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2011, 2013 Workshop Topics

• Using machine learning to configure a 
parametric planning system (including 
portfolio).

• Learning control knowledge for a 
planner (e.g. bad causal links).

• Learning action models, cost models.
• Learning plan rewrite rules to improve 

plan quality (e.g. shortcut learning).
• Learning heuristic functions.
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Learning and Planning
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GPS – The General Problem 
Solver

• Original domain-independent planner (1959)
• “Means-Ends Analysis”

– Find the most important difference between current state and the current 
goal.

– Choose an operator that can reduce this difference.
– If the operator can be applied to the current state, do so.
– If not, recursively find a plan to achieve the preconditions of the operator 

(these become the current goal).

• Declarative control structure called a “table of connections” 
(which operators could be used to reduce which differences; often 
also specifies a difficulty order of differences).

• 1960 paper looked at learning the control knowledge. Work on this 
continued through the 1970s but never succeeded.
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STRIPS (1971)

• More than just a language. Continued 
the GPS tradition of 
domain-independent planning (1971).

• Used GPS’s means-ends analysis as its 
planning method.

• 1972: MACRO-OP extraction from 
experience (learning).
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Aside: Nilsson (1971) had the idea of action 
landmarks (he called them “key operators”).



Plan Re-use/Adaptation

• STRIPS macro-ops were very much 
plan re-use, as opposed to what we 
now understand as macro-operators.

• Plan re-use became popular in the 
1980s starting with the 
“problem-solving by analogy” of 
Jaime Carbonell (1981).
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Learning Control 
Knowledge for Production 

Systems
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Production Systems

• A state is a vector of values (usually fixed length).
• An operator is a production rule (LHS → RHS).
• Forward-chaining from a start state until a goal 

condition is satisfied.
• More a programming language than a 

domain-independent planning system, but it was 
non-deterministic so strongly resembled a search 
system.

• Introduced in A.I. around 1967                        
(invented by Emil Post in 1943 as a universal model 
of computation).
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Waterman (1970)

• Ordered set of production rules.
• Starting from a set of productions that 

played draw poker randomly, it learned 
when it was appropriate to take each action 
(fold, call, or bet a certain amount).

• Learning involved modifying existing 
production rules or creating new ones (and 
inserting them at the correct place in the 
order).
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Kling (1971)

• First application of reasoning by 
analogy to problem-solving 
(theorem-proving).

• Idea: to prove a new theorem, reuse 
the lemmas, rules of inferences etc. 
that were needed to prove a similar 
theorem.

• i.e. use experience to reduce the 
branching factor (or at least to order 
the branches, like preferred 
operators).
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Late 1970s

• Brazdil, Langley, Mitchell, Stolfo – 
learning the conditions under which to 
apply a given rule (or, when NOT to 
apply it – Kibler & Morris 1981)

• Vere 1977 (and others) – learning 
production rules from “before/after” 
examples.
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Aside: 1977 IJCAI paper on mutexes and regression 
planning (Dawson & Siklossy).



Learning Evaluation 
Functions for State-Space 

Search
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Arthur Samuel (1956)
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image from: http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/



Learning an Evaluation 
Function

• Game-playing is not planning/search, but…
• Forward-chaining state-space search guided 

by an evaluation function.
• Evaluation functions in games are similar to 

what is needed for greedy best-first search 
as used in today’s planners (as opposed to 
the heuristic functions for A*/IDA*).

• Some key ideas have been transferred (e.g. 
iterative deepening, transposition tables).

• However: Long training phase, single 
domain (GGP is the exception).
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Samuel (1959)

• Evaluation function was a polynomial, used ML to
– Select a subset of the features to include in the 

polynomial
– Set the coefficients

• Learning was based on the difference between the 
value of a node and the value of the best node seen 
below the node (like TD learning).

• Therefore training data was readily available during 
the self-play of the training phase.

• Updates were made online.
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Buro (1995)

• Buro’s ProbCut took this one step further. 
• Based on the idea that the value k steps 

below a node would be highly correlated 
with the node’s value.

