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Fondazione Bruno Kessler 

§ Fondazione Bruno Kessler 
ï Private foundation with public finalities 

ï Owned by Provincia Autonoma di Trento 

ï Formerly IRST, Istituto Trentino di Cultura 

 

§ Center for Information Technology 
ï Director: Paolo Traverso 

 

§ The Embedded Systems Unit 
ï 28 people 

ï 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students 

ï Open call for more ph.d. students and postdocs! 

 

§ Strategy: tight integration of 
ï Basic research 

ï Tool development 

ï Technology transfer 
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Take away messages 

§The need for verification 
ïVery complex systems 

§Verification in a broader sense 
ïRigorous analysis of the behaviour of dynamic systems 

§Hybrid automata 
ïA uniform and comprehensive formal model 

§Satisfiability Modulo Theories 
ïHigher level symbolic modeling 

ïEfficient engines: SAT + constraint solving 

§SMT-based Verification 
ïMany effective complementary algorithms 

§Application in several project 
ïStrong potential for practical impact 



4 

ICAPSô13 Tutorial  on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti 

Structure of the tutorial 

§Motivations 

§Hybrid Systems 

§Satisfiability Modulo Theories 

§SMT-based verification 

§SMT-based verification of Hybrid Systems 

§Requirements analysis 
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The Design Challenge 

§ Designing complex systems 
ï Automotive 

ï Railways 

ï Aerospace 

ï Industrial production 

§ Sources of complexity: 
ï Hundreds of functions 

ï Networked control 

ï Real-time constraints 

ï Complex execution model with mixture of 
real-time and event-based triggers 

ï System composed of multiple 
heterogeneous subsystems 

ï Critical Functions: 
» ABS, drive-by-wire 

» Operate switches, level crossings, lights 

» Manage on-board power production 

ï Conflicting objectives: 
» Avoid crashes vs move trains 

Source: Prof. Rolf Ernst ς CAV 2011 
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Life Cycle of Complex Systems 

§How do we support 
the design? 

§Requirements 
validation: 
ïAre the requirements 

flawed? 

§Functional 
correctness 
ïDoes the system 

satisfy the 
requirements? 

§Safety assessment 
ïIs the system able to 

deal with faults? 

Design 

Requirements 
analysis 

Architecture 
definition 

Components 
design 

Safety analysis 

SW/HW 
implement. 
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From design to operationé 

§ Planning 
ï plan how to achieve desired ñfiringò sequence 

ï retrieve pipes from holds, pre-weld, send to firing line, final weld 

§ Execution Monitoring 
ï welding may fail, activities can take more time than expected 

ï plant may fail 

§ Fault Detection, Fault Identification/Isolation 
ï is there a problem? where is it? 

§ Fault Recovery 
ï put off-line problematic equipment 

§ Replanning 
ï identify alternative course of actions, e.g. reroute pipes 
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Control 

State Estimation 

Physical 

Plant 

Plan 

Execution 

Monitoring/

FDIR 

Sensing Actuation 

Hidden State 

Planning/ 

Deliberation 

Goals 

Complex systems operation 

Plan 

§How do we support 
operation? 
ïPlanning, Monitoring, 

FDIR, replanning 

ïthey all require 
reasoning about the 
behaviour of a dynamic 
system 
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Life Cycle of Complex Systems 

Design Operation 

Requirements 
analysis 

Architecture 
definition 

Components 
design 

Safety analysis 

SW/HW 
implement. 

Planning 

Execution 

Monitoring 

FDIR 

Replanning 
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A formal approach 

§Both design and operation tasks require  

ïthe analysis of the behaviour of dynamic systems over 

time 

» In fact, they often require the analysis of the same dynamic 

systems 

ïthe analysis must be ñrigorousò 

» predictability, certification 

 

§We need a rich formalism 

ïto represent the behaviour of complex systems 

ïto provide the reasoning tasks required for design and 

for operation 
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Model Checking in a nutshell 

§Does system satisfy requirements? 

