->¢

Model checking Hybrid Systems
via Satisfiability Modulo Theories

Alessandro Cimatti
Embedded System Unit
Fondazione Bruno Kessler

Trento, Iltaly
cimatti@fbk.eu

Joint work with Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta

We gratefully acknowledge the support of the European Space Agency contracts OMC-ARE, COMPASS, IRONCAP,
AUTOGEF, FOREVER, FAME, HASDEL.

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

mailto:surname@fbk.eu

e —————
'3(Fondazione Bruno Kessler

§ Fondazione Bruno Kessler
i Private foundation with public finalities
I Owned by Provincia Autonoma di Trento
I Formerly IRST, Istituto Trentino di Cultura

8§ Center for Information Technology
T Director: Paolo Traverso

8 The Embedded Systems Unit
I 28 people
I 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students
I Open call for more ph.d. students and postdocs!

§ Strategy: tight integration of
I Basic research
I Tool development
I Technology transfer

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Take away messages

8§ The need for verification
I Very complex systems
§ Verification in a broader sense
I Rigorous analysis of the behaviour of dynamic systems
§ Hybrid automata
I A uniform and comprehensive formal model
§ Satisfiability Modulo Theories

I Higher level symbolic modeling
I Efficient engines: SAT + constraint solving

§ SMT-based Verification
I Many effective complementary algorithms

§ Application in several project
I Strong potential for practical impact

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

-
:?5(Structure of the tutorial

8§ Motivations

§ Hybrid Systems

8 Satisfiability Modulo Theories

§ SMT-based verification

§ SMT-based verification of Hybrid Systems
§ Requirements analysis

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

-:(

FONDAZ
BRUNO

§ Designing complex systems

Automotive
Railways
Aerospace

Industrial production

8 Sources of complexity:

Hundreds of functions
Networked control
Real-time constraints

Complex execution model with mixture of
real-time and event-based triggers
System composed of multiple
heterogeneous subsystems
Critical Functions:

» ABS, drive-by-wire

» Operate switches, level crossings, lights

» Manage on-board power production
Conflicting objectives:

» Avoid crashes vs move trains

The Design Challenge

55 ECUs & 7 Buses of 4 types with Gateways

Merondes-Beae

BOEING 719)547 el - ok eoilins

| CAPS613

T u t ebasedavérificationnof Hyid' Systems, Rome, 10.6.2013 - Alessandro Cimatti

-3¢ Life Cycle of Complex Systems

FONDAZIONE
BRUNO KESSLER

8§ How do we support
the design?

§8 Requirements
validation:
i Are the requirements

analysis 8 Functional
correctness
definition i Does the system

Components satisfy the
design requirements?
_ § Safety assessment
Safety analysis i Is the system able to
deal with faults?

SW/HW
implement.

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

XFrom design to opeEe

BRUNO KESSLER

8§ Planning
i plan how to achieve desired Afiringo s
i retrieve pipes from holds, pre-weld, send to firing line, final weld
§ Execution Monitoring
i welding may fail, activities can take more time than expected
i plant may falil
8§ Fault Detection, Fault Identification/Isolation
I is there a problem? where is it?
§ Fault Recovery
I put off-line problematic equipment
8§ Replanning
i identify alternative course of actions, e.g. reroute pipes

Nolores

@%u- - = . = i f
2 “‘L) ——] a -
Y LT \ !.
AR\ T W R 6 5 : W
e AN I N -~ B : £

D e ———
~>< Complex systems operation

D

||| State Estimation
. J Monitoring/ |,
v 1= =2 ppr €T
Goals . m |
- Planning/ ., Plan "/ m
— - => _ _ E=\Ig======v
Deliberation I m
m Plan m
%
§ How do we support m Execution |
operation? m :
"a - . . m]
i Planning, Monitoring, Sensing Actuation|
FDIR, replanning \I\

i they all require — I J

reasoning about the
behaviour of a dynamic

system Hidden State

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=< Life Cycle of Complex Systems

BRUNO KESSLER

Operation

Requirements Plannin
analysis J

Architecture :
e Execution
definition
design
Safety analysis FDIR
SW/HW :
: Replanning
implement.

