
	 	

Proceedings of the 4th Workshop on
Knowledge Engineering for Planning and Scheduling

Edited By:

Roman Barták, Simone Fratini, Lee McCluskey, Tiago Vaquero

Rome, Italy - June 10, 2013

Organizing Commitee

Roman Barták
Charles University, Czech Republic
Supported by the Czech Science Foundation under the contract P202-10-1188.

Simone Fratini
European Space Agency, Germany

Lee McCluskey
University of Huddersfield, UK

Tiago Vaquero
University of Toronto, Canada

Program committee

Roman Barták, Charles University, Czech Republic
Piergiorgio Bertoli, Fondazione Bruno Kessler, Italy
Mark Boddy, Adventium Labs, U.S.A.
Adi Botea, IBM, Ireland
Luis Castillo, IActive, Spain
Amedeo Cesta, ISTC-CNR, Italy
Susana Fernández, Universidad Carlos III de Madrid, Spain
Simone Fratini, ESA/ESOC, Germany
Antonio Garrido, Universidad Politecnica de Valencia, Spain
Arturo González-Ferrer, University of Haifa, Israel
Felix Ingrand, LAAS-CNRS, France
Peter A. Jarvis, PARC, USA
Ugur Kuter, SIFT, USA
John Levine, University of Strathclyde, UK
Lee McCluskey, University of Huddersfield, United Kingdom
José Reinaldo Silva, University of São Paulo, Brazil
David Smith, NASA, USA
Tiago Vaquero, University of Toronto, Canada
Gerard Verfaillie, ONERA, France
Dimitris Vrakas, Aristotle University of Thessaloniki, Greece

	 	

Foreword

Despite the progress in automated planning and scheduling systems, these systems still need to be fed
by careful problem description and they need to be fine-tuned for particular domains and problems.
Knowledge engineering for AI planning and scheduling deals with the acquisition, design, validation
and maintenance of domain models, and the selection and optimization of appropriate machinery to
work on them. These processes impact directly on the success of real planning and scheduling
applications. The importance of knowledge engineering techniques is clearly demonstrated by a
performance gap between domain-independent planners and planners exploiting domain dependent
knowledge.

The KEPS 2013 workshop continues the tradition of ICKEPS competitions and KEPS workshops.
Rather than focusing on software tools only, which is the topic of ICKEPS, the workshop covers all
aspects of knowledge engineering for AI planning and scheduling.

This year the set of accepted papers covers the traditional area of knowledge engineering tools and
methods, supplemented with papers on formulation, reformulation, and post planning optimization.
Representational concerns are covered also, with several papers on timelines-based approaches. With
coverage of plan libraries, verification and validation issues, and some key application areas, the
schedule for this year’s workshop is as broad as it is interesting.

Roman Barták, Simone Fratini, Lee McCluskey, Tiago Vaquero
KEPS 2013 Organizers
June 2013

	 	

Table of Contents

Requirement Analysis Method for Real World Application in Automated Planning Systems 4
Rosimarci Tonaco Basbaum, Tiago Vaquero, and José Reinaldo Silva

Encoding Partial Plans for Heuristic Search ... 11
Pascal Bercher and Susanne Biundo

A Knowledge Engineering Environment for P&S with Timelines ... 16
Giulio Bernardi, Amedeo Cesta, Andrea Orlandini, and Alberto Finzi

Towards AI Planning Efficiency: Finite-domain State Variable Reformulation 24
Filip Dvořák, Daniel Toropila and Roman Barták

What is a Timeline? .. 31
Jeremy Frank

A Service Oriented Approach for the Interoperability of Space Mission Planning Systems 39
Simone Fratini, Nicola Policella, and Alessandro Donati

Policies for Maintaining the Plan Library in a Case-based Planner .. 44
Alfonso Emilio Gerevini, Anna Roubíčková, Alessandro Saetti and Ivan Serina

Post-planning Plan Optimization: Overview and Challenges ... 47
Asma Kilani and Lukáš Chrpa

Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges 53
Mohammad Shah, Lukáš Chrpa, Falilat Jimoh, Diane Kitchin, Lee McCluskey, Simon Parkinson, and
Mauro Vallati

A Timeline, Event, and Constraint-based Modeling Framework for Planning and Scheduling
Problems .. 61
Gérard Verfaillie and Cédric Pralet

Using Static Graphs in Planning Domains to Understand Domain Dynamics 69
Gerhard Wickler

	

Requirement Analysis Method for Real World Application in Automated Planning

Systems

Rosimarci Tonaco Basbaum

1
and Tiago Stegun Vaquero

2 and Jos

´

e Reinaldo Silva

1

1Department of Mechatronic Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

rosimarci@usp.br, tvaquero@mie.utoronto.ca, reinaldo@usp.br

In the intelligent design field, the requirement analysis
phase has a fundamental role in automated planning-
especially for ”real life” systems. Using requirement
analysis users has the ability to identify or redesign
variables which can potentially increase the model ac-
curacy. A great effort has been made today in the area
of Artificial Intelligence for defining reliable automated
planning systems that can be applied for real life appli-
cations. That leads to the need for systematic design
process, in which the initial phases are not neglected
and where Knowledge and Requirement Engineering
tools have a fundamental role for supporting designers.
This paper intent to propose a design method as well as
perform a more detailed study on the adoption of UML
and Petri Nets in the requirement analysis phase using
the itSIMPLE framework as a KE tool.

Introduction

Planning characterizes a specific kind of design problem
where the purpose is to find a set of admissible actions to
solve a problem. The current approaches in the literature aim
to improve the performance of the planner trying to optimize
the search algorithms and the general solution (Edelkamp
and Jabbar 2006). In addition, most of existing work on this
direction apply synthesized and artificial problems (closed
problems that have limited set of actions such as Blocks
World) as a proof of concept for the proposed algorithms.
Due to the extensive development in this area some authors
started to apply planning techniques on real world problems
(Vaquero et al. 2012) as well - like logistic problems - where
the number of variables and actions are high. Those features
increases the model’s complexity.

That said, it is clear that the automated planning area car-
ries an indefinition problem:

• the study made until today is historically connected to
search solution methods to planning problems in an au-
tomatically way and domain independent. Thus, the so-
lutions could be inserted in intelligent automated mech-
anisms, especially robots and another autonomous sys-
tems.

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• the formal techniques developed domain independently
led to techniques that today are very important in several
research fields, like logistics, diagnostic systems, naviga-
tion, space robots, satellite systems, etc. This demand is
independent of the adequacy of formal techniques to the
systems based on specific knowledge to provide real so-
lutions, while increases the discovery of new independent
domain solutions.
Requirement analysis in real life systems is a topic that

has been currently discussed in important Automated Plan-
ning conferences and workshops (McCluskey et al. 2003)
(McCluskey 2002) (Hoffmann 2003). However, there are not
still many works in this research line, especially using Petri
nets in the requirement analysis and validation. Recent stud-
ies show the need of requirement analysis of real life sys-
tems in automated planning, where the problems are mod-
eled using UML (Vaquero 2011) (Simpson 2005) (Simpson,
Kitchin, and McCluskey 2007). However, the literature is
still very scarce when the subject is Petri net applied to the
design process, especially in real life problems.

It is important when dealing with real world problems to
have a design life cycle: a defined sequence of processes that
can support the designer to create a more faithful model.
UML combined with Petri nets offers a disciplined design
process, providing a visual tool (UML) and a validation tool
(Petri nets) to analyze the models.

The design process has two major parts: the elicitation
and documentation phase. Using UML the user can model
all the requirements found in the elicitation phase. Through-
out the Petri net the requirement analysis will be performed
using the available techniques, such as invariant analysis and
equation state matrix (Murata 1989). The first step detects
contradictions and conflicts between the requirements, or the
different view points in the diagrams. The second step iden-
tifies deep inconsistencies, that are hidden in the dynamic
perspective of the plans, as well as additional information
about the model that could be interpreted for the planners.
Such information includes, new constraints, invariants, par-
tial solution strategies, characteristics that could help to im-
prove the planner performance. But, to do this analysis it
necessary to translate de UML diagrams into a single net-
work, and then make the dynamic analysis.

The tool we choose to use is the itSIMPLE framework
(Vaquero and Silva 2005), which currently is not a 100%

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

4

ready to perform the UML/Petri net translation, but it will
be during the development of this project. Our objective is
develop a framework, that will work as part of itSIMPLE
framework, in order to make requirements analysis using
Petri Nets, especially the dynamic of actions.

In the section 2 we will discuss the advantages of UML in
automated planning, followed by a brief description of Petri
Nets, next we present a study case of a classical Logistic
problem, the results, discussions and conclusions.

UML for Design of Real Life Automated

Planning Problems

Accordingly to the literature (Booch, Rumbaugh, and Jacob-
son 2006) the increasing use of UML to model real world
systems and planning problems is mainly due to its visual
modeling representation (Vaquero, Tonidandel, and Silva
2005). One of the benefits of using UML to model planning
problems is the viewpoints that this language can offer to the
model. Dismembering the system in different viewpoints is
a good approach, and can help in the design process, separat-
ing the problem into smaller parts that can be addressed us-
ing distinct diagrams. However, representing it using UML
can be a challenge because some conflicting interpretations
can be generated accross the different diagrams during the
requirement analysis.

With that said, the following question arises: what is the
minimal set of UML diagrams necessary to represent a plan-
ning application? The goal is to use diagrams that have dif-
ferent and complementary viewpoints. The answer is a min-
imal set capable to represent a planning application in an op-
timized way. Therefore, it is necessary to work with the in-
dependence hypothesis, considering that the knowledge are
divided in two parts: work domain and planning problem, as
we will explain better hereafter.

The first step is identify which requirements are repre-
sented in each part. Consider that the work domain repre-
sents the static attributes of the system, and the planning
problem represents the dynamic attributes, including possi-
ble actions. Both, work domain and planning problem, can
be modeled in different Class Diagrams, aiming to not over-
lap the viewpoints. The Class Diagram is a static represen-
tation form adequate to represent work domain. As said be-
fore, the planning problem is dynamic, but can be modeled
in a Class Diagram too, in this case the methods need to be
declared in the classes to represent the actions. To comple-
ment the model, the user must use the State Machine, Ac-
tivity and Sequence Diagrams that contribute to the system
dynamic representation. Using this design method, the work
domain model remains static (if it is necessary), and the
planning problem can be changed according to the neces-
sity, offering an independent and flexible model. The Object
Diagram is used to create problem instances. Such diagram
can represent the initial and goal state and from these dia-
grams the planner can find a plan.

The Use Case Diagram is unnecessary, because it brings
redundant information that is similar to a textual description
of the problem. According to (Irwin and Turk 2005) in the
representation via Use Case there is no consistency and ac-

curacy. Many authors believe that the Use Case Diagram is
not useful in the requirement analysis, like (Siau and Lee
2004). (Dobing and Parsons 2006) question the naturality
involved in the Use Case Diagrams in the object modeling
and the idea of these diagrams facilitating the communica-
tion and requirement analysis. Even with all those criticisms
the Use Case Diagram can be useful to separate the problem
into smaller parts, this is an interesting approach that can
help the design of the Activity Diagram. However, for this
first proposal the Use case Diagram will not be part of the
minimal set.

The proposed minimal set consists of the following dia-
grams:
• Class Diagram;
• State Machine Diagram;
• Activity Diagram;
• Sequence Diagram;
• Object Diagram.

Using the minimal set of diagrams it is possible to have
a concise and syntactically correct representation. However,
it is impossible to validate the model since UML is a semi-
formal representation language. An alternative is to use Petri
nets to execute the validation, to do this it is necessary to
translate the UML diagrams into a single Petri net. But when
the diagrams are grouped into a single net the viewpoints are
merged and with that the identification of errors becomes
complex. Nevertheless, in the UML phase, a syntactic anal-
ysis can be performed to find errors in the model. This can
be done by analyzing the xml file of the itSIMPLE projects.

Basics of Dynamic Analysis using Petri Nets

The use of Petri nets is quite promising in requirement anal-
ysis phase and with this technique users can perform the
verification and validation of the model. In this work the
place/transition Petri Nets (Murata 1989) will be used.

Petri nets is a powerful tool to validate requirements
(Silva 2004). It allows a general representation of the system
and it is a good formalism for real life systems. With Petri
nets one can group the UML diagrams into a single net. The
idea is to find interactions between the objects represented
in all diagrams and translate them into a unique Petri net,
that can represent the entire system process.

Lately, the itSIMPLE translates the UML model into a
Petri net using only the State Machine Diagrams, (Vaquero
2007). Figure 1 shows a simple example of how this transla-
tion occurs.

The approach using only State Machine Diagrams in the
translation process does not allow a correct analysis of the
system. Following this approach, from each State Machine
Diagram a Petri net is derived, therefore it is necessary to
find the interaction points of the nets and link them into a
single Petri net.

Once the Petri net was defined it is necessary to search
for straightforward and trivial conflicts and the presence
of deadlocks. After that, a semantic analysis is performed
aiming to verify whether the network in fact represents the

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

5

Figure 1: Translation of State Diagrams in a Petri Net.

A Petri net is a 5-tuple, PN = (P, T, F,W, M0) where:
P = {p1, p2, ...pn} is a finite set of places,
T = {t1, t2, ..., tn} is a finite set of transitions,
F ✓ (P X T) [(T X P) is a set of arcs (flow relation),
W: F ! {1, 2, 3, ...} is a weight function,
M0: P ! {0, 1, 2, 3, ...} is the initial marking,
P \ T = ↵ and P [T 6= ↵.

Table 1: Formal definition of a Petri net.

planning application. The semantic analysis can be accom-
plished using some of the Petri nets properties, like the be-
havioral and structural properties (Murata 1989).

Behavioral properties of Petri nets are related to the be-
havior of the net and change during the simulation (Murata
1989). They are essentially dependent on the execution stage
in which the network is located and are, therefore, marking-
dependent (Murata 1989).

Structural properties are those that depend on the topo-
logical structures of the Petri nets. They are independent of
the initial marking M0 in the sense that these properties hold
for any initial marking or are concerned with the existence
of certain firing sequences from some initial marking. In
this paper we only consider classical Petri nets, in this case
place/transition net. A formal definition of a place/transition
Petri net is given in Table 1 (Murata 1989).

A Petri net structure N = (P, T, F, W) without any specific
initial marking is denoted by N. A Petri net with the given
initial marking is denoted by (N, M0).

A Petri net, that is a good representation for a plan-
ning problem, should have the following properties (Murata
1989):

• Reachability: The firing of an enabled transition will
change the token distribution (marking) in a net accord-
ing to the transition rule. A sequence of firings will result
in a sequence of markings. A marking Mn is said to be
reachable from a marking M0 if there exists a sequence of
firings that transforms M0 to Mn.

• Boundedness: A Petri net (N, M0) is said to be bounded if
the number of tokens in each place exceed a finite number
k for any marking reachable from M0, i.e. M(p) k for
every place p and every marking M 2 R(M0).

• Liveness: The concept of liveness is closely related to the

complete absence of deadlocks in operating systems. A
Petri net (N, M0) is said to be live (or equivalently M0 is
said to be a live marking for N) if, no matter what mark-
ing has been reached from M0, it is possible to ultimately
fire any transition of the net by progressing through some
further firing sequence. This means that a live Petri net
guarantees deadlock-free operation, no matter what firing
sequence is chosen.

• Reversibility: A Petri net (N, M0) is said to be reversible
if, for each marking M in R(M0) is reachable from M.

Methods of analysis for Petri nets may be classified into the
following groups: 1) the coverability graph method (includ-
ing reachability tree); 2) the matrix-equation approach; and
3) reduction or decomposition techniques (Murata 1989).
The first method involves essentially the enumeration of all
reachable markings or their coverable markings. It should
be able to apply to all classes of nets, but is limited to small
nets due to the complexity of the state-space explosion. On
the other hand, matrix equations and reduction techniques
are powerful but in many cases they are applicable only to
special subclasses of Petri nets or special situations (Murata
1989).

In the current version of itSIMPLE the Petri nets needs
to be manually designed considering the transitions that ap-
pears in the State Machine Diagrams and pre and post condi-
tions (these can be found at the PDDL file on the itSIMPLE
project). The purpose is to migrate to high level Petri nets,
because they offer a sintax representation (especially when
multiplicity are present in the problem) and the complexity
of the application could be represented in a clear way. The
module that will generate the high level Petri net and the
inclusion of Sequence and Activity Diagrams must be im-
plemented in the next itSIMPLE releases.

Requirement and Work Domain Analysis in

Automated Planning

Applications that deal with real life problems become in-
creasingly necessary over the recent developments in the
Automated Planning field. In general, the major focus of
the planning community is, the pursuit of planners effi-
ciency, and neglecting the analysis aspects. (Zimmerman
and Kambhampati 2003; Upal 2005) .

To conduct the planning of an activity it is necessary to
determine all features of the system in which it is embedded.
Some factors must be considered, for example the sub sys-
tems evolved, internal variables, correlations with other sys-
tems, constants and constraints. Such specification is called
system modeling, and from it depends the success of the re-
sult obtained from the planning process. In this aspect sev-
eral points becomes important, such as the proposed model
complexity, and its accuracy from the original real life sys-
tem.

In the design process languages such as the traditional
PDDL (McDermott 2003), or the UML (OMG 2009) are
used. To help in the design and the requirement analysis
phases, as said before, there are frameworks available such
as itSIMPLE (Vaquero, Tonidandel, and Silva 2005) (Va-
quero et al. 2007), that focus on the initial design process

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

6

phases, such as specification and modeling. After design is
concluded, the output model is processed by tools called
planners, that can proposes a set of actions (Ghallab, M.;
Nau, D.; Traveso 2004).

To design real life systems, there are two key challenges:
1) create a design discipline for modeling real life systems,
using UML as the representation language; 2) translate and
synthesis of the UML diagrams in a unique high level Petri
net, which will be analyzed in order to obtain information
that can anticipate problems in the model helping in the de-
sign phase the generation of suitable plans.

The general purpose of this paper is to propose a design
process for automated planning systems, that is composed
of two layers: 1) where independent domain methods are ap-
plied; and 2) using the specific knowledge and requirements
analysis applying high level Petri nets to increase the qual-
ity of planning problems solutions in Artificial Intelligence.
The challenge here is to discover where to insert the spe-
cific knowledge and how to include this in the design pro-
cess since we are working with three classes of problems
where the specific knowledge level increases from bench-
mark to real life problems. The classes are: benchmarks, in-
termediates (like ROADEFs (Perez et al. 2006)) and real life
problems (like Petrobras problem presented in the Interna-
tional Competition of Knowledge Engineering for Planning
and Scheduling (ICKEPS) 2012) (Vaquero et al. 2012).

In the first level the purpose is to follow the original work
of (Hoffmann 2003), where is proposed the problem struc-
ture concept used in this paper. From that concept to suggest
a formalization of this structure based on high level Petri
nets. The properties will serve to analyze the similarities,
repetitive cycles, invariants and other properties between the
models.

In the second level the specific knowledge can be in-
cluded as dynamic relationships and actions properties, that
will be inserted in UML diagrams and translated in a Petri
net (therefore having a format compatible with the previous
phase). The structure receives the dependent-domain knowl-
edge, to apply the analysis techniques of high level Petri
nets. These techniques are particularly sensitive when ap-
plied in real life problems, requiring a different approach
from the academic applications. Real life problems must fol-
low a very disciplined design process, grounded in Knowl-
edge Engineering, whose initial stage is composed by elici-
tation and requirement analysis. Such design process is the
study focus of many researchers in Automated Planning area
(McCluskey et al. 2003).

Since our focus is on intermediate and real life problems,
and in this kind of problems it is necessary to define more
specific knowledge to generate the model. We start from the
independence hypothesis, that is design the work domain
separately from the planning problems, as presented before.
This approach allows to develop a more flexible model.

In the design process will be used UML (OMG 2009)
as the modeling language and the oriented-object Petri net
(from GHENeSys, that is a class of high level Petri nets)
(San and Miralles 2012) to make the requirement analysis
of the dynamic of actions.

In the next section will be presented a simple case study

synthesized from Logistic Problem to show our first insights
with this proposal. To be clear this is not the only case study
that we made to test this proposal, we modeled and analyzed
two ROADEFs challenges (2005 (Nguyen 2005) and 2009
(Palpant et al. 2009)) as well. Most of our conclusiond and
findings about the method are from ROADEFs problems.

Case Study - Logistic

To illustrate the design method proposed in the previous sec-
tions, we present a simple version based on Logistic domain.
In which only trucks are considered in order to reduce the
scope. Since itSIMPLE still does not model the Activity Se-
quence Diagrams, the UML model for this case study was
designed in a object oriented modeling tool. Another rea-
son to make the model ”by hand” (not using itSIMPLE) is
because the design method presented here is different of the
method used in itSIMPLE. As proposed earlier, the planning
problem and the work domain were designed separately, to
avoid overlap in the requirements definition phase. Figures
2 and 3 show respectively the Class Diagram to the planning
problem and work domain.

Figure 2: Class Diagram designed to represent the planning
problem.

Figure 3: Class Diagram designed to represent the work do-
main.

Following the proposal of using a minimal set to represent
planning problems, we present below the Activity, Sequence
and States Diagrams. The Petri net designed for this problem
does not use the itSIMPLE method to generate the nets. In
order to design the Petri net we used three UML diagrams:

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

7

Activity, Sequence and State Machine, representing that way
the dynamic part of the problem (the planning problem).

Figure 4: State Diagram designed to represent the planning
problem.

Figure 5: Activity Diagram designed to represent the plan-
ning problem.

The Activity Diagram shows the action cycles, (as an al-
gorithm controlling the process flow) the State Machine Di-
agram identifies which states that each object could assume
during the processing, and using the Sequence Diagram it
is possible to create use cases to test the model and check
which sequence of action is shot. The Petri net that repre-
sents those diagrams is presented in the Figure 7.

With this representation it is possible to verify the pre-
conditions for the getPackage action which would be Pack-
age is at place, Truck is at place and Received demand and
also its effect (in an abstract way) that is Package in truck.
With Petri nets the analysis can be done using the tech-
niques explained in the previous section. In this case, we use
a reachability tree and a matrix-equation approach (Murata
1989).

The invariant analysis showed that the net is conservative,
because the sum of markings is the same - since there is two
objects modeled in the Petri net (Truck and Package), the
sum of tokens must be 2. Analyzing the same results - from
invariant analysis - we observed that the net is bounded as
well, because the number of tokens never exceeds an integer
k, where k = 2 in this example.

The reachability tree shows that the net is:
• limited because the coverability tree is finite.

Figure 6: Sequence Diagram designed to represent the plan-
ning problem.

• live (there is no deadlocks), which in this case is desired
and expected, since the process is cyclic.

• reachable, since all markings are due to the initial mark-
ing.

The purpose of using the reachability tree is trying to
find loops that can indicate to the planner subgoals to be
achieved. Thus, it is feasible to identify subgoals that could
also help reaching the goal state or even if there are states
that must be avoided anticipating that way possible dead-
locks.

Results and Discussion

Modeling the work domain separately (Independence Hy-
pothesis) make sense because it is common to many plan-
ning problems. With this approach we believe that is possi-
ble to analyze how the work domain constraints affects the
planning problem. Besides that, one can analyze easily the
structure that represents the work domain. And this repre-
sentation is very closer to what (Hoffmann 2003) calls prob-
lem structure.

According to Hoffmann (2003), benchmark problems has
a sort of structure which repeats in different planning ap-
plications. That structure is what the author called problem
structure. Hoffmann (2003) raises a number of questions
about the structure of the problem, among them two ques-
tions are relevant here: 1) What are the common patterns in
the domain structures? Is it possible to find a description of
these domains? The author points out that patterns could be
an answer in the space-state graph topology.

The approach via Petri nets is what Hoffmann (2003) calls
problem topology. And with this approach we can identify
phenomena like dead-ends and goal ordering that was dis-
cussed in his lecture notes. The dead-ends is similar to dead-
locks in Petri nets, and this problem is easily solved. Another

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

8

Figure 7: Petri net designed to represent the Logistc domain.

possibility is to observe if the planner can reach subgoals be-
fore reaching the goal state. With that is plausible to say that
this characteristic can help to solve the ordering goals prob-
lem presented in (Hoffmann 2003). But, in this case we have
positive results just for small and closed problems as will be
shown below.

Let us consider the benchmark problem Blocks-World,
where the problem instance is:
• Initial state: clear(b), clear(c), ontable(a), ontable(b),

on(c, a), handempty.
• Goal: on(b,c) on(a,b) ontable(c).

Figure 8 shows all possible states of Blocks-World Arm,
from state 1 where the blocks are on table to state 13. The
initial state of our problem instance is state 11 and our goal
state is state 9.

Figure 8: Possible States for Blocks-World Arm Problem.

From Figure 8 was designed to Petri net of Figure 9. In
this figure each place represents a possible state of Figure 8.

And there is an essential node, node 1 which divide the net in
components. Each component represents the movement for
each block. If we remove node 1, we will have three different
Petri nets. The Sussman paradox occurs when the processing
goes from essential node and comes back to the same com-
ponent entering into a loop. It possible to solve that problem
with just three actions: 1) it is mandatory pass through es-
sential node; 2) since passed the essential node do not return
to the same component (not repeat the initial action); 3) run
the action ”move” to the respective component.

Figure 9: Blocks-World Arm Petri Net.

With this simple solution we can resolve the Sussman
paradox and goal ordering phenomena presented in (Hoff-
mann 2003). Tests has not been done already with large and
complex problems. But, the results found in small problems
is a good sign that this technique can be also applied for
complex problems. However, for real life problems, we be-
lieve that it will be necessary to use high level Petri nets to
represent the problem.

Conclusion

After some running exercises, we found that the Petri net
generated using he current version of itSIMPLE is not cor-
rect. itSIMPLE consider just the State Machine Diagrams
and this is not enough to derivate the Petri net. But, currently
the State Machine Diagram is the only way itSIMPLE uses
to represent the dynamic part of the system, this was the
main motivation to add other diagrams that can represent
the dynamic aspects in a better way. Another weakness of it-
SIMPLE is how the planning application is modeled. There
is no project discipline and this can lead the user to wrongly
model the problem, confusing the work domain with the
planning problem. Our proposal is to separate them in differ-
ent Class Diagrams, and from the Class Diagram - that rep-
resents the planning problem - design other diagrams, since
they can offer different viewpoints that can complement the
information needed to generate the Petri net.

In this work we presented a different proposal for Petri
nets in automated planning, that uses the Petri net in
Knowledge Engineering to improve the design process.
This project aims to create a better and disciplined way

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

9

to model planning applications using UML and Petri nets.
Even though the method has not been implemented and val-
idated yet, the results found in the case studies are quite
promising. Using the method proposed in this work it is ex-
pected to have an improvement of the plans, with the addi-
tion of information from the Petri net analysis.

References

Booch, G.; Rumbaugh, J.; and Jacobson, I. 2006. UML -
User Guide. Elsevier.
Dobing, B., and Parsons, J. 2006. How UML IS USED.
Communications of the ACM 49(5):109–114.
Edelkamp, S., and Jabbar, S. 2006. Action Planning for
Directed Model Checking of Petri Nets. Electronic Notes in
Theoretical Computer Science 149(2):3–18.
Ghallab, M.; Nau, D.; Traveso, P. 2004. Automated Plan-
ning: Theory and Practice. CA: Morgan Kaufman.
Hoffmann, J. 2003. The Metric-{FF} Planning System:
Translating Ignoring Delete Lists to Numerical State Vari-
ables. Journal of Artificial Intelligence Research (JAIR) 20.
Irwin, G., and Turk, D. 2005. An Ontological Analysis of
Use Case Modeling. Information Systems 6(1):1–36.
McCluskey, T. L.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis,
P.; Refanidis, I.; and SCHOLZ. 2003. Knowledge Engineer-
ing for Planning Roadmap.
McCluskey, T. 2002. Knowledge engineering: issues for
the AI planning community. The AIPS-2002 Workshop on
Knowledge Engineering Tools and Techniques for AI Plan-
ning.
McDermott, D. V. 2003. PDDL2.1 - The Art of the Pos-
sible? Commentary on Fox and Long. Journal of Artificial
Intelligence Research (JAIR) 20:145–148.
Murata, T. 1989. Petri Nets: Properties, Analisys and Ap-
plications.
Nguyen, A. 2005. Challenge ROADEF 2005 Car Sequenc-
ing Problem. ROADEF Challenge 1–17.
OMG. 2009. OMG Unified Modeling Language TM (OMG
UML), Superstructure.
Palpant, M.; Boudia, M.; Robelin, C.; Gabteni, S.; and
Laburthe, F. 2009. ROADEF 2009 Challenge : Disruption
Management for Commercial Aviation. (261):1–24.
Perez, O. J. G.; Reines, F. C. P.; Olivares, J. F.; Vidal,
L. C.; and Hervas, T. G. 2006. Planning process from a
user perspective. In Proceedings of the 16th International
Conference on Automated Planning and Scheduling (ICAPS
2006) Workshop on Plan Analysis and Management. Cum-
bria, UK.
San, A., and Miralles, P. 2012. GHENeSys , uma rede unifi-
cada e de alto nivel. Ph.D. Dissertation, Sao Paulo.
Siau, K., and Lee, L. 2004. Are use case and class diagrams
complementary in requirements analysis? An experimental
study on use case and class diagrams in UML. Requirements
Engineering 9(4):229–237.

Silva, J. R. 2004. Applying Petri nets to requirements vali-
dation. IFAC Symposium on Information Control Problems
in Manufacturing Salvador 1:508–517.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. The Knowledge
Engineering Review 22(02):117.
Simpson, R. M. 2005. Gipo graphical interface for planning
with objects. Proceedings of the First International Compe-
tition on Knowledge Engineering for AI Planning.
Upal, M. A. 2005. Learning to Improve Plan Quality. Com-
putational Intelligence 21(4):440–461(22).
Vaquero, T. S., and Silva, J. R. 2005. The itSIMPLE tool for
Modeling Planning Domains. Artificial Intelligence.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA.
Vaquero, T. S.; Costa, G.; Tonidandel, F.; Igreja, H.; Silva,
J. R.; and Beck, J. C. 2012. Planning and Scheduling Ship
Operations on Petroleum Ports and Platforms. Proceedings
of the Scheduling and Planning Applications woRKshop.
Vaquero, T. S.; Tonidandel, F.; and Silva, J. R. 2005. The it-
SIMPLE tool for Modelling Planning Domains. In Proceed-
ings of the First International Competition on Knowledge
Engineering for AI Planning, Monterey, Califormia, USA.
Vaquero, T. S. 2007. ITSIMPLE : Iintegrated Tools Envi-
ronment For Modeling and Domain Analysis. Dissertation,
Polytechnic - University of Sao Paulo.
Vaquero, T. S. 2011. Post-design for Automated Planning
Problems: an approach combining diagnosis, virtual reality
and reuse of rationales. Tese de doutorado, Polytechnic -
University of Sao Paulo.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: looking back, taking stock, go-
ing forward. AI Magazine 24(2):73–96.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

10

Encoding Partial Plans for Heuristic Search

Pascal Bercher and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany,

firstName.lastName@uni-ulm.de

Abstract

We propose a technique that allows any planning system that
searches in the space of partial plans to make use of heuristics
from the literature which are based on search in the space of
states.
The technique uses a problem encoding that reduces the prob-
lem of finding a heuristic value for a partial plan to finding a
heuristic value for a state: It encodes a partial plan into a new
planning problem, s.t. solutions for the new problem corre-
spond to solutions reachable from the partial plan. Evaluating
the goal distance of the partial plan then corresponds to eval-
uating the goal distance of the initial state in the new planning
problem.

Introduction
In most of today’s classical planning approaches, problems
are solved by informed (heuristic) progression search in
the space of states. One reason for the big success of
this approach is the availability of highly informed heuris-
tics performing a goal-distance estimate for a given state.
In plan-space-based search, search nodes correspond to
partially ordered partial plans. One of the most impor-
tant representatives of this technique is partial-order causal
link (POCL) planning (McAllester and Rosenblitt 1991;
Penberthy and Weld 1992). The least commitment princi-
ple of POCL planning seems to be advantageous compared
to the more restricted state-based search techniques, as it
enforces decisions such as variable bindings, only if neces-
sary. POCL planning has greater flexibility at plan execution
time (Muise, McIlraith, and Beck 2011) and eases the inte-
gration for handling resource or temporal constraints and du-
rative actions (Vidal and Geffner 2006; Coles et al. 2010). Its
knowledge-rich plans furthermore enable the generation of
formally sound plan explanations (Seegebarth et al. 2012).
However, due to the complex structure of partial plans, de-
veloping well-informed heuristics for POCL planning is a
challenging task (Weld 2011) and heuristics are still rare. To
address the lack of informed heuristics for POCL planning,
we propose an idea of how to use heuristics already known
from state-based search, rather than developing new specific
heuristics.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

POCL Planning
A planning domain is a tuple D = 〈V,A〉, where V is a fi-
nite set of state variables andA is a finite set of actions, each
having the form (pre, add , del), where pre, add , del ⊆ V .
2V is the set of states and an action is applicable in a state
s ∈ 2V if its precondition pre holds in s, i.e., pre ⊆ s.
Its application generates the state (s \ del) ∪ add . The ap-
plicability and application of action sequences is defined as
usual. A planning problem in STRIPS notation is a tuple
π = 〈D, sinit , g〉 with sinit ∈ 2V being the initial state and
g ⊆ V being the goal description. A solution to π is an
applicable action sequence starting in sinit and generating a
state s′ ⊇ g that satisfies the goal condition.

