

Edited By:

Nicola Policella and Nilufer Onder

Rome, Italy - June 12, 2013

Organizing Commitee

Nicola Policella
ESA-ESOC, Germany

Nilufer Onder
Michigan Technological University, USA

iii

Preface

The Application Showcase Program is a forum that allows the ICAPS community to experience the
latest contributions to the field. During the event, planning and scheduling researchers and
practitioners demonstrate their state-of-the-art implementations in action, while the attendees
have the opportunity to interact with the designers, developers, and their software.

The 2013 program includes ten demonstrations in the diverse areas of calendar management
(Alexiadis and Refanidis), mobile target tracking (Bernardini et al.), plan visualization and
management (Glinsky and Bartak), autonomous control (Munoz and R-Moreno), robotic bartending
(Petrick and Foster), interactive storytelling (Porteous et al.), management of an electromagnetic
surveillance space mission (Pralet et al.), scheduling and management of mining operations
(Kameshwara et al.), maintenance of public infrastructures (Scharpff et al.), and network malware
detection (Sohrabi et al.).

We express our gratitude to conference committee members and especially Conference Co-chair
Simone Fratini and Publicity Co-chair Julie Porteous for supporting our work in organizing the
Showcase. Special thanks go to IBM Research for sponsoring the best demo prize.

We would like to thank the authors for the remarkable work they performed. We invite you to
explore and enjoy the impressive demonstrations.

Nicola & Nilufer

June 2013

iv

v

Table of Contents

Post-Optimizing Individual Activity Plans through Local . 1

Anastasios Alexiadis and Ioannis Refanidis

Autonomous Search and Tracking via Temporal Planning . 2

Sara Bernardini, Maria Fox, Derek Long and John Bookless

VisPlan Interactive Visualisation and Verification of Plans . 3

Radoslav Glinsý and Roman Bartak

Model-Based Architecture on the ESA 3DROV simulator . 6

Pablo Muñoz and Maria D. R-Moreno

Plan-Based Social Interaction with a Robot Bartender. 10

Ron Petrick and Mary Ellen Foster

Authoring Plan-based Narratives via a Social Network . 14

Julie Porteous, Fred Charles and Marc Cavazza

A generic constraint-based local search library for the management of an

electromagnetic surveillance space mission . 18

Cédric Pralet, Guillaume Infantes and Gérard Verfaillie

Integrated Operations (Re)Scheduling from Mine to Ship . 26

Kameshwaran Sampath, Alfiya Tezabwala, Alain Chabrier, Julian Payne and Fabio Tiozzo

Coordinating Maintenance Planning under Uncertainty. 27

Joris Scharpff, Matthijs Spaan, Leentje Volker and Mathijs De Weerdt

Hypothesis Exploration for Malware Detection using Planning . 29

Shirin Sohrabi, Octavian Udrea and Anton Riabov

vi

Post-Optimizing Individual Activity Plans through Local Search

Anastasios Alexiadis and Ioannis Refanidis
Department of Applied Informatics, University of Macedonia

Egnatia 156, 54006, Thessaloniki, Greece
talex@java.uom.gr, yrefanid@uom.gr

Abstract1

Post-optimization through local search is known to be a powerful approach for complex optimization problems. In this paper we
tackle the problem of optimizing individual activity plans, i.e., plans that concern activities that one person has to accomplish
independently of others, taking into account complex constraints and preferences. Recently, this problem has been addressed
adequately using an adaptation of the Squeaky Wheel Optimization Framework (SWO). In this paper we demonstrate that
further improvement can be achieved in the quality of the resulting plans, by coupling SWO with a post-optimization phase
based on local search techniques. Particularly, we present a bundle of transformation methods to explore the neighborhood using
either hill climbing or simulated annealing.We present several experiments that demonstrate an improvement on the utility of
the produced plans, with respect to the seed solutions produced by SWO, of more than 6% on average, which in particular cases
exceeds 20%. Of course, this improvement comes at the cost of extra time.

1The paper is published in the Proceedings of the workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
(COPLAS).

ICAPS 2013 - Application Showcase 1

Autonomous Search and Tracking via Temporal Planning

Sara Bernardini, Maria Fox, Derek Long
Department of Informatics

King’s College London
Strand London WC2R 2LS
name.surname@kcl.ac.uk

John Bookless
Advanced Technology Centre

BAE Systems
Bristol, UK, BS34 7QW

John.Bookless@baesystems.com

Abstract1

Search And Tracking (SAT) is the problem of searching for a mobile target and tracking it after it is found. As this problem has
important applications in search-and-rescue and surveillance operations, recently there has been increasing interest in equipping
unmanned aerial vehicles (UAVs) with autonomous SAT capabilities. State-of-the-art approaches to SAT rely on estimating
the probability density function of the target’s state and solving the search control problem in a greedy fashion over a short
planning horizon (typically, a one-step lookahead). These techniques suffer high computational cost, making them unsuitable
for complex problems. In this paper, we propose a novel approach to SAT, which allows us to handle big geographical areas,
complex target motion models and long-term operations. Our solution is to track the target reactively while it is in view and
to plan a recovery strategy that relocates the target every time it is lost, using a high-performing automated planning tool. The
planning problem consists of deciding where to search and which search patterns to use in order to maximise the likelihood of
recovering the target. We show experimental results demonstrating the potential of our approach.

1The paper is published in the Proceedings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS 2013).

2 ICAPS 2013 - Application Showcase

VisPlan – Interactive Visualisation and Verification of Plans

Radoslav Glinský, Roman Barták
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
radkogl@gmail.com, bartak@ktiml.mff.cuni.cz

Introduction
Plan analysis is an inevitable part of complete planning
systems. With the growing number of actions and causal
relations in plan, this analysis becomes more and more
complex and time-consuming process. In fact, plans with
hundreds of actions are practically unreadable for humans.
In order to make even larger plans transparent and human
readable, we have developed a program that helps users
with the analysis and visualization of plans. This program
called VisPlan finds and displays causal relations between
actions, it identifies possible flaws in plans (and thus
verifies plans’ correctness), it highlights the flaws found in
the plan and finally, it allows users to interactively modify
the plan and hence manually repair the flaws.

Existing Tools
Though the number of planners rapidly grows, the number
of available tools for user interaction with planners is still
limited. Two complex systems are worth mentioning as
they are publicly available and provide graphical user
interface supporting the planning process: itSimple
(Vaquero et al. 2010) and GIPO (Simpson et al. 2007).
They are both effective tools for modelling and updating
planning domains, however, their plan analysis lacks some
handy features such as:
• recognizing causal relations of actions,
• compact overview of actions’ preconditions and effects
• support for plans with flaws,
• information about world state at a specific plan step,
• a user friendly interface to modify, insert, and delete

actions in a plan and to re-verify the plan in real-time.
VisPlan focuses on all above features.

VisPlan
VisPlan is a graphical application (Figure 1) written in
Java with the ultimate goal to visualize any plan, to find
and highlight possible flaws, and to allow the user to repair
these flaws by manual plan modification.

Program Input
VisPlan works with three types of files that the user should
specify as program input:

• planning domain file in PDDL,
• planning problem file in PDDL,
• plan file specified either in text format or XML

(eXtended Markup Language).
Currently, VisPlan supports STRIPS-like and temporal
plans with propositional states. The program recognizes the
plan types automatically and verifies and visualizes them
in different ways. The following PDDL requirements are
currently supported in the program: strips, typing,
negative-preconditions, disjunctive-preconditions, equality,
existential-preconditions, universal-preconditions,
quantified-preconditions, durative-actions

Figure 1. Graphical user interface of VisPlan.

ICAPS 2013 - Application Showcase 3

Verification
Plan verification is automatically executed after the plan is
initially loaded and then after each user interaction
modifying the plan. Plan verification runs in a separate
program thread, thus ensuring that the main GUI responds
to user’s actions even if verification takes a long time. The
verification process is based on simulation of plan
execution. Firstly, it constructs an initial state of the world.
After that, it consecutively tries to apply a single action (in
the order given by the sequential plan) to the current world
state. If the action is applicable, the action is applied and a
new world state is computed based on effects of the action.
If the action is not applicable, its effects are not
encountered and the program starts processing the next
action of the plan. Causal relations to previous actions in
the plan are computed for each action during its
verification.
 In case of durative actions in temporal plans, the world
state may be changed more than once, when both “at start”
effects and “at end” effects of the actions are encountered.
Furthermore, a single durative action needs to be checked
multiple times. Besides “at start” conditions (equivalent to
STRIPS preconditions), an action can be generally defined
with the “over all” and with the “at end” conditions.
 The verification process creates new virtual actions
representing starts and ends of real actions. These actions
are then examined in a given temporal order. In case the
end time of an action is equal to the start time of the next
action, the virtual action representing the end time is
examined before the start of the next action.
 At the first examination of an action, at its start time, the
action is applied (considering its “at start” effects)
provided that its “at start” conditions are satisfied. In
addition, the action is marked to be “in progress”. If an
action has been applied at its start time, it will be examined
at its end time (start time plus duration), too. Similarly, the
action’s “at end” effects are applied if its “at end”
conditions are satisfied and the “in progress” tag is
removed.
 Besides checking action’s own conditions, the algorithm
also verifies satisfiability of the “over all” conditions of the
actions being “in progress”. Such verification is performed
only when an inducing action is applied (either at the start
time or at the end time of the inducing action).
 When applying effects of actions in temporal plans, the
verification process also takes special care to ensure that:
• effects applied by any two actions at the exactly same

time must be mutex-free
• effects of an action cannot be used at the exactly same

time as conditions for other actions
If any of the two above requirements fails, the latter of the
two involving actions is marked as mutex-containing and
cannot be applied. Afterwards, the action is visualized
differently. The reason why the latter action has been
marked as mutex-containing and not the one, which had
induced the mutex (or both actions), is the unique concept
of VisPlan regarding plans’ manipulation. Generally, the
verification process continues even if an invalid or non-

applicable action is found. Such actions are simply
omitted. In the case when an action’s “at start” effects have
been applied at action’s start time and it has been found
later that any of the action’s “over all” or “at end”
conditions cannot be satisfied, the verification process is
rolled back to the point when the affected action was
applied at its start time, the action is then omitted and
marked as non-applicable.

Visualization
As shown in Figure 2, plan’s actions are visualized as
boxes of fixed size filled by action name. Each action is
coloured either green or red depending on whether the
action is applicable or non-applicable. Causal relations
between the actions are visualized by edges. These edges
are annotated by grounded facts that are “passed” between
the actions. Only the causal relations for the currently
highlighted action are displayed to remove cluttered view.

Figure 2. Highlighted causal relations in plan.

There are two special “actions” displayed in the graph to
represent the initial state and the goal. A classical plan-
space approach is used to define these actions. The init
action has empty preconditions and the facts that apply at
the initial state are considered as its effects. The goal
action has empty effects and the set of facts that need to be
satisfied at the final world state are considered as its
preconditions. This way we are able to visualize causal
relations also at the margins of the plan, thus showing
dependencies on the initial state, final actions giving the
goal conditions, and possibly missing goal conditions.
 The major extension of temporal plans is that actions
have duration and may overlap in time. We include this
information in visualisation – the boxes have the length
dependent on the action duration and if two actions overlap
in time, the action starting later is displayed in the first
available row (Figure 3).

Figure 3. Visualization of a temporal plan.

4 ICAPS 2013 - Application Showcase

 For the highlighted action, the system displays complete
information about the action including satisfied and
violated preconditions and actions giving these
preconditions (Figure 4). Alternatively the user may ask to
show the state as sets of valid predicates before and after
the action.

Figure 4. Complete information about the selected action and its
role in the plan.

Plan Modifications
In addition to visualization of plans the software supports
interactive modification of the plans. The following
operations with plans are supported:
• inserting new actions (selection of actions and their

parameters is automatically restricted to the current
planning domain and problem),

• removing actions,
• modifying actions (changing the parameter of the

action so a different action based on the same
operator can be obtained),

• changing the order of actions (for temporal plans this
means changing action allocation in time).

After each modification the plan is immediately re-
verified. For example, while dragging an action (to change
its position), the plan is automatically re-verified to
immediately display the modified causal relations by
highlighting the actions providing preconditions and
actions using effects of the action being dragged. Together
with the information about the new satisfiability of the
actions (including the goal action), the user instantly
knows where he/she can drop off the action. In STRIPS-
like plans, the actions are just swapped with each other
while dragging. In temporal plans, the positioned action is
automatically vertically adjusted so that the actions do not
graphically overlap.
 As any aspect of the plan can be modified, the user can
use the system to manually build plans while being
informed about non-satisfied goals and preconditions. All
the modifications are revertible both backward and
forward. Modified plans can be saved in the text format to
either the same (initially loaded) file or to a new file.