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'3(A formal approach

8§ Both design and operation tasks require
I the analysis of the behaviour of dynamic systems over
time
» In fact, they often require the analysis of the same dynamic
systems

iIthe analysi s must be nrigor
» predictability, certification

§ We need a rich formalism
I to represent the behaviour of complex systems

I to provide the reasoning tasks required for design and
for operation

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
~5< Model Checking in a nutshell

8§ Does system satisfy requirements?
§ System as finite state model
§ Requirements as temporal properties

N

Requirements | G(p->Fq) Ves
e Temporal X /
satisfied by Formula Model

Checker \ No +
N Counterexample
q pl
System P | | |
— q_ I_I
Finite State
Model

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Model checking

§ Reactive System
I infinite computation, interacting with environment
I communication protocol, hw design, control software, OS
I modeled as a (finite) state transition system

§8 Requirements
I desirable properties of system behaviour
I modeled as formulae inatemporall ogi ¢ (CL T, L TL,

8§ Does my system satisfy the requirements?

i'l's the set of traces g
t

ene
traces Nnacceptedo by he r

ratedo
equire

§ Model checker
I search configurations of state transition system
I detect violation to property, and produce witnhess of violation
I conclude absence of violation when fix point reached

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'9(Properties

8§ Temporal logic can be used to express properties
of reactive systems

§ Safety properties: nothing bad ever happens
I Two concurrent processes never execute simultaneously
within their critical section
§ Liveness properties: something desirable will
eventually happen

I A subroutine will eventually terminate execution and
return control to the caller

I Whenever a request arrives, it is sooner or later followed
by a response

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

{;3(Refuting temporal properties

§ Safety: refuted by finite trace to

bad state @p

§ Liveness: refuted by infinite
trace with invariant suffix

I Finitely presented as cycle

| CAPSG613 Tut easedaérificationnof Hyvd Systems, Rome, 10.6.2013 - Al

=14

Modeling hybrid systems

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
'3(Representation Challenges

§ A formalism to characterize systems with
I Nondeterministic behaviours
I Possible faults
I Operation in degraded modes
I Limited observability

I Parallel actions/tasks
» Start actuations in different subsystems

I Activities with duration
» Time taken by procedures

»e . Jg. moving, welding, c¢checking,

I Resources
»Power consumption, space, band\
17

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>< Modeling (1)

§ Synchronous, finite case
I Circuits
§ Finite state
| each state variable associated with value In finite range
VAR X, V: boolean

Init(x) := 0, Init(y) :=0
next(x) := Ix
next(y) ;= if x then ly else y

§ Synchronous composition
I Both variables evolve at the same time

Xx:01010101...
y:00110011...

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
=< Modeling (I1): infinite data

8§ Synchronous, infinite case
I programs

8 Infinite state: each state variable associated with
value In finite range

VAR n : integer;

next(n) := if (even n)
then (n/ 2)
else (3*n + 1)

8 Reaching a fix point no longer guaranteed

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

- .
:?5(Modeling (lll): asynchronous composition

g Automaton with states and transitions

e ~N request e v ~N
Wait Trying

\§ J _ /

T r D

done ..
Critical < enter
_ /

VAR s : { Wait, Trying, Ciritical};
IVAR label : { req , enter, done, stutter};
s=Wait & label = request - > next(s)=Trying
label = stutter - > next(s)=s

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Modeling (I11): Networks of automata

SYNC server.grantl Cl.enter
SYNC server.grant2 C2.enter

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Symbolic Representation

§ State variables as variables in a logical language
T X,V 2z, W
§ A state is an assignment to state variables
I The bitvector 0011
I The assignment {z, w}
I Theformula-x -~y z w
8§ A set of states is a set of assignments

I can be represented by a logical formula

I X =y represents {1000, 1001, 1010, 1011}
or a larger set, if more variables are present

8 Set operations represented by logical operations

I union, intersection, complementation as
disjunction, conjunction, negation

8 [(X), B(X) are formulae in X
I Is there a bad initial state?
I Is1(X) B(X) satisfiable?

