
Scheduling and Planning algorithms for Electronic Calendar Management

Anastasios Alexiadis
Department of Applied Informatics, University of Macedonia,

Egnatia 156, 54006, Thessaloniki, Greece.
talex@java.uom.gr

As part of my doctorate thesis I am looking into scheduling
and planning problems and systems with a focus on elec-
tronic calendar applications.

Cooperating with my supervisor Associate Professor
Ioannis Refanidis, I have co-developed such a system,
entitled SELFPLANNER (Refanidis and Alexiadis 2007)
(Refanidis and Alexiadis 2008), which can be accessed
at http://selfplanner.uom.gr. The system SELFPLANNER
started as my master thesis. It is a scheduling system that
supports simple, interruptible and periodic activities, where
the user can define their minimum and maximum durations,
their temporal domain, alternative locations, ordering con-
straints and temporal preferences. Specifically, in regards to
to the temporal domain, an original method of defining an
activity’s domain was developed (Alexiadis and Refanidis
2009). This method combines the definition and application
of templates with manual editing of the calendar, by the user,
to specify the temporal domain.

An extended version of the scheduling problem defini-
tion was published (Refanidis and Yorke-Smith 2010) and
the system was extended to incorporate that model. In the
extended model, the system solves a scheduling problem,
where it attempts to maximize a global utility function for
the particular problem instance being solved, while meeting
all the constraints of the problem. An activity can be omit-
ted from the resulting schedule without a violation of the
problem’s constraints. However, doing so will result in that
activity’s utility contribution not being added to the resulting
solution’s utility value. Moreover, any binary preferences in-
volving said activity will be ignored and thus provide no util-
ity to the solution. The extended system also supports activ-
ities overlapping in time, based on the activities’ utilization
value.

The work resulting to the system’s extension was pub-
lished in the journal Computation Intelligence (Refanidis
and Alexiadis 2011).

Alternative algorithms were designed and developed to
solve SELFPLANNER’s scheduling problem. The first of
them was based on a genetic algorithm approach. Each chro-
mosome of the population corresponds to the set of activi-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ties that define a solution for a particular problem instance.
A stochastic local search algorithm, that operates on a tree
structure, was developed to schedule an initial version of the
solution, as well as be called upon when needed to recom-
pute a part of the solution. That algorithm supports back-
tracking. The fitness function calculates the utility value of a
chromosome (solution). For the crossover function, we com-
bined half the activities of a chromosome with half of an-
other one. Lastly, for the mutation function we delete some
parts of activities from the solution and let the tree-based
local search algorithm reschedule them.

Unfortunately the above algorithm gave us worse solu-
tions than expected. Our second approach was to develop a
complete search algorithm for the above problem. We devel-
oped a complete-search algorithm, using brunch and bound
in ECliPSe Prolog. We defined the problem as a Constraint
Optimization Problem (COP). The resulting system could
not solve anything bigger than toy problem instances, though
it could find the best possible solutions in simple enough
problem instances.

Our next step was to generate a random solution and
search the conflict sets of the problem’s variables, attempt-
ing to optimize the search algorithm so as to not visit some
variable assignments again, the ones that did not produce
solutions greater of some specific utility value. That algo-
rithm searched the space of all possible variables assign-
ments (including constraint-violating ones), though it penal-
ized greatly any constraint violation, with a different penalty
depending the constraint’s type. This approach did not pro-
duce a complete search algorithm, like the previous attempt,
though it produced fairly acceptable solutions that were of a
little lower quality than the ones solved by SELFPLANNER’s
scheduler.

Our final attempt to improve the scheduler’s solution qual-
ity was through post-optimization. Post-optimization mod-
ules developed for planners recently, that exploit a plan’s
structure, have proven to be effective (Chrpa, McCluskey,
and Osborne 2012). ARAS system (Nakhost and Müller
2010) is such recent module, where local-search is used to
improve and existing valid plan, by removing unnecessary
actions and by finding shortcuts—thus taking advantage of
the problem’s structure.