POCL planning is a technique that solves planning prob-
lems via search in the space of partial plans. A partial plan
is a tuple (PS ,≺, CL). PS is a set of plan steps, each being
a pair l:a with an action a ∈ A and a unique label l ∈ L
with L being an infinite set of label symbols to differenti-
ate multiple occurrences of the same action within a partial
plan. The set ≺ ⊂ L × L represents ordering constraints
and induces a partial order on the plan steps in PS . CL is
a set of causal links. A causal link (l, v, l′) ∈ L× V × L
testifies that the precondition v ∈ V of the plan step
with label l′ is provided by the action with label l. That
is, if l:(pre, add , del) ∈ PS , l′:(pre ′, add ′, del ′) ∈ PS , and
(l, v, l′) ∈ CL, then v ∈ add and v ∈ pre ′. Furthermore, we
demand l ≺ l′ if (l, v, l′) ∈ CL.

Now, π can be represented as a POCL planning problem
〈D, Pinit〉, where Pinit := ({l0:a0, l∞:a∞}, {(l0, l∞)}, ∅)
is the initial partial plan. The actions a0 and a∞ encode
the initial state and goal description: a0 has no precondi-
tion and sinit as add effect and a∞ has g as precondition
and no effects. A solution to a POCL planning problem is
a partial plan P with no flaws. There are two flaw classes:
FOpenPrecondition and FCausalThreat . An open precondition
in FOpenPrecondition is a tuple (v, l) ∈ V × L and specifies
that the precondition v of the plan step with label l is not yet
protected by a causal link. A causal threat in FCausalThreat

is a tuple (l, (l′, v, l′′)) ∈ L×CL and specifies that the order-
ing constraints ≺ allow the plan step l:(pre, add , del) with
v ∈ del to be ordered in such a way that ≺∪{(l′, l), (l, l′′)}
induces a partial order. That is, the plan step with label l
threatens the causal link (l′, v, l′′), since it might undo its
protected condition v.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

11

If a partial plan P has no flaws, then every linearization
of its plan steps that respects the ordering constraints is a so-
lution to the corresponding planning problem π in STRIPS
notation.

POCL planning can be regarded as a refinement procedure
(Kambhampati 1997), since it refines the initial partial plan
Pinit step-wise until a solution is generated. To that end,
first a partial plan P is selected, which is based on heuris-
tics estimating the goal-distance or quality of P . Given such
a partial plan P , a flaw selection function selects one of its
flaws and resolves it. For that end, all modifications are gen-
erated, which are all possibilities to resolve the given flaw.
There are three modification classes, each specifying modifi-
cations addressing certain flaw classes. A causal threat flaw
(l, (l′, v, l′′)) ∈ FCausalThreat can only be resolved by pro-
motion or demotion. Promotion and demotion modifications
belong to the class of MInsOrdering and are ordering con-
straints, which promote the plan step with label l before the
one with label l′ or demote it behind the one with label l′′.
An open precondition flaw (v, l) ∈ FOpenPrecondition can
only be resolved by inserting a causal link (l′, v, l) which
protects the open precondition v. This can be done either by
using a plan step already present in the current partial plan,
or by a new action fromA – the corresponding modification
classes areMInsCausalLink andMInsAction , respectively.

The procedure of selecting a partial plan, calculating its
flaws, and selecting and resolving a flaw is repeated until
a partial plan P without flaws is generated. Hence, P is a
solution to the POCL planning problem and returned.

Heuristics for POCL Planning
In this section we briefly review the current state of the art
heuristics for selecting a partial plan in POCL planning.

Although there are many heuristics for POCL planning,
most of them are based on pure syntactical criteria like the
number of open precondition flaws or the ratio of certain
flaws to the number of plan steps, etc. (Younes and Simmons
2003; Schattenberg 2009). However, we are only aware of
two heuristics for POCL planning which are based on a well-
informed means-ends analysis: the Additive Heuristic for
POCL Planning hradd (Younes and Simmons 2003) and the
Relax Heuristic hrelax (Nguyen and Kambhampati 2001).
The first one is a variant of the add heuristic (Haslum and
Geffner 2000), whereas the second one can be regarded as a
variant of the FF heuristic (Hoffmann and Nebel 2001).

While these heuristics are the currently best-informed
heuristics available for (non-temporal) POCL planning, they
both ignore the negative effects of the plan steps in the cur-
rent partial plan, although those could be used to strengthen
their heuristic estimates. In contrast to that, our technique
allows, in principle, heuristics to use all information given
by the current partial plan. To pinpoint our observation, we
briefly review hradd

1.
The heuristic hradd takes as input a set of open precondi-

tions of the partial plan and estimates the effort to achieve

1We do not review both heuristics, because hrelax is basically
just an improvement of the add heuristic taking into account posi-
tive interactions to a larger extent.

them based on a reachability analysis assuming sub-goal in-
dependence and delete relaxation.

Let 〈〈V,A〉, Pinit〉 be a POCL planning problem, V ⊆ V
a set of state variables, v ∈ V such a state variable,
A(v) := {(pre, add , del) ∈ A | v ∈ add} the set of actions
with an add effect v, and a := (pre, add , del) ∈ A an ac-
tion. Then, hradd is based on the following functions:

hvariablesadd (V) :=
∑
v′∈V

haVariable
add (v′)

haVariable
add (v) :=

0 if v ∈ sinit
min
a∈A(v)

hanAction
add (a) if A(v) 6= ∅

∞ else

hanAction
add (a) := 1 + hvariablesadd (pre)

The heuristic hradd(P), which does reuse actions in the
current partial plan P = (PS ,≺, CL), is now defined by
hvariablesadd (gP), where gP is a subset of all open precondi-
tions. Let OC ⊆ V × L be the set of all open precon-
ditions of P . Then, gP := {v | (v, l) ∈ OC and there
is no l′:(pre, add , del) ∈ PS , s.t. v ∈ add and the set
≺ ∪ {(l′, l)} induces a partial order}. Thus, gP is the set
of all open preconditions for which new plan steps must be
inserted in order to resolve these flaws.

It is easy to see that the given partial plan P and its struc-
ture are only used to identify open preconditions. Positive
interactions are used only to a certain extent and negative in-
teractions are completely ignored. Of course, the very idea
of this heuristic is the delete relaxation; however, to ignore
the negative effects of actions in PS is an additional relax-
ation, which might lead to a strong underestimation of the
heuristic. The original version of the add heuristic for state-
based search takes a current state s as input, and the heuristic
assumes that all state variables of s remain true. Since there
is no such state in our setting, hradd assumes that all state
variables of sinit remain true. However, this assumption is
much more severe than in the original version of the add
heuristic, since in state-based search, s reflects all effects of
all actions leading to s, whereas hradd does only incorporate
the positive effects of all actions leading to P , but not its
negative ones.

We argue that the plan structure and the positive and neg-
ative interactions of the plan steps given in the partial plan
should be used to improve heuristic estimates. Our proposed
technique allows to take all these factors into account.

New Heuristics for POCL Planning
Our idea to make the heuristics from state-based planning
available to POCL planning involves encoding the current
partial plan by means of an altered planning problem, s.t.
estimating the goal distance for that partial plan corresponds
to estimating the goal distance for the initial state in the new
planning problem.

Please note that a similar encoding was already proposed
by Ramı́rez and Geffner (Ramı́rez and Geffner 2009). How-
ever, their transformation was used in the context of plan
recognition for compiling observations away.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

12

Transformation
Our transformation works as follows: given a planning
problem in STRIPS notation π = 〈〈V,A〉, sinit , g〉 and
a partial plan P = (PS ,≺, CL), let encP(π, P) =
〈〈V ′,A′〉, s′init , g′〉 be the encoding of π and P with:

V ′ := V ∪ {l−, l+ | l:a ∈ PS , l /∈ {l0, l∞}}
A′ := A ∪ {encPS (l:a,≺) | l:a ∈ PS , l /∈ {l0, l∞}},
with encPS (l:(pre, add , del),≺) :=

(pre ∪ {l−} ∪ {l′+ | l′≺ l, l′ 6= l0},
add ∪ {l+}, del ∪ {l−}),

s′init := sinit ∪ {l− | l:a ∈ PS , l /∈ {l0, l∞}}
g′ := g ∪ {l+ | l:a ∈ PS , l /∈ {l0, l∞}}

The transformed problem subsumes the original one and
extends it in the following way: all plan steps present in P
are additional actions in A′ – we do not encode the artificial
start and end actions, since their purpose is already reflected
by the initial state and goal description. The new actions
use the labels of their corresponding plan steps as additional
state variables to encode whether they have already been ex-
ecuted or not. Thus, for every label we introduce two new
state variables: l− for encoding that the corresponding plan
step/action has not yet been executed and l+ to encode that
it has been executed. Initially, none of these plan steps were
executed and the (additional) goal is to execute all of them.
Furthermore, the new actions use these labels to ensure that
they can only be executed in an order consistent with the
ordering present in the plan to encode. Please note that we
do not encode the causal links for the sake of simplicity, al-
though it is possible.

Before we can state the central property of the
transformed problem, we need some further definitions:
ref (P) := {〈PS ′,≺′, CL′〉 | PS ′ ⊇ PS ,≺′ ⊇ ≺, CL′ ⊇
CL} is called the set of all refinements of P , i.e., the set
of all partial plans which can be derived from P by adding
plan elements. Let sol(π) be the set of all solution plans of
π. Then, sol(π, P) := sol(π) ∩ ref (P) is the set of all so-
lutions of π, which are refinements of P . The cost of P is
denoted by c(P) := |PS |.
Theorem 1. Let π be a planning problem and P a partial
plan with no causal links. Then,

min
P ′∈sol(π,P)

c(P ′) = min
P ′∈sol(encP(π,P))

c(P ′)

This theorem states that an optimal solution for π, which
also has to be a refinement of P , has the same cost as an
optimal solution for the transformed problem. To prove that
theorem, we provide two propositions from which it directly
follows. The first proposition states that every solution of
the original planning problem, which is also a refinement of
the given partial plan, does also exist as a solution for the en-
coded problem. The second proposition states that every so-
lution of the encoded problem can be decoded into a solution
of the original one, which is a refinement of the given partial
plan, too. Before we can state these propositions formally,
we have to show how partial plans derived from encP(π, P)
can be transformed back into plans for π.

Let the decoding of a plan step be given by
decPS (l:(pre, add , del)) := l:(pre ∩ V, add ∩ V, del ∩ V)
and the decoding of a partial plan be given by
decP(〈PS ,≺, CL〉) := 〈{decPS (l:a) | l:a ∈ PS},≺,
{(l, v, l′) ∈ CL | v ∈ V}〉.
Proposition 1. Let π be a planning problem, P a partial
plan with no causal links, and Psol ∈ sol(π, P). Then,
there exists a plan P ′sol with P ′sol ∈ sol(encP(π, P)) and
decP(P ′sol) = Psol .

Proposition 2. Let π be a planning problem, P a partial
plan with no causal links, and P ′sol ∈ sol(encP(π, P)).
Then, decP(P ′sol) ∈ sol(π, P).

Proof Sketch. Follows from construction.

Theorem 1 can be exploited by using heuristics known
from state-based planning in the context of POCL plan-
ning: we want to find a heuristic function h(π, P) that es-
timates the goal distance in π from the partial plan P . To
that end, we transform π and P into the planning problem
π′ = encP(π, P) and set h(π, P) := max{hsb(π′, s′init) −
c(P), 0}, where hsb is any heuristic that takes a state as in-
put. We subtract the action cost of P from the estimate,
since the heuristic h has to estimate the distance from P ,
whereas hsb estimates the goal distance from the new initial
state thereby including the costs of the plan steps in P . We
maximize with zero, in case the heuristic hsb underestimates
the optimal goal distance by returning a value smaller than
the action costs of the given plan.

From Theorem 1, we can also conclude that we inherit ad-
missibility: if hsb is admissible, h is admissible, too. This is
an important property of our technique, as the currently best-
informed heuristics for POCL planning, hradd and hrelax ,
are both not admissible. Our technique thus provides POCL
planning with the first admissible heuristics by using admis-
sible heuristics from state-based planning.

Since our transformation ignores causal links, the en-
coded planning problem is already relaxed if the given par-
tial plan has causal links. Thus, given a partial plan with
causal links, the equality in Theorem 1 is weakened in such
a way that the optimal solution cost of sol(encP(π, P)) is
just a lower bound of the optimal cost of sol(π, P).

Evaluation
In this section, we evaluate the overhead of performing the
encoding process. We begin by examining the canonical ap-
proach where the transformation is done for each partial plan
independently, followed by an analysis of the costs if one
performs an incremental transformation. To that end, let
π := (V,A, sinit , g), P := (PS ,≺, CL) be a partial plan,
and encP(π, P) = (V ′,A′, s′init , g′).

We can directly observe that the elements of encP(π, P)
are supersets of the elements in π. The number of their addi-
tional elements (state variables and actions) is bounded by a
constant factor in the number of plan steps in PS . However,
the preconditions of the additional actions in A′ \ A need
some further attention. The size of the subset {l′+ | l′≺l, l′ 6=
l0} of the precondition of such an action can be linear in
the number of plan steps of P . We can hence conclude

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

13

that the transformation has a time and space consumption
of Θ(|π|+ |PS |+ |≺|), which is in O(|π|+ |PS |2).

However, we want to minimize the overhead we incur
by performing the transformation; thus, we desire an incre-
mental encoding of the current partial plan, where the trans-
formed planning problem depends only on the previous one
and the modification applied last.

Theorem 2. Let π be a planning problem, P a partial plan,
m a modification resolving some flaw of P thereby generat-
ing P ′, and π′ := encP(π, P). Then, π′ can be transformed
into π′′ := encP(π, P ′) in O(1), given P , and m.

Proof. We give a constructive proof by providing an algo-
rithm calculating encP-inc(π

′, P,m) := (V ′′,A′′, s′′init , g′′),
s.t. encP-inc(π

′, P,m) = encP(π, P ′). The modification m
can only belong to one of the classes MInsOrdering ,
MInsAction , and MInsCausalLink . If m is the insertion of
an ordering constraint or a causal link, V ′′, s′′init , and g′′ are
not changed w.r.t. the elements of π′ = (V ′,A′, s′init , g′). If
m is a task insertion, these sets are extended by just one or
two elements, each. Their incremental construction can thus
be performed in constant time. The more interesting part
is the calculation of A′′. Let m = (l, l′) ∈ MInsOrdering

and encPS (l′:a,≺) = (pre, add , del) be the encoding of
the plan step in PS with label l′. This action must be al-
tered in order to represent the new ordering constraint. Thus,
A′′ := (A′ \ {(pre, add , del)})∪{(pre ∪{l+}, add , del)}.
Since we only remove and add one element, we can com-
pute this set in constant time, assuming the set operations are
constant-time bounded. Since the insertion of a causal link is
only reflected via an ordering constraint, we obtain the same
result for m ∈ MInsCausalLink . For m ∈ MInsAction , we
also have to do the same as for the previous modification
classes, as m inserts a new action a ∈ A and a causal link
(l, v, l′) from l:a to l′:a′. In addition, we must insert the ac-
tion encPS (l:a, ∅), which can also be done in constant time.
Please note that we can use an empty set of ordering con-
straints, since this set only determines which plan steps must
precede l:a - however, since l:a is just being inserted, there
are no such plan steps, yet. Hence, no further alterations
must be made. We have thus shown that encP-inc(π

′, P,m)
can be calculated in constant time.

We do not show encP-inc(π
′, P,m) = encP(π, P ′), since

the proof is straight-forward.

Given a partial plan P ′, its parent P and the encoding
of P , π′ := encP(π, P), the theorem states that one can
calculate the encoding of P ′, π′′ := encP(π, P ′), in constant
time. However, note that the proof relies on an algorithm
which directly manipulates π′ in order to calculate π′′. Thus,
in case a partial plan has more than one successor, applying
the algorithm given in the proof violates the premise that
we have stored the encoding for every plan. To address that
problem, it suffices to maintain a copy for every encoded
planning problem, which can be done in linear time in the
size of the given plan. (Since every encoding contains the
original planning problem, it does not need to be copied for
each individual partial plan.)

Please note that we only discussed the runtime of the en-
coding process. However, for our purpose of using the tech-
nique for calculating heuristic estimates, the size of the re-
sulting problems is of more importance as the runtime of the
heuristic calculation heavily depends on this size.

Example
Let π = 〈〈V,A〉, sinit , g〉 be a planning problem with V :=
{a, b, c}, A := {({b}, {a}, {b}), ({a}, {c}, {a})}, sinit :=
{a, b}, and g := {a, c}. Let P be a partial plan which was
obtained by a POCL algorithm as depicted below:

l1:A1 l2:A2b
¬b
a

a
¬a
c

a

b

a
c

The arrows indicate causal links and A1 and A2 are the
two actions of A. P has only one open precondition:
(a, l∞), which encodes the last remaining goal condition.
Since a is already true in the initial state, both the add and
the relax heuristic estimate the effort to be 0. However, the
optimal goal distance is even∞, since there is no refinement
of P , which is a solution.

Due to Theorem 1, a heuristic based on the transformed
problem can incorporate the negative effects of l1:A1 and
l2:A2 and has thus the potential to discover the partial
plan/state to be invalid and thus prune the search space.
With A′ being defined below, encP(π, P) is given by
〈〈{a, b, c, l1+, l1−, l2+, l2−},A′〉, {a, b, l1−, l2−}, {a, c, l1+, l2+}〉.

A′ := {({b}, {a}, {b}}),
({b, l1−}, {a, l1+}, {b, l1−})
({a}, {c}, {a}),
({a, l2−, l1+}, {c, l2+}, {a, l2−})}

Discussion
Relaxation Every (practically relevant) heuristic performs
some kind of relaxation. Therefore, one must investigate
which impact the relaxation of actions in Anew := A′ \ A
has for the resulting heuristic estimates. Since these actions
encode the current partial plan, relaxing them would contra-
dict the goal to use all information of the current planning
progress. Thus, only relaxing the actions in A, but none in
Anew would improve the heuristic accuracy. However, one
has to investigate how this can be done for each individual
heuristic and how much it would influence the time to cal-
culate its heuristic estimate. But, of course, relaxing them to
a certain extent still captures some information obtained by
the current partial plan.

Preprocessing Some heuristics, like merge and shrink ab-
straction (Dräger, Finkbeiner, and Podelski 2006; Helmert,
Haslum, and Hoffmann 2007), perform a preprocessing step
before the actual search and make up for it when retrieving
each single heuristic value. Since we obtain a new plan-
ning problem for each single partial plan using the results
of that preprocessing step might not be possible, directly.
Thus, one would have to find a way of using this kind of
heuristics in our setting, for instance by updating the result

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

14

of the preprocessing incrementally, as it can be done for the
transformation itself.

Runtime Although we proved that the transformation it-
self can be done efficiently, we expect that the computational
time of the used heuristics increases with the size of the par-
tial plan to encode. This seems to be a strange property,
since one would expect the heuristic calculation time either
to remain constant (as for abstraction heuristics) or to de-
crease (as for the FF or add heuristics) as closer a partial
plan comes to a solution. However, that might be a direct
consequence from partial plans being complex structures, as
many interesting decision problems involving them are NP
hard w.r.t. their size (Nebel and Bäckström 1994).

Conclusion
We presented a technique which allows planners performing
search in the space of plans to use standard classical plan-
ning heuristics known from state-based search. This tech-
nique is based on a transformation which encodes a given
partial plan by means of an altered planning problem, s.t.
evaluating the goal distance for the given partial plan corre-
sponds to evaluating the goal distance for the initial state of
the new planning problem. We proved that performing the
transformation can be done incrementally in constant time
under certain assumptions.

We conclude that our technique allows to fuse the benefits
of the least-commitment principle and regression-like search
of POCL planning with very strong heuristics known from
state-based progression search.

An empirical evaluation showing the practical impact of
using state-based heuristics in POCL planning is currently
ongoing work.

Acknowledgements
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS 2010), 42–49. AAAI Press.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., SPIN, volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS 2000), 140–149. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2007), 176–183.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Kambhampati, S. 1997. Refinement planning as a unifying
framework for plan synthesis. AI Magazine 18(2):67–98.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlin-
ear planning. In Proceedings of the Ninth National Confer-
ence on Artificial Intelligence (AAAI 1991), 634–639. AAAI
Press.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2011. Mon-
itoring the execution of partial-order plans via regression.
In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), 1975–1982. AAAI
Press.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125–160.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001),
459–466. Morgan Kaufmann.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the third International Conference on Knowledge Represen-
tation and Reasoning, 103–114. Morgan Kaufmann.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Boutilier, C., ed., Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1778–1783. AAAI Press.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, University of Ulm, Germany.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
– a formal approach for generating sound explanations. In
Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS 2012), 225–233.
AAAI Press.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Weld, D. S. 2011. Systematic nonlinear planning: A com-
mentary. AI Magazine 32(1):101–103.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

15

A Knowledge Engineering Environment for P&S with Timelines

Giulio Bernardi, Amedeo Cesta, Andrea Orlandini
CNR – National Research Council of Italy

Institute for Cognitive Science and Technology
Rome, Italy – {name.surname}@istc.cnr.it

Alberto Finzi
Università di Napoli “Federico II”
Dipartimento di Scienze Fisiche
Naples, Italy – finzi@na.infn.it

Abstract

This paper presents some of the features of a knowledge en-
gineering environment, called KEEN, created to support a
timeline based planning based on the APSI-TRF modeling
assumptions. A key feature of the environment is the inte-
gration of typical tools for knowledge based modeling and
refining with services for validation and verification special-
ized to planning with timelines.

Introduction
Planning and Scheduling (P&S) systems have been de-
ployed in several application domains. Most of these re-
sults have been achieved by small group of specialists mold-
ing their own specialized know-how. A key objective pur-
sued in the P&S Knowledge Engineering sub community is
the synthesis of software environments that would allow the
development of applications to people that, as a minimum,
are not “leading edge” specialist. Example of such environ-
ments are ITSIMPLE (Vaquero et al. 2013), GIPO (Simpson,
Kitchin, and McCluskey 2007b), and EUROPA (Barreiro et
al. 2012).

Over the last year and a half we have been developing our
own Knowledge Engineering ENvironment (KEEN) that is
built around the state of the art framework for P&S with
timelines called APSI-TRF1 (Cesta et al. 2009). The par-
ticular perspective we are pursuing with KEEN is the one
of integrating classical knowledge engineering features con-
nected to support for domain definition, domain refinement,
etc. with services of automated Validation and Verification
(V&V) techniques as those surveyed in (Cesta et al. 2010b).
That paper shows the possible role of V&V techniques in
domain validation, planner validation, plan verification etc.
It is worth reminding that validation allows to check whether
models, knowledge bases, and control knowledge accurately
represent the knowledge as well as the objectives of the hu-
man experts that provided them (i.e., validation has to do
with building the right system), while verification checks
whether the system (and its components) meets the spec-
ified requirements (i.e., building the system right). Some
further motivation for our work comes from a project in

1APSI-TRF is a tool of the European Space Agency (ESA) ini-
tially designed and built by our CNR group during the Advanced
Planning and Scheduling Initiative (APSI).

robot autonomy (Ceballos et al. 2011) that pushed us to bet-
ter investigate problems of robustness of plans at execution
time. In particular, working on the representation of flexible
temporal plans, that is the key feature of a timeline-based
representation, we have obtained results related to check-
ing the dynamic controllability property (Cesta et al. 2010a;
2011) as well as to automatically generate robust plan con-
trollers (Orlandini et al. 2011b). In those works, the problem
of verifying flexible plans has been addressed considering an
abstract plan view as a set of timelines with formal tools like
model checkers. Then, the flexible plan verification prob-
lem has been translated in a model checking problem with
Timed Game Automata (TGA), exploiting UPPAAL-TIGA
(Behrmann et al. 2007) as verification tool. The goal pur-
sued with KEEN synthesis is to obtain an integrated environ-
ment where all these results can be situated in a rational tool
design and their use facilitated by the software environment.

In a very early paper (Orlandini et al. 2011a) we described
the general idea and a sketchy plan to develop KEEN as sit-
uated within the GOAC robotic project for ESA (Ceballos
et al. 2011). The current paper describes aspects of the cur-
rent environment. In particular we describe new features
of the environment for Domain Definition and Visualization
and then some of the V&V tools at work starting from the
defined domain. To make the example more concrete we
have used as a running example the GOAC domain where
we have accumulated quite an amount of basic knowledge.

The paper is organized as follows: a section describes ba-
sic knowledge on timelines to set the context and shortly
introduces the GOAC domain, then the comprehensive idea
of the KEEN system is described Two following sections
are dedicated to the functionalities for domain definition and
to knowledge engineering services based on V&V. Related
works and conclusions end the paper.

Timeline-based Planning
The main modeling assumption underlying the timeline-
based approach (Muscettola 1994) is inspired by the classi-
cal Control Theory: the problem is modeled by identifying
a set of relevant features whose temporal evolutions need to
be controlled to obtain a desired behavior. In this respect,
the set of domain features under control are modeled as a set
of temporal functions whose values have to be decided over
a time horizon. Such functions are synthesized during prob-

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

16

lem solving by posting planning decisions. The evolution of
a single temporal feature over a time horizon is called the
timeline of that feature2.

The timeline-based planning is an approach to tempo-
ral planning which has been applied to the solution of
several space planning problems – e.g., (Muscettola 1994;
Jonsson et al. 2000; Smith, Frank, and Jonsson 2000;
Frank and Jonsson 2003; Chien et al. 2010). This approach
pursues the general idea that P&S for controlling complex
physical systems consist in the synthesis of a set of desired
temporal behaviors for system features that vary over time.

In this regard, we consider multi-valued state variables
representing time varying features as defined in (Muscettola
1994; Cesta and Oddi 1996). As in classical control theory,
the evolution of controlled features are described by some
causal laws which determine legal temporal evolutions of
timelines. For the state variables, such causal laws are en-
coded in a Domain Theory which determines the operational
constraints of a given domain. Task of a planner is to find a
sequence of control decisions that bring the variables into a
final set of desired evolutions (i.e., the Planning Goals)

GOAC: a test planning domain
This work considers as running example a real world plan-
ning domain derived from a project funded by the Euro-
pean Space Agency (ESA). In fact, the Goal Oriented Au-
tonomous Controller project (Ceballos et al. 2011) was an
effort to create a common platform for robotic software de-
velopment. In particular, the delivered GOAC architecture
has integrated: (a) a timeline-based deliberative layer which
integrates a planner based on the APSI Platform (Cesta et al.
2009) and an executive a la T-REX (Py, Rajan, and McGann
2010); (b) a functional layer which integrates Gen

oM and
BIP (Bensalem et al. 2010).

Such robotic domain considers a planetary rover equipped
with a Pan-Tilt Unit (PTU), two stereo cameras (mounted on
top of the PTU) and a communication facility. The rover is
able to autonomously navigate the environment, move the
PTU, take pictures and communicate images to a Remote
Orbiter. A safe PTU position is assumed to be (pan, tilt)
= (0, 0). Finally, during the mission, the Orbiter may be
not visible for some periods. Thus, the robotic platform can
communicate only when the Orbiter is visible. The mission
goal is a list of required pictures to be taken in different loca-
tions with an associated PTU configuration. A possible mis-
sion action sequence is the following: navigate to one of the
requested locations, move the PTU pointing at the requested
direction, take a picture, then, communicate the image to the
orbiter during the next available visibility window, put back
the PTU in the safe position and, finally, move to the follow-
ing requested location. Once all the locations have been vis-

2According to Wikipedia, a timeline is a way of displaying a
list of events in chronological order. It is worth saying that this
style of planning synthesizes a timeline for each dynamic feature to
be controlled. In this paper, the term “timeline-based planning” is
considered because recently it is more widely used, see for instance
(Chien et al. 2012). Other authors prefer “constraint-based interval
planning” (Frank and Jonsson 2003) following a perspective more
connected to the technical way of creating plans.

ited and all the pictures have been communicated, the mis-
sion is considered successfully completed. The rover must
operate following some operative rules to maintain safe and
effective configurations. Namely, the following conditions
must hold during the overall mission: (C1) While the robot
is moving the PTU must be in the safe position (pan and tilt
at 0); (C2) The robotic platform can take a picture only if the
robot is motionless in one of the requested locations while
the PTU is pointing at the related direction; (C3) Once a
picture has been taken, the rover has to communicate the
picture to the base station; (C4) While communicating, the
rover has to be motionless; (C5) While communicating, the
orbiter has to be visible.

Timeline-based specification. To obtain a timeline-based
specification of our robotic domain, we consider two types
of state variables: Planned State Variables to represent time-
lines whose values are decided by the planning agent, and
External State Variables to represent timelines whose values
over time can only be observed. Planned state variables are
those representing time varying features like the temporal
occurrence of navigation, PTU, camera and communication
operations. We use four of such state variables, namely the
RobotBase, PTU, Camera and Communication.

At(?x,?y)

GoingTo
(?x2,?y2)

?x = ?x2
?y = ?y2

PointingAt
(?p,?t)

MovingTo
(?p2,?t2)

?p = ?p2
?t = ?t2

Comm
(?file2)

Comm
Idle()

Taking
Picture (?file)

CamIdle()

Camera

Visible()

Not
Visible()

CommunicationVW

Communication Platine

RobotBase

StuckAt
(?x,?y)

Figure 1: State variables describing the robotic platform and the
orbiter visibility (durations are stated in seconds)

In Fig. 1, we detail the values that can be assumed by
these state variables, their durations and the legal value
transitions in accordance with the mission requirements and
the robot physics. Additionally, one external state variable
represents contingent events, i.e., the communication
opportunities. The Orbiter Visibility state variable maintains
the visibility of the orbiter. The allowed values for this
state variable is Visible or Not-Visible and are set as an
external input. The robot can be in a position (At(x,y)),
moving towards a destination (GoingTo(x,y)) or Stuck
(StuckAt(x,y))3. The PTU can assume a PointingAt(pan,tilt)
value if pointing a certain direction, while, when moving,
it assumes a MovingTo(pan,tilt). The camera can take a
picture of a given object in a position 〈x, y〉 with the PTU
in 〈pan, tilt〉 and store it as a file in the on-board memory
(TakingPicture(file-id,x,y,pan,tilt)) or be idle (CamIdle()).

3Sometimes, the robot may be stuck in a certain position and
the navigation module should be reset.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

17

Similarly, the communication facility can be operative and
dumping a given file (Communicating(file-id)) or be idle
(ComIdle()).

Domain operational constraints are described by means
of synchronizations. A synchronization models the existing
temporal and causal constraints among the values taken by
different timelines (i.e., patterns of legal occurrences of the
operational states across the timelines).

0	
Camera	

RobotBase	

Communication System	

GoingTo(1,4)	At(0,0)	 At(1,4)	

MovingTo(30,-45)	PointingAt(0,0)	 PointingAt(30,-45)	

CamIdle	TakingPicture(obj,1,4,30,-45)	CamIdle	

Off	 Communicating(file)	

Pan-Tilt	

DURING

DURING

BEFORE DURING

DURING

NotVisible	Visible	 Visble	
Orbiter Visibility	 DURING

Figure 2: An example of timeline-based plan.

Fig. 2 exemplifies the use of synchronizations imple-
menting the operative rules in our case study domain. The
synchronizations depicted are: GoingTo(x,y) must occur
during PointingAt(0, 0) (C1); TakingPicture(pic, x, y, pan,
tilt) must occur during At(x, y) and PointingAt(pan, tilt)
(C2); TakingPicture(pic, x, y, pan, tilt) must occur before
Communicating(pic) (C3); Communicating(file) must
occur during At(x,y) (C4); Communicating(file) must occur
during Visible (C5). In addition to those synchronization
constraints, the timelines must respect transition constraints
among values and durations for each value specified in the
domain (see again Fig. 1).

In the actual domain model, an additional state variable
is considered: the Mission Timeline. Such state variable is
used just to model the reception from the external facilities
of high level mission goals, i.e., TakePicture(pic, x, y, pan,
tilt) and At(x,y) to model, respectively, the goal of taking a
picture with a particular position/PTU setting and just mov-
ing the rover to a certain position. These goals are set on the
Camera and RobotBase timeline as actual planning goals.

The KEEN System
As explained in (Cesta et al. 2009) the APSI-TRF environ-
ment is a development environment that gives “a timeline-
based support” for modeling a domain. Its sketchy represen-
tation is the core of Figure 3, where it is accessible through
a Domain Description Language and a Problem Descrip-
tion Language (the timeline equivalent of analogous files
in classical planning) and it has a software machinery (the
Component-Based Modeling Engine) that essentially pro-
duces a data structure here sketched as “current plan” that

indeed is a Decision Network in TRF terminology (Cesta
et al. 2009) that is a richer representation for representing
the domain, the current problem, the flaw to achieve a solu-
tion, and a the flexible temporal plan at the end of a problem
solving session. The APSI-TRF has capabilities for plug-
ging in different problem solvers, also more than one for
the same problem. For the current purposes we are solving
GOAC problems with an APSI-compliant version of OMPS
(Fratini, Pecora, and Cesta 2008). In KEEN, the APSI-TRF
is surrounded by a set of active services that give support
during the knowledge engineering (KE) phase. Indeed in
our view the knowledge engineering phase is interpreted in
a very broad sense. For example we also have a Plan Exe-
cution block that contains a Dispatch Service to send actual
commands to a controlled system and an Execution Feed-
back module that allows to receive the telemetry from an
actual plan execution environment. The idea pursued is that
you can connect the KEEN to an accurate simulator of the
real environment, to a real physical system (e.g., a robot) and
have functionalities to monitor with visual tools also the ex-
ecution phase. We see in Figure 3 how KEEN is composed
by “classical tools” you expect in a KE environments and by
V&V services.

KEEN	 Design	 Support	 System	

TGA	 	
Encoding	

Domain	
Valida;on	 Planner	 Valida;on	

	
	
	

Plan	
Verifica;on	

Plan	
Valida;on	

Plan	 Execu;on	 	
Valida;on	

Component
Based

Modeling
Engine

Domain
Description
Language

Problem
Description
Language

Current Plan

Dispatch	
Services	

Execu;on	
Feedback	

Plan Execution

TIGA

Problem Solver

APSI-TRF

Plan	 Edi;ng	 &	
Visualiza;on	

Domain/Problem	
Edi;ng	 &	 Visualiza;on	

Figure 3: The Knowledge Engineering ENvironment
(KEEN) Design Support System.