Summary
VisPlan is a system for visualizing classical and temporal
plans in the Gantt style. One of it is important features is
showing causal relations between the actions so it is easy

to verify if an action pre-condition or a goal condition are
not met. The second important feature is support for
manual modification of plans so the system can also be
used for manual planning. The up-to-date version of the
software is available at http://glinsky.org/visplan. The
program is under development and several additional
features are assumed in the next versions. In particular, the
following extensions are under development:
• wider PDDL support,
• own planning module,
• support for finding possible plan modifications in

order to solve flaws in the plan (the system suggests
what to do to repair a particular flaw for example by
adding a new action),

• graphs visualizing a timeline of predicates and
numerical variables during plan execution.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract P103/10/1287.

References
Simpson, R.M.; Kitchin D.E.; McCluskey, T.L. 2007. Planning
Domain Definition using GIPO. The Knowledge Engineering
Review 22(2): 117-134.
Vaquero, T. S.; Silva, J. R.; Beck, J.C. 2010. Analyzing Plans and
Planners in itSIMPLE3.1. In: Proceeding of the ICAPS 2010
Knowledge Engineering for Planning and Scheduling Workshop.
Toronto. Canada, pp. 45-52.

ICAPS 2013 - Application Showcase 5

Model-Based Architecture on the ESA 3DROV simulator

Pablo Muñoz and Marı́a D. R-Moreno
Departamento de Automática, Universidad de Alcalá

Ctra. Madrid-Barcelona Km 33,600 E-28871
Alcalá de Henares, Madrid

Abstract
We have developed the MOBAR architecture, a general
3 layer (3T) architecture based on models, focused on
building a flexible, adaptable and reusable autonomous
control architecture. It follows an incremental approach
design philosophy, which implies that a basic model can
be quickly deployed and later refined to add new func-
tionality.
The deliberative layer of the architecture integrates
task-planning and path-planning using an interleaving
schema that allows us to obtain better paths using a Dig-
ital Terrain Model (DTM) of the terrain and traversal
costs. The executor implements decomposition of high-
level actions into functional layer commands, monitor
the general state of the robot and world, and reactive
behaviors to react into a dynamical environment. The
functional layer is responsible of safe access to the hard-
ware of the robot and providing its functionality to the
upper layers.

Model Based Architecture
The MOBAR architecture developed in the University of Al-
calá (UAH) corresponds to a three layers (3T) system (Gat
1998), in which the top tier will be in charge of the deliber-
ative process, long-term memory and learning process as a
function of events that occur in the environment. The mid-
dle level or execution system also has a short-term memory,
as well as a series of rules that trigger the reactive behavior
implemented, in order to response in a short time to even-
tual situations that may occur in both, the environment and
the internal state of the robot. Finally, the low level or func-
tional level, is responsible of providing the functionality of
the robot, and relay the information collected by the sensors.

Each layer is based on a model with different levels of
abstraction. A model defines the properties, capabilities and
constraints of the robot at each layer. Starting from the func-
tional layer, which represents the hardware abstraction level,
it contains the definition of the internal state of the robot plus
the abilities that it has. The upper layers have fewer detailed
models, and thus, less coupled with the underlying hard-
ware. In this way, the executor is in charge of taking high
level actions coming from the deliberator and decomposing
them into lower level commands supported by the functional
layer. So, we want that the executor model has little relation-
ship with the hardware, and the high level model only knows

Figure 1: Execution cycle in MOBAR.

the hardware in terms of goal oriented actions and high level
abstraction of constraints.

To implement the MOBAR architecture we have taken ad-
vantage of different general purpose technologies: for the
deliberative layer we have used the PDDL language (Mc-
Dermott 1998) and a PDDL-based planner. We have chosen
the Universal Executive and its language, PLEXIL (PLan
EXecution Interchange Language) (Verma et al. 2006) to
model and control the executor, and, finally the GenoM2
(Generator Of Modules) framework (Mallet, Fleury, and
Bruyninckx 2002) for the definition and implementation of
the functional layer. The first two layers, deliberator and ex-
ecutor, use models represented by a language that will be
interpreted by a program, and thus, are easily interchange-
able in order to adapt them to multiple robots. Instead, the
functional layer is strongly dependent on the hardware.

The architecture follows a sense-(re)plan-act cycle (see
fig. 1): at first time, the system takes the initial state of the
world (state from the functional layer and the PDDL prob-
lem), the goals to achieve and obtains a feasible plan. This
plan is static: the executor takes each action, decompose it
in a set of commands and send it to the functional layer.
With the results of these commands execution, the executor
checks if there is an unexpected situation, and, if it cannot
handle that situation, update the information of the world,
goals currently achieved and state of the robot, and then the
planner must obtain a new plan.

Focusing on the deliberative capabilities, PDDL-based

6 ICAPS 2013 - Application Showcase

planners are systems that use two input files to represent
their knowledge base. One of the files contains a descrip-
tion of the actions that represent “what can/cannot be done”
and the other file includes the three elements which define
the problem: the known objects of the world, the initial state
and the goals we want to achieve. With this information, the
planner searches a sequence of actions that can reach the
goals from the initial state. The optimal solution of the prob-
lem is a conjunction of two factors: the metric used and the
resolution algorithm.

Currently we are using SGplan6 (Hsu and Wah 2008) a
PDDL-planner that accepts the PDDL version 2.1 (Fox and
Long 2003) and common features of PDDL 3 (Gerevini and
Long 2005). With PDDL 2.1 we can determinate how long
each action will take and, using fluents, we can establish a
basic resource model for the energy consumption of the ac-
tions, and consistently decide whether a plan is feasible or
not in terms of total amount of energy consumed. Also, us-
ing the version 3, we can employ goals as preferences, so
if there is an unreachable goal, we can obtain a plan that
ignores it.

Besides, for the path-planning problem, that is, the route
to follow between scientific tasks, we have implemented
an interleaving schema between the PDDL-based planner,
the task-planner, and an algorithm for path-planning. Using
a greedy path-planning algorithm (Muñoz and R-Moreno
2012) we compute a suboptimal path-cost between each pair
of points to reach and provide that information for the task-
planner in order to try to optimize the distance and time
spent in the movements. When a plan is obtained, the move-
ment actions in the plan are replaced by specific routes gen-
erated by a different path-planning algorithm that employs
the DTM data.

Problem definition
To test the architecture, we define a typical scenario for an
exploration rover. The scenario, represented in fig. 3, con-
sists of the operation of the ExoMars to achieve the acquisi-
tion of two pictures in different locations (and possibly with
different pointing of the pan-tilt unit), a drill in one of these
locations and then, return to the start point. Also, during the
traverse there could exist visibility windows in which the
rover can transmit the data acquired to a station. The objec-
tive is to send all the possible pictures taken during these
windows.

To safely operate the rover, there is a little set of con-
straints that must be included in the models:

• The rover is able to move between two points in space
given their coordinates (x, y).

• The rover has different navigation speeds. The functional
layer could provide a signal to identify difficult terrain in
which is required to move in low speed for safety reasons.

• The pan-tilt unit can be moved to aim a desired point,
given by their angles (α, β).

• During all the acquisition of a picture, the pant-tilt unit
must be pointing at the desired site and the rover must
stay stopped.

Figure 2: Model-Based Architecture design for ExoMars.

Figure 3: Problem representation.

• To perform a drill operation, the rover must stay still.
• When the rover is moving, the pan-tilt unit must be point-

ing to the front, that is, (0, 0).
• It is possible to transmit pictures while the rover is

stopped and there is a visibility window.

Deliberative and executive models
The high layer or deliberator of the architecture has the func-
tion to obtain a feasible and safely route between the initial
position of the rover and a final point, performing the de-
fined science objectives during the planned trajectory. In or-
der to describe this layer, we differentiate five elements: (i)
the task-planner, SGplan6; (ii) the PDDL files which contain
the models for the rover and terrain, and the actions that the
rover can perform (both, input files to the planner); (iii) the
path-planner, in charge of obtaining a feasible and safe path;

ICAPS 2013 - Application Showcase 7

(iv) the DTM and cost map definition of the environment,
and (v) a library that manages these elements and provides a
planning framework to the executor.

Both, the task-planner and path-planner can be dynami-
cally replaced in execution time. The planner election is con-
ditioned by the algorithm resolution and the PDDL version
that it supports. We need a planner that can manage metrics,
fluents and constraints (that is, PDDL version 2 and some
elements of version 3). The path-planner depends on the ter-
rain, for example, for flat terrains there is no need to employ
costly searches over a DTM model and it is possible to use
a classical path-planning algorithm.

The problem and domain files contain the knowledge of
the rover and the actions that it can perform. The domain
specifies the actions, such as go ahead, rotate, drill, recharge
or acquire images. These actions are high level actions and
the executor is on charge of decomposing them into a valid
sequence of commands that the functional layer can execute.
The actions representation include the duration and the en-
ergy consumption. For both elements, the locomotion dura-
tion and consumption is based on the rover speed and the
traveled distance. The other actions have a fixed cost spec-
ified in the problem file. The energy is treated as a fluent,
but it is not the best solution; the energy model can be more
effective if it were treated as a resource (some planners that
we try do not find a solution when the energy is not enough
to achieve goals and the rover needs to recharge).

The terrain model is defined in the DTM and cost files.
The DTM contains the altitude of each point of the map
and the cost file defines the obstacles and the traversal cost
to move through every region. This allows different path-
planning strategies to find paths: focusing on the altitude dif-
ference, avoiding to cross regions with high traversal costs
(potentially dangerous) or combining them.

The problem file moreover, includes the model that de-
fines the rover position, available subsystems and associated
data, and the goals that we want to achieve. The ExoMars
PDDL model is shown in Fig. 4. The rover model contains
the initial position and orientation, and the subsystem defi-
nitions. Each subsystem is defined by a predicate to indicate
that this subsystem is available, and a set of functions that
define the energy consumption and operations time of the
subsystems. For example, the locomotion subsystem has dif-
ferent speeds with different energy consumption in function
of the speed. The last element of the problem is the goal(s)
definition. It defines the tasks that the rover must perform,
such as, go to a desired location, drill in a specific point or
take an image from a location and with a particular pan tilt
pointing and mode. If the planner supports plan preferences,
one or more targets can be not satisfied by the planner in
function of a penalty defined for each goal. This implies that
if a goal is too expensive to achieve and its penalty is low,
the planner is allowed to skip this target in the plan.

The executive is the coordinator of the other two layers.
The executor is connected with both, the functional layer and
the deliberator, and it is responsible of coordinating them. In
addition to the coordination functionality, the executor inte-
grates reactive skills and fail-safe routines.

The model that guides the execution flow is a set of hier-

(define (problem appshow)
(:domain MoBAr-exomars)
(:objects

C0_0 C1_0 C2_0 C2_1 - loc
NavCam - cam lowRes - mode
plat0_0 plat35_45 - platpos
hispeed lowspeed - navmode
exomars - rover

)
(:init
(= (time_point) 0)

;LOCATION AND DISTANCES
(= (distance_to_move C0_0 C2_0) 2) ; m
(= (distance_to_move C0_0 C2_1) 2.24)
(= (distance_to_move C2_0 C0_0) 2)
(= (distance_to_move C2_0 C2_1) 1)
(= (distance_to_move C2_1 C0_0) 2.24)
(= (distance_to_move C2_1 C2_0) 1)

;EXOMARS ROVER DATA AND CONFIG
(position exomars C0_0)
(= (energy exomars) 2.400) ; A
(= (energy_cons exomars) 0)
(has_locomotion exomars)
(navigation_mode exomars hispeed)
(= (speed exomars hispeed) 0.25) ; m/seg
(= (speed exomars lowspeed) 0.1) ; A/m
(= (power_per_dis exomars hispeed) 0.008)
(= (power_per_dis exomars lowspeed)0.006)

(camera_mode exomars NavCam lowRes)
(= (transmit_energy exomars) 0.03)
(= (camera_energy NavCam lowRes) 0.001)
(= (time_to_picture NavCam lowRes) 5)
(= (start_win C1_0) 20)
(= (end_win C1_0) 35)
(= (start_win C2_1) 70)
(= (end_win C2_1) 90)

(platine_pos exomars NavCam plat0_0)
(= (t_move_platine plat0_0 plat35_45) 10)
(= (t_move_platine plat35_45 plat0_0) 7)
(= (platine_energy) 0.001)

(has_drill exomars)
(= (drill_energy) 0.008)
(= (time_to_drill C2_0) 20)

)
(:goal (and
(position exomars C0_0)
(transmited C2_0 lowRes plat35_45)
(transmited C2_1 lowRes plat35_45)
(drilled C2_0)
)

)
(:metric minimize (+ (total-time)

(*100 (energy_cons exomars))))
)

Figure 4: PDDL definition for the ExoMars example.

archical plans written in PLEXIL. The top PLEXIL plan is
responsible of the planning/replanning processes, and the in-
teraction between the executor and the planner control. This
is associated with the high level interface adapter which al-
lows to read the plan obtained by the deliberator and access
and modify the information contained in the problem file.

