
Creating
Heuristics by

Machine
Learning

Robert Holte
Computing Science

Department
University of Alberta

1

2011, 2013 Workshop Topics

• Using machine learning to configure a
parametric planning system (including
portfolio).

• Learning control knowledge for a
planner (e.g. bad causal links).

• Learning action models, cost models.
• Learning plan rewrite rules to improve

plan quality (e.g. shortcut learning).
• Learning heuristic functions.

2

Learning and Planning

3

GPS – The General Problem
Solver

• Original domain-independent planner (1959)
• “Means-Ends Analysis”

– Find the most important difference between current state and the current
goal.

– Choose an operator that can reduce this difference.
– If the operator can be applied to the current state, do so.
– If not, recursively find a plan to achieve the preconditions of the operator

(these become the current goal).

• Declarative control structure called a “table of connections”
(which operators could be used to reduce which differences; often
also specifies a difficulty order of differences).

• 1960 paper looked at learning the control knowledge. Work on this
continued through the 1970s but never succeeded.

4

STRIPS (1971)

• More than just a language. Continued
the GPS tradition of
domain-independent planning (1971).

• Used GPS’s means-ends analysis as its
planning method.

• 1972: MACRO-OP extraction from
experience (learning).

5

Aside: Nilsson (1971) had the idea of action
landmarks (he called them “key operators”).

Plan Re-use/Adaptation

• STRIPS macro-ops were very much
plan re-use, as opposed to what we
now understand as macro-operators.

• Plan re-use became popular in the
1980s starting with the
“problem-solving by analogy” of
Jaime Carbonell (1981).

6

Learning Control
Knowledge for Production

Systems

7

Production Systems

• A state is a vector of values (usually fixed length).
• An operator is a production rule (LHS → RHS).
• Forward-chaining from a start state until a goal

condition is satisfied.
• More a programming language than a

domain-independent planning system, but it was
non-deterministic so strongly resembled a search
system.

• Introduced in A.I. around 1967
(invented by Emil Post in 1943 as a universal model
of computation).

8

Waterman (1970)

• Ordered set of production rules.
• Starting from a set of productions that

played draw poker randomly, it learned
when it was appropriate to take each action
(fold, call, or bet a certain amount).

• Learning involved modifying existing
production rules or creating new ones (and
inserting them at the correct place in the
order).

9

Kling (1971)

• First application of reasoning by
analogy to problem-solving
(theorem-proving).

• Idea: to prove a new theorem, reuse
the lemmas, rules of inferences etc.
that were needed to prove a similar
theorem.

• i.e. use experience to reduce the
branching factor (or at least to order
the branches, like preferred
operators).

1
0

Late 1970s

• Brazdil, Langley, Mitchell, Stolfo –
learning the conditions under which to
apply a given rule (or, when NOT to
apply it – Kibler & Morris 1981)

• Vere 1977 (and others) – learning
production rules from “before/after”
examples.

1
1

Aside: 1977 IJCAI paper on mutexes and regression
planning (Dawson & Siklossy).

Learning Evaluation
Functions for State-Space

Search

12

Arthur Samuel (1956)

1
3

image from: http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/

Learning an Evaluation
Function

• Game-playing is not planning/search, but…
• Forward-chaining state-space search guided

by an evaluation function.
• Evaluation functions in games are similar to

what is needed for greedy best-first search
as used in today’s planners (as opposed to
the heuristic functions for A*/IDA*).

• Some key ideas have been transferred (e.g.
iterative deepening, transposition tables).

• However: Long training phase, single
domain (GGP is the exception).

1
4

Samuel (1959)

• Evaluation function was a polynomial, used ML to
– Select a subset of the features to include in the

polynomial
– Set the coefficients

• Learning was based on the difference between the
value of a node and the value of the best node seen
below the node (like TD learning).

• Therefore training data was readily available during
the self-play of the training phase.

• Updates were made online.

1
5

Buro (1995)

• Buro’s ProbCut took this one step further.
• Based on the idea that the value k steps

below a node would be highly correlated
with the node’s value.

• Learned a function predicting the value k
steps below a node (for some fixed k),
and used that, instead of lookahead, to
prune the node.

• Training was offline, based on actual
lookahead.

1
6

State-space Heuristic
Search

• Graph Traverser (now called greedy best first search) –
Doran and Michie, 1966. “Satisficing search”. Anticipated
learning the heuristic but no implementation.