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'9(Symbolic Representation

§ Symbolic representation not only for finite case!
I Software: control flow graph + data path
I Hardware at RTL, SystemC, threaded software
I UML state machines, AADL descriptions

8§ Transition

I pair of assignments to state variables
§ Use two sets of variables

I current state variables: x, y, z

I next state variables: x', y', Z'

§ A formula in current and next state variables
I represents a set of assignments to X and X'

I a set of transitions
i R(X, X"

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'9(From discrete traces to hybrid traces

§ So far

I no notion of real time
| traces as sequences of assignments to state variables

§ This Is often not enough

§ Example:
I Train moving on track
I Evolution of position and speed over time

I Movement authorithy (MA):
»Proceed unti | position Aend of
» At EOA speed must be below At art

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

e,

F(

< Hybrid means discrete + continuous

State as values to

_— variables
A ///'”/ i discrete variables
_~ » Operation modes
e i continuous variables
- e — — twain's location » Speed, position
> _— ——— MA’sEOA Transitions from state to
S _— } - - — train’s speed state
3 — S R MA’s Target Speed Continuous transitions
— i Discrete component
S } does not change
e I e N i time elapses
- - . i Continuous variables
e p AN evolve accordingly

Discrete transitions

Instananeous

Discrete component
changes
Continuous
component may have
jumps

» Timer reset

» Speed limit variation

| CAPS613

T u t ebasedavérificationnof Hyid' Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'3(The formalism: hybrid automata

approach § LocatIOHS
x = 1000
8 Events
X < 5000 Far Near § Tl’anSItIOﬂS
- 5 —50 < x < —40 —40 < x < -30 .
x > 1000 x>0 8 Continuous
variables
exit § Gual’dS
o & 1600, 4800 . i Enable transtions
~50 < x < —40 8 Invariants
x > —100 . o
N T Must be satisfied
In locations

8 Flow conditions

I How do variables
evolve when time
elapses

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

e —————
'3(Hybrid automata

J

s ~ approach
[x = 1000]
Far
- 50 <=der(x) <= -40
K x >= 1000)
I -
exit
Past
[x=-100] - 50 <= der(x) <= - 40
X :=1900..4900 \ x >= -100
A
59
5 wn
23 1
L

v
4)
Near
- 40 <=der(x) <= - 30
_ x>=0 Y,
here
[x = 0]

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

RS,
'3(Properties of hybrid automata

§8 Well founded, comprehensive and well studied
T Clear definition of behaviors of model
T Which states are reachable

§ Temporal properties to express scenarios and requirements
I never two processes in critical region
I always if req then within 5 sec response

§ Model checking

» Does the system satisfy the requirements?

§ Temporal reasoning
» Strong/weak/dynamical controllability?

§ Planning

» Find the inputs that will bring the system to required state

8 The workhorse: satisfiability modulo theories

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(An example

Start a ->s=STANDBY
Start._ a ->next(s) = TAKING_PICTURE
Start a -> next(t) =0.0

s = TAKING PICTURE -> t<=50.0
End_a ->s=TAKING PICTURE

End _a -> next(s) = STANDBY
End a -> t>=30.0

s ~N Starta [/ t:=0 - v ~N
TAKING
STANDBY PICTURE

\- - / End a [t>=30] S~—— % J

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

TR aaS———————————————
'3(Nondeterminism and uncertainty

8 Nondeterminism
I Discrete choice

§ Uncertainty

Certain Duration |Uncertain Duration|

I Continuous
Determ. + | + |¢|
Effects
§ Controllable
I Start
§ Uncontrollable f | + Iil
.. NonDeterm. | |> | | I;
| Effects Effects :
T End 4