8 ICAPS 2013 - Application Showcase

When the plan is valid, the Plexil Executive reads the ac-
tions one by one, and executes them. Each action must be
associated with a PLEXIL node (normally is a PLEXIL li-
brary, that is, an external PLEXIL plan) that manages the
correct decomposition and execution of the action.

For each possible action, there is a GenoM module that
executes it. Examples of possible actions obtained from
the planner are rotate, drill or recharge. The rotate action
corresponds to a rotation request of the Locomotion mod-
ule. The drill action is responsibility of the Drill module.
Recharge is managed by the Power module. In order to con-
nect each GenoM module with the executor, there is a inter-
face adapter that communicates the module with the Plexil
Executive. This interface sends and monitors the requests
to the GenoM module, and catches the result sent by the
module. If the execution is correct, the executor continues its
plan without change, but if an error is reported, the PLEXIL
plan is responsible of finding a solution. For example, if a
minor camera failure is detected, the PLEXIL plan can skip
this image acquisition, or try to change the camera mode.
For locomotion problems, such as trying to cross through
more complicated terrain than expected, the PLEXIL plan
can stop the motion and propagate new terrain data to the
deliberator in order to try to obtain a new route. When prob-
lems are more serious, the defined behavior in the PLEXIL
plan must be to set the rover into a safe state or to wait for
human intervention.

Each PLEXIL plan that carries out the execution of an
action can also contains PLEXIL libraries (if needed). This
allows us to expand the functionality of the executor without
modifying anything else in the architecture.

Conclusion and future work
In this paper we have presented an initial version of MOBAR

adapted to the ExoMars rover. The design philosophy used
(based on general purpose systems), has allowed us to adapt
and improve the models of each layer according to the ne-
cessities of the rover.

Since both, the high level layer and the executor are made
by general purpose systems, this work can be focused on
the study of the model design of each layer. However, an
important conclusion we have reached is that the models of
each layer are strongly dependent on the attached layers, that
is specially significant for the power model. This involves
some problems due to the different vision of the world that
each layer has. In our case, the GenoM module is in charge
that the power subsystem has a power model based of the
instant consumption of each subsystem power status (off,
standby, heating, etc.), and that the PDDL model has a less
precision model that manages full operations (drill, move,
etc.). Between them the executor must deal with both repre-
sentations in order to detect and correct inconsistencies on
the power consumption during execution.

There is still work to be done to provide full autonomy
to the architecture, such as implementing different reactive
behaviors in the PLEXIL plans to support subsystem mon-
itoring, better control of the resources and plan adaptation.
Also, some engineering effort must be done in the functional

modules to provide required functionality such as stereo vi-
sion to correct the DTM and also, to provide support for
opportunistic science discovery.

Therefore, we believe that this architecture can be a start-
ing point for a more complex control system that will be
based on the design of high level models rather than on the
underlying implementation issues.

References
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. AI Re-
search 20:61–124.
Gat, E. 1998. Three-layer architectures. In Kortenkamp,
D.; Bonasso, R.; and Murphy, R., eds., Mobile Robots and
Artificial Intelligence, 195–210. AAAI Press.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. In The Language of the Fifth Interna-
tional Planning Competition.
Hsu, C., and Wah, B. 2008. The SGPlan planning system in
IPC-6. In Sixth International Planning Competition.
Mallet, A.; Fleury, S.; and Bruyninckx, H. 2002. A specifi-
cation of generic robotics software components: future evo-
lutions of GenoM in the orocos context. In International
Conference on Intelligent Robotics and Systems.
McDermott, D. 1998. The PDDL planning domain defini-
tion language. The AIPS-98 Planning Competition Comitee.
Muñoz, P., and R-Moreno, M. D. 2012. Improving effi-
ciency in any-angle path-planning algorithms. In 6th IEEE
International Conference on Intelligent Systems (IEEE-IS),
213–218.
Verma, V.; Jnsson, A.; Pasareanu, C.; and Iatauro, M. 2006.
Universal Executive and PLEXIL: Engine and language for
robust spacecraft control and operations. In American Insti-
tute of Aeronautics and Astronautics Space Conference.

ICAPS 2013 - Application Showcase 9

Plan-Based Social Interaction with a Robot Bartender

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Mary Ellen Foster
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh EH14 4AS, Scotland, UK

M.E.Foster@hw.ac.uk

Abstract

A robot coexisting with humans must not only be able
to perform physical tasks, but must also be able to in-
teract with humans in a socially appropriate manner.
We describe an application of planning to task-based
social interaction using a robot that must interact with
multiple human agents in a simple bartending domain.
The resulting system infers social states from low-level
sensors, using vision and speech as input modalities,
and uses the knowledge-level PKS planner to construct
plans with task, dialogue, and social actions.

Introduction and Motivation
As robots become integrated into daily life, they must in-
creasingly deal with situations in which socially appropriate
interaction is vital. In such settings, it is not enough for a
robot simply to achieve its task-based goals; instead, it must
also be able to satisfy the social goals and obligations that
arise through interactions with people in real-world settings.
As a result, a robot not only requires the necessary physical
skills to perform objective tasks in the world, but also the ap-
propriate social skills to understand and respond to the inten-
tions, desires, and affective states of its interaction partners.
To address this challenge, we are investigating task-based
social interaction in a bartending domain, by developing a
robot bartender (Figure 1) that is capable of dealing with
multiple human customers in a drink-ordering scenario.

Key to our approach is the use of high-level planning
techniques, which are responsible for action selection and
reasoning in the robot system. Specifically, we use the
knowledge-level planner PKS (Petrick and Bacchus 2002;
2004), a choice that is motivated by PKS’s ability to work
with incomplete information and sensing actions: not only
must the robot perform physical tasks (e.g., handing a cus-
tomer a drink), it will often have to gather information
it does not possess from its environment (e.g., asking a
customer for a drink order). Moreover, since interactions
will involve human customers, speech will be the main in-
put modality and many of the planner’s actions will corre-
spond to speech acts, providing a link to natural language
processing—a research field with a long tradition of using
planning, but where general-purpose planning techniques
are not the focus of mainstream study.

Figure 1: The JAMES robot bartender

While planning offers a tool for action selection, it is only
one component in a larger system that operates in a real-
world environment. A second, central component in our sys-
tem is the state manager which mediates between the low-
level input sensors and the planner, and which overcomes
some of the representational difficulties involved in bridg-
ing the gap between continuous, low-level input streams and
symbolic, high-level state-based reasoning.

In the rest of the paper we give a technical description
of the robot system, with a focus on the role of the planner
and how it is integrated in this framework. The application
of this work is a simple bartending scenario, which is mod-
elled as a PKS planning domain. More details on this work
can be found in (Petrick and Foster 2013). This work forms
part of a project called JAMES (Joint Action for Multimodal
Embodied Social Systems; see james-project.eu).

Robot System Architecture and Components
The target application for this work is a bartending scenario,
using the robot platforms shown in Figure 1. The robot hard-
ware itself (Figure 1) consists of two 6-degrees-of-freedom
industrial manipulator arms with grippers, mounted to re-
semble human arms. Sitting on the main robot torso is an
animatronic talking head capable of producing facial expres-
sions, rigid head motion, and lip-synchronised synthesised
speech. For testing and demonstration purposes, the simu-
lated robot shown in Figure 1 is also available.

A sample interaction in a simple bartending scenario is
shown in Figure 2. In this example, two customers enter the
bar and attempt to order a drink from the bartender. When

10 ICAPS 2013 - Application Showcase

A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Figure 2: An example interaction in the bartending scenario.

the second customer appears while the bartender is engaged
with the first customer, the bartender reacts appropriately
by telling the second customer to wait, finishing the current
transaction, and then serving the second customer.

Even this simple interaction presents challenges which
have motivated the design of the overall system: a vision
system must track the locations and body postures of the
agents; a speech-recognition system must detect and deal
with speech in an open setting; reasoning components must
determine that both customers require attention and ensure
they are served in the correct order; while the output com-
ponents must select and execute concrete actions for each
output channel that correctly realise high-level plans. The
software architecture of the robot system is shown in Fig-
ure 3, with the main components highlighted below.

Input Processing: One of the primary input channels for
the robot is computer vision. The full JAMES vision system
tracks the location, facial expressions, gaze behaviour, and
body language of all people in the scene in real time, using
a set of visual sensors (Baltzakis, Pateraki, and Trahanias
2012); a limited-functionality vision system is also avail-
able that can run on a single Kinect for demo and testing
purposes. Information from the vision system is constantly
published to the state manager multiple times a second.

The other primary input modality in the system is linguis-
tic, combining a speech recogniser with a natural-language
parser to create symbolic representations of the speech pro-
duced by all users. For speech recognition, we use the
Microsoft Kinect and the Microsoft Speech API, with a
scenario-specific speech grammar to constrain the recogni-
tion task. Recognised speech is then parsed using a grammar
implemented in OpenCCG (White 2006); the grammar con-
tains syntactic and semantic information, and is used both
for parsing the spoken input and for surface realisation of the
selected output (see below). The parsed speech, confidence
score, and source angle are passed to the state manager.

State Management: The primary role of the state man-
ager is to turn the continuous stream of messages produced
by the low-level input components into a discrete represen-
tation that combines social and task-based properties. The
state representation is based on a set of fluents: first-order
predicates and functions that denote particular qualities of
the world, the robot, and other entities in the domain. A state
is a snapshot of all fluent values at a given point in time.
Intuitively, states represent a point of intersection between

Real World

Visual
Processing

Speech
Recogniser

Parser

State
Manager

Planner /
Execution Monitor

Output
Generation

Talking-Head
Controller

Robot Motion
Planner

Figure 3: Software architecture of the robot system

low-level sensor data and the high-level structures used by
components like the planner. Since states are induced from
the mapping of sensor observations to fluent values, the chal-
lenge of building an effective state manager rests on defining
appropriate mapping functions.

In the bartender robot, we treat each low-level input com-
ponent as a set of sensors. The linguistic interpreter corre-
sponds to three sensors: two that observe the parsed content
of a user’s utterance and its associated confidence score, and
another that returns the estimated angle of the sound source.
The vision system also senses a large number of properties
about the agents and objects in the world, each of which
corresponds to a set of individual sensors. Certain low-level
output components are also treated as sensors. For exam-
ple, the robot arms provide information about the start and
end of manipulation actions, while the speech synthesiser
reports the start and end of all system utterances. Modelling
output components as sensors allows information from these
sources to be included in the derived state, ensuring the cur-
rent state of interaction is accurately reflected (e.g., the state
of turn-taking or the completion of physical actions).

In the current robot bartender system, the state includes
information about all agents in the scene: their locations,
torso orientations, attentional states, and drink requests if
they have made one. The mapping from sensors to states is
rule-based. One set of rules infers user social states (e.g.,
seeking attention) from the low-level sensor data, using
guidelines derived from a study of natural bartender inter-
actions (Huth 2011). The state manager also incorporates
rules that convert the logical forms produced by the parser
into communicative acts (e.g., drink orders), and that use the
source angle from the speech recogniser together with the
vision properties to determine which customer is likely to
be speaking. A final set of rules determines when new state
reports are published, which controls turn-taking.

To deal with the more complex states required in future
versions of the bartender system, we are currently exploring
the use of supervised learning classifiers trained on multi-
modal corpora. In an initial study, the trained classifiers sig-
nificantly outperformed the hand-coded rules both in cross-
validation and when tested with real users (Foster 2013).