• A* – 1968 (Ira Pohl’s thesis 1969).
• Subsequent work looked at generating heuristics by

abstraction, not learning.
– Somalvico & colleagues (1976-79)
– Gaschnig (1977-79)
– Pearl (1979-1984)

• First work on learning an evaluation function was by Larry
Rendell (1977-1983). Instead of the usual heuristic “cost to
go” function, his evaluation function estimated the
probability that a state was on a solution path.

1
7

Creating Heuristics by
Machine Learning

18

Learning a Heuristic =
Regression

• We want machine learning to create
a function, h(s), that takes a state (s)
as input and produces a number
(estimate of distance from s to goal)
as its output.

• Training data will be a set of pairs
(sk,yk), where yk is the cost of a path
from sk to goal (ideally an optimal
path). 1

9

How Do We Get the Labels
(yk) ?

• There are a variety of ways of
generating the states (sk) for
training, but how do we get the
labels (costs) for them (yk)?

• Two approaches:
– Use search to solve sk
– Use a method to predict the solution

cost for sk

2
0

Two Scenarios

1. Long training time in order to create
a heuristic that will solve
subsequent problems very quickly.

2. Solve a single instance as quickly as
possible.

2
1

Fundamental Paradox?

1. If the initial system is already good
enough to solve arbitrary problems
in a reasonable amount of time,
there is not much to be gained by
learning.

2. If the initial system is not that good
to begin with, how is it possible for
the training data it generates
(solutions to “easy” problems) to
enable it to learn to solve “hard”
problems?

2
2

Part 1 – One-Shot Systems

• If the initial system is already good
enough to solve arbitrary problems in
a reasonable amount of time, there is
not much to be gained by learning.

• “One-shot” systems create a training
set by solving problems with the
given heuristic, then apply learning to
produce their final heuristic.

– Ernandes and Gori (2004)
– Samadi, Felner, and Schaeffer (2008) 2

3

Ernandes and Gori (2004)

15-puzzle
• Initial heuristic (h0): enhanced Manhattan

Distance.
• Training: 25,000 random (solvable) instances

solved using h0.
• Solving the training examples took 100 hours,

learning the neural net took another 200 hours.
• Features for learning: binary state variables.
• Result:

– 3.5% suboptimal
– 500x speedup over h0

2
4

Samadi et al. (2008)

15-puzzle
• Initial heuristic (h0): best known PDBs.
• Training: 10,000 instances from random walks

backwards from the goal of all lengths up to a
hand-picked maximum. Solved using h0.

• Features for learning: MD, best known PDBs.
• Result:

– 3.3% suboptimal
– 8.3x speedup over h0

2
5

Fundamental Paradox(?),
Part 2

 If the initial system is not that good
to begin with, how is it possible for
the training data it generates
(solutions to “easy” problems) to
enable it to learn to solve “hard”
problems?

2
6

Solution: Bootstrapping

• Larry Rendell’s Ph.D. (1981) solved this
“paradox” by a method I call
bootstrapping.

• Repeat several times:
– Use the current heuristic to solve whatever

problems it can.
– Those solved problems provide training data

to a learning algorithm that produces a new
heuristic.

2
7

Bootstrap – Input/Output

• Input:
– initial (weak) heuristic h0,
– a set of unsolved instances,
– time limit,
– features (we found small PDBs were

excellent features, did not have to be
carefully chosen)

• Output: h, a heuristic much better
than h0

2
8

Bootstrap – More Details

• Heuristic search is given a time limit for solving each
instance.

• When an instance is solved, all states along the path
are added to the training set.

• Require at least M instances to be solved with the
current heuristic before learning is invoked to create a
new heuristic.

• If fewer than M are solved:
– at the start: use random walks to generate very easy

instances, and successively more difficult ones, until M of
the original instances can be solved. (see next slides)

– otherwise: double the time limit and continue with the
current heuristic.

2
9

Harder Problems

• What to do if the initial heuristic is so weak that none of
the given instances can be solved?

IDEA: Generate instances using random walks of
the “right” length.

• Do BFS backwards from the goal up to a time limit. Find
the length (L) of the average random walk that
generates states not reached by BFS. Use multiples of L
as the lengths of successive random walks.

3
0

Random Walk – Details

• Generate 500 instances using random walks of length L, and
apply Bootstrap to them.

• As usual, Bootstrap may require multiple iterations and/or to
increase the time limit to solve the random walk instances.