§System as finite state model 

§Requirements as temporal properties 

System 

Requirements 

satisfied by 
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Model checking 

§Reactive System 
ï infinite computation, interacting with environment 

ïcommunication protocol, hw design, control software, OS 

ïmodeled as a (finite) state transition system 

§Requirements 
ïdesirable properties of system behaviour 

ïmodeled as formulae in a temporal logic (CLT, LTL, PSL, é) 

§Does my system satisfy the requirements? 
ïIs the set of traces ñgeneratedò by the system included in the set of 
traces ñacceptedò by the requirements? 

 

§Model checker 
ïsearch configurations of state transition system 

ïdetect violation to property, and produce witness of violation 

ïconclude absence of violation when fix point reached 
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Properties 

§Temporal logic can be used to express properties 

of reactive systems 

§Safety properties: nothing bad ever happens 

ïTwo concurrent processes never execute simultaneously 

within their critical section 

§Liveness properties: something desirable will 

eventually happen 

ïA subroutine will eventually terminate execution and 

return control to the caller 

ïWhenever a request arrives, it is sooner or later followed 

by a response 
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Refuting temporal properties 

§Safety: refuted by finite trace to 

bad state 

 

 

§Liveness: refuted by infinite 

trace with invariant suffix 

ïFinitely presented as cycle 
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Modeling hybrid systems 
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Representation Challenges 

§A formalism to characterize systems with 

ïNondeterministic behaviours 

ïPossible faults 

ïOperation in degraded modes 

ïLimited observability 

ïParallel actions/tasks 

» Start actuations in different subsystems 

ïActivities with duration 

» Time taken by procedures 

» e.g. moving, welding, checking, é 

ïResources 

» Power consumption, space, bandwidth, memory, é 
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Modeling (I) 

§Synchronous, finite case 
ïCircuits 

§Finite state 
ïeach state variable associated with value in finite range 

 VAR x, y: boolean  

 init(x) := 0, init(y) := 0  

 next(x) := !x  

 next(y) := if x then !y else y  

§Synchronous composition 
ïBoth variables evolve at the same time 

  x: 0 1 0 1 0 1 0 1 ...  

  y: 0 0 1 1 0 0 1 1 ...  
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Modeling (II): infinite data 

§Synchronous, infinite case 

ïprograms 

§Infinite state: each state variable associated with 

value in finite range 

VAR n : integer;  

next(n) := if (even n)  

           then (n / 2)  

           else (3*n + 1)  

§Reaching a fix point no longer guaranteed 
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Modeling (III): asynchronous composition 

§Automaton with states and transitions 

 

 

 

 

 

 

 

VAR s : { Wait, Trying, Critical};  

IVAR label : { req , enter, done, stutter};  

s=Wait & label = request - > next(s)=Trying  

label = stutter - > next(s)=s  

Wait  

Critical  

Trying  

request  

done  enter  
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Modeling (III): Networks of automata 

SYNC server.grant1 C1.enter  

SYNC server.grant2 C2.enter  

...  
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Symbolic Representation 

§ State variables as variables in a logical language 

ï x, y, z, w 

§ A state is an assignment to state variables 

ï The bitvector 0011 

ï The assignment { z, w } 

ï The formula ¬x  ¬y  z  w 

§ A set of states is a set of assignments 

ï can be represented by a logical formula 

ï x  ¬y represents {1000, 1001, 1010, 1011} 
or a larger set, if more variables are present 

§ Set operations represented by logical operations 

ï union, intersection, complementation as 
disjunction, conjunction, negation 

§ I(X), B(X) are formulae in X 

ï Is there a bad initial state? 