Planning and Execution Monitoring: The high-level
planner is responsible for taking state reports from the state
manager and choosing actions to be executed on the robot.
Plans are generated using PKS (Planning with Knowledge
and Sensing) (Petrick and Bacchus 2002; 2004), a condi-
tional planner that works with incomplete information and

ICAPS 2013 - Application Showcase 11

sensing actions. PKS operates at the knowledge level and
reasons about how its knowledge state, rather than the world
state, changes due to action. To do this, PKS works with
a restricted first-order representation with limited inference.
While features such as functions and run-time variables are
supported, these restrictions mean that some types of knowl-
edge (e.g., general disjunctive information) cannot be mod-
elled. To ensure efficient inference, PKS restricts the type of
knowledge it can represent to a set of four databases:
Kf : This database is like a STRIPS database except that

both positive and negative facts are permitted and the
closed world assumption is not applied. Kf can include
any ground literal or function (in)equality mapping `,
where ` ∈ Kf means “the planner knows `.”

Kw : This database models the plan-time effects of “bi-
nary” sensing actions. φ ∈ Kw means that at plan time
the planner either “knows φ or knows ¬φ,” and that at
run time this disjunction will be resolved. PKS uses such
information to build conditional branches into a plan.

Kv : This database stores functions whose values will be-
come known at run time. In particular, Kv can model the
plan-time effects of sensing actions that return terms. Kv

can contain any unnested function, where f ∈ Kv means
that at plan time the planner “knows the value of f .”

Kx : This database models the planner’s “exclusive-or”
knowledge. Entries in Kx have the form (`1|`2| . . . |`n),
where each `i is a ground literal. Such formulae repre-
sent a type of disjunctive knowledge common in planning
domains, namely that “exactly one of the `i is true.”
A PKS action is modelled by a set of preconditions that

query PKS’s knowledge state, and a set of effects that up-
date the state. Preconditions are a list of simple questions
about PKS’s knowledge state (e.g., a query K(φ) asks if
φ is known). Effects are described by a set of STRIPS-
style “add” and “delete” operations that modify the contents
of individual databases. E.g., add(Kf , φ) adds φ to the Kf

database, while del(Kw, φ) removes φ from Kw. PKS con-
structs plans by reasoning about actions in a simple forward-
chaining manner, and can build plans with branches be con-
sidering the possible outcomes of itsKw andKv knowledge.
Goals are specified in a form similar to action preconditions.

PKS is also aided by an execution monitor which controls
replanning. The monitor takes as input a PKS plan, and a de-
scription of the sensed state provided by the state manager.
The monitor must assess how close an expected, planned
state is to a sensed state in order to determine whether the
current plan should continue to be executed. To do this, it
tries to ensure that a state still permits the next action (or set
of actions) in the plan to be executed, by testing an action’s
preconditions against the current set of (sensed) state prop-
erties. In the case of a mismatch, the planner is directed to
build a new plan, using the sensed state as its initial state.

Output Generation: Output in the system is based on di-
viding actions selected by the planner into speech, head mo-
tions, and arm manipulation behaviours that can be executed
by the robot. To do so, we use a structure containing speci-
fications for each of the output modalities (Isard and Mathe-

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) ∧ ¬K(ordered(?a)) ∧

¬K(otherAttnReq) ∧ ¬K(badASR(?a))
effects: add(Kf , ordered(?a)), add(Kv , request(?a))

action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) ∧ K(ordered(?a)) ∧

Kv(request(?a)) ∧ K(request(?a) = ?d) ∧
K(otherAttnReq(?a)) ∧ ¬K(badASR) ∧
¬K(ackOrder(?a))

effects: add(Kf , served(?a))

Figure 4: Example PKS actions in the bartender domain

son 2012), based on a rule-based approach which splits each
planned action into its component subparts. The resulting
structure is then passed to the multimodal output generator,
which sends specific commands to each output channel.

OpenCCG is used to generate speech output for the robot,
using the same grammar that is used to parse the input. The
output description is specified in terms of high-level com-
municative acts, which are translated into logical forms and
sent to the OpenCCG realiser. The realiser then outputs text
strings that are turned into speech by the robot’s animatronic
head. In addition to speech, the robot also expresses itself
through facial expressions, gaze, and arm manipulation ac-
tions. The animatronic head can produce a number of ex-
pressions and can gaze at customers or objects, while the
robot arm can perform tasks like grasping to hand over a
drink to a customer; motion planning and robot control make
use of the Robotics Library (Rickert 2011).

System Integration: Like most interactive multimodal
systems, the robot bartender is made up of a number of dis-
tributed, heterogeneous software components, drawing on
diverse research paradigms, each with individual hardware
and software requirements. These components must all com-
municate with one another to support interactions in the bar-
tender scenario. The planner must also be situated in this
system and use the same interfaces as other components.

For inter-module communication in the robot bartender,
we use the Ice object middleware (Henning 2004), which
provides platform- and language-independent communica-
tion among the modules and supports direct module-to-
module communication as well as publish-subscribe mes-
saging. On the planning side, adapting the off-the-shelf
PKS planner for use with Ice is achieved by creating a
communication-level API to common planning features, and
re-engineering the backend planner into a suitable library
that supported this interface. Common operations like plan-
ner configuration, domain definition, and plan construction
were abstracted into a class definition that allowed a PKS
planner instance to be created as a C++ object. The interface
to this library was built into a simple server which provided
a transparent network interface to its functions over Ice.

Planning Interactions for Social Behaviour
The robot’s available high-level actions are modelled as part
of a PKS planning domain, rather than using specialised
tools as is common in many dialogue systems. For instance,

12 ICAPS 2013 - Application Showcase

the basic bartender domain consists of the following actions,
available to the robot for interacting with human customers:

greet(?a) greet an agent ?a,
ask-drink(?a) ask agent ?a for a drink order,
ack-order(?a) acknowledge agent ?a’s drink order,
serve(?a, ?d) serve drink ?d to agent ?a,
bye(?a) end an interaction with agent ?a,
not-understand(?a) inform agent ?a was not understood,
wait(?a) tell agent ?a to wait, and
ack-wait(?a) thank agent ?a for waiting.

Actions model high-level robot behaviours that include a
mix of physical, sensory, and speech acts. Examples of two
PKS actions in the bartender domain are shown in Figure 4.

Information about human agents is not hard-coded in the
domain but is detected by the vision system and passed to the
planner by the state manager through its state updates. Sim-
ilarly, changes to the agent list are also sent to the planner in
state reports, causing it to update its domain model. The goal
is simply to serve each agent seeking attention. This goal is
viewed as a rolling target which is reassessed each time a
state report is received by the planner. For instance, if two
agents (a1 and a2) are seeking attention, PKS can build the
following plan (similar to the interaction in Figure 2):

wait(a2), [Tell agent a2 to wait]
greet(a1), [Greet agent a1]
ask-drink(a1), [Ask a1 for drink order]
ack-order(a1), [Acknowledge a1 ’s drink order]
serve(a1, request(a1)), [Give the drink to a1]
bye(a1), [End a1 ’s transaction]
ack-wait(a2), [Thank a2 for waiting]
ask-drink(a2), [Ask a2 for drink order]
ack-order(a1), [Acknowledge a2 ’s drink order]
serve(a2, request(a2)), [Give the drink to a2]
bye(a2). [End a2 ’s transaction]

Here, a1 ’s drink order is taken and processed, followed by
a2 ’s order. The ask-drink action is a sensing action that re-
turns information about the term request (an agent’s drink
order), which is then used as a run-time variable in the serve
action. The wait and ack-wait actions are used to defer a
transaction with a2 until a1 ’s transaction has finished.

Once a plan is built, it is executed by converting each
action into its head, speech, and arm behaviours, based on
a simple set of rules. Execution is monitored for plan cor-
rectness by comparing states from the state manager against
states predicted by the planner. In the case of divergence, the
planner is directed to construct a new plan using the sensed
state as its new initial state. For example, if a1 ’s response
to ask-drink(a1) was not understood, the execution monitor
will direct PKS to build a new plan. One result is a modified
plan that first informs a1 they were not understood before
repeating the ask-drink action and continuing the old plan.

Another consequence of execution monitoring is that cer-
tain types of overanswering can be detected and handled
through replanning. For instance, a greet(a1) action by the
robot might cause the customer to respond with an utterance
that includes a drink order. In this case, the monitor would
detect that the preconditions of ask-drink(a1) aren’t met and

Figure 5: The JAMES software interface

direct PKS to replan. A new plan could then omit ask-drink
and proceed to acknowledge and serve the requested drink.

The complete bartender system uses the physical or sim-
ulated robot to process interactions similar to those shown
above. Users interact with the system using speech, while
the main system interface (Figure 5) displays the reasoning
and execution status of the core components, including plan-
ning and state management.

Acknowledgements
The authors thank their JAMES colleagues who helped im-
plement the bartender system: Andre Gaschler, Manuel Giu-
liani, Amy Isard, Maria Pateraki, and Richard Tobin. This
research has received funding from the European Union’s
7th Framework Programme under grant number 270435.

References
Baltzakis, H.; Pateraki, M.; and Trahanias, P. 2012. Visual tracking
of hands, faces and facial features of multiple persons. Machine
Vision and Applications 23(6):1141–1157.
Foster, M. E. 2013. Evaluating engagement classifiers for a robot
bartender. In submission.
Henning, M. 2004. A new approach to object-oriented middleware.
IEEE Internet Computing 8(1):66–75.
Huth, K. 2011. Wie man ein Bier bestellt. MA thesis, Fakultät für
Linguistik und Literaturwissenschaft, Universität Bielefeld.
Isard, A., and Matheson, C. 2012. Rhetorical structure for natural
language generation in dialogue. In Proceedings of SemDial 2012
(SeineDial), 161–162.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proceedings of AIPS 2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In Proceedings of ICAPS 2004, 2–11.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proceedings of ICAPS
2013, Special Track on Novel Applications.
Rickert, M. 2011. Efficient Motion Planning for Intuitive Task Exe-
cution in Modular Manipulation Systems. Dissertation, Technische
Universität München.
White, M. 2006. Efficient realization of coordinate structures in
Combinatory Categorial Grammar. Research on Language and
Computation 4(1):39–75.

ICAPS 2013 - Application Showcase 13

Authoring Plan-based Narratives via a Social Network

Julie Porteous, Fred Charles and Marc Cavazza
School of Computing,
Teesside University,

Middlesbrough TS1 3BA,
United Kingdom

{j.porteous,f.charles,m.o.cavazza}@tees.ac.uk

Abstract

One way of interacting with an Interactive Storytelling
system is via an authoring system prior to plan-based
narrative generation. In the search for a user-friendly
authoring method for plan-based storytelling domains
we have developed a method that captures important
narrative aspects such as characters’ relationships as a
way of defining a story. This represents a novel form of
high-level authoring for plan-based storytelling which
fits specific narrative genres: namely, serial dramas (or
soap operas) where social relationships between char-
acters act as a determinant for the narrative events that
make up different episodes. The approach is imple-
mented in a demonstration system which makes the de-
pendency explicit: using a visual interface users can set
social relationships between virtual characters and gen-
erate an episode based on that network. Stories are gen-
erated at run-time using a plan-based approach that ex-
ercises meta-level control over narrative trajectory via
the use of pseudo-landmarks. Thus the system provides
authors with a visual mechanism for the specification
of key story determinants and observation of their im-
pact on generated narratives. The demonstration system
is set in the medical drama genre (in the style of seri-
als such as House, ER and Scrubs). During the demo
participants are able to interact freely with the system:
setting relationships between virtual characters to “au-
thor” an episode of the drama in which the relationships
they have set lead to peripeteia in the context of med-
ical story lines; and then watching this episode as it is
visualised as a 3D animation.

Introduction
In Interactive Storytelling systems, user interaction can oc-
cur at different stages: during the presentation of the story;
and prior to story generation via an authoring system. Plan-
based narrative generation has been shown to be applicable
in both cases (Riedl and Young 2010; Porteous, Cavazza,
and Charles 2010). In the search for a user-friendly author-
ing method that would capture important narrative aspects
such as characters’ relationships we have developed a sys-
tem in which the characters’ social network can be used
to define a story. In this paper we present an interface for
high-level authoring of plan-based stories that is targeted at
those narrative genres, such as serial dramas and soap op-

eras, where social relationships between characters act as
determinants for the evolution of narrative across episodes.