• Learned a function predicting the value k 
steps below a node (for some fixed k), 
and used that, instead of lookahead, to 
prune the node.

• Training was offline, based on actual 
lookahead. 
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State-space Heuristic 
Search

• Graph Traverser (now called greedy best first search) – 
Doran and Michie, 1966.  “Satisficing search”.  Anticipated 
learning the heuristic but no implementation.

• A* – 1968 (Ira Pohl’s thesis 1969).
• Subsequent work looked at generating heuristics by 

abstraction, not learning.
– Somalvico & colleagues (1976-79)
– Gaschnig (1977-79)
– Pearl (1979-1984)

• First work on learning an evaluation function was by Larry 
Rendell (1977-1983). Instead of the usual heuristic “cost to 
go” function, his evaluation function estimated the 
probability that a state was on a solution path.

1
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Creating Heuristics by 
Machine Learning
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Learning a Heuristic = 
Regression

• We want machine learning to create 
a function, h(s), that takes a state (s) 
as input and produces a number 
(estimate of distance from s to goal) 
as its output.

• Training data will be a set of pairs 
(sk,yk), where yk is the cost of a path 
from sk to goal (ideally an optimal 
path). 1
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How Do We Get the Labels 
(yk) ?

• There are a variety of ways of 
generating the states (sk) for 
training, but how do we get the 
labels (costs) for them (yk)?

• Two approaches:
– Use search to solve sk 
– Use a method to predict the solution 

cost for sk

2
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Two Scenarios

1. Long training time in order to create 
a heuristic that will solve 
subsequent problems very quickly.

2. Solve a single instance as quickly as 
possible.
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Fundamental Paradox?

1. If the initial system is already good 
enough to solve arbitrary problems 
in a reasonable amount of time, 
there is not much to be gained by 
learning.

2. If the initial system is not that good 
to begin with, how is it possible for 
the training data it generates 
(solutions to “easy” problems) to 
enable it to learn to solve “hard” 
problems?
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Part 1 – One-Shot Systems

• If the initial system is already good 
enough to solve arbitrary problems in 
a reasonable amount of time, there is 
not much to be gained by learning.

• “One-shot” systems create a training 
set by solving problems with the 
given heuristic, then apply learning to 
produce their final heuristic. 

– Ernandes and Gori (2004)
– Samadi, Felner, and Schaeffer (2008) 2
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Ernandes and Gori (2004)

15-puzzle
• Initial heuristic (h0): enhanced Manhattan 

Distance.
• Training: 25,000 random (solvable) instances 

solved using h0.
• Solving the training examples took 100 hours, 

learning the neural net took another 200 hours.
• Features for learning: binary state variables.
• Result:

– 3.5% suboptimal
– 500x speedup over h0
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Samadi et al. (2008)

15-puzzle
• Initial heuristic (h0): best known PDBs.
• Training: 10,000 instances from random walks 

backwards from the goal of all lengths up to a 
hand-picked maximum. Solved using h0.

• Features for learning: MD, best known PDBs.
• Result:

– 3.3% suboptimal
– 8.3x speedup over h0
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Fundamental Paradox(?), 
Part 2

    

    If the initial system is not that good 
to begin with, how is it possible for 
the training data it generates 
(solutions to “easy” problems) to 
enable it to learn to solve “hard” 
problems?
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Solution: Bootstrapping

• Larry Rendell’s Ph.D. (1981) solved this 
“paradox” by a method I call 
bootstrapping.

• Repeat several times:
– Use the current heuristic to solve whatever 

problems it can.
– Those solved problems provide training data 

to a learning algorithm that produces a new 
heuristic.

2
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Bootstrap – Input/Output

• Input:
– initial (weak) heuristic h0,
– a set of unsolved instances,
– time limit,
– features (we found small PDBs were 

excellent features, did not have to be 
carefully chosen)

• Output: h, a heuristic much better 
than h0
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Bootstrap – More Details

• Heuristic search is given a time limit for solving each 
instance.

