
ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model checking Hybrid Systems

via Satisfiability Modulo Theories

Alessandro Cimatti
Embedded System Unit

Fondazione Bruno Kessler

Trento, Italy

cimatti@fbk.eu

We gratefully acknowledge the support of the European Space Agency contracts OMC-ARE, COMPASS, IRONCAP,

AUTOGEF, FOREVER, FAME, HASDEL.

Joint work with Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta

mailto:surname@fbk.eu

2

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Fondazione Bruno Kessler

§ Fondazione Bruno Kessler
ï Private foundation with public finalities

ï Owned by Provincia Autonoma di Trento

ï Formerly IRST, Istituto Trentino di Cultura

§ Center for Information Technology
ï Director: Paolo Traverso

§ The Embedded Systems Unit
ï 28 people

ï 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students

ï Open call for more ph.d. students and postdocs!

§ Strategy: tight integration of
ï Basic research

ï Tool development

ï Technology transfer

3

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Take away messages

§The need for verification
ïVery complex systems

§Verification in a broader sense
ïRigorous analysis of the behaviour of dynamic systems

§Hybrid automata
ïA uniform and comprehensive formal model

§Satisfiability Modulo Theories
ïHigher level symbolic modeling

ïEfficient engines: SAT + constraint solving

§SMT-based Verification
ïMany effective complementary algorithms

§Application in several project
ïStrong potential for practical impact

4

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Structure of the tutorial

§Motivations

§Hybrid Systems

§Satisfiability Modulo Theories

§SMT-based verification

§SMT-based verification of Hybrid Systems

§Requirements analysis

5

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The Design Challenge

§ Designing complex systems
ï Automotive

ï Railways

ï Aerospace

ï Industrial production

§ Sources of complexity:
ï Hundreds of functions

ï Networked control

ï Real-time constraints

ï Complex execution model with mixture of
real-time and event-based triggers

ï System composed of multiple
heterogeneous subsystems

ï Critical Functions:
» ABS, drive-by-wire

» Operate switches, level crossings, lights

» Manage on-board power production

ï Conflicting objectives:
» Avoid crashes vs move trains

Source: Prof. Rolf Ernst ς CAV 2011

6

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Life Cycle of Complex Systems

§How do we support
the design?

§Requirements
validation:
ïAre the requirements

flawed?

§Functional
correctness
ïDoes the system

satisfy the
requirements?

§Safety assessment
ïIs the system able to

deal with faults?

Design

Requirements
analysis

Architecture
definition

Components
design

Safety analysis

SW/HW
implement.

7

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From design to operationé

§ Planning
ï plan how to achieve desired ñfiringò sequence

ï retrieve pipes from holds, pre-weld, send to firing line, final weld

§ Execution Monitoring
ï welding may fail, activities can take more time than expected

ï plant may fail

§ Fault Detection, Fault Identification/Isolation
ï is there a problem? where is it?

§ Fault Recovery
ï put off-line problematic equipment

§ Replanning
ï identify alternative course of actions, e.g. reroute pipes

8

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Control

State Estimation

Physical

Plant

Plan

Execution

Monitoring/

FDIR

Sensing Actuation

Hidden State

Planning/

Deliberation

Goals

Complex systems operation

Plan

§How do we support
operation?
ïPlanning, Monitoring,

FDIR, replanning

ïthey all require
reasoning about the
behaviour of a dynamic
system

9

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Life Cycle of Complex Systems

Design Operation

Requirements
analysis

Architecture
definition

Components
design

Safety analysis

SW/HW
implement.

Planning

Execution

Monitoring

FDIR

Replanning

10

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

A formal approach

§Both design and operation tasks require

ïthe analysis of the behaviour of dynamic systems over

time

» In fact, they often require the analysis of the same dynamic

systems

ïthe analysis must be ñrigorousò

» predictability, certification

§We need a rich formalism

ïto represent the behaviour of complex systems

ïto provide the reasoning tasks required for design and

for operation

11

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model Checking in a nutshell

§Does system satisfy requirements?