In particular we here describe the Domain Editing and Vi-
sualization module that provides initial solution for a user
interaction functionality for creating planning domain mod-
els. In this respect, we have developed an Eclipse plugin that
provides a graphical interface to model, visualize and ana-
lyze the P&S domains. Additionally, plans can be gener-
ated by means of OMPS in a continuous loop of usage. The
V&V services, comes from work described in papers like
(Cesta et al. 2010b; 2010a; 2011; Orlandini et al. 2011b).
They are all based on the use of Timed Game Automata,
exploiting UPPAAL-TIGA (Behrmann et al. 2007). As a
consequence their entry point is the TGA Encoding mod-
ule that implements a translation from P&S specification to
TGA. The other services rely on that encoding. The Domain
Validation module is to support the model building activity
providing a tool to assess the quality of the P&S models
with respect to system requirements. Similarly, the Planner
Validation module is also deputed to assess the P&S solver

tiago
Typewriter
18

tiago
Typewriter
Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

with respect to given requirements. But it is worth specify-
ing that two sub-modules are needed: Plan Verification to
verify the correctness of solution plans and Plan Validation
to evaluate their goodness. Then, a Plan Execution Vali-
dation and controller synthesis module is to check whether
proposed solution plans are suitable for actual execution as
well as to generate robust plan controllers. To implement
the modules functionalities, verification tasks are performed
by means of UPPAAL-TIGA. Such a tool extends UPPAAL
(Larsen, Pettersson, and Yi 1997) providing a toolbox for
the specification, simulation, and verification of real-time
games. As a result, UPPAAL-TIGA is an additional core
engine for KEEN.

Supporting Domain Definition
The most recent work concerning KEEN has concerned the
support to timeline-based domain definition. Around this
problem we have a first combination of “classical” KE tools
and V&V services.

Bidirectional Editing and Visualization
Our goal for KEEN is to provide an integrated environment
where the user may work both visually and at the traditional
code level, while having the opportunity to easily verify and
validate his/her work. A knowledge engineering environ-
ment like this is a complex piece of software, and it makes no
sense to reinvent the wheel: some of the features we needed
are standard and already supported by state-of-the-art devel-
opment tools.

For this reason, KEEN is implemented as a plugin inside
Eclipse4 platform. Eclipse is one of the most widespread
Integrated Development Environments (IDE) for many pro-
gramming languages, Java above all. It provides a lot of
features that are nowadays required for a professional IDE,
like syntax highlighting, content assist, inline documenta-
tion, strong refactoring support, near real time compilation
and code browsing, debugging, testing and integration with
external tools, and many others. The Eclipse Platform can
be extended by the means of plugins, thus providing a pow-
erful environment for the implementors of new languages,
who can leverage Eclipse’s key strengths to suit their needs.

KEEN uses standard Eclipse components to provide tra-
ditional code-level functionalities:
– A syntax highlighter, which uses different colors for dif-

ferent parts of the code to emphasize language keywords,
special types, parameters, literals and so on. The central
part of Figure 4 shows the code editor performing syntax
highlighting.

– A tree view (Outline view) of relevant code blocks like
state variables, providing a fast visualization and naviga-
tion inside the source files. In Figure 4, in the lower left
corner, the Outline view is showing the GOAC Domain
state variables: RobotBase, Platine, Camera, Communi-
cation, MissionTimeline, CommunicationVW.

– Real time syntax checks to easily spot erroneous program-
ming constructs.
4http://www.eclipse.org

Figure 4: DDL editor based on Eclipse plugin.

As said before, the heart of KEEN is represented by the
APSI framework, which, among other things, is used to
maintain an updated representation of the problem being
worked on. The use of APSI implies that KEEN is very
loosely coupled to the particular language being used for
Domain or Problem definition: while some Eclipse com-
ponents (e.g. the syntax highlighter) are implemented for
a specific language, their implementation is trivial and often
consists in writing a grammar description file and not much
more. But the more advanced features of KEEN are built on
top of the APSI framework, so that concepts like state vari-
ables, timelines, or synchronizations are presented without
an explicit dependency on the particular language the code
is written in.

At the moment of writing, KEEN is endowed with a
graphical representation of the Domain Model, as shown in
Figure 5. Other graphical representations, like an execution-
time timeline view, are being worked on. In this view, the
state variables of the Domain Model are represented on a
workbench by colored blocks, which can be moved around
and expanded or collapsed to show/hide their values and
constraints. Also, the desired state variables can be selected
to show their synchronization relations with other state vari-
ables, represented by dotted lines between the blocks. The
graphical representation has been designed to be as less tied
to a particular graphical framework as possible, relying only
on standard Java’s AWT libraries: this allows the environ-
ment to be used inside Eclipse, but has the potentiality of
being reused in ad-hoc applications too.

In Figure 5, the six state variables of the GOAC Do-
main are shown: some of them have been expanded
(Platine, Camera, MissionTimeline), while the others
are collapsed (RobotBase, Communication, Communica-
tionVW). The currently selected variable, MissionTime-
line, shows its synchronizations (depicted as arrows)
with other three state variables: one from MissionTime-
line.TakingPicture() to Camera.TakingPicture(), one from
MissionTimeline.TakingPicture() to an unspecified value of
Communication (since Communication state variable is col-

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

19

Figure 5: Detail of the graphical view of the model.

lapsed and its values are not shown), and one from Mission-
Timeline.At() to an, again, unspecified value of RobotBase.

The user may also use this graphical environment to de-
fine new state variables (right-clicking on an empty work-
bench area) and to add and edit their properties and val-
ues. The environment draws its information from the APSI
framework, and immediately updates the APSI representa-
tion when the user makes a change.

At the end of the chain, when the internal representation
of the model is changed, a language-specific component is
used to trigger source code modifications, using Eclipse’s
support for code refactoring. This way the tool allows the
user to perform round-trip engineering5 by synchronizing
source code and graphical views: the user can start to de-
fine a new model graphically, then switch to the traditional
mode and do some hand-made editing, then switch back to
the graphical mode and so on.

The integration of traditional IDE features and visual
modeling functionalities should help both the experienced
domain coder and the beginner or occasional writer: the for-
mer will probably use the traditional mode for the most part
of its work, switching to the graphical mode to observe the
results of its coding, while the latter might feel more com-
fortable in designing visually, switching to the code view to
learn the language and experiment with it.

When the user is satisfied by the model, he/she can ask
KEEN to generate a solution plan. Currently, KEEN does
this by the means of the OMPS planner, but different plan-
ners will be added in the future. As for the case of the do-
main the plan representation is completely handled by APSI
and a specific language generation component is deputed to
the creation of a source file encoded with a Problem De-
scription Language syntax. The user can then modify the
generated solution plan at his/her will, and ask KEEN to
perform plan verification using UPPAAL-TIGA (see later
for further details). At the time of writing, KEEN allows the
user to inspect and modify the generated plan in its textual
form. In the future, a specialized plan editor similar to the
one used for domain modeling will be added.

Integrating V&V Services
The deployment of formal methods techniques is to enhance
the KEEN system with suitable V&V capabilities, thus, con-

5http://en.wikipedia.org/wiki/Round-trip engineering

stituting one of the main advantages in its use. In this regard,
the KEEN takes advantage from a set of research results
based on Timed Game Automata model checking (Cesta et
al. 2010a; 2011; Orlandini et al. 2011b) to provide support
over all the design and development cycle of P&S applica-
tion with the APSI-TRF.

Timed Game Automata (Maler, Pnueli, and Sifakis 1995)
(TGA) allow to model real-time systems and controllabil-
ity problems representing uncontrollable activities as adver-
sary moves within a game between the controller and the
environment. Following the approach presented in (Cesta et
al. 2010a), flexible timeline-based plan verification can be
performed by solving a Reachability Game using UPPAAL-
TIGA. To this end, flexible timeline-based plans, state vari-
ables, and domain theory descriptions are compiled as a set
of TGA (nTGA): (1) a flexible timeline-based plan P is
mapped into a nTGA Plan. Each timeline is encoded as a se-
quence of locations (one for each timed interval), while tran-
sition guards and location invariants are defined according
to (respectively) lower and upper bounds of flexible timed
intervals; (2) the set of state variables SV is mapped into a
nTGA StateVar. Basically, a one-to-one mapping is defined
from state variables descriptions to TGA. In this encoding,
value transitions are partitioned into controllable and uncon-
trollable. (3) an Observer automaton is introduced to check
for value constraints violations and synchronizations viola-
tions. In particular, two locations are considered: an Er-
ror location, to state constraint/synchronization violations,
and a Nominal (OK) location, to state that the plan behavior
is correct. The Observer is defined as fully uncontrollable.
(4) the nTGA PL composed by the set of automata StateVar
∪ Plan ∪ {AObs} encapsulates flexible plan, state variables
and domain theory descriptions.

Considering a Reachability Game RG(PL, Init, Safe,
Goal) where Init represents the set of the initial locations
of each automaton in PL, Safe is the Observer’s OK lo-
cation, and Goal is the set of goal locations, one for each
automaton in Plan, plan verification can be performed solv-
ing the RG(PL, Init, Safe, Goal) defined above. If there
is no winning strategy, UPPAAL-TIGA provides a counter
strategy for the opponent (i.e., the environment) to make the
controller lose. That is, an execution trace showing a faulty
evolution of the plan is provided. The encoding PL is con-
sidered as the basis for implementing the V&V functionali-
ties discussed in the following.

Domain Validation. Similarly to (Khatib, Muscettola,
and Havelund 2001), the TGA encoding PL can be ex-
ploited in order to validate planning domains, i.e., checking
properties that are useful for ensuring correctness as well as
detecting inconsistencies and flaws in the domain specifica-
tion. For instance, undesired behaviors or safety properties
can be checked against the planning model in order to guar-
antee the validity of the specification. In this regard, the
KEEN Domain Validation module is to support knowledge
engineers in the process of eliciting, refining and correcting
the domain model w.r.t. safety- and system-critical require-

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

20

ments6.
To implement such a functionality, deriving from PL the

nTGA Dom = StateVar ∪ {AObs}, representing the allowed
behaviors described by the associated planning domain, and
stating a suitable Computation Tree Logic (CTL) formula φ,
representing a given system property F to be checked, ver-
ifying φ in Dom by means of UPPAAL-TIGA corresponds
to validate the planning domain with respect to the property
F .

Among relevant properties, values reachability is an im-
portant aspect that can be checked. Namely, the reachability
of a value stated in the planning domain is checked starting
from one specific initial state (or from each possible initial
state). In this regard, the KEEN environment allows to per-
form a full reachability test for all the values declared in the
domain and, in Fig. 6, the result for the GOAC domain is
depicted. In particular, all the stated values are reachable
except the StuckAt in the navigation state variable that, ob-
viously, cannot be planned but only detected as an abnormal
system behavior. In general, finding that a certain value is
unreachable may suggest either the presence of incomplete
specifications or that some parts of the model are actually
needed.

Figure 6: Detail on the Domain Validation frame reporting results
of the reachability test for all the allowed domain values.

Also, the KEEN system allows to define user-defined
properties to be checked (e.g., undesired or safety proper-
ties). For instance, a GOAC user may want to check that the
Communication value is always reachable after a TakingPic-
ture. Having this property satisfied would confirm that the
model allows to correctly manage the downlink actions for
stored science pictures. This corresponds to check the fol-
lowing formula: A2 Camera.TakingPicture(file id=x,...) →
E3 Communication.Communicating(file id=x).

Another relevant property the user may check through the
KEEN system is the violation of mutual exclusion for time-
line’s allowed values. In fact, such test is useful for detecting
an incomplete specification of synchronizations in the plan-
ning domain theory. For instance, in the case of a flawed
GOAC domain, the property (E3 RobotBase.GoingTo and

6It is worth underscoring that in (Khatib, Muscettola, and
Havelund 2001) only controllable events are considered while,
here, also uncontrollable actions are modeled and taken into ac-
count.

Communication.Communicating), which reads there exists a
trace where at some point in time the rover is moving while
communicating, could be verified, then, providing an evi-
dence that the (C4) domain constraints might be violated.

Planner validation. In order to validate the planner, we
are interested in checking that the planning solver works
properly. In this sense, the application design activity should
be supported by providing effective methods to validate the
solver and the generated solutions, i.e., assessing its capa-
bility of generating a correct plan and, in addition, also the
quality of the generated solution plans should be checked.

For this purpose, the KEEN system has been endowed
with two important submodules: Plan Verification, which
systematically analyzes the solutions proposed by the plan-
ner itself, and Plan Validation, which allows to assess the
plan quality. Errors or negative features possibly found in
the generated plans could help knowledge engineers to re-
vise the model (back to the domain validation step), the
heuristics, or the solver. Furthermore, plan V&V is also
to analyze the produced plans with respect to execution con-
trollability issue. The KEEN Plan Verification and Plan Vali-
dation modules have been implemented exploiting the verifi-
cation method presented in (Cesta et al. 2010a), i.e., solving
the Reachability Game RG(PL, Init, Safe, Goal) defined as
above.

Plan Verification and Dynamic Controllability Check.
The Plan Verification module is fully relying on UPPAAL-
TIGA by winning the Reachability Game RG(PL, Init,
Safe, Goal). Then, the KEEN system invokes UPPAAL-
TIGA for checking the CTL formula Φ = A [Safe U Goal]
in PL. In fact, the formula Φ states that along all its pos-
sible temporal evolutions, PL remains in Safe states until
Goal states are reached. That is, in all the possible temporal
evolutions of the timeline-based plan all the constraints and
the plan is completed. Thus, if the solver verifies the above
property, then the flexible temporal plan is valid. Whenever
the flexible plan is not verified, UPPAAL-TIGA produces
an execution strategy showing one temporal evolution that
leads to a fault. Such a strategy can be analyzed in order to
check for plan weaknesses or for the presence of flaws in the
planning model.

In Fig. 7, a plan for the GOAC domain is verified and
the system reports about its correctness taking advantage
of the UPPAAL-TIGA verification process. Also, the dy-
namic controllability (Morris, Muscettola, and Vidal 2001)
is checked and, in this case, successfully verified.

The feasibility of such method has been shown in (Cesta
et al. 2010a; Orlandini et al. 2011b) where the verification
methodology has been applied in two real-world planning
domains.

Plan validation. Besides synchronization constraints,
users may need also to take into account other constraints
which cannot be naturally represented as temporal synchro-
nizations among specific activities. Nevertheless, these con-
straints, that we call relaxed constraints, define a kind of
preferences on the global behavior of the generated plan.
These requirements may be not explicitly represented in the

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

21

Figure 7: The KEEN system showing the textual description of a
plan for the GOAC domain. The pop-up window reports the result
of the UPPAAL-TIGA verification. The plan is correct and, also, it
results dynamically controllable.

planning model as structural constraints, but rather treated
as meta-level requirements to be enforced by the planner
heuristics and optimization methods. Then, to implement
the Plan Validation module, it is possible to apply the same
verification process as in plan verification, verifying not
only plan correctness, but also other domain-dependent con-
straints, i.e., the relaxed constraints. In general, the addi-
tional properties to be checked carry a low additional over-
head to the verification process. Thus, the verification tool
performances are not affected.

Examples of such relaxed constraints in the robotic case
study may be no unnecessary tasks have been planned (e.g.,
unnecessary robot navigation tasks). This validation task re-
sults as an important step in assessing the plan quality as
well as the planner effectiveness.

Plan Controllers Synthesis. Plans synthesized by tem-
poral P&S systems may be temporally flexible hence they
identify an envelope of possible solutions aimed at facing
uncertainty during actual execution. In this regard, a valid
plan can be brittle at execution time due to environment
conditions that cannot be modeled in advance (e.g., distur-
bances). Previous works have tackled these issues within a
Constraint-based Temporal Planning (CBTP) framework de-
ploying specialized techniques based on temporal-constraint
networks. Several authors (Morris, Muscettola, and Vi-
dal 2001; Morris and Muscettola 2005; Shah and Williams
2008) proposed a dispatchable execution approach where a
flexible temporal plan is then used by a plan executive that
schedules activities on-line while guaranteeing constraint
satisfaction. Some recent works have addressed aspects
of plan execution extending the approach in (Cesta et al.
2010a) by presenting the formal synthesis of a plan con-
troller associated to a flexible temporal plan (Orlandini et
al. 2011b). In particular, UPPAAL-TIGA is exploited in
order to synthesize a robust execution controller of flexible
temporal plans. In Figure 8, the execution strategy generated
by UPPAAL-TIGA for a GOAC plan is shown by the KEEN
system in a text format. Then, such strategy can be parsed
and embedded in an executive system to actually implement
a robust execution strategy.

Figure 8: The execution strategy generated by UPPAAL-TIGA is
currently reported in the KEEN interface.

Related Works and Conclusions
As said in the introduction, there are only a few general pur-
pose KE tools for planning: GIPO (Simpson, Kitchin, and
McCluskey 2007a), ITSIMPLE (Vaquero et al. 2013), and
EUROPA (Barreiro et al. 2012). Several tools do exist that
address specialized aspects, nevertheless these three systems
are the reference ones.

Most of the existing work has been dedicated to classical
PDDL underlying language (this is the case for ITSIMPLE
and to some extent for GIPO). EUROPA has been till now the
only timeline-based developing environment endowed with
KE features.

With respect to both EUROPA and other research we are
pursuing some distinctive features. For example the round-
trip engineering functionalities in KEEN are rather new.
While some of the existing systems can export to PDDL, and
sometimes also allow the user to edit the produced PDDL
file (as in ITSIMPLE), they do not support an integrated work
practice in which the users can seamlessly switch between
graphical and code views while maintaining the consistency
between both views.

Standalone validation tools like VAL (Howey, Long, and
Fox 2004) for PDDL language do exist, and are used by in-
tegrated environments to perform validation as in ModPlan
(Edelkamp and Mehler 2005). Systems like GIPO and IT-
SIMPLE do support static and dynamic analysis of the do-
mains. The dynamic analysis though is performed by means
of manual steppers (for GIPO) or simulation through Petri
Nets (for ITSIMPLE). ITSIMPLE also supports plan analysis
by simulation.

Nevertheless, it is worth underscoring that simulation is
not the same as the formal validation and verification pro-
posed in KEEN. Somehow KEEN aims at filling a hole in
existing knowledge engineering tools and nicely contribute
to the whole picture.

Clearly there are other aspects, for example referring to
those covered in the survey (Vaquero, Silva, and Beck 2011),
that are still not address in KEEN. They will deserve specific
work in the future.

Acknowledgments. Authors are supported by CNR under the
GECKO Project (Progetto Bandiera “La Fabbrica del Futuro”).

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

22

References
Barreiro, J.; Boyce, M.; Do, M.; Franky, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In ICK-
EPS 2012: the 4th Int. Competition on Knowledge Engineering
for Planning and Scheduling.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen, K.;
and Lime, D. 2007. UPPAAL-TIGA: Time for playing games! In
Proc. of CAV-07, number 4590 in LNCS, 121–125. Springer.
Bensalem, S.; de Silva, L.; Gallien, M.; Ingrand, F.; and Yan,
R. 2010. “Rock Solid” Software: A Verifiable and Correct-
by-Construction Controller for Rover and Spacecraft Functional
Levels. In i-SAIRAS-10. Proc. of the 10th Int. Symp. on Artificial
Intelligence, Robotics and Automation in Space.
Ceballos, A.; Bensalem, S.; Cesta, A.; de Silva, L.; Fratini, S.;
Ingrand, F.; Ocon, J.; Orlandini, A.; Py, F.; Rajan, K.; Rasconi,
R.; and van Winnendael, M. 2011. A Goal-Oriented Autonomous
Controller for Space Exploration. In ASTRA-11. 11th Symposium
on Advanced Space Technologies in Robotics and Automation.
Cesta, A., and Oddi, A. 1996. DDL.1: A Formal Description of
a Constraint Representation Language for Physical Domains,. In
Ghallab, M., and Milani, A., eds., New Directions in AI Planning.
IOS Press: Amsterdam.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a Time-
line Representation Framework. In IAAI-09. Proceedings of the
21st Innovative Application of Artificial Intelligence Conference,
Pasadena, CA, USA.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2010a. Analyzing Flexible Timeline Plan. In ECAI 2010. Pro-
ceedings of the 19th European Conference on Artificial Intelli-
gence, volume 215. IOS Press.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2010b. Validation and Verification Issues in a Timeline-Based
Planning System. Knowledge Engineering Review 25(3):299–
318.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2011. Flexible plan verification: Feasibility results. Fundamenta
Informaticae 107:111–137.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.; and
Frye, S. 2010. Timeline-Based Space Operations Scheduling
with External Constraints. In ICAPS-10. Proc. of the 20th Inter-
national Conference on Automated Planning and Scheduling.
Chien, S. A.; Johnston, M.; Frank, J.; Giuliano, M.; Kavelaars,
A.; Lenzen, C.; and Policella, N. 2012. A Generalized Timeline
Representation, Services, and Interface for Automating Space
Mission Operations. In SpaceOps.
Edelkamp, S., and Mehler, T. 2005. Knowledge acquisition and
knowledge engineering in the ModPlan workbench. In Proceed-
ings of the First International Competition on Knowledge Engi-
neering for AI Planning.
Frank, J., and Jonsson, A. 2003. Constraint Based Attribute and
Interval Planning. Journal of Constraints 8(4):339–364.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Planning
and Scheduling as Timelines in a Component-Based Perspective.
Archives of Control Sciences 18(2):231–271.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In ICTAI 2004. 16th IEEE International Conference on
Tools with Artificial Intelligence, 294–301.

Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith, B.
2000. Planning in Interplanetary Space: Theory and Practice. In
AIPS-00. Proceedings of the Fifth Int. Conf. on Artificial Intelli-
gence Planning and Scheduling, 177–186.
Khatib, L.; Muscettola, N.; and Havelund, K. 2001. Mapping
Temporal Planning Constraints into Timed Automata. In TIME-
01. The Eigth Int. Symposium on Temporal Representation and
Reasoning, 21–27.
Larsen, K. G.; Pettersson, P.; and Yi, W. 1997. UPPAAL in a
Nutshell. International Journal on Software Tools for Technology
Transfer 1(1-2):134–152.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthesis
of Discrete Controllers for Timed Systems. In STACS, LNCS,
229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic Con-
trollability Revisited. In Proc. of AAAI 2005, 1193–1198.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans With Temporal Uncertainty. In Proc. of IJCAI
2001, 494–502.
Muscettola, N. 1994. HSTS: Integrating Planning and Schedul-
ing. In Zweben, M. and Fox, M.S., ed., Intelligent Scheduling.
Morgan Kauffmann.
Orlandini, A.; Finzi, A.; Cesta, A.; Fratini, S.; and Tronci, E.
2011a. Enriching APSI with Validation Capabilities: the KEEN
environment and its use in Robotic. In ASTRA 2011. Proc. of 11th
Symposium on Advanced Space Technologies in Robotics and Au-
tomation. Noordwijk, the Netherlands.
Orlandini, A.; Finzi, A.; Cesta, A.; and Fratini, S. 2011b. Tga-
based controllers for flexible plan execution. In KI 2011: Ad-
vances in Artificial Intelligence, 34th Annual German Conference
on AI., volume 7006 of Lecture Notes in Computer Science, 233–
245. Springer.
Py, F.; Rajan, K.; and McGann, C. 2010. A Systematic Agent
Framework for Situated Autonomous Systems. In AAMAS-10.
Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent
Systems.
Shah, J., and Williams, B. C. 2008. Fast Dynamic Scheduling of
Disjunctive Temporal Constraint Networks through Incremental
Compilation. In ICAPS-08, 322–329.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007a.
Planning Domain Definition using GIPO. Knowl. Eng. Rev.
22(2):117–134.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007b.
Planning Domain Definition Using GIPO. Knowledge Eng. Re-
view 22(2):117–134.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the Gap Be-
tween Planning and Scheduling. Knowledge Engineering Review
15(1):47–83.
Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C. 2013.
itsimple: Towards an integrated design system for real planning
applications. The Knowledge Engineering Review.
Vaquero, T.; Silva, J.; and Beck, J. 2011. A brief review of tools
and methods for knowledge engineering for planning & schedul-
ing. In Proc. of the ICAPS Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS 2011).

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

23

Towards AI Planning Efficiency: Finite-domain State Variable Reformulation

Filip Dvořák1,2 and Daniel Toropila1,3 and Roman Barták1

{filip.dvorak, daniel.toropila, roman.bartak}@mff.cuni.cz

1Faculty of Mathematics and Physics, Charles University
Malostranské nám. 2/25, 118 00 Prague, Czech Republic

2LAAS-CNRS
BP 54200, 31031 Toulouse, France

3Computer Science Center, Charles University
Ovocný trh 5, 116 36 Prague, Czech Republic

Abstract

AI Planning is inherently hard and hence it is desir-
able to derive as much information as we can from
the structure of the planning problem and let this in-
formation be exploited by a planner. Many recent plan-
ners use the finite-domain state-variable representation
of the problem instead of the traditional propositional
representation. However, most planning problems are
still specified in the propositional representation due
to the widespread modeling language PDDL and it is
hard to generate an efficient state-variable representa-
tion from the propositional model. In this paper we pro-
pose a novel method for automatically generating an
efficient state-variable representation from the proposi-
tional representation. This method groups sets of propo-
sitions into state variables based on the mutex relations
introduced in the planning graph. As we shall show ex-
perimentally, our method outperforms the current state-
of-the-art method both in the smaller number of gener-
ated state variables and in the increased performance of
planners.

Introduction
The task of AI Planning is to find a sequence of actions that
transfers the world from some initial state to a state satisfy-
ing certain goal condition. Planning is inherently hard (Erol,
Nau, and Subrahmanian 1995) and we can not expect a gen-
eral solving algorithm that would be able to solve any plan-
ning problem in a reasonable time.

The efficiency of planning systems is strongly dependent
on the formulation of the problem. There are many possible
formulations of the same problem and planning systems be-
have differently on each of the formulations. Frequently, the
structure of the problem is exploited to improve efficiency
of planners and the relations of mutual exclusion (mutex)
between the propositions and actions are among the most
widely used families of structural information. Mutex be-
tween two entities says that they interfere with each other
and cannot occur together in the same context.

In this paper we exploit the mutex relations introduced by
the planning graph to automatically reformulate the planning
problem specified in a set representation into a finite-domain
state-variable representation. We use the construction of the
planning graph to generate the grounded representation of
the planning problem as well as to discover mutex relations
between the propositions (and actions). The state variable is
then defined by a set of propositions that are pairwise mutex
in the fixed-point layer of the planning graph. Naturally, the
larger set of propositions a state variable covers, the more
compact representation we obtain. Hence we also suggest
methods for finding large cliques of mutex relations and for
finding a covering of propositions using these (not necessar-
ily disjoint) cliques. The experimental results confirmed that
the method generates models leading to significantly better
performance for certain domains and planners.

The paper is organized as follows. We will first introduce
the necessary terminology and related work. After that we
will describe our method in detail, including the algorithms
for finding cliques, covering the mutex graph by cliques, and
generating the state variables. We conclude the paper by an
experimental study showing the positive effect of the pro-
posed method on the efficiency of planners.

Background and Related Work
The use of state variables for representing states in plan-
ning problems is an idea with a long history, formally first
analyzed as the SAS+ representation in (Bäckström and
Nebel 1995). Although the PDDL notation (McDermott et
al. 1998) was originally defined using only Boolean vari-
ables, it has been shown by (Dovier, Formisano, and Pontelli
2007) and (Helmert 2009) that there is a significant num-
ber of planning approaches that can directly benefit from the
state variable representation. The key benefit is a more com-
pact encoding of the world state as a set of values of state
variables instead of a set of truth-values of propositional
variables. If each state variable originates from a set of pair-
wise mutex propositions (propositions that cannot occur at
the same time point during the execution of any valid plan),

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

24

then both the state-variable and the propositional representa-
tions are equivalent. In the state-variable representation we
only lose those states that could not have ever been reached.

Demonstrative Example
Let us assume an example with a ship moving between three
ports. Having three facts:

Position(Ship, Port1),
Position(Ship, Port2),
Position(Ship, Port3),

where no pair of them can be true at the same time, we can
encode those three facts as a single state variable:

ShipPosition:→ {Port1, Port2, Port3}
Although the example is very simple and the knowledge it
captures could have been used by the modeller of the plan-
ning domain, other knowledge inferred from the planning
problem can be non-trivial. Assume that there is a sailor,
who is the only one who can sail the ship, and there is City1,
where the sailor is initially located. Let Port1, where the ship
is initially located, be the only accessible port from City1.
Then we can deduce that if the sailor is in City1 or Port1,
the ship cannot be at Port2 or Port3 (there is no one to sail
the ship there). These are the additional mutex relations that
we exploit when building the state variables. A new state
variable can then combine the position of the sailor with the
position of the ship as follows:

Position:→ {ShipPort2, ShipPort3, SailorPort1,
SailorCity1}

Notice that we also assume the knowledge of the initial state
(the problem instance in the PDDL) when finding the mu-
tex relations. The knowledge of the initial state allows us
to derive more mutex relations than if we only used the
planning domain. There have been previous approaches for
identifying mutex invariants in (Rintanen 2000), (Gerevini
and Schubert 1998) and (Helmert 2009), while the latest is
currently being used the most, for example by the planners
in the International Planning Competition (IPC). It uses the
monotonic invariants synthesis whose description is beyond
the scope of this paper. Instead of the monotonic invariants,
we use the planning graph structure not for the actual plan-
ning, but for the initial grounding of the problem and for the
mutex relations it records. The use of a planning graph in
a preprocessing step has already been seen in (Gazen and
Knoblock 1997), however to the best of knowledge we are
the first to make use of the planning graph structure to first
ground the problem and then use the mutex relations cap-
tured in the planning graph for building up a finite-domain
state variable representation. By itself the process of finding
the same coverage of the mutex relations as the one pro-
vided by the planning graph is also known as a variant of
Rintanen’s invariant synthesis algorithm (Rintanen 2000).

Planning Graph
The planning graph was originaly introduced as a part of
the GraphPlan planning system (Blum and Furst 1997) that
also directly used it for planning. Though the planning graph

is no more used for ”complete” planning, it is still heavily
exploited in planning heuristics.

For a given planning problem, the planning graph is a di-
rected layered graph (P0, A1, P1, A2, ...), where arcs exist
only from one layer to the next. Nodes in the first level P0

represent propositions from the initial state s0. Every further
level contains two layers, an action layer Ai and a proposi-
tion layer Pi. The action layer contains a set of nodes rep-
resenting actions whose preconditions are satisfied by the
facts in the previous proposition layer and none of its pre-
conditions is mutex (see below) in the proposition layer. The
proposition layer contains a set of positive effects of actions
from the previous layer (to resolve the frame axiom, for each
proposition we add a no-op action with a single precondition
and a single positive effect being the proposition). For each
level i of the planning graph we maintain a set µPi of all
pairs of mutex facts and set µAi of all pairs of mutex ac-
tions. We further define mutex relations as follows.

Two actions a and b are mutex at the level i if and only if:

effect−(a) ∩ (precond(b) ∪ effect+(b)) 6= Ø ∨
effect−(b) ∩ (precond(a) ∪ effect+(a)) 6= Ø ∨
∃(p, q) ∈ µPi−1 : p ∈ precond(a), q ∈ precond(b)

Two facts p and q are mutex at the level i if and only if:

∀a, b ∈ Ai: p ∈ effect+(a), q ∈ effect+(b) =⇒ (a, b) ∈ µAi

In the essence, two actions are mutex if either one of them
deletes a precondition or an effect of the other or some pair
of preconditions of the actions is mutex in the previous level.
Two propositions are mutex, if there does not exist any non-
mutex pair of actions that would add them in the previous
level.

The planning graph is constructed iteratively from the
first level representing the initial state of the planning prob-
lem. The construction terminates once it eventually reaches
a fixed point (no new actions have been added). Note that
all the mutex relations in the fixed-point layer of the plan-
ning graph are ”general”. It means that those ”general” mu-
tex propositions can never be true at the same state, which
is easy to verify. We will use the ”general” mutex relations
only so from now on, we will be talking about mutexes with-
out the adjective ”general”.

An important aspect of the planning graph is that it is of
polynomial size and can be computed in the time polynomial
in the size of the planning problem (Blum and Furst 1997).

Building State Variables
Once we have the mutex relations we need to form the state
variables. In its base form, we can perceive the state vari-
able as a set of pair-wise mutually exclusive predicates, or in
other words, a clique in a graph (V,E) where V represents
all the propositional facts about the world and (x, y) ∈ E
if and only if x and y forms a general mutex. Although it
is possible to relax the requirement on mutex relations, e.g.
allowing a few pairs to be non-mutex as seen in (Seipp and
Helmert 2011) to obtain larger groups of predicates, we shall
consider only the cliques as the candidates for the state vari-
ables. We are then faced with two tasks, we first need to find
the cliques (which is NP-hard in general) and after that we

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

25

need to find the most efficient covering of the original facts
(set covering problem, again NP-hard in general). To denote
a clique of mutexes we will also use the term mutex set later
in the paper.

We harvest the cliques (mutex sets) from the mutex graph
using a probabilistic algorithm presented in the section . For
the covering we use a greedy approach as has already been
seen in (Helmert 2009). We also explore a new way of cov-
ering that encodes more information than necessary by over-
covering the predicates (having one predicate represented in
multiple state variables).

Problem Representation
Our method works with the PDDL version 3.1. However
we support only features that were used for the classical
deterministic track of the International Planning Competi-
tion (Olaya, López, and Jiménez 2011), further development
of the method can include extending towards axioms, con-
ditional effects and other features improving expressivity.
Since the description of the PDDL language is beyond the
scope of this paper, we define only the set representation,
which we receive after grounding the initial problem from
the PDDL. We then define the state variable representation
and describe the translation process.