In our approach, SELFPLANNER’s scheduler was used
and a post-optimization module was designed. A set of



transformations operating on the decision variables of the
COP problem, and shifting them in ways that took advan-
tage of the schedule’s structure, were defined and used a by
a hill-climbing local search algorithm. It managed to give
a 3.5% average improvement in solution quality on a large
number (60) of difficult problem instances, with a best case
of 9.8%. The results were published in a workshop (Alexi-
adis and Refanidis 2012).

A new transformation, that attempts to insert into the solu-
tion (being post-optimized) activities that were omitted, was
added to the post-optimizing module. Hill-climbing search
was replaced by a local stochastic search algorithm based on
Simulated Annealing. The resulting module was faster than
the previous one based on hill-climbing and produced better
solutions. It managed to produce a 6.7% average improve-
ment in the same set of difficult problems, while having a
best case of 22.7%.

Finally, the original algorithm was extended to produce
multiple solutions. A new total utility function, dependent
on the old one, is being maximized by the scheduler and
post-processor. The new function values and rewards differ-
ences with the solutions already produced by the scheduler.

Future Work
The next step of my research will be to focus on multi-user
activity scheduling. The problem model defined in (Refani-
dis and Yorke-Smith 2010) will be extended to define multi-
user activities. We define a multi-user activity as any activity
that is present in more than one problem instance, where its
successful scheduling depends on it being scheduled in all
the problem instances that it depends on and with the same
assignments to its decision variables between all the the dif-
ferent problem instances.

The most typical example of multi-user activities are
meetings. Meeting scheduling literature will be reviewed
and used as the starting point for a multi-user activity ne-
gotiation protocol.

Usually, such protocols depend on a number of negotia-
tion steps between two or more parties. A common temporal
domain must be decided between the parties, as well as a
meeting duration and location. User privacy is a very impor-
tant consideration. A user’s calendar is considered a private
affair and only the minimum required information about it,
needed so as to decide on the meeting’s parameters, should
be transmitted.

Another issue that must be considered is the multi-user
activity’s initiator. Whoever initiates a multi-user activity
(such as a meeting), will probably act in a coordinator role.
While taking this into account, the protocol should still pro-
vide a degree of fairness to all parties involved into which
time interval is chosen for the shared activity.

Conflicting preferences on the time intervals (and the lo-
cation of the multi-user activity) are to be considered by the
protocol. Voting methods can be used here to decide on a
common interval, as they have been used for this purpose
before (Antila, Mäntyjärvi, and Könönen 2010).

Previous possible models for meeting scheduling, such as
the one in (Sen et al. 1997), usually take a four-step approach
to this problem:

1. The host (meeting initiator) attempts to find some time
intervals that suit her. She sends these intervals to the in-
vitees.

2. Each invitee receive these intervals and tries to find local
solutions that satisfy the constraints of the meeting. He
then sends their proposals (as bids) back to the host. The
proposals can be subsets of those sent by the host, or they
can be counter-proposals.

3. The host collects the replies from the invitees and eval-
uates their bids. If they all (including the host) include a
common interval, the meeting is scheduled for that inter-
val and awards are sent back to the invitees. If no com-
mon interval is found, the host generates a new proposal,
consisting of a set of time intervals, based on the bids of
the invitees and her own calendar. She sends that proposal
back to them.

4. Upon receiving the reply, the invitees reply as in step (2).
If an award is received, for their bids, they mark the avail-
able time slot in their calendars. Otherwise they reject the
proposed slots.

The above algorithm is repeated until a meeting is sched-
uled between the parties or until it is decided that a common
time slot cannot be agreed upon by all parties.

In our model, the scheduler will act as a software agent for
its user, representing their interests and solving its respective
user’s problem instance locally, attempting to maximize her
total utility value.