§System as finite state model

§Requirements as temporal properties

System

Requirements

satisfied by

12

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Model checking

§Reactive System
ï infinite computation, interacting with environment

ïcommunication protocol, hw design, control software, OS

ïmodeled as a (finite) state transition system

§Requirements
ïdesirable properties of system behaviour

ïmodeled as formulae in a temporal logic (CLT, LTL, PSL, é)

§Does my system satisfy the requirements?
ïIs the set of traces ñgeneratedò by the system included in the set of
traces ñacceptedò by the requirements?

§Model checker
ïsearch configurations of state transition system

ïdetect violation to property, and produce witness of violation

ïconclude absence of violation when fix point reached

13

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Properties

§Temporal logic can be used to express properties

of reactive systems

§Safety properties: nothing bad ever happens

ïTwo concurrent processes never execute simultaneously

within their critical section

§Liveness properties: something desirable will

eventually happen

ïA subroutine will eventually terminate execution and

return control to the caller

ïWhenever a request arrives, it is sooner or later followed

by a response

15

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Refuting temporal properties

§Safety: refuted by finite trace to

bad state

§Liveness: refuted by infinite

trace with invariant suffix

ïFinitely presented as cycle

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling hybrid systems

17

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Representation Challenges

§A formalism to characterize systems with

ïNondeterministic behaviours

ïPossible faults

ïOperation in degraded modes

ïLimited observability

ïParallel actions/tasks

» Start actuations in different subsystems

ïActivities with duration

» Time taken by procedures

» e.g. moving, welding, checking, é

ïResources

» Power consumption, space, bandwidth, memory, é

18

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (I)

§Synchronous, finite case
ïCircuits

§Finite state
ïeach state variable associated with value in finite range

 VAR x, y: boolean

 init(x) := 0, init(y) := 0

 next(x) := !x

 next(y) := if x then !y else y

§Synchronous composition
ïBoth variables evolve at the same time

 x: 0 1 0 1 0 1 0 1 ...

 y: 0 0 1 1 0 0 1 1 ...

19

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (II): infinite data

§Synchronous, infinite case

ïprograms

§Infinite state: each state variable associated with

value in finite range

VAR n : integer;

next(n) := if (even n)

 then (n / 2)

 else (3*n + 1)

§Reaching a fix point no longer guaranteed

20

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (III): asynchronous composition

§Automaton with states and transitions

VAR s : { Wait, Trying, Critical};

IVAR label : { req , enter, done, stutter};

s=Wait & label = request - > next(s)=Trying

label = stutter - > next(s)=s

Wait

Critical

Trying

request

done enter

21

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Modeling (III): Networks of automata

SYNC server.grant1 C1.enter

SYNC server.grant2 C2.enter

...

22

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Representation

§ State variables as variables in a logical language

ï x, y, z, w

§ A state is an assignment to state variables

ï The bitvector 0011

ï The assignment { z, w }

ï The formula ¬x ¬y z w

§ A set of states is a set of assignments

ï can be represented by a logical formula

ï x ¬y represents {1000, 1001, 1010, 1011}
or a larger set, if more variables are present

§ Set operations represented by logical operations

ï union, intersection, complementation as
disjunction, conjunction, negation

§ I(X), B(X) are formulae in X

ï Is there a bad initial state?

ï Is I(X) B(X) satisfiable?

23

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Representation

§Symbolic representation not only for finite case!
ïSoftware: control flow graph + data path

ïHardware at RTL, SystemC, threaded software

ïUML state machines, AADL descriptions

§Transition
ïpair of assignments to state variables

§Use two sets of variables
ïcurrent state variables: x, y, z

ïnext state variables: x', y', z'

§A formula in current and next state variables
ïrepresents a set of assignments to X and X'

ïa set of transitions

ïR(X, X')

24

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From discrete traces to hybrid traces

§So far

ïno notion of real time

ïtraces as sequences of assignments to state variables

§This is often not enough

§Example:

ïTrain moving on track

ïEvolution of position and speed over time

ïMovement authorithy (MA):

» Proceed until position ñend of authorityò (EOA)

» At EOA speed must be below ñtarget speedò (TS)

25

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Hybrid means discrete + continuous

§ State as values to
variables
ï discrete variables

» Operation modes

ï continuous variables
» Speed, position

§ Transitions from state to
state

§ Continuous transitions
ï Discrete component

does not change

ï time elapses

ï Continuous variables
evolve accordingly

§ Discrete transitions
ï Instananeous

ï Discrete component
changes

ï Continuous
component may have
jumps

» Timer reset

» Speed limit variation

26

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The formalism: hybrid automata