Set Representation
The planning problem in the set representation is defined as
a 4-tuple (V, I,G,A), where:
• V is a set of atoms; an assignment of truth values to all

the atoms is called the state of the world,
• I is a set of initial atoms,
• G is a set of goal atoms,
• A is a set of actions, where an action is 4-tuple (name,

PRE, EFF−, EFF+), where PRE is a set of atoms that need
to be true before we can apply the action, EFF− (EFF+) is
a set of atoms that become false (true) after the execution
of the action.
The usual semantic (Gelfond and Lifschitz 1998)(Ghal-

lab, Nau, and Traverso 2004) is that the initial state I de-
scribes the world precisely (under the closed world assump-
tion, setting all the atoms either to true, or false), while the
goal set G describes the world only partially, requiring only
some atoms to be true.

Finite-domain State Variable Representation
The planning problem in the state variable representation is
defined as a 4-tuple (S, s0, s

∗, O), where:
• S = {v1, . . . , vn} is a set of state variables, each with an

associated domain of values D(vi), the state of the world
is defined as an assignment of values to all the state vari-
ables,

• O is a set of actions of the form (name, PRE, EFF), where
PRE is a set of requests on the value of certain state vari-
able (e.g., Position == SailorPort1) and EFF is a set of
assignments of values into the state variables (e.g., Posi-
tion← ShipPort3),

• s0 is a set of assignments of all state variables, it repre-
sents the initial world state,

• s∗ is a set of assignments of some state variables, it rep-
resents the partial description of the goal state.

Translation
The translation method can then be described in the follow-
ing steps:

1. We use the planning graph structure to translate the in-
put problem in PDDL into the set representation. We also
record all the mutex relations from the fixed-point layer
of the planning graph.

2. Using the mutex relations we harvest the mutex cliques
(mutex sets), i.e., the candidates for the state variables.

3. We select the mutex cliques that we shall use for the state
variables.

4. We translate the set representation into the state variable
representation using the selected mutex cliques.

The process of translating set representation into the
finite-domain state variable representation is the following:

1. For each mutex set we create a state variable whose do-
main contains all the elements (propositional facts) of the
mutex set. We also add a value none-of-those that
represents the situation when none of the values of the
state variable is true.

2. For each action a in the set representation we create an ac-
tion a′ in the state variable representation. For each atom
in PRE (EFF+) of the action a we create a request (as-
signment) of the atom into the state variable whose do-
main contains the atom. In case a delete effect removes
an atom and there is no effect that would add a value from
the same variable, we add an effect that sets the value of
the concerned state variable to none-of-those.

3. We translate the initial and goal states in the same way as
the preconditions of an action.

Maximum Clique
A clique is a complete subgraph of a graph. Finding a max-
imum (the largest) clique in a general graph is a known NP-
hard problem (Bomze et al. 1999). For the purpose of find-
ing the candidates for the state variables we do not actually
want to look for all the largest cliques since the benefit of
having the largest ones is small compared to the computa-
tional price we would have to pay for finding them. Instead
we shall look for a selection of large cliques that we can find
in some limited time. We use a probabilistic algorithm, as
described in Algorithm 1.

The main loop of the algorithm (1) records new sets of
mutexes until an ending criterion is met. For each set, we
first randomly permute the ordering of the facts (2), then
we enter the inner loop that in each iteration chooses the
first candidate (5), adds it to a new set of mutexes (6) and
removes from the candidates all the facts that are not mutex
with it (7). The identical algorithm is also used in (Ghallab,
Nau, and Traverso 2004) for finding minimal critical sets.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

26

Algorithm 1 Probabilistic algorithm for finding k candi-
dates for the state variables.

1: repeat
2: cands← randomPermutationOfFacts
3: newSet← empty set
4: repeat
5: candidateFact← popFirst(cands)
6: newSet← newSet ∪ {candidateFact}
7: cands← cands \ nonmutex(candidateFact)
8: until cands is empty
9: record(newSet)

10: until time is up or k sets were recorded

In our testing environment we have fixed the number of
mutex sets we like to find to 5000, the time limitation was
not needed. We have not identified any significant improve-
ment for larger numbers of mutex sets.

Covering
Consider a universe U consisting of all atomic elements
(facts). From the elements of the universe we can then form
sets, each set corresponding to a clique in the mutex graph.
Let us denote S a union of all such sets, i.e., S is a set of
sets of atomic elements, or a set of cliques. Our task is then
to choose such (minimal) subset of S, the union of which
will be equal to the whole universe U . Or in other words, we
want to choose a (minimal) subset of cliques that will cover
all the facts.

The fact covering problem we are solving is known as the
set covering problem (Vazirani 2001). As described above,
the goal is to find a minimal (or the least expensive) sub-
set of S such that all atomic elements are covered by the
union of sets in the chosen subset. An obviously good solu-
tion would be a selection of sets covering all the facts such
that there is no selection with fewer sets. However this is an
NP-hard variant of set covering. Again, we shall not invest
computational time into finding the solution with the fewest
sets, whose benefit is discussable, but we employ a greedy
algorithm, described in Algorithm 2.

Algorithm 2 Greedy set-covering algorithm.
1: uncovered← allFacts
2: repeat
3: chosen← a mutex group with the largest cardinality
4: remove chosen’s elements from all mutex groups
5: remove chosen’s elements from uncovered
6: record(chosen)
7: until uncovered is empty

The main loop of the algorithm runs until we have covered
all the facts in the problem at which point all the facts are
represented in a form of values of some state variables. In
the loop we first choose the largest set (this is the greedy
principle), we remove its content from all the mutex groups
and the uncovered set. At the end we shall have a collection
of sets of mutexes with pair-wise empty intersections (each
fact is represented exactly once).

While having every fact represented exactly once is an ex-
pected property, we shall also experiment with covers, where
each fact is represented at least once (possibly more times).

From the semantical point of view, if there is an action
that sets the value of a certain fact to true, then using the
state variables, the same action sets a corresponding value
of the state variable instead. Having one fact represented by
more state variables only extends the transformation of the
action, so that a change of a fact is replaced by changes in
all state variables that contain the fact. Although the size
of the encoding for the over-covering is larger than for the
standard greedy covering, the over-covering representation
is more informative.

For the purpose of our experiments the over-covering
method alters the greedy algorithm by first creating a copy
of all the mutex sets and pairing them as an identity pro-
jection from the original to the copy. Running the greedy
algorithm, whenever a new set should be recorded (line 6),
we instead record its projected set from the copy. As a result,
the intersections of the mutex sets may be non-empty.

Experimental evaluation
The main goal of our approach is to capture more mutex-
based structural information about a planning problem and
then to encode it transparently in the form of state variables,
so that the existing planners using SAS+ as an input could
immediately leverage from this enhancement.

As described above, we created two versions of our en-
coding, both of them being based on the greedy mutex
groups selection, but with the difference of the second en-
coding not ensuring the empty intersections of facts between
the selected mutex groups. The first encoding, which we call
pg-greedy, leads to a more compact representation of the
problem and also action definitions. The second encoding,
named pg-greedy-nofilter, captures more mutex relations be-
tween the facts but inherently creates larger representations
of both actions and state variables, reaching thus a certain
level of over-covering the facts by the selected state vari-
ables (mutex groups).

In order to evaluate our approach we have gener-
ated the new encodings for seven PDDL domains used
in the sequential-optimization track of the latest Interna-
tional Planning Competition IPC-2011 (Olaya, López, and
Jiménez 2011), namely barman, elevators, floortile, open-
stacks, parcprinter, pegsol, and transport. We have chosen
domains, where we expected the new encoding to make dif-
ference. From each domain we selected the first 10 prob-
lem instances, which was enough to reach at minimum one
unsolved problem within each domain. For the comparison,
we also generated the encodings of the same domains using
the translator component (called fd-greedy in further text)
of the Fast Downward Planning System (Helmert 2009), ob-
taining thus three sets of the encodings. The computational
time required to generate the encodings was not an object of
our study, however based on our observations the time was
comparable in all three cases and negligible with regard to
the runtime of the planner. Note that the focus on the smaller
instances and a subset of domains was caused mainly by the
time requirements of such experiments (in fact, we would be

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

27

completely re-running the deterministic optimal part of IPC,
if we tested all).

For the evaluation we chose seven planning systems,
in alphabetic order: BJOLP (Domshlak et al. 2011a), Fast
Downward Autotune (optimizing version) (Fawcett et al.
2011), Fast Downward Stone Soup 1 (optimizing version)
(Helmert et al. 2011), LM-Cut (Helmert and Domshlak
2011), Merge and Shrink (Nissim, Hoffmann, and Helmert
2011), SASE (Huang, Chen, and Zhang 2010), and Selective
Max (Domshlak et al. 2011b). Except for SASE, all of the
planners are cost-optimal and participated in the IPC 2011.
SASE optimizes the makespan of the plan with the unified
action durations and ignores the action costs, which corre-
sponds to the step-parallel semantics (Balyo, Barták, and
Toropila 2011).

We then conducted the experiments using all combina-
tions of the generated encodings and chosen planners. The
computations ran with the time limit of 30 minutes. For each
planner and each type of encoding we observed the time re-
quired to solve a given problem instance, and also the num-
ber of problems solved in each domain. The experiments
were run on the Ubuntu Linux machine equipped with In-
tel Coreł i7-2600 CPU @ 3.40 GHz and 8GB of memory.

In optimal planning, one of the most interesting perfor-
mance metrics is the number of solved instances (within
given limit). In Table 1 we show the improvement (or degra-
dation) of using the pg-greedy encoding compared to the fd-
greedy encoding used in Fast Downward. The columns rep-
resent planners, the rows correspond to the domains, and the
value corresponding to a combination of planner and domain
denotes how many more problems were solved using the pg-
greedy encoding compared to using the classical fd-greedy
encoding. Similarly, Table 2 shows the comparison of the
pg-greedy-nofilter encoding compared to the fd-greedy en-
coding.

Table 1: Comparison of the pg-greedy and fd-greedy encod-
ings from the perspective of the number of solved problems.
Values denote the improvement of the pg-greedy encoding
compared to the fd-greedy encoding.

bj
ol
p

fd
A
ut
ot
un
e

fd
ss
1

lm
C
ut

m
er
ge
A
nd
Sh
rin
k

sa
se

se
lm
ax

su
m

barman 0 0 0 0 0 4 0 4
elevators 0 -1 0 0 0 0 0 -1
floortile 0 0 0 0 -1 0 1 0
openstacks 0 0 0 0 0 0 0 0
parcprinter -1 0 0 0 1 0 0 0
pegsol 0 0 0 0 0 0 0 0
transport 0 0 0 0 3 0 0 3

sum -1 -1 0 0 3 4 1 6

As can be seen, the difference between the three encod-
ings is small, though the results show that in average case the
novel encodings outperform the fd-greedy encoding, with
the pg-greedy encoding being the winner. The use of this
encoding caused degradation only at two problem instances
for two planners (BJOLP and Fast Downward Autotune),

Table 2: Comparison of the pg-greedy-nofilter and fd-greedy
encodings from the perspective of the number of solved
problems. Values denote the improvement of the pg-greedy-
nofilter encoding compared to the fd-greedy encoding.

bj
ol
p

fd
A
ut
ot
un
e

fd
ss
1

lm
C
ut

m
er
ge
A
nd
Sh
rin
k

sa
se

se
lm
ax

su
m

barman 0 0 0 0 0 4 0 4
elevators 0 0 0 0 0 0 0 0
floortile 0 0 0 0 -1 2 0 1
openstacks -4 0 0 0 0 0 0 -4
parcprinter 0 0 -2 0 1 0 0 -1
pegsol 0 0 0 0 0 0 0 0
transport 0 0 0 0 3 0 0 3

sum -4 0 -2 0 3 6 0 3

while for other three planners it helped to solve together 8
instances more (Merge and Shrink, SASE, Selective Max).

The differences between the encodings can be, however,
better seen when inspecting the runtimes required to solve
the testing instances. Table 3 shows the comparison of the
solving time between the pg-greedy and fd-greedy encod-
ings. Values represent the average increment of time (in per-
cent) required to solve problems within a domain to the
slower of the two compared encodings. Positive values de-
note that the use of pg-greedy encoding reached solution
faster, negative values mean the use of fd-greedy helped to
find an optimal solution faster. For example, value 7 means
that the computation using the pg-greedy performed faster
and the same computation using the fd-greedy took 7 per
cent longer (i.e., value 100 denotes that the computation us-
ing pg-greedy was twice as fast, value 200 three times, etc.).
Value −8 denotes that the computation using the fd-greedy
was faster and the use of pg-greedy took 8 per cent longer
time. Table 4 then shows the same comparison between pg-
greedy-nofilter and fd-greedy encodings.

Table 3: Comparison of the pg-greedy and fd-greedy en-
codings from the perspective of the time required to solve
the problem instances. Values denote the improvement of
the pg-greedy encoding compared to the fd-greedy encod-
ing (computational overhead in per cent).

bj
ol
p

fd
A
ut
ot
un
e

fd
ss
1

lm
C
ut

m
er
ge
A
nd
Sh
rin
k

sa
se

se
lm
ax

av
er
ag
e

barman 13 10 41 9 39 205 10 47
elevators -3 -37 3 -53 6 -15 -10 -16
floortile -1 -2 -135 -2 -5 -10 -5 -23
openstacks -3 -2 1 1 -2 0 12 1
parcprinter -3 -1 30 35 32 11 30 19
pegsol 7 23 153 4 2062 33 3 326
transport -8 8 -3 7 1 11 1 2

average 0 0 13 0 305 34 6 51

We can see that the use of pg-greedy helped to reach the
optimal solution faster in many cases, while the degradation

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

28

Table 4: Comparison of the pg-greedy-nofilter and fd-greedy
encodings from the perspective of the time required to solve
the problem instances. Values denote the improvement of
the pg-greedy-nofilter encoding compared to the fd-greedy
encoding (computational overhead in per cent).

bj
ol
p

fd
A
ut
ot
un
e

fd
ss
1

lm
C
ut

m
er
ge
A
nd
Sh
rin
k

sa
se

se
lm
ax

av
er
ag
e

barman -60 -41 -2 -41 -3 -5 -36 -27
elevators -2 112 29 10 -1 3 35 27
floortile -6 -9 224 -9 238 930 -8 194
openstacks -1291 2 -4 1 1 0 -1 -185
parcprinter -68 -83 93 -76 104 -21 -65 -17
pegsol -3 -20 -16 -14 -16 -1 -1 -10
transport -2 -2 3 1 -1 -14 -9 -3

average -205 -6 47 -18 46 127 -12 -3

occurred only rarely and only with small difference. Espe-
cially in the logically complicated domains, such as barman
and pegsol we can see that the use of pg-greedy leads in con-
sistently better performance for all of the planners. The rea-
son for this is the fact that employing the problem definition
and the knowledge of the initial state into the reconstruction
of the state variables leads to the structurally richer encod-
ings, which helps to improve the performance significantly.
We can also observe that the use of pg-greedy-nofilter was
beneficial only for a single domain floortile, while for other
domains the larger encodings of the problems caused com-
plications to the planners.

With regard to the number of state variables and actions,
the most significant benefit of our encoding was the par-
cprinter domain, reducing the number of state variables by
41 per cent and the barman domain reducing state variables
by 65 per cent. Also, fewer actions were generated in the
pegsol (7%), barman(16%) and parcprinter (7%) domains.
The transport, elevators and openstacks domains reached the
same number of actions and states variables in all encodings.
There is not a single case when the fd-greedy would provide
fewer state variables or actions than pg-greedy.

Looking at the planners, some of them exploit the state
variable encodings more than the others. It can be seen that
LM-Cut does not really benefit from the encoding, since
its heuristic is independent on the encoding. On the other
hand, SASE is a planner that encodes the state variables di-
rectly into SAT and benefits strongly from the more compact
encodings. The Merge and Shrink seems to benefit signifi-
cantly from more compact encodings (parcprinter and bar-
man), while if we look deeper into the pegsol domain, we
find that the pg-greedy actually finds new large cliques not
discovered by the fd-greedy.

Conclusion
We have proposed a new method for constructing the finite-
domain state-variable representation of planning problems.
This method is fully automated, it uses the planning graph
structure for both grounding and discovering the mutual ex-
clusion between facts. Our input can be both a PDDL for-

mulation of the problem that we can ground and translate to
the state variable representation, or the state variable repre-
sentation itself, which we can reconstruct by translating it
into the set representation and then back.

We have shown that compared to the current techniques,
there are planning domains and planning systems that can
significantly benefit from our method, allowing them both
to solve more problem instances, and solve them faster.

Although the construction of the planning graph runs in
polynomial time, it is still computationaly expensive and it
cannot scale with the size of the problem as well as the in-
variant synthesis used in fd-greedy. However, to plan effi-
ciently in practical purposes we want to balance the time we
have between the preprocessing and actual planning. Op-
timal planning is a field where the scale of the problems
does not get out of reach for the construction of the plan-
ning graph (since it would get out of reach for the plan-
ning itself as well) and this is the spot, where we believe our
contribution fits the most; in good cases saving a significant
amount of computational time, while not having significant
bad cases.

Future Work
We have shown that there is still space for exploring new
methods for covering the mutex sets and that the results can
often be rewarding. The planning graph provides strong mu-
tex relations, however we can still go further and try to en-
rich the number of mutex relations with other techniques.
And probably the most important direction can be the relax-
ation of cliques allowing some limited amount of edges to
be non-mutex, in favor of getting less and larger state vari-
ables.

Acknowledgements
Research is supported by the Czech Science Foundation un-
der the contract P103/10/1287 and under the Grant Agency
of Charles University as the project no. 306011.

References
Bäckström, C., and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11:625–656.
Balyo, T.; Barták, R.; and Toropila, D. 2011. Two Seman-
tics for Step-Parallel Planning: Which One to Choose? In
Proceedings of the 29th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG 2011), 9–15.
Blum, A., and Furst, M. L. 1997. Fast Planning Through
Planning Graph Analysis. Artificial Intelligence 90(1-
2):281–300.
Bomze, I. M.; Budinich, M.; Pardalos, P. M.; and Pelillo,
M. 1999. The Maximum Clique Problem. Handbook of
Combinatorial Optimization 4:1–74.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Seipp, J.; and Westphal, M. 2011a. BJOLP: The Big
Joint Optimal Landmarks Planner. In Seventh International
Planning Competition (IPC 2011), Deterministic Part, 91–
95.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

29

Domshlak, C.; Helmert, M.; Karpas, E.; and Markovitch, S.
2011b. The SelMax Planner: Online Learning for Speed-
ing up Optimal Planning. In Seventh International Planning
Competition (IPC 2011), Deterministic Part, 108–112.
Dovier, A.; Formisano, A.; and Pontelli, E. 2007. Mul-
tivalued Action Languages with Constraints in CLP(FD).
In Proceedings of the 23rd International Conference on
Logic Programming, ICLP’07, 255–270. Berlin, Heidel-
berg: Springer-Verlag.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning. Artificial Intelligence 76(1-
2):75–88.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Automated Configura-
tion of Fast Downward. In Seventh International Planning
Competition (IPC 2011), Deterministic Part, 31–37.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the
Expressivity of UCPOP with the Efficiency of Graphplan. In
Fourth European Conference on Planning (ECP’97), 221–
233.
Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on AI 3.
Gerevini, A., and Schubert, L. K. 1998. Inferring State
Constraints for Domain-Independent Planning. In Proceed-
ings of the Fifteenth National Conference on Artificial In-
telligence and Tenth Innovative Applications of Artificial In-
telligence Conference, AAAI 98, IAAI 98, 905–912. AAAI
Press / The MIT Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.
Helmert, M., and Domshlak, C. 2011. LM-Cut: Optimal
Planning with the Landmark-Cut Heuristic. In Seventh In-
ternational Planning Competition (IPC 2011), Determinis-
tic Part, 103–105.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In Seventh International Plan-
ning Competition (IPC 2011), Deterministic Part, 38–45.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence 173(5-
6):503–535.
Huang, R.; Chen, Y.; and Zhang, W. 2010. A Novel Transi-
tion Based Encoding Scheme for Planning as Satisfiability.
In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010. AAAI Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The
Planning Domain Definition Language. Technical report,
Yale Center for Computational Vision and Control.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. The
Merge-and-Shrink Planner: Bisimulation-based Abstraction
for Optimal Planning. In Seventh International Planning
Competition (IPC 2011), Deterministic Part, 106–107.

Olaya, A.; López, C.; and Jiménez, S. 2011. International
Planning Competition, Retrieved from http://ipc.icaps-
conference.org/.
Rintanen, J. 2000. An Iterative Algorithm for Synthesizing
Invariants. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on
on Innovative Applications of Artificial Intelligence, AAAI
2000, 806–811.
Seipp, J., and Helmert, M. 2011. Fluent Merging for Clas-
sical Planning Problems. In Proceedings of the ICAPS-
2011 Workshop on Knowledge Engineering for Planning
and Scheduling, 47–53.
Vazirani, V. 2001. Approximation Algorithms. Springer-
Verlag.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

30

What is a Timeline?

Jeremy Frank
NASA Ames Research Center

Mail Stop N269-3
Moffett Field, California 94035-1000

Abstract

Most planning applications require reasoning about ac-
tions that take time, consume or produce resources, de-
pend on numbers to characterize, and that contain com-
plex constraints over these elements. In the past several
years, various attempts have been made to characterize
the notion of Timelines as a key part of fielded plan-
ning and scheduling applications. These attempts have
not been satisfactory. The thesis of this paper is that the
Timeline provides a set of services allowing the plan-
ner to interact with the computed history of the state
variables defined in the planning problem. The Time-
line must be computed from partial plans that incom-
pletely specify the history; that is, there may be parts
of the planning horizon where the value of the variable
is constrained, but not yet known. The paper examines
how different assumptions on the commitments made
by planners influence the computational complexity of
determining these histories, and responding to queries.

Why don’t we really know what a Timeline is?
Timeline (n): a graphical representation of a period of time,
on which important events are marked. - Oxford English
Dictionary (Online)

The word Timeline has been used to mean many differ-
ent things by many different people. Recently, (Chien et al.
2012) describe a set of features shared by the technologies
used to build many different planning and scheduling sys-
tems, mostly for space applications. These features include:

1. Ability to represent actions that overlap in time
2. Ability to represent finite capacity renewable resources

(e.g. resource with integer capacity that can be used and
returned)

3. Ability to represent multi-valued discrete state variables
and constraints on state transitions.

4. Ability to represent infinite valued state variables.
5. Ability to represent hierarchical activity decomposition.
6. Ability to represent metric temporal constraints.
7. Ability to represent complex functional constraints be-

tween activity properties or parameters.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Chien et al. also describe the services that these planners
offer:

• Detect constraint violations

• Insert activities

• Check whether an activity insertion violates a constraint
(e.g. lookahead)

• Return a list of valid times to place an activity

• Invoke custom code to calculate complex quantities

• Remove activities

Of this list of features, hierarchical decomposition and
complex functional constraints are key representational fea-
tures of many powerful modeling languages, but have noth-
ing to do with Timelines per-se. With the exception of multi-
valued discrete state variables, the remainder are all features
of PDDL, starting with 2.1 (Fox and Long 2003), the de-
facto standard academic modeling language. Multi-valued
state variables are a feature of the SAS modeling language
(Jonsson and Backstrom 1998), and it is possible to auto-
matically translate PDDL models into SAS (Edelkamp and
Helmert 1999), so that some predicates in the original PDDL
model are combined into the values of a state variable. This
suggests that Timelines are not just a modeling formalism,
but something more.

Of the list of services, many PDDL planners make use of
few of these services, or employ them in a restricted form.
Progression and regression planners, for example, can add
activities to the suffix of a plan (progression) or prefix (re-
gression) but nowhere else. All planners check the validity
of the plan relative to the modeled constraints, but many
planners are heuristics-driven chronological backtracking
planners that retract decisions once constraint violations are
detected. Other services also are not specific to Timelines,
e.g. the ability to invoke custom code. Only some of these
services, e.g. the ability to return a list of all valid times
when an activity can be placed, are directly relevant to the
notion of a Timeline. For this reason, a more deliberate at-
tempt to distill the essence of Timelines is in order.

The Contentious Proposition
This paper offers one approach to determining what, exactly,
a Timeline is, what role it plays in automated planners, and

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

31

how Timelines should be designed. The position of this pa-
per is that a Timeline is a complete history of the changes to
the value of a variable, as computable by a partially spec-
ified plan, over the specified planning horizon. The Time-
line must also either be, or interact closely with, a reposi-
tory of all of the commitments made by a planner that are
necessary to determine what the history is. The Timeline
also provides a set of services allowing the planner to in-
teract with the variables’ histories. The histories must be
computed from commitments that incompletely specify the
history; that is, there may be parts of the planning horizon
where the value of the variable is constrained, but not yet
known. The paper also examines how different assumptions
on the commitments made by planners influence the com-
putational complexity of determining these histories, and re-
sponding to queries.

Assumptions and Definitions of Terms
• We assume that the planning and scheduling system (here-

after the planner) is model-based.

• We assume the model contains durative actions and tem-
porally qualified conditions and effects.

• We assume the modeling language allows numerical flu-
ents.

• We assume that the planner can produce plans with flaws;
flaws may include actions whose preconditions are not
satisfied, constraint violations including resource limit vi-
olations, and so on.

We make no specific assumptions regarding the planning
algorithms used to find plans, even those with flaws. Part
of the motivation of this paper (and others before it) is to
provide a basic reasoning component that can be used as
part of many planning algorithms and applications. A single
component must be useful in any of the above contexts.

Before proceeding, we provide a few definitions of terms.
These definitions are an amalgam of those in (Ghallab,
Nau, and Traverso 2004) (Chapters 14 and 15), (Frank and
Jónsson 2003) and (Ghallab and Laurelle 1994) with a few
modifications to suit the purposes of this paper1. Timelines
have also been formally defined in a similar manner in
(Fratini, Pecora, and Cesta 2008), and using a ’constraints’
based formalism in (Verfaillie and Pralet 2008).

Definition 1 Let V be a set of (possibly infinite) domain
variables v; denote the domain of v by d(v). Let t be a vari-
able denoting time; w.l.o.g. d(t) = R+. A State Variable x
is a function x : t→ vi × ...vj . The domain of x is therefore
R+ × d(vi)× ...× d(vj).

Note that the above definition differs from prior defi-
nitions of State Variables, but only in a cosmetic way. If
|d(vi)| > 2 then state variables are multi-valued. It is always
possible (if somewhat ungainly) to construct a single multi-
valued domain out of many state variables with smaller do-

1A more complete history of formalisms for specifying tempo-
rally qualified intervals and planning deserves its own book!

mains. Let V = ∪ivi; without loss of generality, state vari-
ables partition V 2.

Definition 2 A Temporal Assertion is a relation over vari-
ables {v1...vi, s, e} partially specifying the function for
state variable x; specifically, that values of the variables
v1...vi are constrained over the half-open interval [s, e). The
variables s, e are called events. We denote the lower and up-
per bound on events by slb, sub respectively.

Definition 3 A Transaction is a relation over variables
{v, s} partially specifying the function for state variable x;
specifically, the relative change in the value of variable v
occurs at time s.

Temporal assertions and transactions are the primitives
that will define the behavior of our state variables. Again,
these definitions differ from those used previously. Fore-
shadowing a bit, the value x(t) is either defined by all tem-
poral assertions that must hold at t, that is, by all temporal
assertions such that s ≤ t ≤ e, or by all transactions that
must occur at or before t, that is, given a set of transactions
{xi, vi, si}, x(t) =

∑
si≤t vi. We also take an ”interval-

centric” view rather than an ”event-centric” view of tempo-
ral assertions. Finally, we note persistence can be modeled
as flexibility in the duration of a temporal assertion.

Constraints are an important foundation of automated rea-
soning (Dechter 2003), and in the last decade automated
planners have incorporated many types of constraints. We
distinguish between constraint types below.

Definition 4 A Constraint is a tuple
w1...wi, s1...sj , e1...ek, R where R is a relation defin-
ing the allowed combinations of assignments to the
variables. A Temporal Constraint is a tuple s, e, t1, t2 with
semantics t1 ≤ |e− s| ≤ t2. Distinguished events z, h with
z = 0 and h ∈ R+ define the earliest and latest times any
temporal assertion may hold. A Parameter Constraint is a
constraint whose scope only includes parameter variables
w1...wi. A Hybrid Constraint is a constraint whose scope
includes both parameters and events.

The scope of the constraint types defined is not limited to
the variables of a single temporal assertion, transaction, or
state variable. We now introduce two other constraint types,
whose scope is limited to the variables from temporal asser-
tions on the same state variable.

Definition 5 A Mutual Exclusion Constraint states that
a state variable x takes on a single value at any time
t, that is, if two temporal assertions of the same state
variable x necessarily overlap, then the values of their
variables must be identical. Formally if the two asser-
tions are {x, vi,t...vj,t, st, et} and {x, vi,u...vj,u, su, eu}
and ∃r|st ≤ r ≤ et ∧ su ≤ r ≤ eu for all valid assign-
ments to st, et, su, eu, then ∀jvj,t = vj,u.

Definition 6 A Resource Constraint is a pair of functions
U,L s.t. U, V : v × t → R and ∀t U(v, t) ≥ L(v, t). For-
mally, if x(t) = d, then U(v, t) ≥ d ≥ L(v, t).

2Equality constraints can be used to impose relationships be-
tween state variables’ parameters.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

32

We use the term ’resource’ constraint here to make clear
what the intended semantics of the constraint is, even though
this is a fairly generic constraint that could apply to any sin-
gle variable element of a state variable.

Definition 7 A Timeline is a set of temporal assertions or
transactions and constraints on a state variable x.

It is worth noting that (Ghallab, Nau, and Traverso 2004)
define a chronicle as the set of all state variables, temporal
assertions, events and constraints; they define Timelines as
the set of constraints whose scope is the variables and events
for a single state variable. For them, the focus was on how to
build models and plans with chronicles; here, we are focused
on the Timeline.

These definitions leave considerable room for defining
Timelines. For instance, a Timeline can have mixes of fi-
nite and infinite domains; a Timeline need not enforce either
mutual exclusion or numerical constraints, or could enforce
both; a Timeline could permit hybrid constraints on vari-
ables and events. This definition also fails to cover the set
of services on Timelines. Finally, the definition does not dis-
tinguish between temporal assertions or constraints arising
from ’facts’ versus ’goals’. (Neither, we note, do the com-
parable definitions of (Ghallab, Nau, and Traverso 2004).)
The remainder of the paper explores these questions and the
consequences of allowing (or disallowing) Timelines to have
these features.

Defining Timelines by their Services
Metric time, resources, numbers, and constraints are part of
many planning problems. Time dependent facts (modeled as
timed initial literals in PDDL) are common, as are tempo-
rally qualified goals. Complex resource profiles, extensive
use of numerical Timelines (e.g. for spacecraft attitude or
robot pose), and complex constraints over such quantities
are common. The simple progression or regression algo-
rithms used by many planners, even recent ones applied to
problems with complex constraints, do not need a sophisti-
cated set of services supported by a Timeline representation.
However, over time, increasingly sophisticated planning al-
gorithms have introduced more sophisticated services that
require more and more behind-the-scenes support. To ex-
plain this, consider a brief (and woefully incomplete) history
of planning algorithms:

• State-space planning (whether progression or regression).
These planners only maintain an internal state consisting
of the list of true propositions after the set of steps in the
prefix (progression) or suffix (regression). No complete
history of states are maintained. A useful metaphor for
progression planning is that the planner maintains a repre-
sentation of the ’gap’ between commitments made by the
planner (the current state) and the goals. This metaphor
is ’inverted’ for regression planning; the gap now is be-
tween the justifications constructed to reach the goals and
the facts.

• Plan-space planning. The internal state now consists of
the partial order of actions and (possibly) the part of
the state needed to support actions (i.e. the causal links).

Again, no complete history of states over time is main-
tained. The metaphor used above must be extended; there
is a ’ragged horizon’ on one side of the gap, representing
the set of unordered actions at the end of the plan and their
effects, and on the other side of the gap are the goals.
In both of these cases, the planning algorithms are limited
to adding actions to the end of the plan (state space pro-
gression) beginning of the plan (state space regression) or
in limited intermediate cases between actions (POCL).

• Graphplan (Blum and Furst 1995). Graphplan maintains a
data structure closer to a Timeline, but the original Graph-
plan is limited to total ordering of sets of noninterfering
actions, from which sets of actions that are not mutually
exclusive must be extracted.

• Temporal Graphplan (TGP) (Smith and Weld 1999). This
is closer yet to a Timeline, in that orderings are con-
strained only by explicit temporal constraints among ac-
tions, but still does not represent a complete history of
values of the state variables.
The internal structures maintained by Graphplan and
TGP provide more flexibility than the state representation
maintained by state- or plan-space planning. They explic-
itly represent potential violations of constraints (mutexes)
that must be avoided in the final plan, and thus both can
support algorithms that make commitments to arbitrary
actions in the plan, and possibly also constraint violations
3. However, the constraints are represented directly on the
actions, and no explicit representation of the values of the
state variables are maintained.

Many planning problems may be posed in such a way that
they have no feasible solution. While it is tempting to con-
clude that problems with no solution should be transformed
into optimization problems and appropriate algorithms used,
the customers of planning often prefer not to do so. Either it
is too difficult to settle on a suitable optimization criteria, or
they prefer to waive violations that cannot be resolved. This
is because many of the constraints may be best guesses, in-
clude considerable slack, and are difficult to refine prior to
planning (Clement et al. 2012). Many applications employ a
mixed-initiative planning approach, in which much of the re-
sponsibility for action insertion or plan manipulation is per-
formed by a human operator. Actions taken by the opera-
tor include invoking reasoning components or services that
modify the plan, compute the implications of a change of
the plan, flag problems, and make suggestions for resolving
the problem, adding or removing constraints, and waiving
violations (e.g. (Aghevli et al. 2006)).