• When an instance is solved, all states along the path 
are added to the training set.

• Require at least M instances to be solved with the 
current heuristic before learning is invoked to create a 
new heuristic. 

• If fewer than M are solved:
– at the start: use random walks to generate very easy 

instances, and successively more difficult ones, until M of 
the original instances can be solved. (see next slides)

– otherwise: double the time limit and continue with the 
current heuristic.
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Harder Problems

• What to do if the initial heuristic is so weak that none of 
the given instances can be solved?

IDEA: Generate instances using random walks of 
the “right” length.

• Do BFS backwards from the goal up to a time limit. Find 
the length (L) of the average random walk that 
generates states not reached by BFS. Use multiples of L 
as the lengths of successive random walks.
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Random Walk – Details

• Generate 500 instances using random walks of length L, and 
apply Bootstrap to them.

• As usual, Bootstrap may require multiple iterations and/or to 
increase the time limit to solve the random walk instances.

• If Bootstrap succeeds, test if the new heuristic can solve enough 
of the user-given instances.

– If yes, apply Bootstrap to the user’s instances.
– If no, increase walk-length by L and repeat.

• If Bootstrap fails on the random walk instances, apply it to the 
user’s instances.

3
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24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes 
generated

5 500 4.98 4.98 0.0% 89
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24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes 
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
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24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes 
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150
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24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes 
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150
15 328 12.61 12.04 4.7% 109,535
15 152 14.94 14.05 6.3% 95,567
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24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes 
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150
15 328 12.61 12.04 4.7% 109,535
15 152 14.94 14.05 6.3% 95,567
20 416 15.92 14.77 7.8% 78,853
20 82 18.66 17.11 9.1% 124,345
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24-Pancake, Bootstrap after RW

Ite
r

Solve
d

Cost Optim
al

Subopt. Nodes 
generated

0 175 21.53 20.0
3

7.5% 267,476

1 176
7

23.98 22.1
1

8.5% 238,351

2 169
2

25.20 23.0
5

9.3% 262,412

3 781 25.77 23.3
6

10.3
%

302,697

4 370 26.23 23.5
6

11.3
%

284,175

5 136 26.25 23.6
3

11.1
%

325,720

6 76 26.48 23.5
9

12.3
%

260,613
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How Effective are the 
Heuristics?

3
8

State Space Avg. Solving 
Time   500 BS 

instances

35-pancake 158 secs

24-puzzle 273

20-blocks 2763

Rubik’s Cube 1 BS instance:   
234



How Effective are the 
Heuristics?

3
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State Space Avg. Solving 
Time   500 BS 

instances

Avg. Solving 
Time 5000 BS 

instances

35-pancake 158 secs 4.4

24-puzzle 273 9.8

20-blocks 2763 23.0

Rubik’s Cube 1 BS instance:   
234

261.0



How Good are the 
Solutions?

4
0

State Space Suboptimality    
     500 BS 
instances

Suboptimality 
    5000 BS 
instances

35-pancake 12.3% 17.6%

24-puzzle 6.1% 9.6%

20-blocks 3.6% 9.2%

Rubik’s Cube 1 BS instance:   
20.5%

26.3%



How Long Does It Take?

4
1

State Space Total Training 
Time      500 BS 

instances

Total Training 
Time     5000 
BS instances

35-pancake 1 day 3 days

24-puzzle 2 days 18 days

20-blocks 2 days 11 days

Rubik’s Cube 1 BS instance:  11 
days

80 days



Solving Single Instances 
Quickly

42



Learning Time vs. Solving 
Time

• The Bootstrap method spends a large 
amount of time to create a heuristic 
(“learning time”) that can then very 
quickly solve an instance (“solving 
time”).

– solving time << learning time
– This is appropriate when the heuristic will be 

used to solve many instances

• A different balance between learning and 
solving times is needed if there is just 
one instance to solve.
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Approach
• Interleave the learning process and 

the solving process, with a certain 
ratio of times for each (e.g. 5:1).