ï Is I(X)  B(X) satisfiable? 
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Symbolic Representation 

§Symbolic representation not only for finite case! 
ïSoftware: control flow graph + data path  

ïHardware at RTL, SystemC, threaded software 

ïUML state machines, AADL descriptions 

§Transition 
ïpair of assignments to state variables 

§Use two sets of variables 
ïcurrent state variables: x, y, z 

ïnext state variables: x', y', z' 

§A formula in current and next state variables 
ïrepresents a set of assignments to X and X' 

ïa set of transitions 

ïR(X, X') 
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From discrete traces to hybrid traces 

§So far 

ïno notion of real time 

ïtraces as sequences of assignments to state variables 

§This is often not enough 

§Example: 

ïTrain moving on track 

ïEvolution of position and speed over time 

ïMovement authorithy (MA): 

» Proceed until position ñend of authorityò (EOA) 

» At EOA speed must be below ñtarget speedò (TS) 
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Hybrid means discrete + continuous 

§ State as values to 
variables 
ï discrete variables 

» Operation modes 

ï continuous variables 
» Speed, position 

§ Transitions from state to 
state 

§ Continuous transitions 
ï Discrete component 

does not change 

ï time elapses 

ï Continuous variables 
evolve accordingly 

§ Discrete transitions 
ï Instananeous 

ï Discrete component 
changes 

ï Continuous 
component may have 
jumps 

» Timer reset 

» Speed limit variation 

 



26 

ICAPSô13 Tutorial  on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti 

The formalism: hybrid automata 

§Locations 

§Events 

§Transitions 

§Continuous 
variables 

§Guards 
ïEnable transtions 

§ Invariants 
ïMust be satisfied 

in locations 

§Flow conditions 
ïHow do variables 

evolve when time 
elapses 
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Hybrid automata 

Far  

Past  

Near  

approach  

[x = 0]  [x = - 100]  

x := 1900..4900  

- 50 <= der(x) <= - 40 

x >= - 100 

- 40 <= der(x) <= - 30 

x >= 0  

- 50 <= der(x) <= - 40 

x >= 1000  

Continuous 

transition 

D
is

c
re

te
 

tra
n

s
itio

n
 

[x = 1000]  

exit  here  
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Properties of hybrid automata 

§Well founded, comprehensive and well studied 
ïClear definition of behaviors of model 

ïWhich states are reachable 

§Temporal properties to express scenarios and requirements 
ïnever two processes in critical region 

ïalways if req then within 5 sec response 

 

§Model checking 
» Does the system satisfy the requirements? 

§Temporal reasoning 
» Strong/weak/dynamical controllability? 

§Planning 
» Find the inputs that will bring the system to required state 

 

§The workhorse: satisfiability modulo theories 
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An example 

Start_a  - > s = STANDBY  

Start_a  - > next(s) = TAKING_PICTURE  

Start_a  - > next(t) = 0.0  

 

s = TAKING_PICTURE - > t <= 50.0  

 

End_a - > s = TAKING_PICTURE  

End_a - > next(s) = STANDBY  

End_a - > t >= 30.0  

 

STANDBY 
TAKING 

PICTURE 

Start_a  / t := 0  

End_a [ t >= 30 ]  
t <= 50  
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Nondeterminism and uncertainty 

§Nondeterminism 

ïDiscrete choice 

§Uncertainty 

ïContinuous 

 

§Controllable 

ïStart 

§Uncontrollable 

ïEffects 

ïEnd 

 

Certain Duration Uncertain Duration 

Determ. 

Effects 

NonDeterm. 

Effects 
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From HA to SMT formulae 

s = Past - > x >= - 100  

exit  - > s = Past & x = - 100  

exit  - > next(s) = Far  

exit  - > next(x) in 1900..4900  

 

timed  - > next(s) = s  

timed  & s = Past - > 

   next(x) >= x -  50* delta &  

   next(x) <= x -  40* delta  

 

Far  

Past  

Near  

approach  

x = 1000  

[ x = 0 ]  

exit  

[ x = - 100 ]  

x := 1900..4900  
- 50 <= der(x) <= - 40 

x >= - 100 

- 40 <= der(x) <= - 30 

x >= 0  

- 50 <= der(x) <= - 40 

x >= 1000  
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The SMT representation 

VAR s : { Past, Near, Far }  

VAR x : real;  

...  