Some planners (e.g. EUROPA (Frank and Jónsson 2003),
ASPEN (Fukunaga et al. 1997), IxTeT (Ghallab and Lau-
relle 1994), APSI (Fratini, Pecora, and Cesta 2008) and
SPIFe (Aghevli et al. 2006)) employ the most general ver-
sion of these services. This suggests that the notion of Time-
lines may have more to do with how to offer a specific set of
services to a planner that implements a specific algorithm or
uses a specific set of heuristics.

3To our knowledge no Graphplan based planner has been built
that does this.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

33

Timeline Design Features
It is important to recognize that the Timeline is the founda-
tion of a set of services that is provided to a planner. This
means it must be distinguished from the other parts of the
planner that provide other services. In order to do that, we
provide a simple ’reference design’ of a planner, similar to
EUROPA 4.

• The Rules Engine is responsible for determining the con-
sequences of adding an action to a plan (states, resources,
constraints).

• The Constraint Engine is responsible for collecting het-
erogeneous constraints and propagating them.

• The Temporal Engine is responsible for collecting many
temporal constraints and propagating them. Temporal
constraints are distinguished due to their relative ubiq-
uity and the powerful algorithms available for propagat-
ing temporal constraints.

• The Search Engine is responsible for identifying options,
such as commitment to actions or assigning variables, and
committing to one of them.

• The Heuristics engine is responsible for evaluating op-
tions and ranking them or choosing one for the Search
Engine.

• The Timeline is responsible for representing the chronol-
ogy of values of a state variable, along with the temporal
constraints that arise from the current chronology.

Mixed initiative planners arguably drive much of the mo-
tivation for Timeline-based planners. However, we omit the
UI from this list of planner components. While this is largely
in the interests of brevity, the Timeline provides no direct
services to the UI of mixed-initiative planners, i.e. it is logi-
cally isolated from the UI by other components.

In the rest of this section we describe the features of the
Timeline that underly the design of the Timeline services.
For the purposes of this paper there are two distinct types
of Timelines, corresponding to two different types of State
Variables:

• Mutex: Timelines enforce mutual exclusion of temporal
assertions (or states) on a state variable (Definition 5); that
is, a consistent Timeline can be in one, and only one, state
at any time.

• Resource: Timelines track the value of a single number,
e.g. the amount of available resource may take on a single
value at any instant in time. Thus, resource state variables
are functions x : t → v. The resource bounds are asso-
ciated profiles of minimum and maximum values. A con-
sistent Timeline has the property that the value is within
bounds at all times. The available resource is defined by
the transactions on the resource (Definition 6).

4This is no coincidence, since EUROPA is the planner we are
most familiar with. It is not the intention of this paper to stipulate
the specific architecture of automated planners; it is no accident,
though, that the Timeline constrains the architecture of planners in
a specific way, and we expect many planners that use Timelines to
employ a similar architecture.

The number of ground states of even a Mutex Timeline
can be infinite. Resource upper and lower bounds may be
arbitrary functions. Practically speaking, the most common
cases are either piecewise constant (Muscettola 2002) or
piecewise linear bounds (Frank and Morris 2007), or are not
declarative and computed by external code, as was done for
power by MAPGEN (Bresina et al. 2005). We will consider
only piecewise constant resources for the remainder of the
paper.

Constraining Timelines (1): Value Constraints
In this section we describe how the value of a Timeline can
be constrained by the planner (and by extension in the initial
state of the planning problem).

• Assert: A planner may add a temporal assertion to a Time-
line but not constrain its parameters.

• Value: A planner may constrain a temporal assertion on a
Timeline to a single value.

– All non-temporal variables in the temporal assertion
may be assigned a value, resulting in temporal asser-
tion {x, vi = di...vj = dj , s, e} where di ∈ d(vi).

– Resource transactions may be assigned a single numer-
ical value, resulting in transaction {x, v = d, s} where
d ∈ d(v).

• Simple Constraint: A planner may constrain a temporal
assertion. A simple constraint is a hybrid constraint on
a single temporal assertion that identifies a subset R ⊂
d(vi)× ...d(vj)× d(s)× d(e) of valid assignments to the
variables. For resources this devolves to R ⊂ d(v).

• Complex Constraint: A planner may exclude a specified
subset of values on a Timeline over a specified interval,
but not constrain the Timeline to take on a single value
over this interval. Complex constraints include:

– A Hybrid Constraint on the variables of multiple tem-
poral assertions or transactions.

– A subset of S ⊂ d(vi) × ...d(vj) that constrains every
temporal assertion that necessarily overlaps the half-
open interval [s, e).

– A tighter Resource constraint L,U constraints the
available resource over the interval, but the resource
may still vary over this interval.

Simple constraints can degenerate to temporal or param-
eter constraints; complex constraints cannot. The relation of
simple constraints must enforce the assignment of the same
values of the variables v1...vi to all times in the half-open
interval [s, e), while the relation of the complex constraints
need not.

Examples of these values are shown in Figure 1.

Constraining Timelines (2): Temporal Constraints
In this section we describe the temporal constraints that can
be imposed on temporal assertions on the Timeline. For Mu-
tex Timelines the options are:

• Fixed: all start and end times of temporal assertions are
fixed, and all intervals are totally ordered.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

34

b) Simple Constraint {a2∈{a1,a2},b2=b2,2,4}

[3]

0 1 2 3 4 5 6

a1=a1,b1=b1 a2∈{a1,a2},b2=b2 a3=a2,b3=b1[0] [2] [4]
x

7

(a∈{a2,a3})c)

c) Complex Constraint {(a∈{a2,a3}),2,6}
d) Derived temporal assertion {a2=a2,b2=b2,3,4}

a) Value assignments
{a1=a1,b1=b1,0,2}, {a3=a2,b3=b1,4,6}

[2]
a)

e)

b)

0 1 2 3 4 5 6

x
7

1
2
3
4

0
[1,2]3

a)

g)

f)

e) Value assignments ([3],+3)
f) Simple constraint ([-1,-2], 4)

g) Complex constraint (U(2,7)=3)
h) Derived temporal assertion [4,7]=[1,2]

 a2=a2,b2=b2[2]
d)

UB with complex constraint

[4]

UB

h)

Figure 1: Types of values and value constraints on Time-
lines. The top of the figure shows a Mutex Timeline, with
a) two value assignments, b) a simple constraint, c) a com-
plex constraint, and d) one of the derived temporal asser-
tions. The bottom shows a Resource, with e) one value as-
signments, f) one simple constraint, g) a complex constraint
on the upper bound, and h) the derived temporal assertion
(resource usage). (The resource transaction notation in this
figure originated with (Laborie 2001).

• Total Order: flexible start and end times of temporal asser-
tions are allowed (with the implication that interval dura-
tions are flexible), but all intervals on the Timeline are
totally ordered.

• Partial Order: all start and end times of temporal asser-
tions are fixed, but intervals may overlap (be partially or-
dered) on the Timeline.

• Flexible Partial Order: durations of temporal assertions
are fixed, but arbitrary temporal constraints between
events are otherwise supported.

• STN: arbitrary temporal constraints may be imposed on
the events.

• DTN: disjunctive temporal networks.

For Resources:

• Fixed: all event times are fixed (but events may be simul-
taneous).

• Total Order: all event times are totally ordered but event
times may be flexible.

0 1 2 3 4 5 6
a) Fixed

b) Total Order

c) Flexible Partial Order

a1=a1 a2=a2 a3=a1[0] [2] [4]x

0 1 2 3 4 5 6

a1=a1 a2=a2[0,1] [2,3] [4,5]x

7

7

a3=a1

0 1 2 3 4 5 6

a1=a1 a3=a1[0]

[0,2]

[4]
x

7

[0,2] a2=a2

d) STN

0 1 2 3 4 5 6

a1=a1[0]

[0,2]
x

7

[0,2] a2=a2

a3=a1[4]

[2,3]

[0,0] [0,0]

Figure 2: Types of temporal commitments allowed on Mu-
tex Timelines. a) Fixed temporal commitments: every tem-
poral assertion’s start and end time are fixed. b) Total or-
der: All temporal assertions are totally ordered but start and
end times may be flexible. c) Flexible partial order: tempo-
ral assertion durations are fixed but may overlap. d) STN:
Arbitrary simple temporal constraints are allowed between
events on the temporal assertions.

• STN: arbitrary temporal constraints may be imposed on
the events.

• DTN: disjunctive temporal networks.
Note that these restrictions do not apply to constraints that

are maintained in the constraint network. Examples of these
constraints are shown in Figure 2.

States of Time
In this section we describe what values and other proper-
ties may hold at an instant of time for a Timeline. This de-
scription will help further define the Timeline services. As
distinguished from the previous section on the variable se-
mantics, this section describes the ’state’ of consistency and
completeness that a Timeline can be in.

At an instant in time t, a Timeline’s state or value can:
• Be unknown (i.e. no temporal assertion holds at t).
• Be possibly unknown, i.e. there are one or more temporal

assertions or transactions whose temporal extent is flexi-
ble. For example, in the case of a single temporal assertion
{x, vi = di...vj = dj , s, e} the value of x is known for
slb ≤ t ≤ eub and unknown for t ≤ sub or tlb ≤ t.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

35

• Be constrained to one of a subset of the values of the state
variable or range of values of the resource.

• Take on a single value (values of all variables or value of
resource is known).

• Be inconsistent due to incompatible assignments to single
values and / or constraints.

– A Mutex Timeline inconsistency consists of a set of
constraints on vi excluding all elements of d(vi).

– A Resource Timeline inconsistency can be due to ex-
ceeding upper resource bound or lower resource bound,
or to a set of constraints excluding all possible values
of a transaction, either explicitly or implicitly.

– A set of temporal constraints on events can exhibit an
inconsistency.

• Be potentially inconsistent due to a set of constraints or
assignments.

– A Mutex Timeline flaw of this sort consists of e.g. a
pair of value assertions in the same interval that have
not been totally ordered.

– A Resource Timeline flaw of this sort consists of a pair
of inconsistent value assertions on the same transaction
that have not been resolved or a set of resource con-
sumption and production actions that are unordered and
could lead to violation of the resource lower or upper
bound.

Inconsistencies and potential inconsistencies merit some
more discussion. Constraint propagation or restrictions on
Timeline services (i.e. disallowing insertion of constraints
causing inconsistency) would often eliminate these cases.
However, since it is possible that planners will allow incon-
sistencies to be either waived or permitted, Timelines may be
forced to maintain these possible inconsistent cases since no
propagation engine may be present to eliminate them. Also
note parameter and hybrid constraints between Timelines
leading to constraint violations may not be considered, de-
pending on the specific implementation of constraint prop-
agation with the broader Constraint Network; this point is
discussed more below. Finally, there is the question of what
derived temporal assertions should be in the presence of in-
consistencies. When resource bounds are exceeded this is
less of a problem, but what about mutually inconsistent tem-
poral assertions on a Mutex Timeline? One solution is to
generate a temporal assertion with a symbol indicating no
value exists for the relevant variables, but other solutions are
possible.

We choose this time to discuss facts vs goals for Time-
lines. Facts may be further divided into facts asserted in the
initial state, and commitments made during planning. (It is
unfortunate that goals are also specified in the initial state.)
In some sense, an inconsistency arising due to factual con-
flicts is a more profound problem than one arising because of
facts and goals. For example, violating a goal of 50% battery
state of charge is less problematic than violating the 100%
battery state of charge limit (which may lead to explosions).
Similarly, a plan in which the camera is commanded on and
off at the same time is a more problematic one than a plan

in which there are no constraint violations, but the goal of
sending a camera image to Earth has not been achieved. In
order to determine what manner of inconsistency arises, we
must know whether a temporal assertion, transaction or con-
straint arises because of a fact, commitment, or goal. There
is no specific formalism associated with the source of the
primitives in our exposition. It is also an interesting design
question whether this information should be stored in Time-
lines, or whether it could be stored elsewhere, e.g. in the
Rules Engine.

Description of Services
The basic services for Timelines are as follows:

• Add or Remove temporal assertions or transactions

• Add or Remove {simple, complex, temporal} constraint

• Propagate constraints

• Get inconsistencies

• Get (derived) temporal assertions

These basic services can be extended by composing the
above primitive services into more sophisticated services.
Some examples:

• Is time consistent (add temporal assertion at time t; get in-
consistency; if there are none return true; else return false)

• Get consistent start times (for all times t if is time consis-
tent is true add t to list; return list)

• Move temporal assertion (remove assertion, add assertion
at new time t)

• Add at legal start time (get consistent start times, select
one, add temporal assertion)

• Fix violations

Extension of Services to Multiple Timelines
Some application domains include multiple similar or iden-
tical subsystems; a common example is multiple (almost)
identical cameras on a single spacecraft. Satisfying a goal
of taking an image may be done by choosing one camera. If
each camera is modeled with a different Timeline, this can
be accomplished by using two state variables {x, v1...vi}
{y, wi...wj} with the same variable types (d(vi) = d(wi)),
and a ’generic’ temporal assertion {w, v1...vi, s, e} which
could be inserted on either state variables; if w is treated as
yet another variable, then d(w) = x, y.

In order to naturally represent choosing which Timeline
a temporal assertion or transaction is assigned to, we may
rewrite Definition 1 and redefine state variables as follows:

Definition 8 Let V be the set of variables. Let U ⊂ V be
a set of finite domain variables. Let t be a variable repre-
senting time. A state variable is a function u1 × ...uj : t →
vi × ...vj .

This makes explicit the choice a planner can make for
satisfying the goal, and in fact is more consistent with the
definition of state variables in (Ghallab, Nau, and Traverso
2004). The finite domain variables U represent objects such

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

36

as rovers, cameras, locations, and other primitives that define
the state variables. This perspective is very useful when con-
sidering the integration of planning with classical machine
scheduling, where tasks could be assigned to multiple ma-
chines. Disjunctive temporal constraints (Tsamardinos and
Pollack 2003) over these variables can now be added and
propagated to let planners reason about the options. It also
provides a natural way to structure the set of state variables
at modeling time. If this feature is not required for the do-
main variables can either be bound to single values in the
initial problem description, or no explicit variables used at
all.

The services described above also extend naturally to ser-
vices that provide a ’global’ view of the plan across multiple
Timelines. The generic notion of the chronicle introduced in
(Ghallab, Nau, and Traverso 2004) can be made more fine-
grained by identifying subsets of Timelines (perhaps based
on the generic variables defining Timelines used in the above
definition) for different purposes.

TImeline Design Criteria
Should there be a single Timeline implementation? On
the face of it, differentiating between Mutex and Resource
Timelines appears to be a good idea, especially since we
have limited Resource Timelines to a single parameter to be
tracked. Whether refinement should proceed further based
on the value constraints coupled with the temporal con-
straints that may be inserted onto the Timeline is a more
complex question.

How many Timeline specializations are there? There are
two types of Timeline; Mutex and Resource. For each of
these, we have
• 3 choices for value constraints (values only, simple, com-

plex.)
• 6 choices for temporal constraints for Mutex Timelines, 4

for Resource Timelines.
According to this view, there are eighteen possible spe-

cializations for Mutex Timelines and twelve for Resources.
Consider first the case of Mutex Timelines. If we con-

sider only the simplest Mutex Timeline implementation, that
is, that only fully grounded temporal assertions may be in-
serted, then it is obvious that a Timeline implementation can
be very efficiently implemented, with most services requir-
ing at most O(n) space or time. Essentially, all variables
and events must be bound, and if arbitrary constraints on
these variables are to be posted and / or propagated at all,
then this must be handled by the Constraint Network. How-
ever, for many applications, such a limited Timeline may
be sufficient. By contrast, assume that arbitrary temporal
constraints are maintained in the Timeline but that all other
variables must be fully grounded. Now propagation of con-
straints costs as much as O(n2) space and time (Dechter,
Meiri, and Pearl 1991). If we now consider complex value
constraints but grounded event times, we see that this can
lead to O(n2) time to determine the set of derived temporal
assertions and that n complex value constraints can lead to
O(n2) derived temporal assertions. (This type of constraint
was implemented for EUROPA (Frank and Jónsson 2003)

but later discarded due to its complexity and lack of com-
mon use cases; it is provided here as an example of what is
possible.) The combination of these could be quite cumber-
some, both from a performance point of view as well as a
complexity of implementation point of view.

Similarly, consider Resource Timelines. Again, the ex-
tremes demonstrate the potential value of specialized imple-
mentations. Fully grounded assertions permit efficient cal-
culation (O(n) time and space) for all services. Relaxation
to arbitrary temporal constraints means that propagation for
piecewise constant resources now requires O(n2) time (La-
borie 2001) or O(n3) (Muscettola 2002). Interestingly, re-
laxation to simple value constraints may not increase the
complexity much, since an upper bound and lower bound
on resource consumption can be produced by assuming each
resource impact is maximal to generate one and minimal to
generate the other. Similarly, changing the resource bounds
may only incur O(n) penalty.

There is a complimentary way of thinking about restrict-
ing the types of constraints that may be added to a Timeline;
restricting the type of constraint propagation permitted over
the constraints on the Timeline. In some cases, restricting the
class of constraints that can be added directly corresponds
to a limited form of constraint propagation. In other cases,
notably for resource propagation, the situation is more nu-
anced. Consistency enforcement can also be performed only
on those constraints on a Timeline, ignoring parameter con-
straints, constraints on other Timelines, and constraints that
span Timelines. Certainly the many types of consistency that
can be enforced greatly increase the design space of algo-
rithms.

Finally, Timelines could be specialized by providing a
subset of the services described above. However, since part
of the benefit of Timelines is to provide services that many
planners can use, this may be a poor decision to make.
Rather, all of the basic Timeline services should all be pro-
vided so that they can be composed as required for a planner.

Conclusions and Future Work
A Timeline is a component that maintains the history of val-
ues of a well-defined subset of a particular planning prob-
lem (a single state variable). Formally, the state variable is
defined by a set of variables. The timeline computes derived
temporal assertions, which provides a concise description of
the interval of time over which the state of the Timeline is
known, and the degree to which it is known. The elements
that provide this knowledge are temporal assertions or trans-
actions and constraints. Specialized Timelines are defined
by limitations on the form of the temporal assertion and the
types of constraints that can be added to the Timeline. These
limitations may lead to efficient implementation of basic ser-
vices that Timelines provide to other planner components.

There are some intricacies involved in fully understanding
the semantics of the temporal assertions (both simple and
complex) and resource constraints. A thorough formulation
of the underlying dynamic constraint network is provided
in (Frank and Jónsson 2003), but this treatment omits re-
sources, and could be revisited in light of this formalization
of Timelines.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

37

Specializations for decreasing computational complexity
must be described in more detail to both flesh out the op-
tions, as well as provide more insight into whether special-
ized Timeline implementations are valuable or necessary. In
particular, this paper gives short shrift to planning heuristics
as users of Timeline services.

Resources with linear production and consumption rates
(Frank and Morris 2007) are omitted from this paper for sim-
plicity. Formalization of linear resources includes intervals
over which a resource is consumed or produced at a lin-
ear rate; the complexity of reasoning about linear resource
state with temporal constraints is probably worse than that
of piecewise constant resources with temporal constraints.
A more complete treatment of them requires distinguishing
between different resource Timeline types and a further in-
vestigation into the computational complexity questions sur-
rounding Timeline services. In addition, it is often conve-
nient to employ a special transaction to set the value of a re-
source (this is a feature of ASPEN (Fukunaga et al. 1997).)
Formalizing this properly requires some extra machinery.

This view of Timelines may not extend to planning un-
der uncertainty. Simple extensions like uncontrollable time-
points and uncontrollable resource usage may not require
significant modifications to the set of definitions and ser-
vices used, but supporting explicit conditional branching on
the temporal assertion probably will.

The key design perspective on Timeline types taken in
this paper is to map syntactic restrictions on constraints to
the computational complexity of the services. However, a
different perspective is to focus on the types of disjunction
supported by different Timeline types. An ontology of Time-
lines of this sort would offer a different, and complementary,
view of the differences between Timeline types.

References
Aghevli, A.; Bachmann, A.; Bresina, J.; Greene, J.; Kanef-
ski, B.; Kurien, J.; McCurdy, M.; Morris, P. H.; Pyrzak, G.;
Ratterman, C.; Vera, A.; and Wragg, S. 2006. Planning
Applications for Three Mars Missions with Ensemble. In
Proceedings of the International Workshop on Planning and
Scheduling in Space.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence, 1636–
1642.
Bresina, J.; Jonsson, A.; Morris, P.; and Rajan, K. 2005.
Activity planning for the Mars Exploration Rovers. In Pro-
ceedings of the 15th International Conference on Automated
Planning and Scheduling, 40 – 49.
Chien, S.; Johnston, M.; Frank, J.; Giuliano, M.; Kavelaars,
A.; Lenzen, C.; and Policella, N. 2012. A Generalized Time-
line Representation, Services, and Interface for Automating
Space Mission Operations. In Proceedings of Confernce on
Space Operations.
Clement, B.; Frank, J.; Chachere, J.; Smith, T.; and Swan-
son, K. 2012. The Challenge of Configuring Model Based
Space Mission Planners. In Proceedings of the Workshop on
Knowledge Engineering for Planning and Scheduling.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–94.
Dechter, R. 2003. Constraint Processing. Morgan Kauff-
mann.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
Proceedings of the 5th European Conference on Planning,
135–147.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61 – 124.
Frank, J., and Jónsson, A. 2003. Constraint-Based Attribute
and Interval planning. Journal of Constraints Special Issue
on Constraints and Planning.
Frank, J., and Morris, P. 2007. Bounding the resource avail-
ability of activities with linear resource impact. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences 18(2):231–271.
Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Toward an application framework for automated planning
and scheduling. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence.
Ghallab, M., and Laurelle, H. 1994. Representation and
Control in IxTeT, a Temporal Planner. In Proceedings of the
4th International Conference on AI Planning and Schedul-
ing, 61–677.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kauffman.
Jonsson, P., and Backstrom, C. 1998. State variable planning
under structural assumptions: Algorithms and complexity.
Artificial Intelligence 100(1-2):125–176.
Laborie, P. 2001. Algorithms for propagating resource con-
straints in ai planning a nd scheduling: Existing approaches
and new results. In Proceedings of the 6th European Con-
ference on Planning.
Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. In Proceedings of the 8th In-
ternational Conference on the Principles and Practices of
Constraint Programming.
Smith, D., and Weld, D. 1999. Temporal planning with mu-
tual exclusion reasoning. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence, 326–337.
Tsamardinos, I., and Pollack, M. 2003. Efficient so- lution
techniques for disjunctive temporal reasoning problems. Ar-
tificial Intelligence 151(1-2):43–90.
Verfaillie, G., and Pralet, C. 2008. How to model planning
and scheduling problems using timelines. In Proceedings
of the International Conference on Automated Planning and
Scheduling.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

38

A Service Oriented approach for the Interoperability of
Space Mission Planning Systems

Simone Fratini, Nicola Policella, Alessandro Donati
European Space Agency, ESA/ESOC

Darmstadt, Germany
name.lastname@esa.int

Abstract

The ambitious long term goal of evolving planning sys-
tems in use at the European Space Agency for Mission
Operations is generating a debate on how to define a set
of standardized interfaces to allow rapid and efficient
construction of co-operating space systems. The current
scenario sees a set of software systems that perform, at
various levels, planning and scheduling tasks, with little
or no standardization of interfaces and services offered,
with the result that to use these systems you have to
know in detail the system and how to use it.
The introduction of AI technologies can simplify the
problem on one side, because the use of the model-
based approach moves the complexity from the soft-
ware to the model, but on the other side is turning a
purely software engineering problem (the interoperabil-
ity of the systems) into a Knowledge Engineering prob-
lem: how to define and standardize the objects manipu-
lated and the services offered by these model-based sys-
tems. This paper presents a proposal for a definition of
classes and levels of services to be used as basis for the
implementation of a Service Oriented Architecture to
support interoperability between Planning and Schedul-
ing systems in space domains.

Introduction
The Spacecraft Monitoring & Control (SM&C) Working
Group of the Consultative Committee for Space Data Sys-
tems (CCSDS), which sees the active participation of 10
space agencies, has been working since 2003 on the defi-
nition of a service oriented architecture for space mission
operations. The goal of the Working Group is to define a set
of standardized, interoperable mission operation services,
which allow rapid and efficient construction of co-operating
space systems. It has been the common shared view of the
community that planning problems in space domain can be
very diverse. It is therefore not an easy task to define generic,
reusable planning services. The size of the problem, the lo-
cation of the planning logic (on the ground or on board the
spacecraft or even a hybrid solution), the decision-making
authority (AI decision making vs. human based conflict res-
olution or a so-called mixed initiative hybrid solution) and
the distribution of the planning knowledge (centralized vs.
decentralized planning) are factors which contribute to the

diversification of space mission operation planning prob-
lems. As a result the community has recommended that stan-
dardization work shall initially focus on the boundaries of a
“black-box” planning system for space missions.

Since this black box should provide services very general
but at the same time detailed enough for being practically
usable, the main issue to tackle is to find the right balance
between 1) the level of abstraction applied to the black box
and the assumptions which can be made on it and 2) the level
of standardization required for specifying generic boundary
planning services.

The less is known about the implementation of the black
box, the more difficult to specify a planning request and
to interpret the resulting feedback (and the generated plan).
This is due to the fact that the information model adopted by
each planning system is strongly dependent on the adopted
planning technique. For instance, the information model of
a constraint-based scheduler compared to a PDDL (Fox and
Long 2003) or HTN (Hierarchical Task Network) planner
can be very different, requiring different sets of information.
Also the overall business process1 plays an important role
in the content of the exchanged information at the bound-
aries of the planning system, hence in the specification of
the boundary planning services. Unless rigid assumptions
are made, which must then be met by all compliant systems,
it is difficult to agree on an abstract information model for
planning requests and resulting feedback from the planning
system and the eventual plan.

The difficult task is to find the right balance between a
purely syntactical standard (which would require an agree-
ment among the different software system designers to entail
the interoperability), and a more generic interface based on
a semantic description of the data and processes (which con-
versely would entail very powerful, automatic interoperabil-
ity among the systems but would require a wider agreement
that seems impossible to reach at the current stage).

By focusing only on standardizing the syntax, all the rel-
evant semantics for the planning problem must be already
defined within the black box and has to be considered part
of the system. The boundary services would in that case con-

1That is, the workflow of which the planning process is a part,
e.g. which are the involved planning cycles and how is the conflict
resolution process, etc.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

39

tain only services to specify minimal syntactic information,
by referring to models and processes already pre-defined
within the black box. This approach relies however on agree-
ing on a set of common assumptions about availability and
unambiguity of the relevant planning information for each
possible request that can be posted to the planning system. In
practice these assumptions prove often to be too optimistic
so that a minimum set of semantics in the form of constraints
and context parameters must be provided along with the ref-
erence to the pre-defined activity.

Conversely, by focusing on standardizing the semantics,
the interfaces (or API) of the black box shall allow the spec-
ification of all the information required by the planning sys-
tem for carrying out the task of planning (i.e. the model).
This would however either require exact knowledge of the
adopted planning technique or require agreeing on an stan-
dardized abstract planning meta-model. In order to spec-
ify generic boundary planning services, obviously the latter
should be the case.

The pros and cons of the two extremes are at hand, while
the boundary planning services of the first approach would
be much easier to specify from an standardization point
of view (much less to agree on, and only at syntactical
level since the information model in question would be very
small), it relies on a large number of assumptions which can
impact significantly the implementation of the black boxes,
hence again a source of debate at standardization level. Also
the usability of the resulting generic services in real world
complex planning solutions can be questionable and should
be demonstrated. The second approach would require much
more effort at standardization level as many agreement must
be reached to come up with a generic abstract planning in-
formation model which is independent from the actually
adopted planning technique. A number of initiatives and
languages in AI planning (such the PDDL language for in-
stance) are already attempting on specifying such a generic
and abstract planning data model, but the experiences of ini-
tiatives in this direction are not very promising, as special-
ized dialects and extensions have proved to be necessary to
address specific needs of certain planning techniques (e.g.
expression of temporal and generic constraints).

A good middle point can be an agreement on the syntax
and semantics of a limited set of services provided by the
system to manipulate the information. From our viewpoint
this can be obtained looking at some previous works in the
area of advanced AI planning solutions developed both at
ESA and at other space agencies. Following sections will
elaborate on how that experience can contribute to identify
and define such a set of services.

Services or Languages?
Main objectives of the standardization of the Planning Ser-
vices are to allow rapid prototyping design and to re-use
planning modules between different missions (to shorten
software development time and cost, as well as the training
of mission operation engineers).

In this regard, a concept that has demonstrated to be very
useful is the AI model-based approach. This allows reusing
of software modules across different domains (missions in

our case) because of the great flexibility of the symbolic rep-
resentation of goals, constraints, logic, parameters to be op-
timized, and so on. As the system is not designed for achiev-
ing goals in a single domain but for manipulating symbolic
entities, the software deployment and test is substantially in-
dependent from the specific mission. However, it is worth
remarking how a great effort might be necessary to both un-
derstand the domains and the problems, capturing all the re-
quirements, and to create a model for these domains when
proper symbolic constructs are not available for modeling.

The standardization of the model based approach would
require an agreement on (at least) a common language to
specify models, problems, constraints and so on. And this is
quite far from the reality right now, both for practical and po-
litical reasons. From a practical point of view, there is not yet
an agreement in the community on the terminology (activ-
ities, tasks, processes and procedures for instance are often
used for similar concepts, as well as constraints, rules; even
what planning and scheduling is, is often source of debate).
Moreover current languages do not allow to define and man-
age the workflow of which the planning process is part. In
fact in practical usage, it is not sufficient to solve the plan-
ning problem, a series of processes need to be performed and
constraints to be satisfied upstream and downstream of the
main solving process. Also from a political viewpoint the
problem is not trivial. The commitment on a specific lan-
guage, for instance, would constitute a strong bias towards
a specific planning technology, something that should be
avoided to have a widely accepted standard. Last, there is the
issue at the infrastructure software design level of introduc-
ing concepts like Model Driven Engineering (Schmidt 2006)
in very conservative environments, where most of the soft-
ware has been carefully written and verified and even Object
Oriented languages are often seen as unnecessary complica-
tions and a potential source of ambiguity!

Hence, to have a real chance of getting to a general agree-
ment on how planning information is specified and manipu-
lated (pre-requisite to discuss a standard), a good starting
point would be to focus on the greatest common denom-
inator among all the different types of information in use
in mission planning systems, i.e., time tagged data, and de-
sign a set of services aimed at managing this information to
achieve some objectives.

Among the current proposals from the AI planning com-
munity, the closest one to the problem of managing time
tagged data can be probably considered the timeline-based
paradigm (Frank and Jonsson 2003; Fratini, Pecora, and
Cesta 2008), where the planning problem is conceived as a
problem of assigning values to sequences of ordered time in-
tervals (the timelines). This approach to planning has proved
to be particularly suitable for space applications, mainly be-
cause it is very close to the way problems and constraints are
naturally represented in space applications.

There are already timeline based software and platforms
in use at NASA, ESA and other space agencies (Chien et
al. 2012). These platforms unfortunately do not use stan-
dardized languages or interfaces, while follow a conceptu-
ally similar approach. Hence the similarities at the level of
the services they provide can be analyzed to draw a possible

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

40

Figure 1: SOA for Mission Planning

starting point for a discussion on a standardization based on
services provided instead of languages in use.

Classes of Planning Services
To design the Service Oriented Architecture (SOA) we de-
fine: (1) Classes of services, (2) Levels of service for each
class and (3) Dependencies among service levels. The goal
is to entail interoperability based on levels of service pro-
vided and dependencies among requested levels of service.
A possible break down to classify services could be: (1) ser-
vices to represent the basic entities that constitute a plan-
ning problem and its solution; (2) services to interact with
the system, to post problem, control the solving process and
provide feedback to the system; (3) services to use and man-
age problems and solutions. Figure 1 sketches the proposed
architecture, constituted by a planning and scheduling en-
gine, an adaptation layer and an API to access the services.

The API is very simple: the user asks for objects to de-
scribe the problem, posts a request to the system, retrieves
objects that constitute the solution to the posted problem and
asks for services for the solution objects.

In this architecture, the inner P&S engine definitely relies
on its own languages for defining constraints, rules and prob-
lems, data formats for representing plans and schedules, and
specific APIs to access the platform services. The classes of
services identified above are mapped into internal services
by means of the adaptation layer, reducing the complexity
of the standardization process that is focused on external ser-
vices and leave to the expert of a specific P&S technology
the burden of mapping the standard services (or a sub set of
the services, because in general a specific system is foreseen
to be able to provide only a sub set of services) into tech-
nology specific languages and APIs. Hence the point of the
standardization is not the specific syntax of a given language
or a specific API for low level services, but what we need is
an agreement on general and simple classes of high level
services (see the conceptual diagram in Figure 2). In the fol-
lowing, we try to identify a possible set of such services, but
the problem is still quite far away to be exhaustively ana-
lyzed

Modeling Services
The services to manage the modeling entities that constitute
a planning problem and its solution should entail the capa-
bility of representing and use: basic modeling entities, prob-
lems, domain theories and solutions. Basic modeling enti-

ties constitutes the object used to assemble problems and
to represent solutions. Among the basic modeling entities
we classify data, punctual events (data defined in time in-
stants), interval activities (data defined over time intervals),
timelines, temporal and data constraints and objective func-
tions. In terms of timeline representation, the classification
is based on 5 parameters: type of the timeline (Symbolic or
Numeric), temporal model (Fix, Bounded or Flexible2), data
type (Ground, Parameterized, Multi-Valued, Generic Func-
tions3), type of transition constraint (markovian or global)
and type of specification (complete or partial). The ser-
vices for defining domain theories allow the definition of
classical concepts in mission planning: state variable and
resource constraints, classical timeline-based synchroniza-
tion or compatibility constructs among planning objects (see
(Muscettola 1994; Fratini, Pecora, and Cesta 2008) for ex-
amples of formal definitions) and rules/procedures on plan-
ning objects (events, activities and timelines). Procedures
are HTN decompositions of planning objects, while rules are
imperative specification of if-then-else constructs and condi-
tional activation of basic constraints.