§Locations

§Events

§Transitions

§Continuous
variables

§Guards
ïEnable transtions

§ Invariants
ïMust be satisfied

in locations

§Flow conditions
ïHow do variables

evolve when time
elapses

27

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Hybrid automata

Far

Past

Near

approach

[x = 0] [x = - 100]

x := 1900..4900

- 50 <= der(x) <= - 40

x >= - 100

- 40 <= der(x) <= - 30

x >= 0

- 50 <= der(x) <= - 40

x >= 1000

Continuous

transition

D
is

c
re

te

tra
n

s
itio

n

[x = 1000]

exit here

28

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Properties of hybrid automata

§Well founded, comprehensive and well studied
ïClear definition of behaviors of model

ïWhich states are reachable

§Temporal properties to express scenarios and requirements
ïnever two processes in critical region

ïalways if req then within 5 sec response

§Model checking
» Does the system satisfy the requirements?

§Temporal reasoning
» Strong/weak/dynamical controllability?

§Planning
» Find the inputs that will bring the system to required state

§The workhorse: satisfiability modulo theories

29

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

An example

Start_a - > s = STANDBY

Start_a - > next(s) = TAKING_PICTURE

Start_a - > next(t) = 0.0

s = TAKING_PICTURE - > t <= 50.0

End_a - > s = TAKING_PICTURE

End_a - > next(s) = STANDBY

End_a - > t >= 30.0

STANDBY
TAKING

PICTURE

Start_a / t := 0

End_a [t >= 30]
t <= 50

30

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Nondeterminism and uncertainty

§Nondeterminism

ïDiscrete choice

§Uncertainty

ïContinuous

§Controllable

ïStart

§Uncontrollable

ïEffects

ïEnd

Certain Duration Uncertain Duration

Determ.

Effects

NonDeterm.

Effects

31

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

From HA to SMT formulae

s = Past - > x >= - 100

exit - > s = Past & x = - 100

exit - > next(s) = Far

exit - > next(x) in 1900..4900

timed - > next(s) = s

timed & s = Past - >

 next(x) >= x - 50* delta &

 next(x) <= x - 40* delta

Far

Past

Near

approach

x = 1000

[x = 0]

exit

[x = - 100]

x := 1900..4900
- 50 <= der(x) <= - 40

x >= - 100

- 40 <= der(x) <= - 30

x >= 0

- 50 <= der(x) <= - 40

x >= 1000

32

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The SMT representation

VAR s : { Past, Near, Far }

VAR x : real;

...

INIT x <= 5000

INIT s = Past

...

TRANS

s = Past - > x >= - 100

exit - > s = Past

exit - > next(s) = Far

exit - > next(x) >= 1900

exit - > next(x) <= 4900

...

timed - > next(s) = s

timed - > next(x) >= x - 50* delta

timed - > next(x) <= x - 40* delta

Hybrid automata symbolically

represented by SMT formulae!

I(X) initial states

R(X,Xô) transition relation

B(X) bad/target states

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Engines for symbolic verification

From SAT to SMT

34

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Satisfiability vs Verification
(or, combinational vs sequential)

Boolean Modulo

theories

Verification
Finite state model
checking

Infinite state
Model checking

Satisfiability
BDDs,
SAT solvers

SMT solvers

35

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Underlying engines

§Finite case

ïBinary Decision Diagrams

ïBoolean Satisfiability Solving

§Infinite case

ïSatisfiability Modulo Theories

36

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Binary Decision Diagrams

§Representation of boolean functions

§Canonical form for propositional logic

§Widely used in formal verification

§Efficient BDD packages provide

ïboolean operations

ïuniversal and existential quantification (QBF)

ïcaching and memoizing

§Used to represent

ïaccumulated states

ïpartial policies

37

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

BDD-based Symbolic Model Checking

§Based on Binary Decision Diagrams

ïcanonical representation for logical formulae

ïboolean operations, quantifier elimination

§I(X), R(X, X'), B(X)

ïeach represented by a BDD

§Image computation: compute all successors of all

states in S(X)

ïbased on projection operation

ïexists X.(S(X) and R(X, X'))

§Reachability algorithm

ïExpand new states until bug, or fix point

38

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

 ̂ ̂

 ̂ ̂ ̂ T

SAT!