This represents a novel mechanism for interactive narra-
tive that reflects aspects of how modern dramas are shaped in
specific genres, where situations and relationships are deter-
minant. For example, advice in the contemporary film and
screen writing literature advises authors to think initially,
and perhaps primarily, of story in terms of characters, rela-
tionships and situations (McKee 1997; Phillips and Huntley
2009). This is the idea which we have explored in this work:
to start from models of characters and the relationships be-
tween them, and then to explore the situations that can occur
and the stories that will necessarily arise from that.

Our demonstration system is set in the medical drama
genre where social relationships are in a constant process
of dramatic change, where conflict dominates (Alexander et
al. 1992; Greenberg, Abelman, and Neuendorf 1981) and
which are known to elicit audience reactions to both dra-
matic events and character relationships (Bradley 2007). In-
terestingly, these genres are repetitive since they frequently
feature different combinations of typical actions yet diver-
sity is achieved via changes in the relationships between
characters and the conflicts and situations that arise as a con-
sequence of this (for example, series 1 of ER included re-
peated instances of: seduction, conflict over treatment, pro-
fessional rivalry, battles to save patients and so on).

System Architecture Overview
The architecture of the system is represented in Figure 1
with the central components being the visual user interface
(1), the plan-based narrative engine (2) and narrative visual-
izer (3), with co-ordination between them as shown.

User interaction with the system is via a graphical rep-
resentation of a social network, representing the current
state of the social relationships between virtual characters.
This network has virtual characters as nodes (including their
names and a picture of them), relationships between them
as arcs and characters clustered according to their role such
as junior doctors, patient relatives, nurses and so on. Due
to the ubiquity of social networks the conceptual basis of
this interaction mechanism is one that users are likely to
be familiar with. Nevertheless it represents a novel form of
interacting with a storytelling system and one which users
should find compelling. For ease of use graph drawing and

14 ICAPS 2013 - Application Showcase

Figure 1: Architecture of the Demonstration System: social relationships specified via the interface (1) are used by the narrative
engine in the creation of planning problem instances which also feature the use of constraints as landmarks for control during
narrative generation (2). The output planned sequence of narrative actions are visualized on a 3D stage using Unreal R© (3).

layout of the social network is handled automatically using
(Graphviz4Net 2011) which can generate graphs where all
elements are fully customizable.

When an episode of the medical drama is to be gener-
ated the current state of the social network is used in the
creation of a planning problem instance. This problem in-
stance then forms part of the input to the narrative generator
at plan-time, along with the domain actions. The planning
problem instance that is created includes PDDL3 modal op-
erators which specify a partial order over dramatically in-
teresting narrative situations and content. At run time these
are used like landmarks to control the trajectory of the out-
put plan, in a decomposition-based approach, as reported by
Porteous et al (2010).

The generated episode of the medical drama is visualized
by a component that receives narrative actions and stages
them in a 3D environment using the Unreal R© game engine
(UDK). In the staging of the actions the notion of “Smithian”
cues (Smith 2003) is employed to enhance important narra-
tive events. These include such aspects as lighting, music,
camera angles and shot distance.

Virtual character dialogues are generated by the system
at run-time and are passed through a text-to-speech system
that synchronizes spoken utterances with characters’ lip-
synching. The character dialogues are also displayed in the
visualization window in the form of sub-titles.

Narrative Generation

Underpinning the system is a plan-based narrative gener-
ator featuring an implementation of Metric-FF (Hoffmann
2003) adapted to use landmarks for narrative control as de-
scribed previously in (Porteous, Cavazza, and Charles 2010;
Porteous et al. 2011). Their extension to planning with land-
marks (Hoffmann, Porteous, and Sebastia 2004) provides a
mechanism to ensure the inclusion of important dramatic
points and their relative order within a narrative in a way
that promotes story diversity whilst retaining the genera-
tive power of the approach. For the medical drama domain
in which the demonstration system is set, such points of
the drama can include tense clinical situations, strained re-
lationships between characters, deceptions, confrontations
and so on. Within this approach landmarks are represented

(sometime-before
(medical-conflict-resolved DrGreen DrDixon riskyTreatment)
(medical-conflict DrGreen DrDixon riskyTreatment))

(sometime
(shown-relationship DrAdams DrGregory))

(sometime
(shown-pressure-work DrBrown))

(at-end
(medical-conflict-resolved DrGreen DrDixon riskyTreatment))

Figure 2: Sample PDDL3 modelling of narrative landmarks

ICAPS 2013 - Application Showcase 15

Figure 3: Overview of Interaction with the Demonstration System: (1) users specify relationships between characters, select
feature characters and goal theme; (2) episode is generated using current state of the social network and constraints C1–C4 to
structure narrative; (3) view a visualization of it as a 3D animation (illustrated with screenshots and brief plot synopses).

declaratively, with partial orders specified over them using
PDDL3.0 modal operators such as sometime-before, some-
time and at-end and then used in a decomposition based
planning approach to control the shape of a narrative trajec-
tory as it is generated. At run time these constraints are lin-
earised and used to decompose the process of narrative gen-
eration into a sequence of sub-narratives. A complete output
narrative is produced by conjunction of the sub-sequences.

As an example, the episode illustrated in Figure 3 is gen-
erated for a problem instance which includes the constrained
landmarks shown in Figure 2. The use of these landmarks
ensures the generation of a narrative that contains suitable
dramatic content. A selection of actions illustrating this nar-
rative episode are shown in Figure 3.

System Performance

System performance was analysed in (Porteous, Charles,
and Cavazza 2013) through hundreds of system runs, in
terms of real-time performance, story diversity and lever-
age effect of the modification of the social network onto the
generated narratives. This approach preserves the run time
performance of our baseline narrative engine while showing
the potential for moderate changes to the social network to
yield large changes across hundreds of narratives generated
in our experiments.

Demonstration Overview

During an interactive session with the demonstration sys-
tem users are given the opportunity to “author” their own
episode of the medical drama by specifying the relationships
between characters in the social network, and then watching
it. Through this process they can explore the difference in
narrative possibilities as a result of changes in relationships
between characters.

Step 1: Specify Relationships between Characters

Via the interface users can add and delete virtual characters
from the network, choosing from an available set that in-
cludes 10 doctors, 5 nurses, 3 patients and 3 relatives. Simi-
larly users can add, delete and modify relationships between
the characters choosing from a classification of affective and
romantic relationships as detailed in (Porteous, Charles, and
Cavazza 2013). For ease of use all interaction is mouse and
menu driven, with the use of (Graphviz4Net 2011) which
gives Windows WPF control over the interface.

Relationships between characters can be symmetric or
asymmetric. For example, part 1 of Figure 3 includes a sym-
metric relationship between Dr Green and Dr Dixon (they
are professional rivals) and an asymmetric relationship be-
tween Dr Thompson and Dr Miller (he is antagonistic to her
whilst she is attracted to him).

16 ICAPS 2013 - Application Showcase

Step 2: Generate the Episode
Once a user has specified relationships in the network they
can then generate an episode of the medical drama. At this
point they are required to select feature characters for their
narrative episode and to choose a “goal theme” for their
episode from a menu of possibilities such as romantic in-
trigue, medical issues, pressure of work and so on. Once
these are specified they can select “Generate Episode” in the
interface, as shown in Figure 3. They can also inspect the
sequence of narrative actions that constitute the generated
episode before watching its visualization (part (3) in Fig 3).

The relationships that the user has specified in the net-
work impacts on the likelihood of different narrative events
occurring so for example, if the user has set the relationship
between a pair of characters to be antagonistic then the nar-
rative is more likely to include confrontation between them,
arguments, “ganging up” and so on. Inspection of the narra-
tive at this point enables the user to assess its quality prior to
watching the visualization. An example of a generated nar-
rative is shown in part (2) of Figure 3.

Step 3: Watch the Episode
Once the narrative had been generated the user can select
to view the episode and watch the visualization of it. As an
illustration, part (3) of Figure 3 shows a series of screen-
shots from the visualization of the narrative generated for
the configuration of the social network shown in part (1).

For this narrative the user selected Dr Green and Dr Dixon
as the feature characters of interest and a medical theme for
the goal of the narrative. It can be seen that the relationships
specified by the user in the social network have a direct im-
pact on the evolution and content of the narrative: the feature
doctors are professional rivals and this is reflected in their in-
teractions in the narrative which feature confrontation and a
rival doctors plan to gain the upper hand when they spot the
possibility. However in this instance the outcome of the nar-
rative depends on relationships with other secondary char-
acters: because the senior doctor, Dr. Laverick, brought in to
the story is a close friend of Dr. Green they choose to support
them rather than the rival doctor, Dr. Dixon.

Since the episode can also be viewed by other members
of the audience the visualization will highlight key dramatic
events so that the types of relationships between characters
can be clearly recognized by the demo audience at large.

Conclusion
The approach implemented in our demonstration system
represents a novel direction for narrative generation with a
move towards a user-friendly authoring method that captures
important narrative aspects – namely characters’ relation-
ships – in a way that reflects how modern dramas are shaped
in genres where relationships are determinant.

Acknowledgments. This work was funded in part by
the European Commission through the FP7 Open FET
“MUSE” Project (ICT-296703). Visual content developed
by Catherine Dixon and Matthew Laverick of Teesside Uni-
versity. Character models purchased from aXYZ Design
http://www.axyz-design.com.

References
Alexander, A.; Carveth, R.; Bohrer, G.; and Ryan, M. 1992.
Investigating Gender Difference in College Student Soap
Opera Viewing. In Staying Tuned: Contemporary Soap
Opera Criticism. Bowling Green SU Press.
Bradley, S. D. 2007. Examining the Eyeblink Startle Reflex
as a Measure of Emotion and Motivation to Television Pro-
gramming. Communication Methods and Measures 1:7–30.
Graphviz4Net. 2011. http://graphviz4net.
codeplex.com/. [Last Accessed: 10-04-13].
Greenberg, B. S.; Abelman, R.; and Neuendorf, K. 1981.
Sex on the Soap Operas: Afternoon Delight. Journal of
Communication 31:83–89.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research (JAIR) 22:215–278.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research 20:291–341.
McKee, R. 1997. Story: substance, structure, style, and the
principles of screenwriting. NY: ReganBooks.
Phillips, M., and Huntley, C. 2009. Dramatica – A New
Theory on Story. Write Brothers Press; 10th Anniversary
Edition edition.
Porteous, J.; Teutenberg, J.; Pizzi, D.; and Cavazza, M.
2011. Visual Programming of Plan Dynamics using Con-
straints and Landmarks. In Proc. of the 21st Int. Conf. on
Automated Planning and Scheduling (ICAPS 2011), 186–
193.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
Planning to Interactive Storytelling: Narrative Control using
State Constraints. ACM Transactions on Intelligent Systems
and Technology (ACM TIST) 1(2):1–21.
Porteous, J.; Charles, F.; and Cavazza, M. 2013. Network-
ING: using Character Relationships for Interactive Narra-
tive Generation. In Proc. of 12th Int. Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS 2013), 595–602.
IFAAMAS.
Riedl, M. O., and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelli-
gence Research 39:217–267.
Smith, G. 2003. Film Structure and the Emotion System.
Cambridge University Press.

ICAPS 2013 - Application Showcase 17

A generic constraint-based local search library
for the management of an electromagnetic surveillance space mission

Cédric Pralet and Guillaume Infantes and Gérard Verfaillie
ONERA - The French Aerospace Lab, F-31055, Toulouse, France
{Cedric.Pralet,Guillaume.Infantes,Gerard.Verfaillie}@onera.fr

Abstract

This paper presents what has been done at the French
Aerospace Lab (ONERA) to deal with a scenario of
space mission defined by the French Space Agency
(CNES). This space mission is dedicated to the surveil-
lance from space of ground electromagnetic sources. It
involves two satellites: one for source detection and an-
other one for data acquisition and download. It presents
two sources of uncertainty: the presence or not of elec-
tromagnetic sources and, in case of presence, the vol-
ume of data generated by acquisition. Due to these un-
certainties and to limited communication windows with
ground control stations, online planning and schedul-
ing (P&S) is necessary on board the second satellite
to make consistent and optimal decisions in terms of
data acquisition and download. In this paper we show
how a generic constraint-based local search library can
be used to build the onboard planning and scheduling
component. This library, called InCELL, has been de-
veloped at ONERA. It allows temporal constraints, re-
source constraints, arithmetic and logical constraints,
and optimization criterion to be quickly and incremen-
tally evaluated at each step of a local search algorithm.
Already experimented to deal with simpler scenarios,
this is the first time it is experimented on a complex
scenario involving agile satellites. We show also how
the generic simulation tool Ptolemy can be used to sim-
ulate the space system and evaluate its P&S component.