Based on SELFPLANNER’s model, the integration of in-
terruptible multi-user activities, by the protocol, will also
be investigated. This will demand a more complex proto-
col but will offer a more flexible model than classic meeting
scheduling.

The degree of automatization by the software agent, that
acts on behalf of a user, will also be considered. Machine
learning techniques may be added, to provide additional au-
tomation as the software agent learns to cope with its users
preferences.

My next goal, after multi-user activity scheduling, will be
to extend SELFPLANNER’s COP scheduling problem into a
full planning problem. This will allow activities, which are
not mere “black boxes” that take space in the user’s calendar,
but full entities with preconditions and effects, allowing a
more complex and enriched model than the current one.

In our extended model, the initial state of the planning
problem will be the user’s current state, which will be known
by the planner. This state will include the results of all his
previous actions. An ontology of actions can be designed,
where the user can choose from (or be suggested by the sys-
tem), according to the user’s current goals. The construction
of plans, in this case can be done either automatically, or in
a manner of mixed initiative planning (by communicating
with the user).

Hierarchies of actions is also possible in this model, and
will be examined. Different types of activities could be
mapped into different classes of actions. As an example, we
have activities with very low utilization, such as “check e-
mail”, that can be completed in any available location. These



could constitute one class of actions, that are easy to plan.
Opposite that, we could have a class “write a document”,
where an instance of that class such as “write a paper for
ICAPS”, will be interruptible and have great demands on
a user’s calendar and a high utilization value. Moreover, it
could only be completed in one or two available locations
(usually office and home).

A classic high-performance planner, such as LAMA
(Richter and Westphal 2010), can be used for solving the
core planning problem. A post-optimization module, such
as ARAS, can be applied on top as well; seeing the advan-
tages it has provided to classical planning, but with domain-
dependent heuristics instead of domain-independent ones.
Our previous work on shifting transformations can be ap-
plied here, but enriched for the new problem model.

References
Alexiadis, A., and Refanidis, I. 2009. Defining a task’s tem-
poral domain for intelligent calendar applications. In AIAI,
399–406.
Alexiadis, A., and Refanidis, I. 2012. Meeting the objectives
of personal activity scheduling through post-optimization.
First International Workshop on Search Strategies and Non-
standard Objectives (SSNOWorkshop’12), in conjunction
with CPAIOR-2012, Nantes, France.
Antila, V.; Mäntyjärvi, J.; and Könönen, V. 2010. Opti-
mizing meeting scheduling in collaborative mobile systems
through distributed voting. In PerCom Workshops, 238–243.
IEEE.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. Op-
timizing plans through analysis of action dependencies and
independencies. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., ICAPS. AAAI.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman, R. I.; Geffner, H.; Hoffmann, J.;
and Kautz, H. A., eds., ICAPS, 121–128. AAAI.
Refanidis, I., and Alexiadis, A. 2007. Selfplanner: A in-
telligent web-based calendar application. Demonstrated at
the demo session of the 17th International Conference on
Automated Planning and Scheduling Systems (ICAPS-07).
Providence, Rhode Island, US.
Refanidis, I., and Alexiadis, A. 2008. Selfplanner: Plan-
ning your time! ICAPS 2008 Workshop on Scheduling and
Planning Applications. Sydney.
Refanidis, I., and Alexiadis, A. 2011. Deployment and eval-
uation of selfplanner, an automated individual task manage-
ment system. Computational Intelligence 27(1):41–59.
Refanidis, I., and Yorke-Smith, N. 2010. A constraint-based
approach to scheduling an individual’s activities. ACM TIST
1(2):12.
Richter, S., and Westphal, M. 2010. The lama planner: guid-
ing cost-based anytime planning with landmarks. J. Artif.
Int. Res. 39(1):127–177.
Sen, S.; Sen, I.; Haynes, T.; and Arora, N. 1997. Satisfying
user preferences while negotiating meetings. Intl. Journal
on Human-Computer Studies 47:47–3.