INIT x <= 5000  

INIT s = Past  

...  

TRANS 

s = Past - > x >= - 100  

exit  - > s = Past  

exit  - > next(s) = Far  

exit  - > next(x) >= 1900  

exit  - > next(x) <= 4900  

...  

timed  - > next(s) = s  

timed  - > next(x) >= x -  50* delta  

timed  - > next(x) <= x -  40* delta  

 

 

Hybrid automata symbolically 

represented by SMT formulae! 

 

I(X) initial states 

R(X,Xô) transition relation 

B(X) bad/target states 
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Engines for symbolic verification 

From SAT to SMT 
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Satisfiability vs Verification 
(or, combinational vs sequential) 

Boolean Modulo 

theories 

Verification 
Finite state model 
checking 
 

Infinite state 
Model checking 
 

Satisfiability 
BDDs, 
SAT solvers 

SMT solvers 
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Underlying engines 

§Finite case 

ïBinary Decision Diagrams 

ïBoolean Satisfiability Solving 

§Infinite case 

ïSatisfiability Modulo Theories 
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Binary Decision Diagrams 

§Representation of boolean functions 

§Canonical form for propositional logic 

§Widely used in formal verification 

§Efficient BDD packages provide 

ïboolean operations 

ïuniversal and existential quantification (QBF) 

ïcaching and memoizing 

 

§Used to represent 

ïaccumulated states 

ïpartial policies 
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BDD-based Symbolic Model Checking 

§Based on Binary Decision Diagrams 

ïcanonical representation for logical formulae 

ïboolean operations, quantifier elimination 

§I(X), R(X, X'), B(X) 

ïeach represented by a BDD 

§Image computation: compute all successors of all 

states in S(X) 

ïbased on projection operation 

ïexists X.(S(X) and R(X, X')) 

§Reachability algorithm 

ïExpand new states until bug, or fix point 
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 ̂  ̂

 ̂  ̂  ̂ T 

SAT! 

Boolean DPLL 

P 

§ The DPLL procedure 

§ Incremental construction of satisfying assignment 

§ Backtrack/backjump on conflict 

§ Learn reason for conflict 

§ Splitting heuristics 

Q 

R 

S 

S 

R 

T 

Q 

S 

T 

R 
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Satisfiability modulo theories 

§Satisfiability of a first order formula é 
ïwhere the atoms are interpreted modulo a background theory 

§Theories of practical interest 
ïEquality Uninterpreted Functions (EUF) 

» x = f(y), h(x) = g(y) 

ïDifference constraints (DL) 
» x ï y Ò 3 

ïLinear Arithmetic  
» 3x ï 5y + 7z Ò 1 

» reals (LRA), integers (LIA) 

ïArrays (Ar) 
» read(write(A, i, v), j) 

ïBit Vectors (BV) 

ïTheir combination 
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Statisfiability Modulo Theories 

§An extension of boolean SAT 

§Some atoms have non-boolean (theory) content 
» A1 : x ï y Ò 3 

» A2 : y ï z = 10 

» A3 : x ï z Ó 15 

§Theory interpretation for individual variables, 
constants, functions and predicates 

» if x = 0, y = 20, z = 10 

» then A1 = T, A2 = T, A3 = F 

§Interpretations of atoms are constrained 
» A1, A2 and A3 can not be all true at the same time 
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SMT solvers 

§Boolean reasoning + constraint solving 

ïSAT solver for boolean reasoning 

ïtheory solvers to interpret numerical constraints 
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Bool  ̂

Bool  ̂ Bool T Bool  ̂

MathSAT: search space 

Many boolean models are not theory consistent! 