Introduction
In the context of the CNES-ONERA Agata project about
spacecraft autonomy (Charmeau and Bensana 2005), after
working on a first mission scenario involving only one non
agile Earth optical detection and observation satellite (Dami-
ani, Verfaillie, and Charmeau 2004; Pralet and Verfaillie
2008), ONERA dealt with a more complex mission scenario
defined by CNES and called Agata-One. The main objective
was to assess whether or not the tools that were defined to
deal with the first scenario can be easily adapted to deal with
a more complex one.

The Agata-One scenario involves two agile Earth satel-
lites placed on low altitude, circular orbits, on the same or-
bital plane. Agile satellites are able to perform very quick
attitude movements along the three axes around their grav-
ity center (roll, pitch, and yaw) generally thanks to gyro-

satellites

ground

acquisition data

detectionsS2 S1

reception station

Figure 1: Exchanges between satellites and ground reception
stations.

scopic actuators which are more efficient than usual reac-
tion wheels. Thanks to regular roll attitude movements, the
first satellite (S1) scans a wide strip around its ground track.
Thanks to its instruments, it is able to detect the presence
of electromagnetic sources at the Earth surface and to lo-
calize them. In case of detection, it sends instantaneously
information to the second satellite (S2, which follows it at a
small distance) via a permanent inter-satellite low-rate com-
munication link. Satellite S2 maintains a set of ground ar-
eas on which electromagnetic sources have been detected.
Each time it overflies one of these areas, it can acquire data
from it. To do that, it must perform a roll and pitch attitude
movement to direct its acquisition instrument (a reception
antenna) towards this area (the reception antenna is body-
mounted on the satellite). When too many close areas must
be handled, it must decide on those it will effectively han-
dle and on the acquisition order. Once data from an area
has been acquired, it is memorized in a mass memory and
downloaded to ground reception and processing stations via
a non permanent satellite-ground high-rate communication
link. Downloading data to a ground station is only possible
within one of the station visibility windows. Moreover, it is
only possible when the satellite attitude is compatible with
data download (as the reception antenna, the emission an-
tenna is body-mounted on the satellite and, during the whole
download period, the station must remain inside the satellite
emission antenna cone). As for data acquisition, when too
much data must be downloaded, satellite S2 must decide on
those it will download and on the download order. Fig. 1
summarizes the exchanges between satellites and ground re-
ception stations.

It must be stressed that the attitude of satellite S2 allow-

18 ICAPS 2013 - Application Showcase

S2 S2 S2 S2

ground

satellite

Acq1 Acq2 Acq1 Acq2

Figure 2: How the attitude movement to be performed by
satellite S2 to transit from a data acquisition to another one
depends on the time at which the transition is triggered. In
the second case (right), the angular movement to be per-
formed is greater than in the first case (left).

ing it to direct its reception antenna towards a given area
depends on the position of the satellite on its orbit and thus
on time. In such conditions, the attitude movement neces-
sary to transit from a data acquisition from a given area to a
data acquisition from another area, and thus the time taken
by this transition, depends not only on both areas, but also on
the time at which the transition is triggered (time-dependent
transition duration). See Fig. 2 for an illustration.

This mission scenario involves two main sources of uncer-
tainty: the presence or not of electromagnetic sources and, in
case of presence, the volume of data generated by acquisi-
tion (this volume is highly variable and can typically range
from 1 to 1000). Due to these uncertainties and to the non
permanent visibility of satellites by ground control stations,
online decision-making on data acquisition and download is
necessary on board satellite S2. To make such decisions, it
would be possible to use manually defined decision rules.
However, decisions would be better informed if they could
use the result of P&S: planning and scheduling regularly
performed over a given horizon ahead, using the most up
to date information about detections and data volumes; deci-
sions made according to the first steps of the plans produced.

Due to the limited computing time available for P&S
and due to the limited computing resources available on
board (CPU and RAM), heuristic search (greedy and/or local
search) seems to be the right option to build an anytime com-
binatorial search procedure, able to produce quickly good
quality plans and to improve on them as long as time is avail-
able before making decisions. It is widely used in space mis-
sions that require online onboard P&S (Chien et al. 2000;
2005b; 2005a). We already used it in the context of Earth
observation and surveillance missions (Lemaı̂tre et al. 2002;
Beaumet, Verfaillie, and Charmeau 2011; Pralet and Verfail-
lie 2008; Pralet et al. 2011; Verfaillie et al. 2011). How-
ever, each time, we built specific heuristic search proce-
dures, dedicated to the specific mission at hand and not di-
rectly reusable to handle other missions. To deal with the
Agata-One scenario, we decided to change our approach and
to use generic tools developed at ONERA in the context of
the Agata project and, more specifically, the Invariant-based
Constraint EvaLuation Library (InCELL (Pralet and Verfail-
lie 2013)).

InCELL draws its inspiration from the ideas of
Constraint-based local search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its prob-
lem in terms of decision variables, constraints, and optimiza-

tion criterion. She/he defines also its local search procedure
over the set of complete variable assignments (where every
variable is assigned). Because the speed of each local move
is one of the keys to local search success, the software uses
so-called invariants which allow expressions and constraints
to be quickly and incrementally evaluated after each move.
In InCELL, multiple-input multiple-output invariants allow
expressions, arithmetic and logical constraints, temporal and
resource constraints to be expressed and efficiently handled.
InCELL calls for Simple Temporal Network (STN (Dechter,
Meiry, and Pearl 1991)) techniques which allow temporally
flexible plans to be produced, and for Time-dependent STN
(TSTN (Pralet and Verfailllie 2012)) techniques which allow
time-dependent transition durations to be taken into account.

To deal with the Agata-One scenario, an InCELL model
of the associated P&S problem (decisions about data acqui-
sition and download by satellite S2) was built, a simple non
chronological greedy search procedure was designed, and
the events that trigger a new call to P&S over a given hori-
zon ahead were defined.

To simulate the space system and to evaluate its P&S com-
ponent, an event-based model of the system, based on the
notions of state, event preconditions and effects, and event
activations, was built and implemented using the generic
simulation tool Ptolemy (Eker et al. 2003). Whereas P&S al-
lows only the utility of decisions over the planning horizon
to be evaluated, this simulation allows the global utility of
successive decisions over the simulation horizon to be eval-
uated.

Sect. 1 describes problem data and Sect. 2 presents the
structure of possible decisions. In Sect. 3, a constraint-based
model of the P&S problem is introduced. The main ingre-
dients of the InCELL library, as well as its main reasoning
mechanisms, are presented in Sect. 4. Sect. 5 describes the
search procedure and Sect. 6 defines when P&S is called.
Sect. 7 shows how the space system and its P&S component
can be simulated and evaluated, using the Ptolemy tool.

1 Problem data
Permanent (static) problem data is the following:

• a finite set of ground areas that must be kept under surveil-
lance;

• a finite sequence of priority levels;

• for each ground area, its priority level, its weight (to give
more or less weight to areas of the same priority level),
an acquisition duration, an expected, a minimum, and a
maximum volume of data resulting from acquisition;

• a finite set of ground reception stations;

• a data download rate from satellite S2 to any ground re-
ception station.

Moreover, it is assumed that a function associates with
each ground area a and each time t the attitude of satellite S2

necessary to acquire data from a at time t, when acquisition
is possible, and that another function associates with each
pair of attitudes of satellite S2 the minimum time necessary
to reach the second one, starting from the first one.

ICAPS 2013 - Application Showcase 19

Mvt Mvt

Acquisition sequence for S2

Mvt Acq Acq Geo Mvt Acq AcqMvt Mvt Geo

AcqTask AcqTask AcqTask AcqTask End GeoTask

Download sequence for S2

download
windows Dl Dl DlDlDl Dl

Figure 3: The two concurrent sequences of action on board satellite S2. AcqTask = acquisition task; Geo Task = geocentric
task; Mvt = attitude movement; Acq = data acquisition; Geo = geocentric pointing; Dl = data download.

Each time P&S is called, its complementary (dynamic)
data is the following:
• a planning horizon ahead;
• an attitude of satellite S2 at the beginning of the planning

horizon;
• a set of ground areas from which electromagnetic sources

have been detected by satellite S1, but no acquisition by
satellite S2 has been performed yet;
• for each of these ground areas, its detection time and a fi-

nite sequence of acquisition windows by satellite S2 over
the planning horizon;

• a finite set of acquisitions that have been already per-
formed, but whose data has not been downloaded yet (still
present in memory);

• for each of these acquisitions, its detection and acquisition
times and its actual volume in memory;

• a finite sequence of download windows by satellite S2

over the planning horizon.
Acquisition windows are reduced in case of intersection

with a download window, when acquisition is incompatible
with download, in order to give priority to data download.

2 Possible decisions
On board satellite S2, it is necessary to decide on two con-
current sequences of action:
• the sequence of data acquisitions;
• the sequence of data downloads.

The first sequence is made of acquisition tasks, each one
following immediately the previous one. An acquisition task
is, according to an HTN-like decomposition of tasks into
sub-tasks (Hierarchical Task Networks (Nau et al. 2003)),
itself made of:
• either an attitude movement immediately followed by a

data acquisition;
• or an attitude movement immediately followed by a geo-

centric pointing, immediately followed by another atti-
tude movement, immediately followed by a data acqui-
sition (satellite geocentric pointing maintained towards
Earth center is a waiting action, favourable to communica-
tion with Earth, data downloads, and energy recharging).

This sequence, possibly completed by an attitude move-
ment followed by a geocentric pointing at the end of the
planning horizon, entirely defines the attitude trajectory of
satellite S2.

The second sequence is made of data downloads, each
one being performed within a download window. In this se-
quence, a download may not immediately follow the previ-
ous one. This is the case when it is necessary to wait for
the end of an acquisition before downloading resulting data
within a download window.

Fig. 3 illustrates the two concurrent sequences of action.
Both sequences are not independent from each other because
data download requires preceding acquisition.

3 A constraint-based model
P&S problem is a kind of over-constrained scheduling prob-
lem (over-constrained because it may be impossible to
schedule all the candidate tasks (Kramer and Smith 2003))
which can be modeled using only constraints over intervals.
An interval is defined by its presence, its starting date, its
ending date, and its duration. Its presence is a boolean, equal
to 1 if and only if the interval is effectively present in the
schedule.

The model associates:

• with each ground area from which electromagnetic
sources have been detected by satellite S1, but no acquisi-
tion by satellite S2 has been performed yet, an acquisition
interval, a geocentric pointing interval, and a download
interval;

• with each acquisition that has been already performed by
satellite S2, but whose data has not been downloaded yet,
a download interval.

These intervals may be present or absent. Constraints to
be satisfied are the following:

• each acquisition interval must be, when present, included
in one of the acquisition windows of the associated
ground area; its duration is the acquisition duration of the
associated ground area, defined in the problem data;

• each download interval must be, when present, included
in one of the download windows; if the acquisition has
been already performed at the P&S time, download dura-
tion is equal to the actual volume in memory divided by

20 ICAPS 2013 - Application Showcase

the download rate; if it has not been performed yet, it is
equal to the maximum volume resulting from acquisition
divided by the download rate (pessimistic assumption al-
lowing the produced schedule to be surely executed);

• for each ground area from which electromagnetic sources
have been detected, absence of the acquisition interval
implies absence of the geocentric pointing and down-
load intervals; presence of the geocentric pointing inter-
val implies that it must precede the acquisition interval
and follow the previous acquisition interval; presence of
the download interval implies that it must follow the ac-
quisition interval;

• there must be no overlapping between present acquisition
and geocentric pointing intervals and enough time be-
tween successive intervals to allow attitude movements;
moreover movements to or from geocentric pointings
must be performed in minimum time in order to give geo-
centric pointing as much time as possible;

• there must be no overlapping between present download
intervals.

The criterion to be optimized is a vector of global utili-
ties, one per priority level. The global utility associated with
a priority level p is equal to the sum of the local utilities as-
sociated with each of the ground areas of priority p. The lo-
cal utility associated with a ground area is equal to its weight
multiplied by two functions which both take a value between
0 and 1: a decreasing function of the time between detection
and acquisition and another decreasing function of the time
between acquisition and download. These functions tend to
encourage quick acquisition and quick delivery of informa-
tion on the ground. Two vectors of global utilities, resulting
from two schedules, are lexicographically compared from
the highest priority level to the lowest one.