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'3(From HA to SMT formulae

BR

e ~ approach s y ~N
x =1000
Far Near
- 50 <=der(x) <= -40 - 40 <= der(x) <= -30
\ X >= 1000 j \ X >=0 j
AN
[x=0]
4)
exit
Past €
[X= - 100] - 50 <= der(x) <= -40
X :=1900..4900 \ x>= -100)
s=Past -> x>= -100 - > nexi(s) = s
exit ->s=Past& x= -100 & s = Past ->
exit - > next(s) = Far next(x) >= x - 20*
exit -> next(x) in 1900..4900 next(x) <= X - 40*

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

[;3(The SMT representation

VAR s : { Past, Near, Far}

VAR X real Hybrid automata symbolically
INIT x <= 5000 represented by SMT formulae!
INIT s = Past

TRANS 1(X) initial states

S?tPast> -;Xt>= 100 [R(X, XO0) transitf
exi - >SS =Fas

exit - > next(s) = Far B(X) bad/target states

exit -> next(x) >= 1900
exit -> next(x) <=4900

->next(s) =s
- > next(x) >=x - 50*
- > next(x) <= X - 40*

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

->¢

Engines for symbolic verification

From SAT to SMT

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>{_ Satisfiability vs Verification

AZIONE
(or, combinational vs sequential)

BRUNO KESSLER

Boolean Modulo

theories

e eeee XYY
Verification Finite state model Infinite state

checking ‘Model checking
. .

BDDs,
SAT solveH SMT solvers

Satisfiability

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

D e ———
'9(Underlying engines

§ Finite case

I Binary Decision Diagrams

I Boolean Satisfiability Solving
8 Infinite case

I Satisfiability Modulo Theories

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Binary Decision Diagrams

8 Representation of boolean functions
§ Canonical form for propositional logic
8§ Widely used in formal verification

§ Efficient BDD packages provide
I boolean operations
I universal and existential quantification (QBF)
I caching and memoizing

§ Used to represent
I accumulated states
I partial policies

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'3(BDD-based Symbolic Model Checking

§ Based on Binary Decision Diagrams
I canonical representation for logical formulae
I boolean operations, quantifier elimination

§ 1(X), R(X, X), B(X)
I each represented by a BDD

§ Image computation: compute all successors of all
states in S(X)
I based on projection operation
I exists X.(S(X) and R(X, X))
§ Reachability algorithm
I Expand new states until bug, or fix point

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>< Boolean DPLL

\

AS\ .T\ >§

SATI
The DPLL procedure
Incremental construction of satisfying assignment
Backtrack/backjump on conflict
Learn reason for conflict
Splitting heuristics

w W W W W

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

38

RS,
'3(Satisfiability modulo theories

§ Satisfiabilityof a first order for
I where the atoms are interpreted modulo a background theory

8§ Theories of practical interest

I Equality Uninterpreted Functions (EUF)
» x =1(y), h(x) = g(y)

I Difference constraints (DL)
»Xxly O 3

I Linear Arithmetic
»3x1T 5y + 7z O 1
» reals (LRA), integers (LIA)

I Arrays (Ar)
» read(write(A, 1, V), |)

I Bit Vectors (BV)

I Their combination

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

I
->< gtatisfiability Modulo Theories

g An extension of boolean SAT

§ Some atoms have non-boolean (theory) content
»Al:xiy O 3
»A2:y1 z=10
»A3:xiz O 15

8 Theory interpretation for individual variables,

constants, functions and predicates

»ifx=0,y=20,z2=10
»then A1=T,A2=T,A3=F

§ Interpretations of atoms are constrained
» Al, A2 and A3 can not be all true at the same time

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

S —
'3(SMT solvers

§ Boolean reasoning + constraint solving
I SAT solver for boolean reasoning
I theory solvers to interpret numerical constraints

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(MathSAT: search space

S| F|zdo2*w=1

Malrﬁt Eﬂialean modsé

SAT!

|s are not theory consistent!

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
'9(Early pruning

Check theory consistency of partial assignments

/\@T

‘,, ‘\. P gath T
Pruned away \E
in the EP Step =

Bool™ Bool T
Math T
SAT!