P T x ð y Ò 3 

P1 F 

P2 T y ð z = 10 

Q F 

R T x ð z Ó 15 

R1 F 

S F z ð 2*w = 1   

S1 T 

P 

Q 

R 

S 

S 

R 

T 

Q 

S 

T 

R 

Th  ̂

Bool T 

Th  ̂

Bool T 

Th T 

SAT!!! 
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Bool  ̂ Bool T 

Math T 

SAT! 

EP:Th  ̂ EP:Th T 

EP:Math T 

EP:Th T 

EP:Math T 

Pruned away  

in the EP step 

Early pruning 

Check theory consistency of partial assignments 

P 

Q 

S 

T 

R 
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Learning Theory Conflicts 

The theory solver can detect a 
reason for inconsistency 

 

I.e. a subset of the literals that 
are mutually unsatisfiable 

E.g. x = y, y = z, x != z 

 

Learn a conflict clause 
 x != y or y != z or x = z 

 

By BCP the boolean 
enumeration will never make 
same mistake again 

Bool  ̂ Bool T 

Math T 

SAT! 

EP:Th  ̂ EP:Math T 

EP:Th T 

EP:Math T 

EP:Th T 

Pruned away  

in the EP step 

P 

Q 

S 

T 

R 



45 

ICAPSô13 Tutorial  on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti 

Theory Deduction 

The theory solver can detect that 
certain atoms have forced values 

 

E.g. from x = y and x = z 
infer that y = z should be true 

 

Force deterministic assignments 

 

Theory version of BCP 

 

Furthermore, we can learn the 
deduction: 

    x=y & x = z -> y=z 

 

Theory Conflict vs theory deduction Bool  ̂ Bool T 

Th T 

SAT! 

EP:Math  ̂ EP:Th T 

EP:Math T 

EP:Th T 

EP:Th T 

Pruned away  

in the EP step 

P 

Q 

S 

T 

R 
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Optimizations 

§ Incrementality and Backtackability 

ïadd constraints without restarting from scratch 

ï remove constraints without paying too much 

§Limiting cost of early pruning 

ï filtering, incomplete calls 

§Conflict set minimization 

ï return T-inconsistent subset of assignment 

§Deduction 

ï return forced values to unassigned theory atoms 

§Static learning 

ïprecompile obvious theory reasoning reasoning to boolean 
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SMT solvers in practice 

§ In practice, the integration is very tight 
ï SAT solver working as an enumerator 

ï Theory solver follows the stack-based search 
» Inconsistent partial assignments are pruned on the fly 

» conflicts clauses learnt from theory reasoning 

» used to drive search at the boolean level 

 

§ Additional features 
ï Model construction 

ï Incremental interface 

ï Unsatisfiable core 

ï Proof production 

ï Interpolation 
 

§ Satisfiability Modulo Theories: a sweet spot? 
ï increase expressiveness 

ï retain efficiency of boolean reasoning 

§ Trade off between expressiveness and reasoning 
ï SAT solvers: boolean case, automated and very efficient 

ï theorem provers: general FOL, limited automation 
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The SMT community 

§Standard language and benchmarks 

ïhttp://www.smt - lib.org  

§Yearly competition 

ïhttp://www.smt - comp.org  

§Solvers 

ïYICES, OpenSMT, Z3, CVC, é 

§The MathSAT solver 

ïhttp://mathsat.fbk.eu  

ïSolving, core extraction, interpolation, allsmt, costs 
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Notable achievements 

§Successful applications in various fields 

ïverification of pipelined microprocessors 

ïequivalence checking of Microcode 

ïsoftware verification 

ïwhitebox testing for security applications 

ïdesign space exploration, configuration synthesis 

ïdiscovery of combinatorial materials 

 

§Reasons for success? 