• If Bootstrap succeeds, test if the new heuristic can solve enough
of the user-given instances.

– If yes, apply Bootstrap to the user’s instances.
– If no, increase walk-length by L and repeat.

• If Bootstrap fails on the random walk instances, apply it to the
user’s instances.

3
1

24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes
generated

5 500 4.98 4.98 0.0% 89

3
2

24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405

3
3

24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150

3
4

24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150
15 328 12.61 12.04 4.7% 109,535
15 152 14.94 14.05 6.3% 95,567

3
5

24-Pancake, Random Walks

Leng
th

Solve
d

Cost Optimal Subopt. Nodes
generated

5 500 4.98 4.98 0.0% 89
10 392 9.21 9.19 0.2% 148,405
10 108 10.32 9.98 3.4% 11,150
15 328 12.61 12.04 4.7% 109,535
15 152 14.94 14.05 6.3% 95,567
20 416 15.92 14.77 7.8% 78,853
20 82 18.66 17.11 9.1% 124,345

3
6

24-Pancake, Bootstrap after RW

Ite
r

Solve
d

Cost Optim
al

Subopt. Nodes
generated

0 175 21.53 20.0
3

7.5% 267,476

1 176
7

23.98 22.1
1

8.5% 238,351

2 169
2

25.20 23.0
5

9.3% 262,412

3 781 25.77 23.3
6

10.3
%

302,697

4 370 26.23 23.5
6

11.3
%

284,175

5 136 26.25 23.6
3

11.1
%

325,720

6 76 26.48 23.5
9

12.3
%

260,613

3
7

How Effective are the
Heuristics?

3
8

State Space Avg. Solving
Time 500 BS

instances

35-pancake 158 secs

24-puzzle 273

20-blocks 2763

Rubik’s Cube 1 BS instance:
234

How Effective are the
Heuristics?

3
9

State Space Avg. Solving
Time 500 BS

instances

Avg. Solving
Time 5000 BS

instances

35-pancake 158 secs 4.4

24-puzzle 273 9.8

20-blocks 2763 23.0

Rubik’s Cube 1 BS instance:
234

261.0

How Good are the
Solutions?

4
0

State Space Suboptimality
 500 BS
instances

Suboptimality
 5000 BS
instances

35-pancake 12.3% 17.6%

24-puzzle 6.1% 9.6%

20-blocks 3.6% 9.2%

Rubik’s Cube 1 BS instance:
20.5%

26.3%

How Long Does It Take?

4
1

State Space Total Training
Time 500 BS

instances

Total Training
Time 5000
BS instances

35-pancake 1 day 3 days

24-puzzle 2 days 18 days

20-blocks 2 days 11 days

Rubik’s Cube 1 BS instance: 11
days

80 days

Solving Single Instances
Quickly

42

Learning Time vs. Solving
Time

• The Bootstrap method spends a large
amount of time to create a heuristic
(“learning time”) that can then very
quickly solve an instance (“solving
time”).

– solving time << learning time
– This is appropriate when the heuristic will be

used to solve many instances

• A different balance between learning and
solving times is needed if there is just
one instance to solve.

4
3

Approach
• Interleave the learning process and

the solving process, with a certain
ratio of times for each (e.g. 5:1).

• No user-given instances other than
the one to be solved. The fully
automatic RandomWalk process used
by Bootstrap is the source of training
data. It iterates, creating more and
more challenging instances, until the
given instance is solved.

4
4

Approach (cont’d)
• What to do when a new heuristic is

learned?
– Kill the current solving process, start a new

one with the new heuristic.
– Spawn a new solving sub-thread, so that

there is a solving sub-thread for every
known heuristic.

● How to allocate time among these sub-threads?
– Keep running the solving process but

replace the old heuristic with the new one.
(Heuristic Replacement)

4
5

Heuristic Replacement
Results

4
6

State Space Total Training
Time

(Bootstrap-500
)

Single
Instance
Avg. Total

Time
(suboptimality

)

35-pancake 1 day (12.3%) 2h 34m
(11.7%)

24-puzzle 2 days (6.1%) 14m 28s
(6.8%)

20-blocks 2 days (3.6%) 4h 6m (1.2%)

Rubik’s Cube 11 days (20.5%) 10h 54m
(5.1%)

Guaranteed optimal solutions are found
in 12h 17m

A Different Approach

• Humphrey, Bramanti-Gregor, and Davis (1995)
• Bootstrap learning of a heuristic for a single

instance based on failed attempts to solve
it.

