to take advantage of objects within
their immediate spatial surroundings in such situations, the
agent might do the same. In the example of the coaster
and the cup presented in the ‘application scenarios’ section
above, humans would no doubt consider the use of objects
which are already on the table in the absence of the coast-
ers (such as magazines). Similarly, through the use of affor-
dances, we hope to accomplish the same. In order to truly
take advantages of opportunities within the environment,
which by definition are unexpected opportunities, we need to
combine both the execution of plans which have been gener-
ated through the deliberation process and reactive behaviors
which may be triggered by affordance cues.

We propose a simple blackboard architecture where affor-
dance cues (in the form of conceptual space quality dimen-
sions) are being posted as the agent moves through its envi-
ronment as part of executing a plan. These might be of vary-
ing complexity (from simple color hues which would cost
very little in terms of perceptual processing to more complex
concepts such as shape which might have been picked up as
part of the plan’s execution) and would be kept in the system
for a given duration. Upon plan failure, the cues which are
in close proximity can be used to identify viable candidates
for substitutions.

Of course, the same behavior can be used to guide plan ex-
ecution even when things are going as planned and of course
to take advantage of opportunities before failures occur. For
example, cues that are associated with a drink bottle may
have been picked up on the way to the location specified in
a plan. This ‘short cut’, could be taken advantage of. A cup-
board full of glasses would guide the agent to grasp any of
them (if there are no additional constraints like using a spe-
cific cup for example); and in the case of plan failure, and



depending on the desired behavior, an agent might take the
more ‘resourceful route’ of making a substitution or attempt
to use the same object by finding other instances or using
objects with the same functional affordance. For action sub-
stitution, the case is very much the same but is mostly ap-
plicable in the case of failures in plan generation or plan
execution.

Work plan
Since May 2012, I have completed a review on related work
in affordance-representation and closely-related approaches
in automated planning. I have developed the architecture of
the system and its integration into the current framework of
our b-it-bots RoboCup@Home team robot. I’ve identified,
tested and chosen the tools and libraries that I will use in
the system and am continuing to work through the design
and implementation of the first use case. This involves mod-
eling the functional affordances in DL. The object substitu-
tion use case will be used to validate the designed model of
the functional affordances. Extending JSHOP2 to use lifting
over categories and the justification structures is also a cur-
rent task. Designing the plan library (including preferences,
etc.) will be the next major task.

Having completed and tested the plan generation and do-
main expansion phases of the approach using functional af-
fordances, I will extend this to enable the second use case:
action substitution. The instantiation of affordance behav-
iors at execution time using conceptual spaces will be inves-
tigated. With these first two use cases complete, the third use
case of object substitution as tool usage is then an extension
of the work as both the functional affordances and the use of
conceptual spaces for representing the affordance cues and
conceptual similarity necessary to enable this use case will
have been integrated and validated. The final use case for
enhancing performance by specifying more general plans,
or identifying ‘better’ ways to accomplish a task will be in-
vestigated. In the process of enabling the previous use case,
it is expected that a natural abstraction hierarchy will have
emerged. Throughout, it will be necessary to enhance and
extend the plan library and its use to recognize, and adapt
existing solutions to new problems.
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