4 The InCELL library
InCELL (Invariant-based Constraint EvaLuation Library) is
a software library, dedicated to the quick incremental evalu-
ation of expressions and constraints.

InCELL draws its inspiration from the ideas of
Constraint-based local search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its prob-
lem in terms of decision variables, constraints, and optimiza-
tion criterion. She/he defines also its local search procedure
over the set of complete variable assignments (every vari-
able assigned). Because the speed of each local move is one
of the keys to local search success, the software uses so-
called invariants which allow expressions and constraints
to be quickly and incrementally evaluated after each move.
An invariant is a one-way constraint of the form x ← exp,
where x is a variable and exp a function of other variables,
such as for example x ←

∑N
i=1 yi. On this example, when

the value of yj for some j is modified, it is not necessary
to recompute

∑N
i=1 yi from scratch. It suffices to add to the

previous value of x the new value of yj , minus its old value.
The only condition is the absence of cycles in the definition
of invariants (no variable directly or indirectly function of
itself).

InCELL extends the definition of invariants by allowing
multiple-input multiple-output invariants. Invariants allow
expressions, but also constraints, to be represented. Con-
straints, such as for example

∑N
i=1 yi ≤ K, are specific in-

variants whose evaluation stops when they are violated. In
InCELL, a constraint optimization problem (variables, con-
straints, and criterion) takes the form of a DAG (Directed
Acyclic Graph) of invariants. Each time the value of some
atomic variables (variables that are not functions of other
variables and are roots of the DAG) is modified, the DAG of
invariants is lazily reevaluated according to a DAG topolog-
ical order: any invariant is reevaluated only when necessary
and at most once.

On top of these basic concepts and mechanisms, InCELL
offers some constructs dedicated to scheduling: time point
variables, interval variables (defined by two time point vari-
ables and a distance constraint between them), unary and bi-
nary distance constraints (of the form x ≤ K or x−y ≤ K).
All temporal constraints are managed using a special STN
invariant (Simple Temporal network (Dechter, Meiry, and
Pearl 1991)) which has as inputs a set of unary and binary
distance constraints and as outputs the earliest dates of all
the time point variables involved in the constraints. Classi-
cal STN techniques are used to handle the STN: constraint
propagation, maintenance of propagation chains, decompo-
sition of the distance graph into strongly connected compo-
nents. Moreover, STN concepts and techniques are extended
in InCELL to deal with so-called time-dependent schedul-
ing (Gawiejnowicz 2008), that is with time-dependent dis-
tance constraints (Pralet and Verfailllie 2012) where the
minimum distance is not a constant, but a function of the
involved time points (of the form x − y ≤ F (x, y) with
some assumptions about Function F). All the constraints
over intervals, defined in the previous section, can be man-
aged by InCELL, including the minimum transition times
between successive acquisition and geocentric pointing in-
tervals, thanks to time-dependent distance constraints.

InCELL allows also resource constraints to be defined and
profiles of resources (with piecewise constant or linear evo-
lutions) to be quickly and incrementally maintained, taking
into account the earliest dates produced by the STN. This
would allow memory (piecewise constant evolution) and en-
ergy (piecewise linear evolution) constraints to be managed.
However, these constraints are ignored in our problem: en-
ergy because it is not limiting and memory because of the
uncertainty about the volume of data generated by acquisi-
tion. When planning acquisitions, we prefer not to limit ac-
quisitions because of possible large volumes of data. How-
ever, when executing the acquisition plan, before triggering
an acquisition, in case of possible memory overflow, we re-
move from memory lower priority data and, when it is not
sufficient, we cancel the acquisition.

One of the key features of InCELL is its ability to work
on dynamic models (a new model each time P&S is called)
using a unique static model which is recycled to build dy-
namic models. This allows any dynamic memory allocation
to be avoided on board: a key requirement when building
embedded reactive control software.

See (Pralet and Verfaillie 2013) for more details about the

ICAPS 2013 - Application Showcase 21

executive

Reactive Deliberative

scheduling

Mission level control

acquisition volumes
detections

decisions:
acquisitions
downloads

plans

deadlineEnvironment

information:

planning activation:
horizon, data

 planning &

Figure 4: Exchanges between the environment, the reactive executive, and the deliberative P&S component.

T+PHLT t t’’t’

Current acquisition planning horizon

Current acquisition

Current time Horizon over which an acquisition plan is built

Maximum
planning
duration

MPT

Figure 5: Horizon over which an acquisition plan is built at a given time t on board satellite S2.

InCELL library.

5 A non chronological greedy search
To build online acquisition and download plans on board
satellite S2, we defined a very simple greedy search pro-
cedure, although more sophisticated local search procedures
could be considered (Aarts and Lenstra 1997).

At each step of this procedure, an acquisition (resp. down-
load) of highest priority level and of highest utility at this
priority level is selected and added to the acquisition (resp.
download) plan, when addition is possible. It is added in the
best acquisition (resp. download) window and at the best po-
sition in the acquisition (resp. download) sequence in terms
of utility. Once the acquisition sequence is defined, geocen-
tric pointings are added between acquisitions, when possi-
ble.

6 Calls to planning and scheduling
In case of online P&S, it is not only necessary to define the
P&S model and the reasoning and search mechanisms. It is
necessary to define when the executive calls to P&S, in order
to get a plan over some planning horizon ahead and to follow
it until a new call to P&S. See Fig. 4 for a global view of the
exchanges between the environment, the reactive executive,
and the deliberative P&S component.

In our problem, as far as acquisitions are concerned, we
define the length PHL of the planning horizon (horizon
over which P&S is called; typically some hours) and the
maximum planning time MPT (maximum time taken by
P&S; typically some seconds). The planning horizon of
length PHL is regularly shifted (typically every half an
hour). P&S is called again when a new acquisition oppor-
tunity appears over the planning horizon. This happens ei-
ther when electromagnetic sources are detected by satellite
S1 on some ground area, or when the planning horizon is
shifted and a new acquisition window for some ground area
appears over the new planning horizon. In such a case, we

consider the current time t, the time t′ = t+MPT at which
a plan will be surely available, the time t′′ from which deci-
sions can be made, taking into account acquisition or attitude
movement possibly in progress at t′ (acquisitions and atti-
tude movements are not interruptible, but geocentric point-
ings are), and we call to P&S over the planning horizon from
t′′. See Fig. 5 for an illustration.

As far as downloads are concerned, P&S is called MPT
before each download window (or group of windows that
overlap or are very close to each other) over the whole win-
dow (or group of windows).

7 Simulation
We used the simulation tool Ptolemy to simulate
the space system. Ptolemy (Eker et al. 2003) (see
http://ptolemy.eecs.berkeley.edu/) is a generic tool dedicated
to the simulation of dynamic systems, with an emphasis
on hybrid simulation. Among many other possibilities, it
is possible within Ptolemy to simulate a system whose
dynamics involves both discrete events and continuous
evolutions of resources. To express in Ptolemy the dynamics
of the space system, we particularly relied on the Ptera
framework (Feng, Lee, and Schruben 2010) which is based
on the notions of state, events, event preconditions and
effects, and conditional activations by events of other events
(possibly with some delay and some probability). See Fig. 6
for an illustration of the several temporal horizons that
are handled in the simulation (simulation, commitment,
planning, and decision horizons).

This simulation was run on scenarios built by CNES.
Fig. 7 shows a screenshot of the simulation tool at the end
of a five day simulation horizon, where one can see:
• at the top left, the current acquisition requests over the

whole world (small circles) and the visibility circle of the
unique ground reception station (in blue);

• at the top right, an artist view of satellites S2 (in front) and
S1 (behind) with the pointing direction of the former;

22 ICAPS 2013 - Application Showcase

Execution/simulationhorizon

Planning horizon

Decision horizon

Current time

Commitment limit

time

Planning

Figure 6: Illustration of the several temporal horizons that are handled in the simulation.

Figure 7: Screenshot of the Agata-One simulator at the end of a five day simulation horizon.

ICAPS 2013 - Application Showcase 23

Prio 1 2 3
NAcq 132 147 82
NDl 119 123 42

NRm 0 13 24

Table 1: Global results over the five day simulation horizon:
Prio = priority level, NAcq = number of performed acqui-
sitions; NDl = number of downloaded acquisitions, NRm =
number of performed acquisitions that have been removed
from memory to free space.

• at the bottom right, the sequence of acquisitions, the se-
quence of downloads, and the evolution of memory on
board.

Over this simulation horizon, acquisition planning is
called 680 times, each time over a four hour horizon ahead.
Download planning is called 16 times, each time over the
next download window. Each time it is called, acquisition
(resp. download) planning must manage some tens of ac-
quisitions to be performed (resp. downloaded). Acquisition
(resp. download) planning takes on average 432 ms (resp.
2258 ms) on an i5-520 Intel processor with 1.2 GHz and 4
GBRAM.

The global results per priority level are shown on Tab. 1
The mean utilization percentage of the downloads windows
is of 85.39%.

A demonstration of the space system simulation is pre-
sented in the ICAPS 2013 Application Showcase.

Conclusion
The first result of this study is the demonstration that the
generic InCell library allows the planning problem associ-
ated with a new complex space mission to be easily mod-
eled and efficiently solved. Beyond the necessary improve-
ments of the library in terms of modeling power and algo-
rithm efficiency, the next steps should be the management of
other missions, the implementation of the executive and of
the P&S component on actual space processors, and the ef-
fective use on board an autonomous spacecraft, for example
to manage data downloads in presence of uncertainty about
volumes.

References
Aarts, E., and Lenstra, J., eds. 1997. Local Search in Com-
binatorial Optimization. John Wiley & Sons.
Beaumet, G.; Verfaillie, G.; and Charmeau, M. 2011. Fea-
sibility of Autonomous Decision Making on board an Ag-
ile Earth-observing Satellite. Computational Intelligence
27(1):123–139.
Charmeau, M.-C., and Bensana, E. 2005. AGATA: A
Lab Bench Project for Spacecraft Autonomy. In Proc. of
the 8th International Symposium on Artificial Intelligence,
Robotics, and Automation for Space (i-SAIRAS-05).
Chien, S.; Knight, R.; Stechert, A.; R.Sherwood; and Ra-
bideau, G. 2000. Using Iterative Repair to Improve the Re-
sponsiveness of Planning and Scheduling. In Proc. of the 5th

International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-00), 300–307.
Chien, S.; Cichy, B.; Davies, A.; Tran, D.; Rabideau, G.;
Castano, R.; Sherwood, R.; Mandl, D.; Frye, S.; Shul-
man, S.; Jones, J.; and Grosvenor, S. 2005a. An Au-
tonomous Earth-Observing Sensorweb. IEEE Intelligent
Systems 20(3):16–24.
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.;
Castano, R.; Davies, A.; Mandl, D.; Frye, S.; Trout, B.; Shul-
man, S.; and Boyer, D. 2005b. Using Autonomy Flight Soft-
ware to Improve Science Return on Earth Observing One.
Journal of Aerospace Computing, Information, and Commu-
nication 2:196–216.
Damiani, S.; Verfaillie, G.; and Charmeau, M.-C. 2004.
An Anytime Planning Approach for the Management of an
Earth Watching Satellite. In Proc. of the 4th International
Workshop on Planning and Scheduling for Space (IWPSS-
04).
Dechter, R.; Meiry, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Eker, J.; Janneck, J.; Lee, E.; Liu, J.; Liu, X.; Ludvig, J.;
Neuendorffer, S.; Sachs, S.; and Xiong, Y. 2003. Taming
Heterogeneity: the Ptolemy Approach. Proceedings of the
IEEE 91(1):127–144.
Feng, T.; Lee, E.; and Schruben, L. 2010. Ptera: An Event-
oriented Model of Computation for Heterogeneous Systems.
In Proc. of the 10th International Conference on Embedded
Software (EMSOFT-10), 219–228.
Gawiejnowicz, S. 2008. Time-dependent Scheduling.
Springer.
Hentenryck, P. V., and Michel, L. 2005. Constraint-based
Local Search. MIT Press.
Kramer, L., and Smith, S. 2003. Maximizing Flexibility: A
Retraction Heuristic for Oversubscribed Scheduling Prob-
lems. In Proc. of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-03), 1218–1223.
Lemaı̂tre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-M.;
and Bataille, N. 2002. Selecting and scheduling observa-
tions of agile satellites. Aerospace Science and Technology
6:367–381.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research 20:379–404.
Pralet, C., and Verfaillie, G. 2008. Decision upon Ob-
servations and Data Downloads by an Autonomous Earth
Surveillance Satellite. In Proc. of the 9th International Sym-
posium on Artificial Intelligence, Robotics, and Automation
for Space (i-SAIRAS-08).
Pralet, C., and Verfaillie, G. 2013. Dynamic Online Plan-
ning and Scheduling using a Static Invariant-based Evalua-
tion Model. In Proc. of the 23rd International Conference
on Automated Planning and Scheduling (ICAPS-13).
Pralet, C., and Verfailllie, G. 2012. Time-Dependent Sim-
ple Temporal Networks. In Proc. of the 18th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP-12), 322–338.