Boolean DPLL

P

§ The DPLL procedure

§ Incremental construction of satisfying assignment

§ Backtrack/backjump on conflict

§ Learn reason for conflict

§ Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R

39

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Satisfiability modulo theories

§Satisfiability of a first order formula é
ïwhere the atoms are interpreted modulo a background theory

§Theories of practical interest
ïEquality Uninterpreted Functions (EUF)

» x = f(y), h(x) = g(y)

ïDifference constraints (DL)
» x ï y Ò 3

ïLinear Arithmetic
» 3x ï 5y + 7z Ò 1

» reals (LRA), integers (LIA)

ïArrays (Ar)
» read(write(A, i, v), j)

ïBit Vectors (BV)

ïTheir combination

40

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Statisfiability Modulo Theories

§An extension of boolean SAT

§Some atoms have non-boolean (theory) content
» A1 : x ï y Ò 3

» A2 : y ï z = 10

» A3 : x ï z Ó 15

§Theory interpretation for individual variables,
constants, functions and predicates

» if x = 0, y = 20, z = 10

» then A1 = T, A2 = T, A3 = F

§Interpretations of atoms are constrained
» A1, A2 and A3 can not be all true at the same time

41

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT solvers

§Boolean reasoning + constraint solving

ïSAT solver for boolean reasoning

ïtheory solvers to interpret numerical constraints

42

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bool ̂

Bool ̂ Bool T Bool ̂

MathSAT: search space

Many boolean models are not theory consistent!

P T x ð y Ò 3

P1 F

P2 T y ð z = 10

Q F

R T x ð z Ó 15

R1 F

S F z ð 2*w = 1

S1 T

P

Q

R

S

S

R

T

Q

S

T

R

Th ̂

Bool T

Th ̂

Bool T

Th T

SAT!!!

43

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bool ̂ Bool T

Math T

SAT!

EP:Th ̂ EP:Th T

EP:Math T

EP:Th T

EP:Math T

Pruned away

in the EP step

Early pruning

Check theory consistency of partial assignments

P

Q

S

T

R

44

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Learning Theory Conflicts

The theory solver can detect a
reason for inconsistency

I.e. a subset of the literals that
are mutually unsatisfiable

E.g. x = y, y = z, x != z

Learn a conflict clause
 x != y or y != z or x = z

By BCP the boolean
enumeration will never make
same mistake again

Bool ̂ Bool T

Math T

SAT!

EP:Th ̂ EP:Math T

EP:Th T

EP:Math T

EP:Th T

Pruned away

in the EP step

P

Q

S

T

R

45

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Theory Deduction

The theory solver can detect that
certain atoms have forced values

E.g. from x = y and x = z
infer that y = z should be true

Force deterministic assignments

Theory version of BCP

Furthermore, we can learn the
deduction:

 x=y & x = z -> y=z

Theory Conflict vs theory deduction Bool ̂ Bool T

Th T

SAT!

EP:Math ̂ EP:Th T

EP:Math T

EP:Th T

EP:Th T

Pruned away

in the EP step

P

Q

S

T

R

46

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Optimizations

§ Incrementality and Backtackability

ïadd constraints without restarting from scratch

ï remove constraints without paying too much

§Limiting cost of early pruning

ï filtering, incomplete calls

§Conflict set minimization

ï return T-inconsistent subset of assignment

§Deduction

ï return forced values to unassigned theory atoms

§Static learning

ïprecompile obvious theory reasoning reasoning to boolean

47

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT solvers in practice

§ In practice, the integration is very tight
ï SAT solver working as an enumerator

ï Theory solver follows the stack-based search
» Inconsistent partial assignments are pruned on the fly

» conflicts clauses learnt from theory reasoning

» used to drive search at the boolean level

§ Additional features
ï Model construction

ï Incremental interface

ï Unsatisfiable core

ï Proof production

ï Interpolation

§ Satisfiability Modulo Theories: a sweet spot?
ï increase expressiveness

ï retain efficiency of boolean reasoning

§ Trade off between expressiveness and reasoning
ï SAT solvers: boolean case, automated and very efficient