• No user-given instances other than 
the one to be solved.  The fully 
automatic RandomWalk process used 
by Bootstrap is the source of training 
data. It iterates, creating more and 
more challenging instances, until the 
given instance is solved.

4
4



Approach (cont’d)
• What to do when a new heuristic is 

learned?
– Kill the current solving process, start a new 

one with the new heuristic.
– Spawn a new solving sub-thread, so that 

there is a solving sub-thread for every 
known heuristic.

● How to allocate time among these sub-threads?
– Keep running the solving process but 

replace the old heuristic with the new one. 
(Heuristic Replacement)

4
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Heuristic Replacement 
Results

4
6

State Space Total Training 
Time      

(Bootstrap-500
)

Single 
Instance    
Avg. Total  

Time 
(suboptimality

)

35-pancake 1 day  (12.3%) 2h  34m   
(11.7%)

24-puzzle 2 days (6.1%) 14m   28s   
(6.8%)

20-blocks 2 days (3.6%) 4h   6m    (1.2%)

Rubik’s Cube 11 days (20.5%) 10h  54m   
(5.1%)

Guaranteed optimal solutions are found 
in 12h 17m



A Different Approach

• Humphrey, Bramanti-Gregor, and Davis (1995)
• Bootstrap learning of a heuristic for a single 

instance based on failed attempts to solve 
it.

• BIG IDEA: 
– learn a function that estimates distance between 

any two states.
– Each search generates lots of training data of this 

form, even if the problem instance is not solved.

• Impressive results on the 15-puzzle.

4
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Solution Cost Prediction

• Bootstrap’s main bottleneck is that it has no way of 
knowing which instances it can solve, so it wastes lots 
of time attempting to solve instances that can’t be 
solved with the current heuristic.

• If we could accurately predict the optimal solution cost 
of any instance without actually having to solve the 
instance, we could avoid all of Bootstrap’s failed 
attempts and its iterations.

• Solution cost prediction system: BiSS (Lelis et al.)

4
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Which Training Instances?

• We are now free to use any set of instances we like 
to create a training set, so the focus of attention 
shifts from “how to get solution costs?” to “which 
instances should go into the training set?”.

• Prevailing wisdom is that a mixture of easy and 
hard instances are needed.  Our approach:

– Generate easy instances with random walks backwards 
from the goal.

– Generate hard instances by randomly choosing a state.

4
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Solving Single Instances
State Space System Total 

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7



Solving Single Instances
State Space System Total 

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 2h 34m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7



Solving Single Instances
State Space System Total 

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 1h 42m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7

Rubik’s Cube BST 10h 54m 6.4

Rubik’s Cube BiSS-h-500 1h 48m 10.4



Solving Single Instances
State Space System Total 

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 1h 42m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7

Rubik’s Cube BST 10h 54m 6.4

Rubik’s Cube BiSS-h-500 1h 48m 10.4

Rubik’s Cube BiSS-h-200 21m 11.5



20-Blocks World

• BiSS-h solved only 10 out of the 50 instances with 
a one-hour time limit per instance.

• Taking the training instances used by Bootstrap on 
its last iteration and predicting their solution costs 
with BiSS-h, BiSS-h outperforms Bootstrap.

Learning 
Time

Nodes 
Generated

Subopt.

BST-5000 
(13)

11d 1h 5,523,983 9.6

BiSS-h-2933 7h 279,513 8.8



Summary

• Long tradition of learning applied to planning/search.
• Lots of different ways that learning might be able to 

improve planning.
• Two main scenarios learning a heuristic function:

– “unlimited” training time, expecting a very good, general 
heuristic at the end.

– single problem instance, solve it as quickly as possible.

•. Bootstrap does well in both scenarios.
•. BiSS-h is even better, but there’s an open question 

about which instances it should label.
•. Contact info:  rholte@ualberta.ca
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