• BIG IDEA:
– learn a function that estimates distance between

any two states.
– Each search generates lots of training data of this

form, even if the problem instance is not solved.

• Impressive results on the 15-puzzle.

4
7

Solution Cost Prediction

• Bootstrap’s main bottleneck is that it has no way of
knowing which instances it can solve, so it wastes lots
of time attempting to solve instances that can’t be
solved with the current heuristic.

• If we could accurately predict the optimal solution cost
of any instance without actually having to solve the
instance, we could avoid all of Bootstrap’s failed
attempts and its iterations.

• Solution cost prediction system: BiSS (Lelis et al.)

4
8

Which Training Instances?

• We are now free to use any set of instances we like
to create a training set, so the focus of attention
shifts from “how to get solution costs?” to “which
instances should go into the training set?”.

• Prevailing wisdom is that a mixture of easy and
hard instances are needed. Our approach:

– Generate easy instances with random walks backwards
from the goal.

– Generate hard instances by randomly choosing a state.

4
9

Solving Single Instances
State Space System Total

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

Solving Single Instances
State Space System Total

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 2h 34m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7

Solving Single Instances
State Space System Total

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 1h 42m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7

Rubik’s Cube BST 10h 54m 6.4

Rubik’s Cube BiSS-h-500 1h 48m 10.4

Solving Single Instances
State Space System Total

Time
Subopt.

24-Puzzle BST 14m 28s 6.5

24-Puzzle BiSS-h-500 9m 21s 5.7

35-Pancake BST 1h 42m 4.6

35-Pancake BiSS-h-500 30m 46s 4.7

Rubik’s Cube BST 10h 54m 6.4

Rubik’s Cube BiSS-h-500 1h 48m 10.4

Rubik’s Cube BiSS-h-200 21m 11.5

20-Blocks World

• BiSS-h solved only 10 out of the 50 instances with
a one-hour time limit per instance.

• Taking the training instances used by Bootstrap on
its last iteration and predicting their solution costs
with BiSS-h, BiSS-h outperforms Bootstrap.

Learning
Time

Nodes
Generated

Subopt.

BST-5000
(13)

11d 1h 5,523,983 9.6

BiSS-h-2933 7h 279,513 8.8

Summary

• Long tradition of learning applied to planning/search.
• Lots of different ways that learning might be able to

improve planning.
• Two main scenarios learning a heuristic function:

– “unlimited” training time, expecting a very good, general
heuristic at the end.

– single problem instance, solve it as quickly as possible.

•. Bootstrap does well in both scenarios.
•. BiSS-h is even better, but there’s an open question

about which instances it should label.
•. Contact info: rholte@ualberta.ca

5
5

	Slide 1
	2011, 2013 Workshop Topics
	Slide 3
	GPS – The General Problem Solver
	STRIPS (1971)
	Plan Re-use/Adaptation
	Slide 7
	Production Systems
	Waterman (1970)
	Kling (1971)
	Late 1970s
	Slide 12
	Arthur Samuel (1956)
	Learning an Evaluation Function
	Samuel (1959)
	Buro (1995)
	State-space Heuristic Search
	Slide 18
	Learning a Heuristic = Regression
	How Do We Get the Labels (yk) ?
	Two Scenarios
	Fundamental Paradox?
	Part 1 – One-Shot Systems
	Ernandes and Gori (2004)
	Samadi et al. (2008)
	Fundamental Paradox(?), Part 2
	Solution: Bootstrapping
	Bootstrap – Input/Output
	Bootstrap – More Details
	Harder Problems
	Random Walk – Details
	24-Pancake, Random Walks
	24-Pancake, Random Walks
	24-Pancake, Random Walks
	24-Pancake, Random Walks
	24-Pancake, Random Walks
	24-Pancake, Bootstrap after RW
	How Effective are the Heuristics?
	How Effective are the Heuristics?
	How Good are the Solutions?
	How Long Does It Take?
	Slide 42
	Learning Time vs. Solving Time
	Approach
	Approach (cont’d)
	Heuristic Replacement Results
	A Different Approach
	Solution Cost Prediction
	Which Training Instances?
	Solving Single Instances
	Solving Single Instances
	Solving Single Instances
	Solving Single Instances
	20-Blocks World
	Summary