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

T
=3¢ Learning Theory Conflicts

The theory solver can detect a
reason for inconsistency

|.e. a subset of the literals that EP:Th * /\Ep@am

are mutually unsatisfiable \

E.g.Xx=y,y=2z X!=z ,/ % PST
Pruned away \E

_ in the EP Step Ppriath T

Learn a conflict clause LN

Xl=yoryl=zorx=z 5 > T

By BCP the boolean T e B\oow

enumeration will never make van T

same mistake again |

44

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Theory Deduction

The theory solver can detect that
certain atoms have forced values

E.g.fromx=yand x =z

infer that y = z should be true
S _ EP: Math’\ \

Force deterministic assignments

/ P@th T
. .' .
Theory version of BCP Prunéd awgy \E
in the EP Step <
Furthermore, we can learn the s e
deduction: Ern T
X=y & X=2z->y=z » \
Theory Conflict vs theory deduction Y bed® BoolT
ThT
SAT!

45

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Optimizations

8 Incrementality and Backtackability
I add constraints without restarting from scratch
I remove constraints without paying too much

§ Limiting cost of early pruning
I filtering, incomplete calls

8§ Conflict set minimization
I return T-inconsistent subset of assignment

§ Deduction
I return forced values to unassigned theory atoms

§ Static learning
I precompile obvious theory reasoning reasoning to boolean

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

.
'=>< SMT solvers In practice

FON

8 In practice, the integration is very tight
I SAT solver working as an enumerator

I Theory solver follows the stack-based search
» Inconsistent partial assignments are pruned on the fly
» conflicts clauses learnt from theory reasoning
» used to drive search at the boolean level

§ Additional features
I Model construction
T Incremental interface
T Unsatisfiable core
I Proof production
I Interpolation

§ Satisfiability Modulo Theories: a sweet spot?
I Increase expressiveness
I retain efficiency of boolean reasoning

8 Trade off between expressiveness and reasoning
I SAT solvers: boolean case, automated and very efficient
i theorem provers: general FOL, limited automation

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTTTTE—————————————
'9(The SMT community

§ Standard language and benchmarks

I http://www.smt - lib.org
§ Yearly competition

I http://www.smt - comp.org
§ Solvers

i YICES, OpenSMT, Z3, CVC, e
8§ The MathSAT solver
I http://mathsat.fbk.eu
I Solving, core extraction, interpolation, allsmt, costs

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Notable achievements

8 Successful applications in various fields

" verification of pipelined microprocessors
equivalence checking of Microcode

software verification

whitebox testing for security applications

design space exploration, configuration synthesis
discovery of combinatorial materials

8§ Reasons for success?

allows to deal with richer representation
Increase capacity by working above the boolean level

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

SMT-based verification

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTTTTE—————————————
'9(Symbolic Encoding

8§ Vectors of state variables
I current state X
I next state X'

Initial condition 1(X)
Transition relation R(X, X)
Bug states B(X)

w W W

§ Key difference

T X, X"are not limited to boolean variables
» In addition to discrete
» reals, integers, bitvectors, arr ays, €

T |, R, Bare SMT formulae

§ Representation
I higher level
T structural information is retained

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(Bounded Model Checking

§ State variables replicated K times
T Xou Xy €0 XXy

§ Look for bugs of increasing length
T 1(Xp) R(Xp, X)) € R(X, X) B(X)
I bug if satisfiable
I increase k until &

8§ Advanced use of satisfiability solver
I incremental interface
I theory lemmas should be retained

I theory lemmas can be shifted over time

» fromg X f Xt o, Xip)(X
I Unsat core and generation of interpolants
I Elimination of quantifiers

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

..,
;?(Inducﬂon

8 Prove absence of bugs by induction

%) B(Xy)
"B(Xo) R(Xo’ Xl) B(Xl)