Problems are represented as collections of basic model-
ing objects, domain theory objects and, possibly, objective
function objects. Solutions are represented as collections of
modeling entities. An interesting feature of this representa-
tion is that both problems and solutions are modeled as col-
lection of the same entities. This allow the use of solutions of
a planning process as problems for another solving process.

Problem Solving and Management Services
The services to interact with the system should generi-
cally allow the ability of managing solving and optimiza-
tion processes. In practice this can be reduced to the capa-
bility of stating and propagating constraints, querying the
status of the timelines, detecting and reporting conflicts in
the above constraints, scheduling, generating and optimizing
timelines. Regarding the definition of service levels, we clas-
sify problem solving services into: timeline extraction and
querying (i.e. no domain theory is specified), scheduling,
planning and scheduling (involve activity ordering and gen-
eration) and optimization. Regarding the services to man-
age the type of problem solving performed, we distinguish
among: solving for single solution (time fix, ground time-
lines), solving for computing the kernel (the solution re-
ported is a sub set of all the solutions of the problem) and
solving for the envelope (compute boundaries of the solu-
tion set).

A further set of services allows to control the boundaries
and authorities of the solving process when different systems
are interacting with each others. In mission planning, differ-
ent users have different levels oh authority to interact with

2For bounded timelines only distance constraints between con-
secutive transition points are allowed, for flexible timelines dis-
tance constraints among any pair of transition points are allowed.

3Examples of values that can be taken by the different types
of timelines between two transition points are: k (constant), f(?x)
(functions of parameters), f(?x)∨g(?y) (disjunctions), f(t) (value
not constant in time).

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

41

Figure 2: Conceptual Model of Services for Mission Planning

the systems and the solutions of the problems. Some users
for instance can only select some solutions in the envelope
or kernel (the ones that optimize some features for instance)
some others can have the authority for relaxing constraints,
disrupt and recalculate the solution. For this reason we clas-
sify the solving process boundaries into: selection (can in-
teract with the solution only in within the pre-calculated en-
velope), refinement (can add constraints and restrict the so-
lution set), re-scheduling (can change the activity schedule
but cannot insert or delete activities) and re-planning.

Finally, problems and solutions management services in-
cludes validation and verification of properties on problems,
solutions and domain theories; evaluation of solutions (qual-
ity, robustness, flexibility and so on); execution of timelines
(monitoring the process); storing and visualization of prob-
lems and solutions (to entail a mixed-initiative approach).

Use Cases

The different classes and levels of service sketched aim at
entailing system interoperability by means of a definition of
the requirements for modeling and problem solving that are
independent from the actual engine that will process the in-
put and provide the solution. Let us think to three practical
problems very common in space activities: (1) scheduling a
set of tasks against a given resource to check the feasibil-
ity of a pre-calculated schedule against a decreased level of
available resource, (2) planning to define a spacecraft dump
plan and (3) managing P&S on-board to entail autonomy
for remote operations. The three problems induce increas-
ing levels of solving capabilities, as well as different needs
both at modeling level and in terms of the solution expected.

An RCPSP-MAX Scheduling problem would for instance
require: at least activities and quantitative temporal con-
straints as modeling objects (simple precedence constraints
would not be enough); a set of time tagged data as solu-

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

42

tion objects would be enough to check the feasibility of the
schedule; would require scheduling capabilities (while plan-
ning is not needed). Hence the user, facing the service ori-
ented architecture, would look for a service provider able to
manage these entities, with no need of knowing which en-
gine will actually solve the problem.

Planning for dumping with ground station visibilities
would require (at minimum): events, activities and quanti-
tative temporal constraints as modeling objects, timelines
as solution objects, planning capabilities with state vari-
able and renewable resources (to manage memory alloca-
tions). Planning for on board autonomy would require, be-
sides planning and scheduling, at least re-planning and re-
scheduling capabilities as well as dynamic insertion of activ-
ities into the timelines (which in turn requires time-flexible
timelines) to entail timeline execution services.

Conclusions
This paper presents preliminary results of an ongoing activ-
ity aimed at defining a set of standardized services to al-
low rapid and efficient construction of co-operating plan-
ning and scheduling systems at the European Space Agency.
The introduction of AI technologies can simplify the prob-
lem on one side, because the use of the model-based ap-
proach, but on the other side is turning a purely software en-
gineering problem (the interoperability of the systems) into
a Knowledge Engineering problem, i.e., how to identify a
set of standard objects manipulated and services offered by
these model-based planning systems.

The classes of services sketched in this paper, although
far from being exhaustive of all the current and future needs
of mission planning systems, aim at covering the whole
life-cycle of the planning and scheduling information: from
modeling to post-solving processes. The assumption behind
this attempt is that the know how in knowledge engineering
in AI P&S can be of a great help in the process of abstracting
services for fielded mission planning systems.

This attempt is certainly meant as a challenge for fu-
ture mission operation frameworks design. Nevertheless the
challenge is not impossible, since most of the concepts and
services presented here have already been implemented,
tested, and successfully used, and the state of the art of AI
planning demonstrates that is feasible to take up this chal-
lenge.

References
Chien, S.; Johnston, M., a. F. J.; Giuliano, M.; Kavelaars, A.;
Lenzen, C.; and Policella, N. 2012. A Generalized Time-
line Representation, Services, and Interface for Automat-
ing Space Mission Operations. In Proceedings of SpaceOps
2012.
Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Frank, J., and Jonsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–364.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231–271.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Schmidt, D. C. 2006. Model-driven engineering.
COMPUTER-IEEE COMPUTER SOCIETY- 39(2):25.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

43

Policies for Maintaining the Plan Library in a Case-based Planner

Alfonso E. Gerevini† and Anna Roubı́čková‡ and Alessandro Saetti† and Ivan Serina†

†Dept. of Information Engineering, University of Brescia, Brescia, Italy
‡Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

{gerevini, saetti, serina}@ing.unibs.it, anna.roubickova@stud-inf.unibz.it

Introduction
It is well known that AI planning is a computationally very
hard problem (Bylander 1991; Ghallab, Nau, and Traverso
2004). In order to address it, over the last two decades
several syntactical and structural restrictions that guaran-
tee better computational properties have been identified
(Bäckström et al. 2012; Bäckström and Nebel 1996), and
various algorithms and heuristics have been developed (e.g.
(Richter and Westphal 2010)). Another complementary ap-
proach, that usually gives better computational performance,
attempts to build planning systems that can exploit addi-
tional knowledge not provided in the classical planning do-
main model. This knowledge is encoded as, e.g., domain-
dependent heuristics, hierarchical task networks and tempo-
ral logic formulae controlling the search, or it can be auto-
matically derived from the experiences of the planning sys-
tem in different forms.

Case-based planning (Gerevini, Saetti, and Serina 2012;
Liberatore 2005; Spalazzi 2001) follows this second ap-
proach and concerns techniques that improve the overall
performance of the planning system by reusing its previ-
ous experiences (or “cases”), provided that the system fre-
quently encounters problems similar to those already solved
and that similar problems have similar solutions. If these as-
sumptions are fulfilled, a well-designed case-based planner
gradually creates a plan library that allows more problems to
be solved (or higher quality solutions to be generated) com-
pared to using a classical domain-independent planner.

The plan library is a central component of a case-based
planning system, which needs a policy to maintain the qual-
ity of the library as high as possible in order to be efficient.
Even though this problem has been studied in the context of
case-based reasoning (Aamodt and Plaza 1994; Smyth 1998;
Smyth and McKenna 1999), comparable work in the plan-
ning context is still missing. In this paper, we formalize the
problem of maintaining the plan library, and propose differ-
ent policies for maintaining it. Such policies are experimen-
tally evaluated in (Gerevini, Saetti, and Serina 2013).

Case Base Maintenance
Case-based planning is a type of case-based reasoning, ex-
ploiting the use of different forms of planning experiences
concerning problems previously solved and organized in
cases forming a case base or plan library. A library needs to

represent as many various experiences the system has made
as possible, while remaining of manageable size. The inter-
play between these two parameters has a significant impact
on the observed performance of the case-based planner, be-
cause a too large case base requires a vast amount of time to
be queried, whereas even well designed retrieval algorithm
fails to provide a suitable case to the reuse procedure if such
a case is not present in the case base.

There are two different kinds of maintenance policies —
an additive policy, which considers inserting a new case into
the case base when a new solution is found/provided, and a
removal policy, which identifies cases that can be removed
without decreasing the quality of the case base too much.
Hence, we formalize the general maintenance problem as a
two-decision problem.
Definition 1 (Case Base Maintenance Problem).
• Given a case base L = {ci | ci = 〈Πi, πi〉, i ∈
{1, . . . , n}}, decide for each i ∈ {1, . . . , n} whether the
case ci should be removed from L.

• Given a new case c = 〈Π, π〉, c 6∈ L , decide whether c
should be added to L.

In our work, we focus on the removal maintenance — in the
absence of a policy to decide which elements to add, we can
simply add every new case until the case base reaches a crit-
ical size, and then employ the removal maintenance policy
to obtain a small case base of good coverage.

We start by considering when a case can address another
problem, or rather how well it can do so. We interpret the
notion of “addressability” using a distance between the so-
lutions of the stored and new problem. Let ℘ denote the
space of plans for a given planning domain. Then, a dis-
tance function da : (℘ × ℘) → [0, 1] measures the dis-
tance of any two plans πi, πj ∈ ℘, where the greater dis-
tance indicates greater effort needed during the adaptation
phase. We approximate da(πi, πj) by the number of ac-
tions that are in πi and not in πj plus the number of ac-
tions that are in πj and not in πi, normalized over the total
number of actions in πi and πj (Srivastava et al. 2007), i.e.,
da(πi, πj) =

|πi−πj |+|πj−πi|
|πi|+|πj | .

Definition 2. A case ci = 〈Πi, πi〉 can be useful to solve
problem Π, that is, addresses(ci,Π), if there exists a solution
plan π for Π that is close to πi, that is, da(πi, π) < δ for
some finite δ ∈ R.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

44

Note that the definition of addresses(ci,Π) heavily re-
lies on the distance between the solutions, and completely
disregards the relation of the relative problems. However,
also the structural properties of the problems play a consid-
erable role, as the case retrieval step is based on the plan-
ning problem descriptions. Therefore, we also use a dis-
tance function dr that is intended to reflect the similarity
of the problems. Let P denote the space of problems in
a given planning domain, Π ∈ P be a new problem, and
Π′ ∈ P be a problem previously solved. We define a prob-
lem distance function dr : (P × P) → [0, 1] as follows:
dr(Π

′,Π) = 1 − |I
′∩I|+|G′∩G|
|I′|+|G| , where I and I ′ (G and G′)

are the initial states (sets of goals) of Π and Π′, respectively
(Serina 2010).

The smaller distance dr between two problems is, the
more similar they are; consequently, by assuming that the
world is regular (i.e., similar problems have similar solu-
tions), it is useful to retrieve from the case base the case for
a problem that is mostly similar to the problem to solve. We
can say that dr guides the retrieval phase while da estimates
the plan adaptation effort. The maintenance policy should
consider both distances, in order not to remove important
cases, but also to support the retrieval process. Therefore,
we combine the two functions, obtaining distance function
d : ((P × ℘) × (P × ℘)) → [0, 1] measuring distance be-
tween cases. The combination of dr and da allows us to as-
sign different importance to the similarity of problems and
their solutions, depending on the application requirements.

Maintenance Policies
If the world is regular and the problems recur sufficiently
often, the system is likely to produce solutions similar to the
previous ones by reusing those and, as the problems are also
assumed to be similar, creating a case base with cases that
are similar to each other. Therefore, it can be expected that
the cases in the case base create groups of elements, similar
to each other and that could be reduced to smaller groups
without significant loss of information.

To design a procedure for the maintenance, we start by
deciding which parameters of the case base define its qual-
ity, and so which criteria should guide the maintenance pol-
icy in determining which experiences to keep and which to
discard. Obviously, an important criterion is the variety of
problems the case base can address, which is also referred
to as the case base competence (Smyth 1998), and its inter-
play with the size, or cardinality, of the case base. In our
approach, instead of maximizing competence as an absolute
property of a case base, the maintenance is guided by min-
imizing the amount of knowledge that is lost in the mainte-
nance process, where removing a case from the library im-
plies losing the corresponding knowledge, unless the same
information is contained in some other case. The following
notions of case covering and case base coverage are defined
to capture this concept:

Definition 3. Given a case base L and a case distance
threshold δ ∈ R, we say that a case ci ∈ L covers a case
cj ∈ L, that is, covers(ci, cj), if d(ci, cj) ≤ δ.
Let L,L′ denote two case bases and let C denote the set

of all cases in L that are covered by the cases in L′, i.e.,
C = {ci ∈ L | ∃c′i ∈ L′, covers(c′i, ci)}. The coverage of
L′ over L, denoted coverage(L′,L), is defined as |C||L| .

We can now formally define the outcome of a procedure ad-
dressing the plan library maintenance problem — it should
be a case base L′ that is smaller than the original case base
L, but that contains very similar experiences. Under such
conditions, we say that L′ reduces L:

Definition 4. Case base L′ reduces case base L, de-
noted reduces(L′,L), if and only if L′ ⊆ L and
coverage(L′,L) = 1.

In the previous definition, we may set additional require-
ments on L′ to find a solution that is optimal in some ways.
For example, instead of minimizing the size of L′, we may
try to maximize the quality of the coverage. The structure of
the policy remains the same— it constructs L′ by selecting
the cases that satisfy a certain condition optimizing L′. Such
a condition corresponds to a specific criterion the mainte-
nance policy attempts to optimize.

We developed four policies for maintaining a case base:
the random policy, a policy guided by the distance between
cases, and two policies guided by the coverage between the
cases in the plan library.

Random Policy. This policy reduces the case base by ran-
domly removing cases (Markovitch, Scott, and Porter 1993),
which is fast and efficient (Smyth 1998). However, the cov-
erage of the reduced case base L′ over the original case base
L cannot be guaranteed.

Distance-Guided Policy. The distance-guided policy
identifies the cases to remove by exploiting the notion of
average minimum distance δµ in the case base. Given a case
ci ∈ L, the minimum distance case c∗i of ci is a case in
L such that d(ci, c

∗
i) < d(ci, cj), ∀cj ∈ L \ c∗i . The dis-

tance guided policy keeps a case ci in the case base if and
only if d(ci, c

∗
i) ≥ δµ, where δµ is defined as follows:

δµ = Σci∈L
d(ci,c

∗
i)

|L| .

Coverage-Guided Policy. The distance-guided policy can
preserve the knowledge in the case base better than the
random maintenance does. However, it is not optimal, as
some information is missed when only the minimum dis-
tance cases are considered. We generalize the approach by
considering all the cases that may contain redundant infor-
mation at once. For that we define the notion of neighbor-
hood of a case c with respect to a certain similarity thresh-
old δ, denoted nδ(c). The idea of the case neighborhood is
to group elements which contain redundant information and
hence that can be reduced to a single case. The case neigh-
borhood uses a value of δ in accordance with Def. 3.

Definition 5 (Case neighbourhood). Given a case base L, a
case c ∈ L and a similarity distance threshold δ ∈ R, the
neighborhood of c is nδ(c) = {ci ∈ L | d(c, ci) < δ}.

The Coverage-Guided policy is concerned with finding a
set L′ of cases such that the union of all their neighborhoods
covers all the elements of the given case base L.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

45

There are many possible ways to reduce a case base in ac-
cordance with this policy, out of which some are more suit-
able than others. We observed that minimizing the size and
maximizing the quality of the coverage of the reduced case
base can significantly influence the performance of a case-
based system adopting the coverage-guided policy. Consid-
ering the first criterion, the optimal result of the coverage-
guided policy takes account of the number of elements in
the reduced set:
Definition 6 (Cardinality Coverage-Guided Policy). Given
a similarity threshold value δ ∈ R and a case base L, find a
reduction L′ of L with minimal cardinality.

The quality of the case base coverage can intuitively be
defined as the average distance from the removed cases to
the closest kept case (average coverage distance). The qual-
ity measure to be optimized is based around a notion of un-
covered neighborhood:

Uδ(c) = {cj ∈ L | cj ∈ {nδ(c) ∩ L \ L′} ∪ {c}}.
Then, we define the cost of a case c as a real function

vδ(c) =

(
Σcj∈Uδ(c)d(c, cj)

|Uδ(c)|
+ p

)
.

The first term within the brackets indicates the average cov-
erage distance of the uncovered neighbors; the second term,
p ∈ R, is a penalization value that is added in order to fa-
vorite reduced case bases with fewer elements and to assign
a value different from 0 also to isolated cases in the case
base. The sum of these costs for all the elements of a re-
duced set L′ defines the costMδ(L′) of L′, i.e.,Mδ(L′) =
Σc∈L′vδ(c). The policy optimizing the quality of the case
base coverage can then be defined as follows:
Definition 7 (Weighted Coverage-Guided Policy). Given a
similarity threshold value δ ∈ R and a case base L, find a
reduction L′ of L that minimizesMδ(L′) .

Conclusions and Future Work
In this work, we have addressed the problem of maintaining
a plan library (or planning case base) for case-based plan-
ning by proposing some maintenance policies of the case
base. Such policies can optimize different quality criteria
of the reduced case base. The random policy, that is also
used in general case-based reasoning, does not optimize any
criterion but is very fast to compute. We have introduced
some better informed policies, the distance-guided and the
coverage-guided policies, that attempt to generate reduced
case bases of good quality for case-based planning.

Since computing the most informed policies can be com-
putationally hard, in the extended version of this paper
(Gerevini, Saetti, and Serina 2013), we proposed a greedy
algorithm for effectively computing an approximation of
them, and we showed that these approximated policies can
be much more effective compared to the random policy, in
term of quality of the reduced case base and CPU time re-
quired by a case-base planner using them.

There are several research directions to extend the work
presented here. In future work, we intend to study in de-
tail additional distance functions to assess the similarity be-

tween problems and solutions, to develop and compare ad-
ditional policies, to investigate alternative methods for effi-
ciently computing good policy approximations, and to con-
duct an extended experimental analysis with a large set of
benchmarks. Moreover, current work includes determining
the computational complexity of the two proposed (exact)
coverage-guided policies, that we conjecture are both NP-
hard.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
foundational issues, methodological variations, and system
approaches. AI Communications 7(1):39–59.
Bäckström, C., and Nebel, B. 1996. Complexity results for
SAS+ planning. Computational Intelligence 11:625–655.
Bäckström, C.; Chen, Y.; Jonsson, P.; Ordyniak, S.; and
Szeider, S. 2012. The complexity of planning revisited –
a parameterized analysis. In Twenty-Sixth AAAI Conference
on Artificial Intelligence. AAAI Press.
Bylander, T. 1991. Complexity results for planning. In
Twelfth International Joint Conference on Artificial Intelli-
gence.
Gerevini, A.; Saetti, A.; and Serina, I. 2012. Case-based
planning for problems with real-valued fluents: Kernel func-
tions for effective plan retrieval. In 20th European Confer-
ence on Artificial Intelligence.
Gerevini, A.; Saetti, A.; and Serina, I. 2013. On the plan-
library maintenance problem in a case-based planner. In
Twenty-first International Conference on Case-Based Rea-
soning.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Liberatore, P. 2005. On the complexity of case-based plan-
ning. Journal of Experimental & Theoretical Artificial In-
telligence 17(3):283–295.
Markovitch, S.; Scott, P. D.; and Porter, B. 1993. Informa-
tion filtering: Selection mechanisms in learning systems. In
Tenth International Conference on Machine Learning, 113–
151. Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Serina, I. 2010. Kernel functions for case-based planning.
Artificial Intelligence 174(16-17):1369–1406.
Smyth, B., and McKenna, E. 1999. Footprint-based re-
trieval. In Third International Conference on Case-based
Reasoning, 343–357. Springer.
Smyth, B. 1998. Case-base maintenance. In Eleventh Inter-
national Conference on Industrial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems. Springer.
Spalazzi, L. 2001. A survey on case-based planning. Artifi-
cial Intelligence Review 16(1):3–36.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In Twentieth Interna-
tional Joint Conference on Artificial Intelligence.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

46

Post-planning Plan Optimization: Overview and Challenges

Asma Kilani and Lukáš Chrpa
School of Computing and Engineering

University of Huddersfield
{Asma.Kilani, l.chrpa}@hud.ac.uk

Abstract
Automated planning even in its simplest form, classical
planning, is intractable (PSPACE-complete). Moreover,
it has been proven that in some cases finding an op-
timal solution is intractable while finding any solution
is tractable. With increasing involvement of automated
planning in real-world applications, there is a need for
techniques able to solve planning problems in little (or
real) time in reasonable quality. Techniques based on
greedy search often are able to obtain solutions quickly,
but the quality of the solutions is usually low. Opti-
mal planning techniques can guarantee the best solu-
tion quality, but runtime is usually high. A reasonable
compromise seems to be using fast planning techniques
for producing plans in a little time and then apply post-
planning plan optimization techniques that can improve
quality of these plans.
In this position paper, we present an overview of state-
of-the-art plan optimization techniques, provide some
interesting challenges and discuss our idea of a post-
planning plan optimization system.

Introduction
AI Planning is the research area that studies the pro-
cess of selecting and organising actions to achieve desired
goals (Ghallab, Nau, and Traverso 2004). In classical se-
quential planning, the outcome of this process is a sequence
of actions that modify the fully observable, static and de-
terministic environment from a given initial state to a state
where all goal atoms are satisfied. In other words, AI plan-
ning engines generate plans, solutions to given planning
problems, which can be passed to an autonomous agent
(robot) which can execute these plans in order to achieve
its desired goals.

AI Planning is an important area to study because the it di-
rectly contributes to scientific and engineering goals of AI.
The scientific goal of AI planning is to provide a tool for
autonomous agents which allows them to deliberately rea-
son about action and change, so they can produce and ex-
ecute plans in order to achieve their goals. The engineer-
ing goal of AI is to build autonomous intelligent machines
(robots) where planning engines are embedded in such a
way that the control loop of such a machine (robot) consists
of sensing, planning and acting stages. In this respect, re-
searchers have successfully applied automated planning in

many applications including space exploration such as the
Mars Rover (Estlin et al. 2003), manufacturing such as the
software to plan sheet-metal bending operations (Gupta et
al. 1998), and games such as Bridge Baron (Smith, Nau, and
Throop 1998).

In general, classical planning is known to be computa-
tionally intractable (PSPACE-complete) (Bylander 1994). It
has been proven that in many cases finding an optimal solu-
tion is NP-hard where finding any solution is tractable (i.e.,
solvable in polynomial time) (Helmert 2006). Many mod-
ern planning engines are ”satisficing”: that is they produce
correct but not necessarily optimal solutions (the number of
actions in plans are higher than necessary). This allows the
planner to be more efficient which is especially useful in
real time situations when any correct plan produced is bet-
ter than no plan. LPG (Gerevini, Saetti, and Serina 2004)
which performs greedy local search on planning graph is
a good example of satisficing planner preferring to obtain
solution quickly rather than in better quality. Other well
known satisficing planners FF (Hoffmann and Nebel 2001)
and LAMA (Richter and Westphal 2010) use enforced hill
climbing or weighted A* search with an inadmissible but in-
formed heuristic. In contrast to satisficing planning engines,
optimal planning engines such as GAMER (Edelkamp and
Kissmann 2008), which is based on exploring Binary De-
cision Diagrams, are focused on finding best plans (short-
est). However, optimal planning is usually much more time
consuming and, therefore, it might be inappropriate for real-
time applications.

The motivation behind post-planning plan optimization
techniques reflects situations in which we need to obtain a
plan in a little time, for instance, when a robot is in immi-
nent danger and must act quickly. However, when a plan is
returned, there still may be some time to optimise it through
post-planning analysis. We can therefore analyse solution
plans and look for opportunities to shorten them. This post-
processing step is very useful when compromising between
the speed of the planning process and the quality of the so-
lutions by improving the quality of the plans produced by
satisficing planners. In this position paper, we present an
overview of state-of-the-art plan optimization techniques,
provide some interesting challenges and discuss our idea of
a post-planning plan optimization system.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

47

Preliminaries
The simplest form of planning is known as classical plan-
ning, ”Classical AI planning is concerned mainly with the
generation of plans to achieve a set of pre-defined goals
in situations where most relevant conditions in the outside
world are known, and where the plans success is not af-
fected by changes in the outside world.” (Yang 1997) In
other words, classical planning requires complete knowl-
edge about a deterministic, static and finite environment
with restricted goals and implicit time.

The simplest representation for classical planning is a
set-theoretic representation. In a set-theoretic representa-
tion, atoms that provide description for the environment are
propositions. States are represented as sets of propositions.
Actions are represented by three sets of propositions: pre-
conditions to be met, negative and positive effects (e.g.,
a = {pre(a); eff (a); eff+(a)}). An action a is applica-
ble in a state s if and only if pre(a) ⊆ s. Application of a in
s (if possible) results in a state (s \ eff (a)) ∪ eff+(a).

The classical representation is more expressive repre-
sentation which generalizes the set-theoretic representation
using notation derived from first order logic. Atom are
predicates. States are sets of predicates. A planning op-
erator o, which can be understood as a generalized ac-
tion (i.e. action is an instance of the operator), is a 4-
tuple o = (name(o), pre(o), eff (o), eff+(o)), where
name(o) consists of a unique name of the operator and
a list of variable symbols (operator’s arguments), and
pre(o), eff (o)andeff+(o) are sets of (unground) predi-
cates representing operator’s precondition, negative and pos-
itive effects. A planning domain is specified by a set of pred-
icates and a set of planning operators (alternatively proposi-
tions and actions). A (classical) planning problem is speci-
fied by a planning domain, initial state and set of goal atoms.
A plan is a sequence of actions. A plan solves a planning
problem if a consecutive application of actions in the plan
staring in the initial state results in a state where all the goal
atoms are present (the goal state). A plan solving a given
planning problem is optimal if and only if there does not ex-
ist a plan solving the problem which is shorter (in terms of
the number of actions in the action sequence). Note that be-
sides sequential plans we can have parallel plans, sequences
of sets of independent actions, or partial-order plans.

Existing Techniques for Plan Optimization
Different techniques have been proposed for post-planning
plan optimization, for instance, a plan optimization tech-
nique based on Genetic Programming (Westerberg and
Levine 2001), exploring state space around the plan in order
to find shorter (more optimal) plans (Nakhost and Müller
2010), identifying redundant actions that can be removed
from the plan (Chrpa, McCluskey, and Osborne 2012a),
replacing (sub)sequences of actions by shorter ones (Es-
trem and Krebsbach 2012; Chrpa, McCluskey, and Osborne
2012b).

Using Genetic Programming in post-planning plan opti-
mization might provide some promising results (Westerberg
and Levine 2001), however, it is unclear whether such an

approach is domain-independent (i.e. whether it is required
to hand code optimization policies for each domain), and,
moreover, running time of such method might be high.

Nakhost and Müller (2010) proposed two methods: Ac-
tion Elimination (AE) and Plan Neighbourhood Graph
Search (PNGS). AE is an algorithm which identifies and re-
moves some redundant actions from the plan. AE derives
from the concept of Greedily Justified Actions (Fink and
Yang 1992) - a greedily justified action in a plan is, infor-
mally said, such an action which if it and actions dependent
on it are removed from the plan, the plan becomes invalid.
AE, on the other hand, tries to remove a given action and
only the first action in the rest of the plan which becomes in-
applicable. AE iteratively checks actions for ‘relaxed greed-
ily justification’ and if removing the involved actions does
not affect validity of the plan, the plan is updated (opti-
mized); otherwise the removed actions are restored, and the
plan remains unchanged. PNGS creates a Plan Neighbour-
hood Graph (PNG) by expanding a limited number of states
(nodes) around each state along the plan, which is often a
small subset of the original state space, then applies Dijsk-
tra‘s algorithm to find a shorter path in the neighbourhood
graph, which might lead towards better (shorter) plans. Fig-
ure 1 shows the example of constructing a neighbourhood
graph. Note that states can be expanded by using breadth-
first or best-first search. Although, both methods can work
as standalone methods, combination of both works better
because AE is able to identify and remove some redundant
actions efficiently which provides shorter plans for PNGS.
PGNS is extremely useful for local improvement of plan
quality, however, it might not work well if some ‘optimiz-
able’ actions lies far from each other in the plan although in
some plan’s permutation can be adjacent.

AIRS (Estrem and Krebsbach 2012) improves plans by
identifying ‘optimizable’ subsequences of actions accord-
ing to heuristic estimation, and tries to find shorter (opti-
mal) ones by using more expensive (optimal) planning tech-
nique, and eventually replace the longer sequence by the
shorter one. The heuristic estimation is used for estimating
a distance between given pairs of states. If states seem to be
closer than they are in the plan, then an optimal or nearly-
optimal planner is used to re-plan between these states. Fig-
ure 2 depicts the example of a plan obtained after the re-
finement process. Three pairs of states (A, B), (C, D), and
(E, F) were selected by AIRS as candidates for refinement.
Grey solid lines between (A, B) and (C, D) represent the fi-
nal subplans and the dashed lines represent the initial (lower
quality) subplans. AIRS continues to select pairs of states in
the current solution plans and refine the corresponding sub-
plans until the given time runs out.

PNGS and AIRS are useful for local enhancement, how-
ever, they do not take into account plans structure, for in-
stance, some actions may be far from each other in the plan,
but can be close (adjacent) in some permutation of the plan.
Chrpa, McCluskey, and Osborne (2012b) proposed a method
which explores plan structures based on analysing action de-
pendencies and independencies (Chrpa and Barták 2008) in
order to identify redundant actions or non-optimal subplans.
Firstly, the method identifies and removes all the actions

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

48

Figure 1: Taken from (Nakhost and Müller 2010). (a) The
input plan. (b) and (c) Expansion of only one node does not
reveal anything useful. (d) An improved plan can be found
in the neighbourhood graph.

Figure 2: Taken from (Estrem and Krebsbach 2012). An in-
tuitive example of a plan obtained after the refinement pro-
cess done by AIRS is complete. Solid lines depict the fi-
nal plan, with dashed lines showing either replaced subplans
or situations when replanning does not produce better sub-
plans.

on which the goal is not dependent, which basically corre-
sponds to Backward Justified actions (Fink and Yang 1992).
Secondly, all pairs of inverse actions reverting each other ef-
fects are checked for redundancy, which depends only on ac-
tions placed in between the pair of inverse actions, and even-
tually removed. An extension allowing to remove grouped
nested pairs of inverse actions, which covers situations when
we can only remove all the pairs together and not step by
step, has been introduced in (Chrpa, McCluskey, and Os-
borne 2012a). Thirdly, the method identifies pairs of weakly
adjacent actions, actions that can be adjacent in some permu-
tation of the plan, and if possible replaces them by a single
action. Weak adjacency of action is determined by using the
action independence relation which allows swapping adja-
cent actions without affecting plans validity. An algorithm
for determining weak adjacency of actions in plans has been
also used for learning macro-operators (Chrpa 2010). This
approach has presented some positive aspects such as be-

ing able to reasonably optimize plans in a little time. It is
efficient in combination with fast satisfcing planners (e.g.
LPG). Although this method is quite restricted to specific
cases (e.g. inverse actions, non-optimal subplans of length
two), it might be very useful as a preprocessing step to some
other method (e.g. PNGS).

It is good to mention an approach which optimises paral-
lel plans (Balyo, Barták, and Surynek 2012). This approach
improves plans locally where (parallel) subplans of a pre-
defined length k are possibly replaced by shorter ones. After
all the subplans are processed, k is incremented and the op-
timization process is performed until a length of subplans
reaches (or exceeds) a given limit.

Recently, an approach for optimal planning with inad-
missible heuristics has been proposed (Karpas and Domsh-
lak 2012). Shortcut rules, which were introduced there, are
learnt applied during the planning process, concretely, they
used for deriving existential optimal landmarks and for re-
moving some redundant actions from partial plans. In gen-
eral, shortcut rules can be used to replace some action se-
quences (totally or partially ordered) by shorter (or less ex-
pensive) action sequences without violating the correctness
of plans. These rules could be obtained by several sources
including learning them online, during the planning process,
for example, plan rewrite rules (Nedunuri, Cook, and Smith
2011).

Challenges
Post-planning plan optimization is still a challenging area
of AI planning because even determining a maximum set
of redundant actions in a plan is generally intractable (Fink
and Yang 1992). Clearly, guaranteeing optimal plans refined
from suboptimal ones is intractable as well. Hence, there is a
need for developing new sophisticated (tractable) techniques
as well as for studying theoretical properties of planning do-
mains/problems and plans in order to determine whether a
given optimization technique can guarantee optimality of
plans. We discuss several challenges which are from our
point of view most interesting.

Optimal Planning with Macro-operators
In some cases, we enhance domains by macro-operators, op-
erators that encapsulate sequences of (primitive) operators.
It has been shown that while using macro-operators in the
search we can produce plans much more quickly but we
might lose the optimality of solution plans (unless we use
action costs). It was discussed in (Chrpa, McCluskey, and
Osborne 2012b) that in some cases we might be able to re-
fine an optimal plan from (sub-optimal) plans with macro-
operators retrieved by optimal planning engines. In the De-
pots domain we can generate macro-operators lift-load and
unload-drop. If we have a problem where a crate has to be
moved from one stack to another within the same depot, then
even using an optimal planning engine may provide a solu-
tion plan 〈lift-load,unload-drop〉. This plan can be unfolded
into 〈lift,load,unload,drop〉. It is obviously not an optimal
plan (the optimal plan is 〈lift,drop〉). We may easily observe
that the actions load and unload are inverse and can be iden-
tified as redundant and removed (Chrpa, McCluskey, and

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

49

Osborne 2012a). However, if there is more than one hoist in
the depot these actions might not be inverse (a different hoist
is used to unload the crate from the truck). In this case, we
cannot simply remove the actions load and unload from the
plan because the precondition of drop will not be satisfied.
To fix this we have to modify an argument referring to the
hoist of the drop action to correspond with the lift action. In
the Zeno domain we can generate a macro-operator refuel-
fly. This can cause that, even if using an optimal planning
engines, solution plans (unfolded) may contain more refuel
actions than necessary. Similarly with the previous case, re-
moving the refuel action from the plan causes inapplicabil-
ity of the following fly (or zoom) actions. Therefore, their
arguments referring to fuel levels must be updated.