24 ICAPS 2013 - Application Showcase

Pralet, C.; Verfaillie, G.; Olive, X.; Rainjonneau, S.; and
Sebbag, I. 2011. Planning for an Ocean Global Surveil-
lance Mission. In Proc. of the 7th International Workshop
on Planning and Scheduling for Space (IWPSS-11).
Verfaillie, G.; Infantes, G.; Lemaı̂tre, M.; Théret, N.; and
Natolot, T. 2011. On-board Decision-making on Data
Downloads. In Proc. of the 7th International Workshop on
Planning and Scheduling for Space (IWPSS-11).

ICAPS 2013 - Application Showcase 25

Integrated Operations (Re-)Scheduling from Mine to Ship

S Kameshwara, Alfiya Tezabwala
IBM Research - India

Bangalore, India

Alain Chabrier
IBM Software Group

Spain

Julain Payne, Fabio Tiozzo
IBM Software Group

France

Abstract1

Mining companies have complex supply chains that start from the mining location and stretch thousands of kilometers to the
end customer in a different country and continent. The logistics of moving the materials from mines to ship is composed of
series of optimization problems like berth allocation, ship scheduling, stockyard scheduling, and rail scheduling, which are
individually NP-hard. In this paper, we present a scheduling application, called as IBM Optimization: Mine to Ship, for end-
to-end integrated operations scheduling. The application is built on IBM ILOG ODM Enterprise with advanced features like
rescheduling under deviations and disturbances, and maintenance scheduling. The modeling and computational complexity of
integrated scheduling optimization is tamed using hybrid optimization technique that leverages mathematical programming and
constraint programming. The application will benefit the mining companies with increased resource usage, higher throughput,
reduced cost of operations, and higher revenue.

1The paper is published in the Proceedings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS 2013).

26 ICAPS 2013 - Application Showcase

Coordinating Maintenance Planning under Uncertainty

Joris Scharpff and Matthijs T.J. Spaan and Leentje Volker and Mathijs de Weerdt
{j.c.d.scharpff, m.t.j.spaan, l.volker, m.m.deweerdt}@tudelft.nl

Delft University of Technology, The Netherlands

Abstract

In maintenance of (public) infrastructures, such as the na-
tional highway network, an asset manager is responsible for
high network quality and throughput, while limiting expenses
to a minimum. The maintenance activities, however, are
often performed by commercial contractors, mainly driven
by profit. Using a network-based payment mechanism we
align the objectives of both stakeholders. Nonetheless, this
greatly increases the complexity of planning maintenance ac-
tivities, rendering it very difficult for human planners to de-
velop (near-)optimal maintenance plans.
We demonstrate a support tool that facilitates multiagent
planning for contractors so that they can coordinate their ac-
tivities with other contractors in the network. This tool is
initially intended as a serious game to create awareness and
support amongst practitioners concerning this novel network-
based coordination. In later stages we foresee great potential
in the use of our tool as part of future dynamic contracting
procedures.

Introduction
The planning and scheduling of maintenance activities on
infrastructural networks, such as the highway network ex-
ample of Figure 1 used in our gaming sessions, is a chal-
lenging real-world problem. While improving the quality of
the infrastructure, maintenance causes temporary capacity
reductions throughout the network. Given the huge impact
of time lost in traffic on the economic output of a society,
planning maintenance activities in a way that minimises the
disruption of traffic flows poses an important challenge.

A powerful real-world example is the Summer 2012 clo-
sure of the A40 highway in Essen, Germany (Der Spiegel
2012). Instead of restricting traffic to fewer lanes for 2 years
(the usual approach), authorities fully closed a road segment
for 3 months, diverting traffic to parallel highways. Traf-
fic conditions on the other highways hardly worsened, while
¤3.5M in social costs due to traffic jams were avoided (be-
sides lowering construction costs).

Such convincing examples have motivated research into
more innovative contracting procedures for infrastructural
maintenance. In previous work (Volker et al. 2012), we pre-
sented a two-phase, dynamic contracting procedure as a so-
lution for these problems. In the first phase, known as the
procurement phase, maintenance activities are identified and

Figure 1: Example of a road network we use in the demon-
stration.

assigned to the contractors through tendering. These activi-
ties are planned and performed in the second phase such that
the inconvenience for the users of the network is limited to a
minimum. The work we present here is a first step towards
integration of our tool in the execution phase of this dynamic
contracting procedure.

Problem Domain
We identified the need for a network-based approach to-
wards maintenance planning. However, there are several
complicating factors in this domain.

Firstly, while a (public) asset manager is commonly re-
sponsible for the quality and throughput of the network,
the actual maintenance has to be performed by commercial
and autonomous third-party contractors, mainly focused on
maximising profits. These two objectives have to be aligned
through rewards/penalties in order to steer towards socially
favourable maintenance plans.

Secondly, contractors performing the maintenance are in-
terdependent through their activities on the network. A con-
tractor servicing one part of the network influences other
contractors in other parts, as his work has a negative im-

ICAPS 2013 - Application Showcase 27

Contractor C

Contractor A

Contractor B

Contractor E

Contractor D

A82

A80

A86

A86

A83

A92

A93

A84

A97

A101

A96
A85

A80

A80

A99

A83

A93

A82

A

F

B

D

C

A

BA

B

C

D

A
B C

D

E

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

A
B C

D E F

G
H

A

B

A

B

C

D

E

F

G

H

A

B

C

A

B

C

A

B

I

Figure 2: In the game, contractors (played by humans or
computer agents) need to plan their given portfolio of activ-
ities on the network in the most profitable way. Their port-
folios are represented by task cards, that specify the details
of each activity. Note that each contractor is responsible for
a different part of the network detailed in Figure 1.

pact on the traffic flow. Therefore, the use of congestion
payments might result in high penalties for all contractors
and hence the need for contractors to coordinate their main-
tenance plans on a network level is apparent.

Finally, execution of maintenance is inherently contin-
gent. Apart from the possible difficulty of ascertaining an
asset’s actual maintenance state there are various causes for
possible delays (e.g., weather, breakdowns, etc.).

Recently, we have proposed a novel combination of dy-
namic mechanism design with stochastic planning to tackle
these challenges (Scharpff et al. 2013). Agents are rewarded
or fined, according to the quality they deliver and the addi-
tional congestion caused by their activities on the network,
such that in expectation their profit is maximal exactly when
these global objectives are optimised. Here we study the ap-
plication of that research with human players in a real-world
setting.

Serious Planning Game
We have implemented the problem of maintenance planning
and the solution we proposed in (Scharpff et al. 2013) in a
serious simulation game, that we dub the serious planning
game. Players, either humans or computer agents, take on
the role of contractor and have to plan their maintenance
activities such that their profits are maximised. They are
supported by an automated planner that provides insight into
payments and costs, and is able to provide plan suggestions,
see Figure 2.

The major goals of our serious game are:

1. Studying whether our novel contracting method can be
used in practical scenarios, and whether practitioners are
likely to accept and adopt our method.

2. Creating awareness and support amongst practitioners re-
garding the impact of (coordinating) maintenance activi-

ties on a network level. Using this tool we want practi-
tioners to get a feel for our novel and progressive concept,
increasing the likelihood of acceptance.

3. Validation of the payment mechanism. Human players
will most likely not be perfectly rational, therefore we
study the strategies played by human planners and the re-
sulting outcomes.

4. Closing the gap between theoretical concept and realistic
contracting. This will increase the likelihood of practical
implications.
In order to evaluate our serious planning game, we have

developed questionnaires and observation protocols, allow-
ing for a systematic analysis of the different problem factors.

Demonstration
We demonstrate the complexities faced in planning main-
tenance activities on a network and the need for a support
tool through playing the game. Conference attendees will
be given the possibility to participate in the game and expe-
rience the difficulty of finding (near-)optimal maintenance
plans, while having to deal with other human or computer
players. Games will be played through the use of our game
interface, played on tablets, and participants will be asked to
fill in short (simplified) questionnaires at the beginning and
end of the game.

The main goal for a player is to plan his activities in the
most profitable way. Activities can be performed in differ-
ent (pre-determined) ways, varying in cost, duration, risk,
quality effect and traffic disruption, and interfere with other
player’s maintenance. For instance, closing both the A97b
and A101 of the network of Figure 1 concurrently causes
major congestion while separate maintenance might intro-
duce only little additional traffic hindrance. These situa-
tions are challenging and must be coordinated, either using
the automated planner or by means of agreements through
player-to-player communication. Eventually, players with
unfinished tasks will be fined and the players that score best
in each of the objectives (considering the portfolio it was
given) are declared a winner.

References
Der Spiegel. 2012. A40: Autobahn nach dreimonatiger
Sperre freigegeben. Online, Sep 30.
Scharpff, J.; Spaan, M. T. J.; Volker, L.; and de Weerdt,
M. M. 2013. Planning under Uncertainty for Coordinat-
ing Infrastructural Maintenance. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS). To appear.
Volker, L.; Scharpff, J.; de Weerdt, M. M.; Herder, P. M.;
and Smith, S. 2012. Designing a dynamic network based
approach for asset management activities. In Proc. of the
28th Annual Conf. of the Association of Researchers in Con-
struction Management (ARCOM), 655–664.

28 ICAPS 2013 - Application Showcase

Hypothesis Exploration for Malware Detection using Planning

Shirin Sohrabi, Octavian Udrea, and Anton V. Riabov
IBM T. J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA
{ssohrab, oudrea, riabov}@us.ibm.com

Abstract1

In this paper we apply AI planning to address the hypothesis exploration problem and provide assistance to network adminis-
trators in detecting malware based on unreliable observations derived from network traffic. Building on the already established
characterization and use of AI planning for similar problems, we propose a formulation of the hypothesis generation problem
for malware detection as an AI planning problem with temporally extended goals and actions costs. Furthermore, we propose
a notion of hypothesis “plausibility” under unreliable observations, which we model as plan quality. We then show that in
the presence of unreliable observations, simply finding one most “plausible” hypothesis, although challenging, is not sufficient
for effective malware detection. To that end, we propose a method for applying a state-of-the-art planner within a principled
exploration process, to generate multiple distinct high-quality plans. We experimentally evaluate this approach by generating
random problems of varying hardness both with respect to the number of observations, as well as the degree of unreliability.
Based on these experiments, we argue that our approach presents a significant improvement over prior work that are focused
on finding a single optimal plan, and that our hypothesis exploration application can motivate the development of new planners
capable of generating the top high-quality plans.

1The paper is published in the Proceedings of the 27th Conference on Artificial Intelligence (AAAI-13).

ICAPS 2013 - Application Showcase 29

Author Index

Alexiadis, Anastasios 1

Bartak, Roman 3
Bernardini, Sara 2
Bookless, John 2

Cavazza, Marc 14
Chabrier, Alain 19
Charles, Fred 14

De Weerdt, Mathijs 20

Foster, Mary Ellen 10
Fox, Maria 2

Glinský, Radoslav 3

Infantes, Guillaume 18

Long, Derek 2

Muñoz, Pablo 6

Payne, Julian 19
Petrick, Ron 10
Porteous, Julie 14
Pralet, Cédric 18

R-Moreno, Maria D. 6
Refanidis, Ioannis 1
Riabov, Anton 21

Sampath, Kameshwaran 19
Scharpff, Joris 20
Sohrabi, Shirin 21
Spaan, Matthijs 20

Tezabwala, Alfiya 19
Tiozzo, Fabio 19

Udrea, Octavian 21

Verfaillie, Gérard 18
Volker, Leentje 20

30 ICAPS 2013 - Application Showcase

	frontpages_AppShowcase
	Organizing Commitee
	Preface
	Table of Contents

	Binder1
	paper_7
	paper_1
	paper_8
	paper_9
	paper_10
	paper_6
	paper_5
	paper_2
	paper_3
	paper_4
	author_index