%) RO X) +.. ROiaX) B

“B(X) "R X)) ... B¢k ROraX) B

8 Proved correct if unsatisfiable (and no bugs until k)

§ Commonly used techniques
I Invariant strengthening
» Sometimes trying to prove a stronger fact may be easier
I Simple path condition
» Explore only paths that do not contain repetitions

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

T ———
'3(Interpolation

An interpolant for an unsatisfiable formula
S (X, Y)NP(Y,2Z)

is a formula /fp(Y') such that:
@ ltp(Y) A da(Y,Z)is unsatisfiable

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

3(Interpolation-based model checking

(D'I()J(E:X'O
1(Xo) AR(X0, X1) A R(X1,Xo)..
ltp(X1)

D
o _

Precise

Overapproximated

Reachable from I(X) Can reach B(X) in k-1 steps

Itp(X1) = Itp(R, 1(X0), k)

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

H?(Interpolation-based model checking

DPL\J O KESSLER

oD _

Precise

<
=
E
g
2
3
8
| | |
Reachable from I(X) Can reach B(X) in k-1 steps
@ Precise reachability

Qo Ro =/
@ R; = Img(R,R;_Q UR;_1
@ Interpolation based reachability
® Itpo = I(X4)
@ Itp; = Itp(R, Itp;_1, k) U Itp;_4

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

== Counter-Example Guided
‘ Abstraction-Refinement (CEGAR)

CP
09 Abstraction

Morelnfo AProgli]

‘ Refinement I ‘ Model Check I

No CCex

Counter-example
Analysis

[No ACex
— >Safe

Uns afe&t:ex

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=>{ predicate abstraction

not P, P, Jy(X)
%O 08%
P2 7}
X
not P, QZ()A/O/
@) 4
100 101

not|P,

State vars X

P Abstract State vars F
. I(X)
Al (P)
a,(% R(X, X)
980 AR(P,P') 044

62

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
->{ CEGAR with Predicate abstraction

Preds|[0] |

CProg—— Predicate
/ Abstraction
NewPers[iH] APrl)g[i]
‘ Refinement I ‘ Model Check I

No CCex

Uneafes Counter-example o Acgxg
%Cex An alysis Cex

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
:?ﬁ(Computing Abstractions

8 Given concrete model CI(X), CR(X, X")

8 Given set of predicates (;(X)
each associated to abstract variable P,

§ Obtain the corresponding abstract model
8§ AR(P, P') is defined by

XX.(CRXX,X) iP QX ;P QX))

8 Existential quantification as AIISMT

I SMT solver extended to generate all satisfying
assignment

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

-
:?ﬁ(Implicit Abstraction

§ Abstract transition system computed with AlISMT:
I Exponential in the number of predicates.
I Major bottleneck of CEGAR.
I Prevents the analysis of the abstract system.

§ Main idea: avoid upfront computation of the abstract
program

8§ How: embedding the abstraction definition into the
BMC/k-induction encodings;

§ abstract transitions implicitly computed by the SMT
solver,

8 similar to lazy abstraction but completely symbolic and
without any image computation/quantifier elimination.

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
'3(Implicit abstraction

Applicable when the abstraction « induces an equivalence
relation £EQ, among the concrete states.

@ For predicate abstraction,
EQu(X.X") = Npep P(X) = P(X").
Example of application:
@ Concrete unrolling: Ag- -1 R(Xp. Xpi1)

@ Abstract unrolling: Ag_,_1 R(Xp, X})) N EQ. (X}, Xpi1)
X0 X(S,j X1 Xp Xk Xp

. N _

) = = ¢ [C 1\

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=14

Specialized technigues

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

B
T?(Specialized technigues

8§ From hybrid traces to infinite-state transition
system over discrete traces

§ Time elapse has the effect of a global
synchronization

§ Interleaving may induce very long paths
§ Encoding may have significant impact!
§ Generate transition systems with shorter/less paths

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

=3(The effect of interleaving

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

- TTTTTTE—————————————
;3(Local clocks

| CAPS613 Tut easedaérificationnof HyWd Systems, Rome, 10.6.2013 - Alessandro Cimatti