Hence, it seems to be reasonable to somehow classify
potential situations (not limited to those discussed above)
which may occur while planning with macro-operators us-
ing optimal planning engines (without action costs). Devel-
oping or applying existing (tractable) optimization methods
for these classes which guarantee optimality is an interesting
challenge.

Characteristic Domains
In the well known BlocksWorld domain, one source of
non-optimality of plans is Sussman Anomaly (depicted
in figure 3). For example, having three blocks A, B and
C such that the initial state is on(C, A) and onTable(B)
and the goal situation is on(A,B) and on(B,C). There are
two possibilities in which order the goal atoms can be
achieved, i.e. , on(A,B) then on(B,C), or vice-versa. We can
obtain following plans: i) 〈unstack(C,A), putdown(C),
pickup(A), stack(A,B) , unstack(A,B), putdown(A),
pickup(B), stack(B,C) , pickup(A), stack(A,B)〉, and
ii) 〈pickup(B), stack(B,C), unstack(B,C), putdown(B),
unstack(C,A), putdown(C), pickup(A), stack(A,B),
unstack(A,B), putdown(A), pickup(B), stack(B,C) ,
pickup(A), stack(A,B)〉. For these situations we can apply
a technique for determining redundant actions (Chrpa, Mc-
Cluskey, and Osborne 2012a) which can provide optimized
plans which are optimal. This technique should work as
discussed in literature in more complex cases where, for
example, after stacking A to B we might be moving blocks
between different stacks and after that we may unstack A
from B. Therefore, we might ask whether such a technique
can guarantee optimal plans.

In the Gold-miner domain we have to navigate through
the maze in order to collect gold. In the maze, we have to
unblock cells either by laser or by bomb, however, a cell con-
taining gold can be unblocked only by the bomb. However,
when unblocking the cells by bomb, the bomb is consumed
and has to be re-collected. Hence, the optimal strategy is
to pick the laser unblock all the necessary cells and use the
bomb only for the cell containing gold. However, some plan-
ners might prefer using bomb rather than laser which leads
to non-optimal plans. In this case, a large part of the plan
has to be replaced by an optimal one. The best option might
be to use AIRS (Estrem and Krebsbach 2012) which can use
an optimal (or nearly optimal) planner to re-plan that part of
the plan.

Figure 3: A simple Sussman Anomaly Problem

In the Zeno domain we might, for instance, use more re-
fuel actions than necessary. However, as mentioned before
removing even unnecessary refuel action will cause the plan
to become invalid. To make the plan valid again we have to
modify fuel level arguments of corresponding fly or zoom
actions. Perhaps, an adaptation of the approach for deter-
mining redundant actions (Chrpa, McCluskey, and Osborne
2012b) might handle this issue.

In the Depots domain, we may observe that moving a
crate from one truck to another is not optimal. Instead of two
actions unload and load we can have one extra drive action.
However, we cannot simply replace the unload and load ac-
tions by the drive action because in that case we might lose
validity of the plan. Such a change has to be propagated, i.e.,
the crate will not be unloaded from the second truck and the
first truck will be at a different location. For such a situation
PNGS (Nakhost and Müller 2010) might be the right ap-
proach, however, it might not work well if these actions are
placed far from each other (but can be in some permutation
of the plan).

Learning Shortcut Rules
Shortcut rules (Karpas and Domshlak 2012) can be un-
derstood as a mapping between causal structures of plan-
ning operators (or actions) such that structures are mapped
to structures with smaller cost (determined by the number
of operators or a sum of action costs of the operators). A
specific case of shortcut rules are plan rewrite rules (Ne-
dunuri, Cook, and Smith 2011) which are used for replacing
sub-plans (subsequences of actions in plans) by shorter (or
cheaper) subsequences of actions. AIRS (Estrem and Kreb-
sbach 2012) is based on identifying potentially non-optimal
sub-plans and replacing them by optimal (or nearly opti-
mal) ones. Work (Chrpa, McCluskey, and Osborne 2012b)
identifies pairs of weakly adjacent actions (i.e. actions that
can be adjacent in some permutation of the plan) which
can be replaced by a single action. Replaceability in this
case is defined in such a way that an action which is go-
ing to replace another action (or action sequence) must have
a weaker (or equal) precondition, weaker (or equal) negative
effects and stronger (or equal) positive effects. However, in
some cases this might be a too strong assumption, since in
some cases we might be able to satisfy stronger precondi-
tions etc. Therefore, we might have to distinguish between
problem-independent and problem- or plan-specific shortcut

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

50

rules.
Of course, shortcut rules can encapsulate more complex

causal structures of planning operators. The key question is
how shortcut rules can be effectively learnt. One possibil-
ity is to learn them online (when optimizing plans). How-
ever, the main shortcoming of such an approach might be
its time consumption since we have to blindly check a very
high number of operator causal structures. Another possibil-
ity is to identify possible non-optimal operator causal struc-
tures by investigating operator schema. It might give us an
opportunity to identify ways how a certain atom or atoms
can be achieved. However, there are some limitations which
might prevent learning problem-specific shortcut rules. For
example, in the Depots domain two drive actions can be re-
placed by a single one (e.g. drive(t,a,b), drive(t,b,c) can
be replaced by drive(t,a,c)). However, assuming an exten-
sion of the domain where there must be a road between lo-
cations in order to allow the truck to drive between them
the drive(t,a,c) action is applicable only if there is a road
between the locations a and c.

Applying shortcut rules might be tractable, however, it is
debatable whether the degree of the polynomial might not be
too high. Replacing a pair of actions by a single one (where
possible) can take at worst O(l2) (l is the number of ac-
tions placed in between the pair) (Chrpa, McCluskey, and
Osborne 2012b). However, for more complex shortcut rules
the complexity may rise. Considering situations in which ac-
tions involved in some shortcut rules are not adjacent re-
placing these actions might not be straightforward since the
‘new’ actions may influence or be influenced by actions
placed in between the ‘old’ actions. Therefore, we have to
also study how computational complexity of applying short-
cut rules rises with their size (i.e. involving more complex
causal structures of operators).

Proposal for a System Architecture for a Post
Planning Plan Optimization

Our high-level proposal of a system for post-planning plan
optimization is shown in figure 4, this system takes the non-
optimal plan, planning domain, and planning problem de-
scriptions as inputs. The system analyses them in order to
identify some redundant actions, which can be removed,
then it learns a shortcut library, which consists of some non-
optimal sub-plan and their optimal alternatives, then the sys-
tems applies these shortcut rules and produce a new (op-
timal) plan as output. To implement this system we must
address these issues: How can be redundant actions or non-
optimal sub-plans easily identified ? How we can easily ob-
tain shortcut rules ? How we can easily apply shortcut rules ?
Where does the system guarantee optimality of the plan ?

Concept
The idea of our system is based on an idea of compos-
ing different approaches (e.g. using AE and PGNS to-
gether (Nakhost and Müller 2010)). In our case we con-
sider identifying and removing (some) redundant actions
and learning and applying shortcut rules.

Figure 4: A Proposal for a System Architecture for a Post
Planning Plan Optimization

Analysing structures of plans, planning domains and plan-
ning problems will help to obtain useful knowledge base, for
instance, inverse actions, common non-optimalities in plans
etc. Inverse actions which can be considered as ‘good candi-
dates’ for being redundant are identified easily (Chrpa, Mc-
Cluskey, and Osborne 2012a). Moreover, removing actions
that are not Greedily Justified might improve the plans as
well, however, such a technique require a cubical time (with
respect to plans length) (Fink and Yang 1992). Identifying
common non-optimalities might be done by analysing struc-
tures of planning operators, for instance, by investigating
which predicates are achieved by which operator. Investi-
gating some ideas of regression based planning (McDermott
1996) might be also very useful. We expect that such sort
of analysis can be used for learning some simpler shortcut
rules. Learning and applying specific shortcut rules where
subplans of length two were replaced by single actions (if
possible) has already been studied (Chrpa, McCluskey, and
Osborne 2012b). However, worst case computational com-
plexity seems to be high (up toO(n4). Learning and apply-
ing more complex shortcut rules seems to be counterproduc-
tive given the fact that the computational complexity can be
very high. From this perspective it might be more efficient to
use techniques such as PNGS or AIRS rather than complex
shortcut rules. Nevertheless, efficient generation and appli-
cation of shortcut rules will be our future work. As we dis-
cussed before it is also necessary to study theoretical proper-
ties such as computational complexity which can somehow
indicate which shortcut rules are easy or difficult to learn
and apply.

Lessons learnt from existing approaches shows that it
seems to be very reasonable to apply a different plan op-
timization techniques ordered from computationally easy
ones to computationally hard ones. Hence, more expensive
techniques are applied on shorter plans. This also allows to
optimize plans at least slightly if a given time is very small.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

51

Conclusions
This position paper presents an overview of the state-of-
the-art approaches for post-planning plan optimization, dis-
cusses some interesting challenges in this area, and propose
an idea of a plan optimization system. Clearly, there has
been significant progress during the last 3 years in this area,
however, post-planning plan optimization remains a chal-
lenge. Given the advantages and disadvantages of existing
techniques and their key concepts we can get inspirations
in adapting current techniques or developing new ones. Of
course, we have to be aware of certain limitations (e.g. com-
plexity issues) which may hinder applicability of such tech-
niques because their runtime might be higher than when us-
ing optimal (or nearly) optimal planning engines.

In future we plan to develop a system for post-planning
plan optimisation as discussed in the paper. This task will
require to study and extend current techniques, for example,
determining redundant actions, and develop new techniques,
for example learning and applying shortcut rules. Besides
this, one the very important aspects in to study theoreti-
cal properties of these techniques such as completeness and
complexity. Even though the proposed system is planned to
support only classical (STRIPS) planning, we plan to extend
it in further future for non-classical planning (ADL, durative
actions etc.).

References
Balyo, T.; Barták, R.; and Surynek, P. 2012. Shortening
plans by local re-planning. In Proceedings of ICTAI, 1022–
1028.
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artificial Intelligence 69:165–204.
Chrpa, L., and Barták, R. 2008. Towards getting domain
knowledge: Plans analysis through investigation of actions
dependencies. In Proceedings of FLAIRS 2008, 531–536.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining redundant actions in sequential plans. In Proceed-
ings of ICTAI, 484–491.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of ICAPS. 338–342.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.
Edelkamp, S., and Kissmann, P. 2008. Gamer: Bridging
planning and general game playing with symbolic search.
In Proceedings of the sixth IPC.
Estlin, T.; Castano, R.; Anderson, R.; Gaines, D.; Fisher, F.;
and Judd, M. 2003. Learning and planning for mars rover
science. In In Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI). Morgan
Kaufmann Publishers.
Estrem, S. J., and Krebsbach, K. D. 2012. Airs: Anytime
iterative refinement of a solution. In Proceedings of FLAIRS,
26–31.

Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In In Proceedings of the Ninth Conference of the Canadian
Society for Computational Studies of Intelligence, 9–14.
Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning in
pddl2.2 domains with lpg-td. In Proceedings of the fourth
IPC.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Gupta, S. K.; Bourne, D. A.; Kim, K. H.; and Krishnan, S. S.
1998. Automated process planning for sheet metal bending
operations. Journal of Manufacturing Systems 17:338–360.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. In Proceedings of ICAPS 2006, 52–
62.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Karpas, E., and Domshlak, C. 2012. Optimal search
with inadmissible heuristics. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling.
McDermott, D. V. 1996. A heuristic estimator for means-
ends analysis in planning. In Proceedings of AIPS, 142–149.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proceedings of ICAPS, 121–128.
Nedunuri, S.; Cook, W. R.; and Smith, D. R. 2011. Cost-
based learning for planning. In Workshop of Planning and
Learning.
Richter, S., and Westphal, M. 2010. The lama planner: guid-
ing cost-based anytime planning with landmarks. Journal
Artificial Intelligence Research (JAIR) 39:127–177.
Smith, S. J. J.; Nau, D.; and Throop, T. 1998. Computer
bridge: A big win for ai planning. AI Magazine 19:93–105.
Westerberg, C. H., and Levine, J. 2001. Optimising plans
using genetic programming. In Proceedings of ECP, 423–
428.
Yang, Q. 1997. Intelligent Planning: A Decomposition and
Abstraction Based Approach. Springer-Berlin.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

52

Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges

M.M.S. Shah and L. Chrpa and F. Jimoh and D. Kitchin

T.L. McCluskey and S. Parkinson and M. Vallati
School of Computing and Engineering

University of Huddersfield
United Kingdom

Abstract

Encoding a planning domain model is a complex task
in realistic applications. It includes the analysis of plan-
ning application requirements, formulating a model that
describes the domain, and testing it with suitable plan-
ning engines. In this paper we introduce a variety of new
planning domains, and we then use and evaluate three
separate strategies for knowledge formulation, encoding
domain models from a textual, structural description of
requirements using (i) the traditional method of a PDDL
expert and text editor (ii) a leading planning GUI with
built in UML modelling tools (iii) a hierarchical, object-
based notation inspired by formal methods.
We distill lessons learned from these experiences. The
results of the comparison give insights into strengths
and weaknesses of the considered approaches, and point
to needs in the design of future tools supporting PDDL-
inspired development.

Introduction
Knowledge Engineering for automated planning is the pro-
cess that deals with acquisition, formulation, validation and
maintenance of planning knowledge, where a key product
is the domain model. The field has advanced steadily in re-
cent years, helped by a series of international competitions1,
the build up of experience from planning applications, along
with well developed support environments. It is generally
accepted that effective tool support is required to build do-
main models and bind them with planning engines into ap-
plications. There have been reviews of such knowledge en-
gineering tools and techniques for AI Planning (Vaquero,
Silva, and Beck 2011). While these surveys are illuminating,
they tend not to be founded on practice-based evaluation, in
part, no doubt, because of the difficulty in setting up eval-
uations of methods themselves. Given a new planning do-
main, there is little published research to inform engineers
on which method and tools to use in order to effectively
engineer a planning domain model. This is of growing im-
portance, as domain independent planning engines are now
being used in a wide range of applications, with the con-
sequence that operational problem encodings and domain
models have to be developed in a standard language such
as PDDL (Ghallab et al. 1998).

1for the most recent see http://icaps12.poli.usp.br/icaps12/ickeps

In this paper we explore the deployment of automated
planning to assist a variety of real world applications: ma-
chine tool calibration, road traffic accident management, and
urban traffic control. In introducing these new planning do-
mains, we take the opportunity to employ and hence eval-
uate three separate methods for knowledge formulation (i)
the traditional method of hand-coding by a PDDL expert,
using a text editor and relying on dynamic testing for de-
bugging (ii) itSIMPLE (Vaquero et al. 2007), an award-
winning GUI, utilising a method and tool support based on
UML (iii) a rigorous method utilising a hierarchical, object-
based notation OCLh, with the help of tool support from
GIPO (Simpson, Kitchin, and McCluskey 2007). Evaluating
these three approaches gives a range of interesting insights
into their strengths and weaknesses for encoding new do-
mains, and point to needs in the design of future tools sup-
porting PDDL-inspired development. Evaluation measures
used are based on several criteria that describes the quality
of the engineering process and the quality of the product.

This paper is organized as follows. We first provide an
overview of existing KE tools for supporting the task of en-
coding planning domain models. Next we introduce the real-
world domains that have been considered in this analysis.
Then we introduce the features that are used for comparing
the different encoding methods. Finally, we summarize the
lessons learned and we provide some guidelines for future
tools.

Overview of existing KE tools
In this section we will provide an overview of KE tools that
can be used for producing planning domain models. Tools
are listed in alphabetical order.

EUROPA
The Extensible Universal Remote Operations Planning
Architecture (EUROPA) (Barreiro et al. 2012), is an inte-
grated platform for AI planning & scheduling, constraint
programming and optimisation. The main goal of this
platform is to deal with complex real-world problem. It is
able to handle two representation languages, NDDL and
ANML (Smith, Frank, and Cushing 2008). The latter has
been used in various missions by NASA. EUROPA provides
modelling support, result visualisation and an interactive
planning process.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

53

GIPO
The Graphical Interface for Planning with Ob-
jects (GIPO) (McCluskey and Simpson 2006;
Simpson, Kitchin, and McCluskey 2007) is based on
its own object-centred languages OCL and OCLh. These
formal languages exploit the idea that the universe of
potential states of objects are defined first, before operator
definition (McCluskey and Kitchin 1998). GIPO is centered
on the precise definition of a planning state as an amalgam
of object’s individual states. This gives the concept of a
world state as one being made up of a set of states of
objects, satisfying certain types of constraints. Operator
schemas are constrained to be consistent with respect
to the state, giving the opportunity for using tools to do
consistency checking. GIPO uses a number of consistency
check, like if the object’s class hierarchy is consistent,
object state descriptions satisfy invariants, predicate struc-
tures and operator schema are mutually consistent and task
specifications are consistent with the domain model. Such
consistency checking guarantees that several classes of
errors are prevented, in contrast to ad hoc methods such as
hand crafting.

itSIMPLE
itSIMPLE (Vaquero et al. 2007; 2012) provides an en-
vironment that enables knowledge engineers to model a
planning domain using the Unified Modelling Language
(UML) standard (OMG 2005). itSIMPLE focuses on the
initial phases of a disciplined design cycle, facilitating
the transition of requirements to formal specifications.
Requirements are gathered and modeled using UML to
specify, visualize, modify, construct and document domains
in an object-oriented approach. A second representation
is automatically generated from the UML model, and it is
used to analyze dynamic aspects of the requirements such
as deadlocks and invariants. Finally, a third representation
in PDDL is generated in order to input the planning domain
model and instance into an automated planner.

JABBAH
JABBAH (González-Ferrer, Fernández-Olivares, and
Castillo 2009) is an integrated domain-dependent tool that
aims to develop process transformation to be represented in
a corresponding HTN planning domain model. The system
mainly deals with business processes and workflows. The
processes are represented as Gantt charts or by using an
open source workflow engine. The tool provides support
for transforming Business Process Management Notation
(BPMN) (graphical notation) to HTN-PDDL. Such HTN-
PDDL (Castillo et al. 2006) domain model is used in HTN
planners to obtain a solution task network.

MARIO
Mashup Automation with Runtime Invocation and
Orchestration (MARIO) (Bouillet et al. 2009;
Feblowitz et al. 2012) is an integrated framework for
composing workflow for multiple platforms, such as Web
Services and Enterprise Service Bus. This tool provides

a tag-based knowledge representation language for com-
position of planning problems and goals. It also provides
a web-based GUI for AI planning system so that the user
can provide software composition goals, views and gener-
ated flow with parameter to deploy them into other platform.

PDDL Studio
PDDL Studio (Plch et al. 2012) is a recent PDDL editor
that allows the user to write and edit PDDL domain and
problem files. The main goal of the tool is to provide
knowledge engineers the functionality to edit and inspect
PDDL code, regardless of how the PDDL code was created.
The tool supports the user by identifying syntactic errors,
highlighting PDDL components and integrating planners.
PDDL Studio does not require the user to draw any diagram,
it is more like writing traditional programming language
code by using an Integrated Development Environment
(IDE). The current version of this tool can help editing basic
PDDL and also provides error checking.

VIZ
VIZ (Vodráz̆ka and Chrpa 2010), is a knowledge engineer-
ing tool inspired by GIPO and itSIMPLE. It shares many
characteristics of those systems (GIPO and itSIMPLE) with
the addition of a simple, user friendly GUI by allowing in-
experienced knowledge engineers to produce PDDL domain
models. This tool uses an intuitive design process that makes
use of transparent diagrams to produce a PDDL domain
model. The tool does not support any third party planner
integration. However, the tool is still being developed.

Considered applications
We considered three real-world domains that have been
encoded in planning domain models. Namely, the machine
tool calibration (Parkinson et al. 2012), the road traffic
accident management (Shah, McCluskey, and Chrpa 2012),
and the urban traffic control (Jimoh et al. 2012)

Machine tool calibration
Engineering companies working with machine tools will of-
ten be required to calibrate those machines to international
standards. The requirement to manufacture more accurate
parts and minimise manufacturing waste is resulting in the
continuing requirement for machine tools which are more
accurate. To determine a machine’s accuracy, frequent cali-
bration is required. During calibration, the machine will not
be available for normal manufacturing use. Therefore, re-
ducing the time taken to perform a calibration is fundamen-
tal to many engineering companies.

The calibration process requires various errors in the ma-
chine to be measured by a skilled expert. In addition to con-
ducting the tests, the engineer must also plan the order in
which the tests should take place, and also which instru-
ments should be used to perform each test. It is critical to
find the optimal sequence of measurements so that the ma-
chine is not out of service for too long.

An example PDDL2.2 (Edelkamp and Hoffman 2004) op-
erator taken from the machine tool calibration domain model
can be seen in Figure 1. This operator can be considered as

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

54

(:durative-action setup
:parameters
(?er - error ?ax - axis ?in - instrument)
:duration (= ?duration (setup-time ?in ?ax))
:condition
(and (over all (not (blocked ?in ?ax)))

(over all (axis-error ?ax ?er))
(over all (measures ?in ?er))
(over all

(forall (?a - axis ?i - instrument)
(imply (setup ?i ?a) (= ?a ?ax))))

(over all (forall (?i - instrument)
(imply (operating ?i)
(compatible ?i ?in))))

(at start (<= (using ?in) 0))
(at start (>= (using ?in) 0))
(at start (not (measured ?ax ?er)))
(at start (not (operating ?in)))
(over all (>= (working-range ?in)

(travel-length ?ax)))
(over all (working-day))

)
:effect
(and

(at end (setup ?in ?ax))
(at end (setup-for ?in ?er))
(at end (operating ?in))
(at start (increase (using ?in) 1))

)
)

Figure 1: A sample planning operator from the machine tool
calibration domain model, encoded in PDDL 2.2.

one of the most complex that we have dealt with in this work.
It includes quantification, timed-initial literal and ADL fea-
tures of PDDL.

Figure 2 illustrates an excerpt taken from a valid, optimal
calibration plan produced from using the PDDL2.2 domain
and LPG-td planner (Gerevini, Saetti, and Serina 2006).
From the excerpt it can be seen that the planner has sched-
uled measurements that use the same equipment together,
and that where possible, measurements are taken concur-
rently. This plan allows the calibration process to be com-
pleted as quickly as possible, minimizing the down-time of
the machine.

Road traffic accident management
Accidents cause traffic congestion, injury, increase envi-
ronment pollution, and cost millions of pounds every year
because of delay and damage. This has lead to highway
agencies needing more appropriate solutions to manage
accidents. Accidents are a particular type of road traffic
incident which can be defined as irregular or unplanned
events that reduce road capacity, increase congestion and
travel time. Incidents increase traveler delay which may
lead to more serious problems such as further accidents
(Owens et al. 2000). The consequence of this problem
is often severe since accidents limit the operation of the
road networks and put all road users at risk. The main

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

laserY positioning

electronic levelY about Y
laserY acc and rep

laserY about X
laserY about Z

laserY straightness in X
laserY straightness in Z

clock on tableTable parallelism to Y

Concurrent measurementKey :
Adjust equipment
Set-up equipment

Figure 2: Excerpt from a produced calibration plan from the
machine tool calibration application

responsibility for managing and dealing with the incident
lies with the highway agencies which are serving on that
area. It is a top priority for highway agencies around the
world to manage accidents more effectively, efficiently
and as fast as possible to save time, money and most
crucially life. Utilising automated planning capabilities in
real applications is a current topic with great potential to
help in speed, accuracy, and co-ordination of tasks to be
carried out.

Urban Traffic Control
Traffic in urban areas (e.g. town centers) tends to be dense,
especially in rush hours, which often leads to traffic jams
which can significantly increase travel time. Therefore, a
need for efficient Urban Traffic Control in such exposed ar-
eas is becoming more important. It is necessary to minimize
travel time by efficiently navigating road vehicles through-
out the road network, while avoiding road congestion and
diverting traffic when a road is blocked. Traditional Urban
Traffic Control methods are based on reactive acting, they
operate, for instance, on the basis of adaptive green phases
and flexible co-ordination in road (sub)networks based on
measured traffic conditions (Dusparic and Cahill 2009;
sheng Yang et al. 2005; Salkham et al. 2008; Daneshfar et
al. 2009; Bazzan 2005). However, these approaches are still
not very efficient during unforeseen situations such as road
incidents, when changes in traffic are requested in a short
time interval (Dusparic and Cahill 2012). The role of AI
planning in this case is to come with deliberative reason-
ing. In contrary to traditional reactive control we can reason
about the road network globally that is useful while dealing
with unexpected situations. Consequently, by exploiting AI
planning in traffic control, we can reduce cost and pollution
which is often a serious issue in town/city centers.

Criteria for evaluating approaches
We identified several criteria that are useful for evaluating
the considered approaches for encoding domain models.

Operationality. How efficient are the models produced? Is

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

55

(:durative-action DRIVE
:parameters (?r - road ?n - num)
:duration (= ?duration (length ?r))
:condition
(and

(at start (>= (head ?r) (val ?n)))
(over all (operational ?r))

)
:effect
(and
(at start (decrease (head ?r) (val ?n)))
(at end (increase (tail ?r) (val ?n)))

)
)

Figure 3: A sample planning operator from the Urban Traffic
Control application encoded in PDDL 2.1.

the method able to improve the performances of planners
on generated models and problems?

Collaboration. Does the method/tool help in team efforts?
Is the method/tool suitable for being exploited in teams or
is it focused on supporting the work of a single user?

Maintenance. How easy is it to come back and change a
model? Is there any type of documentation that is auto-
matically generated? Does the tool induce users to pro-
duce documentation?

Experience. Is the method/tool indicated for inexperienced
planning users? Do users need to have a good knowledge
of PDDL? Is it able to support users and to hide low level
details?

Efficiency. How quickly are acceptable models produced?
Debugging. Does the method/tool support debugging?

Does it cut down the time needed to debug? Is there
any mechanism for promoting the overall quality of the
model?

Support. Are there manuals available for using the
method/tools? Is it easy to receive support? Is there an
active community using the tool?

Evaluation of the approaches with respect to
stated criteria

In this paper we employ and hence evaluate three sepa-
rate methods for knowledge formulation: (A) the traditional
method of hand-coding by a PDDL expert, using a text edi-
tor and relying on dynamic testing for debugging; (B) using
state-of-the-art KE tool itSIMPLE; (C) using transparency
and consistency checkers in GIPO III.

In the following we will evaluate each method with re-
spect to the criteria stated in the previous Section.

Method A
This method involves a PDDL expert that uses a text ed-
itor (in this paper, Gedit) for generating a planning domain
model, given the description of the real world domain. For il-
lustration, a handcoded planning operator is depicted in Fig-
ure 3.

Operationality. Even if this is the most exploited method
for generating new planning domain models, there is no
evidence that it leads to models that are more efficient
than those generated by other methods. The quality of
models depends on the expertise of the person that en-
codes it, which is very hard to predict a-priori. In fact, we
have experimentally observed that often, the models gen-
erated by this method reduce the performances of plan-
ning algorithms.

Collaboration. This method does not support any type of
collaboration. Usually the model is produced by a single
expert, that eventually discusses issues or improvements
with domain experts rather than with other planning ex-
perts.

Maintenance. It is usually easy, for the expert that encoded
the domain model, to come back and maintain or mod-
ify it. On the other hand, models are usually not docu-
mented. This means that the maintenance is potentially
hard, with regard to the complexity of the model, for peo-
ple that were not involved in the encoding process.

Experience. This method is applicable only for PDDL ex-
perts. PDDL experts know the ways for handling some
common issues and are able to interpret the planners out-
put in order to identify bugs.

Efficiency. Usually, the first version of the model is quickly
produced. This leads users to perceive this method as a
very efficient one. On the other hand, the first version re-
quires a lot of dynamic tests and improvements to become
acceptable.

Debugging. Debugging while hand-coding a model is a
critical task. The only way for debugging is dynamic test-
ing. This involves the use of one (or more) planners for
solving some toy instances. The produced plans are then
analysed for identifying bugs that can be fixed by mod-
ifying the model. This cycle is repeated until no bugs
are found. Omitting some important constraints is often
a source of bugs for this encoding method.

Support. Since this is a traditional method, there are many
guides available online for generating new domain mod-
els. However, these guides are usually technically written
and are very difficult to follow for non-experts of auto-
mated planning.

Method B
This method involves a user that exploits itSIMPLE for
generating new planning domain models. The steps of the
method follow the use of UML in software engineering: (i)
design of class diagrams; (ii) definition of state machines;
(iii) translation to PDDL; (iv) generation of problem files.

Operationality. From our experience, it seems that domain
models generated by itSIMPLE can often improve the
performances of planners. This is probably due to a do-
main description that is less constrained than the one de-
veloped by exploiting method A. The quality of the mod-
els generated does not depend on the expertise of the
users; itSIMPLE guides users in the design process.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

56

Figure 4: An example of a Class Diagram designed in itSIM-
PLE.

Collaboration. itSIMPLE has not been designed for team
work. This means that usually, the model is developed
by a single user. However, it is possible to import models
(projects) developed by different users. This helps to ex-
change ideas and comments among users. Moreover, the
UML diagrams generated are useful for sharing and dis-
cussing issues with experts.

Maintenance. The itSIMPLE tool is designed for support-
ing a disciplined design cycle. The UML diagrams can
also be used as documentation. From this point of view
it is easy to maintain a generated domain model also for
people that were not involved in the design process. How-
ever, if a model generated by itSIMPLE is modified using
a different tool (or even a text editor), then it is not possi-
ble to import it back to itSIMPLE.

Experience. The typical itSIMPLE user does not have to be
a PDDL expert. However, he should have some basic ex-
perience in software engineering and especially in UML.

Efficiency. Most of the time is spent in designing classes
of objects and defining legal interactions between them in
UML. After that, only a short time is required for debug-
ging. This method is usually slower than method A, but
faster than method C, to generate a first version model.

Debugging. Even if itSIMPLE provides dynamic analysis
by simulation of Petri Nets created from UML models,
most debugging initiates through dynamic testing done by
running planners on some toy instances. While the UML
description of the models helps in development and main-
tenance, and ”designs out” some sources of error, it is the
failure of a planning engine to solve a given problem that,
in most cases, alerts the user to bug presence.

Support. itSIMPLE provides a complete documentation
which includes a description of the tool, a tutorial and an
online FAQ section. It is easy to find information and so-
lutions for most of the common issues.

Method C
We focus on domain models encoded in OCLh with the help
of tools in GIPO-III, using basic consistency checkers as

...

Checking method carry direct(P,O,D)

found an unrecognised decomposition item: unload subject(P,D,V)’.

Check failed

Checking method carry direct(P,O,D)

found an unrecognised decomposition item: unload subject(P,D,V)’.

Check failed

Checking method transport(Subject,Org,Dest)

The static predicate in region(Org,Region) has no prototype

The static predicate in region(Dest,Region) has no prototype

Check failed

Doing task checks.

....

Figure 5: Part of output from GIPO: here the transparency of
HTN methods is checked and found to fail, with the likely
faulty components identified.

well as the more complex transparency property checker. Hi-
erarchies of classes are used to capture state: for example, in
the Road Traffic Accident domain, in a particular state an
ambulance may have a position, be in service and available.
The set of constraints are added using GIPO-III to encode
the behaviour of each of the dynamic object classes, that is,
the range of states that each object can occupy.

Operationality. The size of the OCLh model is larger than
the size of the PDDL models, because state constraints
are encoded explicitly, and HTN methods are specified
in addition to primitive ones. The structure of the solu-
tions is similar to the structure of solutions generated by
the LPG planner on the PDDL model developed in it-
SIMPLE. However, given the different nature of OCLh, it
seems to be impossible to provide a rigorous comparison
with PDDL.

Collaboration. GIPO has been designed for a single user.
However, it is possible to import models (projects) devel-
oped by different users. This helps the exchange of ideas
and comments among users.

Maintenance. Domain models generated by GIPO are gen-
erally easier to maintain than the hand-encoded ones,
due to the consistency checking opportunities during each
stage of the modelling process.

Experience. The typical user is not required to be an OCL
expert, but he should have some basic knowledge of the
language or the tool.

Efficiency. GIPO does not require creating UML diagram
like itSIMPLE, but it requires to explicitly encode the
constraints of the domain as transition diagrams, that are
then used to create operators. This method is usually
slower then the others, but the first model generated is
very close to the final one.

Debugging. The creation of a dynamic hierarchy of object
classes encoded constraints of the domain explicitly, and
this is what is used by GIPO’s tool support to check opera-
tor schema, states, predicates, etc., and identify bugs prior
to dynamic testing. Part of the output of the consistency
checking tools is shown in Figure 5.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

57

Support. GIPO comes with complete documentation which
includes a user manual, tutorial and OCL manual. It is
easy to find information and solutions for most of the
common issues.

Summary of lessons learned
We can now summarize the lessons that we learned by using
the three outlined methods for formulating requirements into
domain models.

We observed that creating different models does not take
very different amounts of time (taking into account the
developers expertise) while exploiting method A and B.
Method C usually requires significantly more time resource
than the others, because in addition the users have to provide
object hierarchies and invariants (for consistency check),
and also users have to encode HTN methods. As mentioned
before, in method C creation of a dynamic hierarchy of ob-
ject classes encoded constraints of the domain explicitly, and
this is what is used by GIPO’s tool support to check opera-
tor schema, states, predicates, etc., and identify bugs prior to
dynamic testing. While one could argue that dynamic test-
ing will pick bugs up anyway, there may be behaviours that
have not been picked up in the tests done in method A and
B, that result from hidden bugs. On the other hand the UML
description of the domain, that is required by itSIMPLE,
helps to prevent many unwanted behaviours. Method A is
the most sensitive to bugs, and the quality of the produced
model completely depend on the expertise of the user.