ï theorem provers: general FOL, limited automation

48

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The SMT community

§Standard language and benchmarks

ïhttp://www.smt - lib.org

§Yearly competition

ïhttp://www.smt - comp.org

§Solvers

ïYICES, OpenSMT, Z3, CVC, é

§The MathSAT solver

ïhttp://mathsat.fbk.eu

ïSolving, core extraction, interpolation, allsmt, costs

49

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Notable achievements

§Successful applications in various fields

ïverification of pipelined microprocessors

ïequivalence checking of Microcode

ïsoftware verification

ïwhitebox testing for security applications

ïdesign space exploration, configuration synthesis

ïdiscovery of combinatorial materials

§Reasons for success?

ïallows to deal with richer representation

ïincrease capacity by working above the boolean level

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

SMT-based verification

51

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Symbolic Encoding

§ Vectors of state variables
ï current state X

ï next state X'

§ Initial condition I(X)

§ Transition relation R(X, X')

§ Bug states B(X)

§ Key difference
ïX, X' are not limited to boolean variables

» in addition to discrete

» reals, integers, bitvectors, arrays, é

ï I, R, B are SMT formulae

§ Representation
ï higher level

ï structural information is retained

52

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Bounded Model Checking

§ State variables replicated K times
ï X0 , X1, é, Xk-1, Xk

§ Look for bugs of increasing length
ï I(X0) R(X0, X1) é R(Xk-1, Xk) B(Xk)

ï bug if satisfiable

ï increase k until é

§ Advanced use of satisfiability solver
ï incremental interface

ï theory lemmas should be retained

ï theory lemmas can be shifted over time
» from ʌ(X0, X1) to ʌ(Xi, Xj+1)

ï Unsat core and generation of interpolants

ï Elimination of quantifiers

54

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Induction

§Prove absence of bugs by induction

 I(X0) B(X0)

 ¬B(X0) R(X0, X1) B(X1)

 . . .

 I(X0) R(X0, X1) . . . R(Xkī1, Xk) B(Xk)

 ¬B(X0) ^ R(X0, X1) . . . ¬B(Xkī1) R(Xkī1, Xk) B(Xk)

§Proved correct if unsatisfiable (and no bugs until k)

§Commonly used techniques
ïInvariant strengthening

» Sometimes trying to prove a stronger fact may be easier

ïSimple path condition
» Explore only paths that do not contain repetitions

56

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation

57

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation-based model checking

58

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Interpolation-based model checking

61

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Counter-Example Guided

Abstraction-Refinement (CEGAR)

62

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

P0

P1

not P1

01 00

10 11

P2

not P2

000

010 011

001

100 101

Ɋ0(X)

Ɋ1(X)

Ɋ2(X)

I(X)

R(X, X')

State vars X

Abstract State vars P

AI (P)

AR(P,P')

not P0

Predicate abstraction

63

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

CEGAR with Predicate abstraction

64

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Computing Abstractions

§Given concrete model CI(X), CR(X, X')

§Given set of predicates Ɋi(X)

each associated to abstract variable Pi

§Obtain the corresponding abstract model

§AR(P, P') is defined by

 X X'.(CR(X, X') i Pi Ɋi(X) i Pi' Ɋi(X'))

§Existential quantification as AllSMT

ïSMT solver extended to generate all satisfying

assignment

65

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Implicit Abstraction

§Abstract transition system computed with AllSMT:
ïExponential in the number of predicates.

ïMajor bottleneck of CEGAR.

ïPrevents the analysis of the abstract system.

§Main idea: avoid upfront computation of the abstract
program

§How: embedding the abstraction definition into the
BMC/k-induction encodings;

§abstract transitions implicitly computed by the SMT
solver;

§similar to lazy abstraction but completely symbolic and
without any image computation/quantifier elimination.

66

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Implicit abstraction

= = é =

X0 Xô0 X1 Xô1 Xk
Xôk

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Specialized techniques

68

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Specialized techniques

§From hybrid traces to infinite-state transition

system over discrete traces

§Time elapse has the effect of a global

synchronization

§Interleaving may induce very long paths

§Encoding may have significant impact!

§Generate transition systems with shorter/less paths

69

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

The effect of interleaving

70

ICAPSô13 Tutorial on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti

Local clocks