ïallows to deal with richer representation 

ïincrease capacity by working above the boolean level 
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SMT-based verification 



51 

ICAPSô13 Tutorial  on SMT-based verification of Hybrid Systems, Rome, 10.6.2013 - Alessandro Cimatti 

Symbolic Encoding 

§ Vectors of state variables 
ï current state X 

ï next state X' 

§ Initial condition I(X) 

§ Transition relation R(X, X') 

§ Bug states B(X) 

 

§ Key difference 
ïX, X' are not limited to boolean variables 

» in addition to discrete 

» reals, integers, bitvectors, arrays, é 

ï I, R, B are SMT formulae 

 

§ Representation 
ï higher level 

ï structural information is retained 
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Bounded Model Checking 

§ State variables replicated K times 
ï X0 , X1, é, Xk-1, Xk 

 

§ Look for bugs of increasing length 
ï I(X0)  R(X0, X1)  é  R(Xk-1, Xk)  B(Xk) 

ï bug if satisfiable 

ï increase k until é 

 

§ Advanced use of satisfiability solver 
ï incremental interface 

ï theory lemmas should be retained 

ï theory lemmas can be shifted over time 
» from ʌ(X0, X1) to ʌ(Xi, Xj+1)  

ï Unsat core and generation of interpolants 

ï Elimination of quantifiers 
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Induction 

§Prove absence of bugs by induction 

 
 I(X0)  B(X0) 

 ¬B(X0)  R(X0, X1)  B(X1) 

 . . . 

 I(X0)  R(X0, X1)  . . .  R(Xkī1, Xk )  B(Xk) 

 ¬B(X0) ^ R(X0, X1)  . . .  ¬B(Xkī1)  R(Xkī1, Xk)  B(Xk) 

 

§Proved correct if unsatisfiable (and no bugs until k) 

§Commonly used techniques 
ïInvariant strengthening 

» Sometimes trying to prove a stronger fact may be easier 

ïSimple path condition 
» Explore only paths that do not contain repetitions 
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Interpolation 
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Interpolation-based model checking 
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Interpolation-based model checking 
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Counter-Example Guided 

Abstraction-Refinement (CEGAR) 
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P0 

P1 

not P1 

01 00 

10 11 

P2 

not P2 

000 

010 011 

001 

100 101 

Ɋ0(X) 

Ɋ1(X) 

Ɋ2(X) 

I(X) 

R(X, X') 

State vars X 

Abstract State vars P 

AI (P) 

AR(P,P') 

not P0 

Predicate abstraction 
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CEGAR with Predicate abstraction 
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Computing Abstractions 

§Given concrete model CI(X), CR(X, X') 

§Given set of predicates Ɋi(X) 

each associated to abstract variable Pi  

§Obtain the corresponding abstract model 

§AR(P, P') is defined by 

 X X'.(CR(X, X')  i Pi  Ɋi(X)  i Pi'  Ɋi(X') ) 

 

§Existential quantification as AllSMT 

ïSMT solver extended to generate all satisfying 

assignment  
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Implicit Abstraction 

§Abstract transition system computed with AllSMT: 
ïExponential in the number of predicates. 

ïMajor bottleneck of CEGAR. 

ïPrevents the analysis of the abstract system. 

§Main idea: avoid upfront computation of the abstract 
program 

§How: embedding the abstraction definition into the 
BMC/k-induction encodings; 

§abstract transitions implicitly computed by the SMT 
solver; 

§similar to lazy abstraction but completely symbolic and 
without any image computation/quantifier elimination. 
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Implicit abstraction 

= = é = 

X0 Xô0 X1 Xô1 Xk 
Xôk 
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Specialized techniques 
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Specialized techniques 

§From hybrid traces to infinite-state transition 

system over discrete traces 

§Time elapse has the effect of a global 

synchronization 

§Interleaving may induce very long paths 

§Encoding may have significant impact! 

§Generate transition systems with shorter/less paths 
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The effect of interleaving 
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Local clocks 

 