Considering the maintenance of the generated models,
method B provides the better instruments for changing a
model. The UML description provides a sort of documen-
tation that can be exploited for quickly understanding the
domain and for applying changes. An issue that we noticed
while working with itSIMPLE is that it is not possible to
import a model that, even if originally generated by using
itSIMPLE, has been slightly modified with a different tool.
This force users to make several steps in the framework also
for very small changes. In method C, the complex represen-
tation of domain models makes it more difficult for a non-
expert user to come back and maintain the model.

Regarding the generated models, there are several inter-
esting aspects to consider. Models generated by method A
are usually very compact in terms of numbers of lines, pred-
icates and types, but they are usually over-constrained in
order to avoid unwanted behaviours. The iterative process
of analyzing produced plans, identifying bugs and removing
them from the model leads to incrementally add constraints
in the form of pre- and/or post- conditions. The structured
and principled process of encoding the requirements of
Method B usually leads to domain encodings that are clear
and easy to understand, even if less compact (around 10%
longer) then the ones generated by method A. It is worth
mentioning that the good quality of the encoded domains
leads to good quality generated plans. The quality of models
generated by method C is harder to understand due to the
different language used. The models are significantly larger
than PDDL ones (about two times longer in terms of num-
ber of lines) and need a HTN planner to solve corresponding
problems. We observed that the structures of the solutions

are similar to solutions generated by domain-independent
planners on models developed by other methods. We believe
that a possible advantage of this approach might be the better
scalability than the PDDL models. However, current OCLh
techniques do not support durative actions, which makes it
less interesting in domains where time optimization is criti-
cal.

Needs in the design of future tools
The comparison of the three methods for encoding different
domain models was fruitful. It gave us the opportunity for
understanding the strengths and weaknesses of them, and to
highlight the needs that future tools should meet.

Expertise
A main issue of current KE approaches for encoding domain
models is that they require a specific expertise. Method A
(and some approaches based on existing KE tools such as
PDDL Studio) requires a PDDL expert, Method B requires
some expertise in UML language, which is common knowl-
edge mainly in software engineering. Finally, method C
requires some expertise in the OCLh language, which is not
a widely known language in the AI Planning community.
This requirement might significantly reduce the number of
potential users of the KE tools. Since users with different
research background usually do not have the required
expertise, they are not able to exploit existing approaches
for encoding domain models. They require an expert that,
due to his limited knowledge of the real world domain, will
introduce some noise in the encoding. Moreover, given the
hardness of generating domain models for planning, many
users are not exploiting automated planning but use easier
approaches, even if they are less efficient. It is also worth
considering that KE tools for encoding domain models
are, usually, not very well known outside the planning
community. This, again, reduces the number of potential
users that could exploit them.

Team work
Current KE tools are designed for a single user. This is
usually fine; actually, the generated domain models are
encoding easy domains or significantly simplified versions
of complex domains. On the other hand, the number of
efficient KE tools is growing, especially in the last few
years. Hopefully, in coming years, we will be able to encode
very accurate models of complex real-world domains. In
this scenario, it seems reasonable that many experts will
have to cooperate for generating a domain model. From this
perspective it is straightforward to consider the need of tools
explicitly designed for team work as a critical requirement
for future KE tools.

Maintenance
Users are not supported by existing KE tools in writing
documentation related to the generated model. As a result,
users are usually not writing any sort of documentation.
Given this, it is often quite hard to change an existing
domain model a few months after its generation. Providing
support for writing documentation would make changes

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

58

easier and would also help the users while encoding the
model. The process of describing what has been done is
a first test for the model. Furthermore, some tools are not
able to handle domain models that have been changed man-
ually, or by using a different tool. This limits the support
that such tools could give to the life cycle of domain models.

Debugging
We noticed that the checking tools provided by GIPO are
very helpful for minimizing the time spent on dynamic
debugging. Moreover, exploiting the automatic debugging is
a strategy for reducing the number of bugs that remain in the
domain model, since many problems are usually not easy to
find by dynamic debugging. A significant improvement in
the techniques for automatic debugging of static/dynamic
constraints will lead to significantly better encoded domain
models.

Language support
Finally, existing KE tools for generating domain models
for planning have a very limited support of the features of
PDDL language. Most of them are supporting only PDDL,
while a few of them are also able to handle some structures
of PDDL2.1 (Fox and Long 2001). It is noticeable that the
latest versions of PDDL have some features (e.g. durative
actions, actions costs, ...) that are fundamental for a cor-
rect encoding of real world domains. Furthermore, none of
the existing tools support PDDL+ (Howey, Long, and Fox
2004). PDDL+ provides features for dealing with continu-
ous planning, which is needed in systems working in real-
time and that must be able to react to unexpected events.
This is the case for the machine tool calibration domain that
we considered in this paper. In addition, during the imple-
mentation of this domain it was noticed that it can be dif-
ficult to model and debug multiple, interacting equations in
PDDL. The only way of currently evaluating the implemen-
tation is by using VAL with the domain, problem and so-
lution. A KE tool with support for PDDL+ with strong nu-
meric domains would be highly beneficial.

Conclusions
In this paper we have presented the state-of-the-art of
Knowledge Engineering tools for encoding planning domain
models. We introduced three real world domains that we
have encoded: the machine tool calibration, the road traf-
fic accident management and the urban traffic control. We
used and evaluated three different strategies for knowledge
formulation, encoding domain models from a textual, struc-
tural description of requirements using: (i) the traditional
method of a PDDL expert and text editor (ii) a leading plan-
ning GUI with built in UML modelling tools (iii) a hier-
archical, object-based notation inspired by formal methods.
We evaluate these methods using a set of criteria, i.e., opera-
tionality, collaboration, maintenance, experience, efficiency,
debugging and support. We observed that creating different
models does not take very different amounts of time. We
highlighted weaknesses of existing methods and tools and
we discussed the needed in the design of future tools sup-
port for PDDL-inspired development.

Future work will involve a simulation framework for eval-
uating plan execution, where we can couple model design
and plan generation more tightly. We are also interested
in improving the KE tools comparison by considering also
other existing tools and a larger set of features to compare,
such as quality of the solutions found and runtimes of differ-
ent planners on generated domain models.

Acknowledgements
The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1).

References
Barreiro, J.; Boyce, M.; Do, M.; Jeremy Frank, M. I.;
Kichkayloz, T.; Morrisy, P.; Ong, J.; Remolina, E.; Smith,
T.; and Smithy, D. 2012. EUROPA: A Platform for AI
Planning, Scheduling, Constraint Programming, and Opti-
mization. In Proceedings of the 22nd International Confer-
ence on Automated Planning & Scheduling (ICAPS-12) –
The 4th International Competition on Knowledge Engineer-
ing for Planning and Scheduling.
Bazzan, A. L. 2005. A distributed approach for coordination
of traffic signal agents. Autonomous Agents and Multi-Agent
Systems 10(1):131–164.
Bouillet, E.; Feblowitz, M.; Feng, H.; Ranganathan, A.; Ri-
abov, A.; Udrea, O.; and Liu, Z. 2009. Mario: middleware
for assembly and deployment of multi-platform flow-based
applications. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’09,
26:1–26:7. New York, NY, USA: Springer-Verlag New
York, Inc.
Castillo, L.; Fdez-olivares, J.; scar Garca-prez; and Palao,
F. 2006. Efficiently handling temporal knowledge in an htn
planner. In In Sixteenth International Conference on Auto-
mated Planning and Scheduling, ICAPS, 63–72. AAAI.
Daneshfar, F.; RavanJamjah, J.; Mansoori, F.; Bevrani, H.;
and Azami, B. Z. 2009. Adaptive fuzzy urban traffic flow
control using a cooperative multi-agent system based on two
stage fuzzy clustering. In Vehicular Technology Conference,
2009. VTC Spring 2009. IEEE 69th, 1–5.
Dusparic, I., and Cahill, V. 2009. Distributed w-learning:
Multi-policy optimization in self-organizing systems. In
Proceedings of the 2009 Third IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems, SASO
’09, 20–29. Washington, DC, USA: IEEE Computer Soci-
ety.
Dusparic, I., and Cahill, V. 2012. Autonomic multi-policy
optimization in pervasive systems: Overview and evaluation.
ACM Trans. Auton. Adapt. Syst. 7(1):11:1–11:25.
Edelkamp, S., and Hoffman, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical report, Albert-Ludwigs-Universität
Freiburg.
Feblowitz, M. D.; Ranganathan, A.; Riabov, A. V.; and
Udrea, O. 2012. Planning-based composition of stream pro-
cessing applications. and Exhibits 5.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

59

Fox, M., and Long, D. 2001. PDDL2.1: An extension
to PDDL for expressing temporal planning domains . In
Technical Report, Dept of Computer Science, University of
Durham.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An Approach
to Temporal Planning and Scheduling in Domains with Pre-
dictable Exogenous Events. JAIR 25:187–231.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
González-Ferrer, A.; Fernández-Olivares, J.; and Castillo, L.
2009. JABBAH: A java application framework for the trans-
lation between business process models and htn. In Work-
ing notes of the 19th International Conference on Automated
Planning & Scheduling (ICAPS-09) – Proceedings of the
3rd International Competition on Knowledge Engireeng for
Planning and Scheduling(ICKEPS), 28–37.
Howey, R.; Long, D.; and Fox, M. 2004. Automatic plan
validation, continuous effects and mixed initiative planning
using PDDL. In Proceedings of the Sixteenth International
Conference on Tools with Artificial Intelligence, 294 – 301.
Jimoh, F.; Chrpa, L.; Gregory, P.; and McCluskey, T. 2012.
Enabling autonomic properties in road transport system. In
The 30th Workshop of the UK Planning And Scheduling Spe-
cial Interest Group, PlanSIG 2012.
McCluskey, T. L., and Kitchin, D. E. 1998. A tool-supported
approach to engineering htn planning models. In In Proceed-
ings of 10th IEEE International Conference on Tools with
Artificial Intelligence.
McCluskey, T. L., and Simpson, R. 2006. Combining
constraint-based and classical formulations for planning do-
mains: GIPO IV. In Proceedings of the 25th Workshop of the
UK Planning and Scheduling SIG (PLANSIG-06), 55–65.
Owens, N.; Armstrong, A.; Sullivan, P.; Mitchell, C.; New-
ton, D.; Brewster, R.; and Trego, T. 2000. Traffic Incident
Management Handbook. Technical Report Office of Travel
Management, Federal Highway Administration.
Parkinson, S.; Longstaff, A.; Crampton, A.; and Gregory, P.
2012. The application of automated planning to machine
tool calibration. In Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2012.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012.
Inspect, edit and debug pddl documents: Simply and effi-
ciently with pddl studio. ICAPS12 System Demonstration
4.
Salkham, A.; Cunningham, R.; Garg, A.; and Cahill, V.
2008. A collaborative reinforcement learning approach to
urban traffic control optimization. In Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology - Volume 02,
WI-IAT ’08, 560–566. Washington, DC, USA: IEEE Com-
puter Society.
Shah, M.; McCluskey, T.; and Chrpa, L. 2012. Symbolic

representation of road traffic domain for automated planning
to manage accidents. In The 30th Workshop of the UK Plan-
ning And Scheduling Special Interest Group, PlanSIG 2012.
sheng Yang, Z.; Chen, X.; shan Tang, Y.; and Sun, J.-P. 2005.
Intelligent cooperation control of urban traffic networks. In
Machine Learning and Cybernetics, 2005. Proceedings of
2005 International Conference on, volume 3, 1482–1486
Vol. 3.
Simpson, R.; Kitchin, D. E.; and McCluskey, T. 2007. Plan-
ning domain definition using gipo. Knowledge Engineering
Review 22(2):117–134.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. Proceedings of ICAPS-08.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning domains. In Proceedings of the 17th International Con-
ference on Automated Planning & Scheduling (ICAPS-07),
336–343. AAAI Press.
Vaquero, T. S.; Tonaco, R.; Costa, G.; Tonidandel, F.; Silva,
J. R.; and Beck, J. C. 2012. itSIMPLE4.0: Enhancing
the modeling experience of planning problems. In Sys-
tem Demonstration – Proceedings of the 22nd International
Conference on Automated Planning & Scheduling (ICAPS-
12).
Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. A brief
review of tools and methods for knowledge engineering for
planning & scheduling. In Proceedings of the Knowledge
Engineering for Planning and Scheduling workshop – The
21th International Conference on Automated Planning &
Scheduling (ICAPS-11).
Vodráz̆ka, J., and Chrpa, L. 2010. Visual design of planning
domains. In KEPS 2010: Workshop on Knowledge Engi-
neering for Planning and Scheduling.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

60

A timeline, event, and constraint-based modeling framework
for planning and scheduling problems

Gérard Verfaillie and Cédric Pralet
ONERA - The French Aerospace Lab, F-31055, Toulouse, France

{Gerard.Verfaillie,Cedric.Pralet}@onera.fr

Abstract

This paper presents a framework dedicated to the mod-
eling of deterministic planning and scheduling prob-
lems. This framework is based on the notions of time-
lines (evolutions of state variables and of resource lev-
els), events which impact timelines, and constraints on
and between events. Building it has been motivated by
the observation that many real planning and scheduling
problems involve a finite set of events and that the main
question when solving them is to assign values to event
parameters (presence in the plan, position in the event
sequence, precise date, specific type-dependent param-
eters) by satisfying a finite set of constraints on these pa-
rameters and optimizing some function of some of these
parameters. This framework, we refer to as TECK for
Timelines, Events, and Constraints Knowledge, makes
it possible to express four kinds of knowledge that must
be combined when planning and scheduling: knowl-
edge about events (event presence and parameters), time
(event positions and dates), state (state variable evolu-
tions), and resources (discrete or continuous resource
evolutions).

Introduction
In classical scheduling problems, in Operations Research
(OR) (Baptiste, Pape, and Nuijten 2001), the basic notions
are tasks, time, and resources. The goal is to schedule a fi-
nite set of tasks by satisfying a set of temporal and resource
constraints and by optimizing a given criterion, for exam-
ple the time at which all tasks are performed (makespan).
On the contrary, in classical planning problems, in Artificial
Intelligence (AI) (Ghallab, Nau, and Traverso 2004), the ba-
sic notions are state variables, actions, and action precon-
ditions and effects. The goal is to build a finite sequence
of actions that leads the system from a given initial state
to a state that satisfies some goal conditions. Similar no-
tions of state variables, events, event preconditions (guards)
and effects (transitions) are at the basis of the modeling of
discrete event dynamic systems (Cassandras and Lafortune
2008) (automata, Petri nets, Markov processes). On the other
hand, in more basic combinatorial optimization frameworks
(linear programming, constraint programming, boolean sat-
isfiability), the basic notions are variables and constraints.
The goal is to assign values to variables in such a way that
all constraints are satisfied and a given criterion is optimized.

It is well recognized that neither classical scheduling,
nor classical planning frameworks can correctly model real-
world problems and that most of these problems combine
scheduling and planning features: need for reasoning on
time and resources as in scheduling and need for reason-
ing on states and event preconditions and effects as in plan-
ning. In fact when looking at the planning and scheduling
literature and at the many real-world problems we had to
face, we get convinced that four kinds of knowledge must
be expressed and handled: knowledge about events (how
events can or must be activated), about time (how events
are ordered and at which time they occur), about state (how
events change state values or evolutions), and about re-
sources (how events impact resource levels or evolutions).
Moreover, whereas classical planning considers that there
is no predefined bound on the number of actions in a plan,
we can claim that many real-world planning and scheduling
problems involve a predefined finite set of events and that
the main question when solving them is to assign values to
event parameters (presence in the plan, position in the event
sequence, precise date, specific type-dependent parameters)
by satisfying a finite set of constraints on these parameters
and optimizing some function of some of these parameters.

These observations led us to the definition of a new frame-
work dedicated to the modeling of deterministic planning
and scheduling problems (certain initial state and event ef-
fects). Its main ingredients are: static variables, dynamic
state variables, event types, events, constraints on events and
states, and some optimization criterion.

In this paper, we present this framework, we refer to
as TECK for Timelines, Events, and Constraints Knowl-
edge, by using as an illustrative example the Petrobras
planning and scheduling problem of ship operations for
petroleum ports and platforms, which has been one of the
challenges of the ICKEPS competition in 2012 (Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, http://icaps12.poli.usp.br/icaps12/ickeps).
See (Vaquero et al. 2012) for a problem description and
modeling, and (Toropila et al. 2012) for three modeling and
solving approaches.

We start with a short presentation of the illustrative exam-
ple we use. Then, we show how a planning domain and a
planning problem are defined and what an optimal solution
is in the TECK framework. Before concluding, we discuss

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

61

complexity and solving issues, and subsumed and related
frameworks.

Illustrative example
The Petrobras planning and scheduling problem is a kind
of logistics problem which involves a set of ports and plat-
forms, a set of vessels, and a set of items to be delivered
from ports to platforms. The goal is to deliver all items by
satisfying constraints on vessel capacities and speeds and
constraints on docking, undocking, loading, unloading, and
refueling operations at ports or platforms, and by optimiz-
ing some combination of three criteria (makespan, fuel con-
sumption, and docking cost). Its data is:
• a set Po of ports;
• a set Pf of platforms;
• a set Ve of vessels;
• a set It of items to be delivered;
• a set Wa of waiting areas;
• a subset Pfr ⊆ Pf of platforms where refueling is pos-

sible; refueling is possible at all the ports and at some
platforms, but not at the waiting areas;

• for each pair of locations l1, l2 ∈ Po∪Pf∪Wa, a distance
Dil1,l2 from l1 to l2;

• for each vessel v ∈ Ve:

– a capacity Civ (resp. Cfv) in terms of item weight (resp.
of fuel);

– a speed Spv: distance per time unit;
– a fuel consumption rate Rfev (resp. Rfcv) when v is

empty (resp. not empty): fuel per distance unit;
– a docking/undocking duration Dpov (resp. Dpfv) at a

port (resp. at a platform);
– a loading/unloading rate Riv at a port or platform:

weight per time unit;
– a refueling rate Rpov (resp. Rpfv) at a port (resp. at a

platform): fuel per time unit;
– an initial waiting area Ilv ∈Wa;
– an initial level of fuel Ifv;

• for each item i ∈ It:
– a loading location Lli ∈ Po ∪ Pf;
– an unloading location Uli ∈ Po ∪ Pf;
– a weight Wei;
• a docking cost Co per hour at a port;
• a maximum number Ns of steps in the sequence of vis-

its of each vessel: at each step, a vessel visits a port ot a
platform; a port or platform can be visited several times;
initial and final steps in waiting areas are excluded.
It is assumed that all vessels are initially empty in their

initial waiting areas. The goal is that all items be delivered
and that all vessels go empty in a waiting area, with a level
of fuel that allows them at least to reach a refueling location.

For each waiting area l ∈Wa and each vessel v ∈ Ve, let
Mfl,v = (minl′∈Po∪Pfr Dil,l′) ·Rfev be the minimum level
of fuel allowing v to reach a refueling station from l.

Planning domain definition
We adopt the usual distinction in planning between planning
domain and planning problem. In the TECK framework, a
planning domain is defined by:

• a finite set Vs of static variables;

• a finite set Vd of dynamic variables;

• a finite set De of dependencies between dynamic vari-
ables;

• a finite set Et of event types.

Static variables A static variable represents a planning
domain parameter that does not evolve due to successive
events. To model the Petrobras problem, we introduce two
sets of static variables:

• for each vessel v ∈ Ve, the number nv ∈ J0;NsK of steps
in its sequence of visits, initial and final steps in waiting
areas excluded;

• for each item i ∈ It, the vessel vi ∈ Ve that transports
it (it is assumed that any item is transported by a unique
vessel from its loading to its unloading location, directly
or not).

These variables must not be mistaken for problem data:
they are really variables whose value must be decided by the
planning process.

Dynamic variables A dynamic variable represents a plan-
ning domain parameter that evolves due to successive
events. We distinguish dynamic variables whose value re-
mains constant between two successive events (piecewise
constant evolution) and those whose value evolves contin-
uously with time between two successive events (linearly
or not; non piecewise constant evolution). See Figure 1 for
an illustration of the two kinds of evolution. To model the
Petrobras problem, we introduce four sets of dynamic vari-
ables:

• for each vessel v ∈ Ve, the current location lv ∈ Po∪Pf∪
Wa;

• for each vessel v ∈ Ve, the current charge cv ∈ [0;Civ] in
terms of item weight;

• for each vessel v ∈ Ve, the current level fv ∈ [0;Cfv] of
fuel;

• for each item i ∈ It, its status si ∈ {W,T,D} (W for
waiting, T for transit, and D for delivered).

The evolution of all these variables is piecewise constant.
We do not need to model the continuous evolution of the
level of fuel in each vessel. However, if we should model it,
the current level of fuel would be an example of dynamic
variable whose evolution is not piecewise constant (linear in
this case).

Dependencies Dependencies allow functional dependen-
cies between dynamic variables to be represented: the fact
that some variables functionally depend on other static or
dynamic variables. In the Petrobras problem, the current

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

62

time

Figure 1: Piecewise constant evolution of a dynamic variable
(above) and non piecewise constant evolution (below).

time

event e

t

Figure 2: Value of a dynamic variable after an event in case
of a piecewise constant evolution (above) and of a non piece-
wise constant evolution (below).

charge of a vessel v is the sum of the weights of the items
that are assigned to v and currently in transit:

∀v ∈ Ve : cv =
∑
i∈It

Wei · (vi = v) · (si = T) (1)

Event types With each event type et, are associated a fi-
nite set par(et) of parameters, a finite set pre(et) of precon-
ditions, and a finite set eff(et) of effects.

Each parameter is a variable.
Each precondition is a constraint on a subset of Vs ∪

par(et)∪Vd, where Vd represents the value of the dynamic
variables just before the event.

Each effect is either (1) a functional constraint on a subset
of Vs∪par(et)∪Vd∪Vd’, where Vd’ represents the value of
the dynamic variables just after the event, which expresses
the value of a dynamic variable after the event, in case of a
piecewise constant evolution, or (2) a functional constraint
on a subset of Vs∪par(et)∪Vd∪Vd’∪{t}, where t repre-
sents the time that went on from the event, which expresses
how a dynamic variable evolves continuously after the event,
in case of a non piecewise constant evolution. See Figure 2
for an illustration. Obviously, a dynamic variable cannot be
the target of several dependencies or effects (unique defi-
nition) and the graph induced by dependencies and effects
must be acyclic (no loop in definitions). If a variable appears
in no effect of an event, its value (in case of a piecewise con-
stant evolution) or its evolution function (in case of a non
piecewise constant evolution) remains unchanged.

To model the Petrobras problem, we use six event types
StDo, StUl, StLo, StRf, StUd, and StTr:
• event type StDo represents the starting of a docking oper-

ation at a port or platform; it has two parameters: a vessel

v ∈ Ve and a location l ∈ Po ∪ Pf; it has neither precon-
dition, nor effect;

• event type StUl represents the starting of an unloading op-
eration; it has three parameters: a vessel v ∈ Ve, a location
l ∈ Po ∪ Pf, and a set of items Iu ⊆ It to be unloaded;
it has two preconditions which respectively express that
one unloads all the items that are in transit in v and whose
unloading location is l, and that at least one item is un-
loaded:

Iu = {i ∈ It | (si = T) ∧ (vi = v) ∧ (Uli = l)} (2)
Iu 6= ∅ (3)

It has a set of effects, expressing that all the unloaded
items are now delivered:

∀i ∈ Iu : s′i = D (4)

The charge cv does not appear in event effects because its
new value can be inferred by dependency (see Eq. 1).

• event type StLo represents the starting of a loading oper-
ation; it has three parameters: a vessel v ∈ Ve, a location
l ∈ Po ∪ Pf, and a set of items Il ⊆ It to be loaded; it has
three preconditions which respectively express that one
loads only items that are waiting in l for loading in v, that
at least one item is loaded, and that the vessel capacity
cannot be exceeded:

Il ⊆ {i ∈ It | (si = W) ∧ (vi = v) ∧ (Lli = l)} (5)
Il 6= ∅ (6)

cv +
∑
i∈Il

Wei ≤ Civ (7)

It has a set of effects, expressing that all the loaded items
are now in transit:

∀i ∈ Il : s′i = T (8)

• event type StRf represents the starting of a refueling oper-
ation; it has three parameters: a vessel v ∈ Ve, a location
l ∈ Po∪Pfr, and a quantity f ∈ [0;Cfv] of fuel; it has two
preconditions which respectively express that the quantity
of fuel must be strictly positive, and that the vessel capac-
ity cannot be exceeded:

f > 0 (9)
fv + f ≤ Cfv (10)

It has one effect on the current level of fuel:

f ′v = fv + f (11)

• event type StUd represents the starting of an undocking
operation from a port or platform; it has two parameters:
a vessel v ∈ Ve and a location l ∈ Po ∪ Pf; it has neither
precondition, nor effect;

• finally, event type StTr represents the starting of a transit
from a location to another one; it has three parameters: a
vessel v ∈ Ve, a starting location l ∈ Po∪Pf∪Wa, and a
target location tl ∈ Po∪Pf∪Wa; it has six preconditions

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

63

which express that the starting location l must be the cur-
rent one, the target location tl must be different from the
starting one, there must be enough fuel to reach the target
location, and, when the target location tl is a waiting area,
all the items assigned to v must have been delivered and
tl will be reached with enough fuel to reach a refueling
station:

l = lv (12)
tl 6= l (13)
(cv = 0)→ (fv ≥ Dil,tl · Rfev) (14)

(cv > 0)→ (fv ≥ Dil,tl · Rfcv) (15)

(tl ∈Wa)→ (
∑
i∈It

((si 6= D) ∧ (vi = v)) = 0) (16)

(tl ∈Wa)→ (fv ≥ Dil,tl · Rfev + Mftl,v) (17)

On the other hand, it has three effects on the current loca-
tion and the current level of fuel:

l′v = tl (18)
(cv = 0)→ (f ′v = fv − Dil,tl · Rfev) (19)

(cv > 0)→ (f ′v = fv − Dil,tl · Rfcv) (20)

To model the Petrobras problem, we consider only events
associated with the starting of operations. Operation dura-
tions will be taken into account via temporal constraints be-
tween events (see the next section).

Planning problem definition
In the TECK framework, a planning problem is defined by:

• a planning domain Pd = 〈Vs,Vd,De,Et〉;
• an initial state I;
• a temporal horizon H;
• a finite set E of events;
• a finite set Cs of constraints on static variables;
• a finite set Ce of constraints on events;
• a finite set Cd of constraints on states;
• a criterion Cr to be optimized.

Initial state The initial state is defined by a finite set of
initial effects. As with event effects, each initial effect is
either (1) a functional constraint on a subset of Vs ∪ Vd’,
where Vd’ represents the value of the dynamic variables
just after initialization, which expresses the value of a dy-
namic variable after initialization in case of a piecewise con-
stant evolution, or (2) a functional constraint on a subset
of Vs ∪ Vd’ ∪ {t}, where t represents the time that went
on from initialization, which expresses how a dynamic vari-
able evolves continuously after initialization in case of a non
piecewise constant evolution. Obviously, a dynamic vari-
able cannot be the target of several dependencies or effects
(unique definition) and the graph induced by dependencies
and effects must be acyclic (no loop in definitions). An ini-
tial effect must be defined for every dynamic variable that is
not the target of a dependency.

In the Petrobras problem, the initial state is defined by the
following equations:

∀v ∈ Ve : (l′v = Ilv) ∧ (f ′v = Ifv) (21)
∀i ∈ It : s′i = W (22)

Temporal horizon The temporal horizon is an interval of
reals or integers, defined by an initial time Ts and a final
time Te, equal to +∞ in case of unbounded horizon.

In the Petrobras problem, the temporal horizon is the in-
terval of reals [0; +∞[.

Events Let Ne = |E| be the finite number of events to
be considered. Each event e is defined by its name nam(e),
its type typ(e), its presence pres(e) (events may be either
present or absent), its position pos(e) in the event sequence
(all events are totally ordered), its date dat(e), and the val-
ues of its parameters par(e). Name and type are constant,
whereas presence, position, date, and parameter values are
variables. Type typ(e) is an element of Et. Presence pres(e)
is a boolean (1 in case of presence and 0 otherwise). Posi-
tion pos(e) is an integer between 1 and Ne. Date dat(e) is an
element of H. par(e) is a copy of par(typ(e)): for each pa-
rameter, same name, same type, and same domain of value.
When an event is absent, its position, date, and parameters
take default non significant values.

To model the Petrobras problem, we associate with each
vessel v ∈ Ve an event stTrv,0 of type StTr which repre-
sents the first transit. Moreover, with each vessel v ∈ Ve
and each step j ∈ [1..Ns], we associate six events stDov,j ,
stUlv,j , stLov,j , stRfv,j , stUdv,j , and stTrv,j of respec-
tive types StDo, StUl, StLo, StRf, StUd, and StTr, which
represent respectively the starting of docking, unloading,
loading, refueling, undocking, and transit.

Constraints on static variables A constraint on static
variables is a constraint on any subset of Vs.

In the Petrobras problem, we have a set of constraints
on static variables that express that, if a vessel must deliver
items, it must visit at least one port or platform:

∀v ∈ Ve : (
∑
i∈It

(vi = v) > 0)↔ (nv > 0) (23)

Constraints on events A constraint on events
is a constraint on any subset of Vs ∪ (∪e∈E
({pres(e),pos(e),dat(e)} ∪ par(e))). In the Petrobras
problem, we have the following set of constraints on events.

Case of the unused vessels; either they do not move, or
they transit to another waiting area:

∀v ∈ Ve : (nv = 0)→ (24)
((pres(stTrv,0) = 0) ∨
((pres(stTrv,0) = 1) ∧
(dat(stTrv,0) = 0) ∧ (v(stTrv,0) = v) ∧
(l(stTrv,0) = Ilv) ∧ (tl(stTrv,0) ∈Wa)))

Case of the used vessels; they first transit to a port or plat-
form:

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

64

∀v ∈ Ve : (nv > 0)→ (25)
((pres(stTrv,0) = 1) ∧
(dat(stTrv,0) = 0) ∧ (v(stTrv,0) = v) ∧
(l(stTrv,0) = Ilv) ∧ (tl(stTrv,0) ∈ Po ∪ Pf))

For each vessel, absence of events beyond the number of
steps:

∀v ∈ Ve, (26)
∀j ∈ J1;NsK : (j > nv)→

((pres(stDov,j) = 0) ∧
(pres(stUlv,j) = 0) ∧
(pres(stLov,j) = 0) ∧
(pres(stRfv,j) = 0) ∧
(pres(stUdv,j) = 0) ∧
(pres(stTrv,j) = 0))

For each vessel, presence of events of type docking, un-
docking, and transit until the number of steps; at each step,
docking, undocking, and transit are mandatory, but unload-
ing, loading, and refueling are not:

∀v ∈ Ve, (27)
∀j ∈ J1;NsK : (j ≤ nv)→

((pres(stDov,j) = 1) ∧
(pres(stUdv,j) = 1) ∧
(pres(stTrv,j) = 1))

For each vessel, presence of events of type unloading,
loading, and refueling until the number of steps; at least
one operation between unloading, loading, and refueling is
present (one does not visit a location to do nothing):

∀v ∈ Ve, (28)
∀j ∈ J1;NsK : (j ≤ nv)→

(pres(stUlv,j) + pres(stLov,j) + pres(stRfv,j) > 0)

For each vessel and each present event, event parameters
(vessel and location):

∀v ∈ Ve, (29)
∀j ∈ J1;NsK : (j ≤ nv)→

((v(stDov,j) = v) ∧
((pres(stUlv,j) = 1)→ (v(stUlv,j) = v)) ∧
((pres(stLov,j) = 1)→ (v(stLov,j) = v)) ∧
((pres(stRfv,j) = 1)→ (v(stRfv,j) = v)) ∧
(v(stUdv,j) = v) ∧
(v(stTrv,j) = v))

∀v ∈ Ve, (30)
∀j ∈ J1;NsK : (j ≤ nv)→

((l(stDov,j) = tl(stTrv,j−1)) ∧
((pres(stUlv,j) = 1)→ (l(stUlv,j) = tl(stTrv,j−1)) ∧
((pres(stLov,j) = 1)→ (l(stLov,j) = tl(stTrv,j−1))) ∧
((pres(stRfv,j) = 1)→ (l(stRfv,j) = tl(stTrv,j−1)) ∧
(l(stUdv,j) = tl(stTrv,j−1)) ∧
(l(stTrv,j) = tl(stTrv,j−1)))

Docking

Refueling

Unloading Loading

TransitUndockingPrevious transit

time

Figure 3: Temporal constraints between operations at any
step.

Constraints on event dates: docking must follow transit
from the previous location (we assume that one can wait at
sea before docking); if present, unloading must immediately
follow docking and, if present, loading must immediately
follow unloading whereas, if present, refueling must imme-
diately follow docking and be performed concurrently with
unloading and loading; undocking is performed as soon as
unloading, loading, and refueling are finished in order to
limit docking costs; finally, transit to the next location must
immediately follow undocking; see Figure 3 for a global
view of temporal constraints; we present these constraints
only for the starting dates of docking and unloading; the
other ones can be written similarly.

Docking starting date, taking into account transit time:

∀v ∈ Ve, (31)
∀j ∈ J1;NsK : (j ≤ nv)→

(dat(stDov,j) ≥ dat(stTrv,j−1) +

Dil(stTrv,j−1),tl(stTrv,j−1)
/Spv)

Unloading starting date, taking into account docking time:

∀v ∈ Ve, (32)
∀j ∈ J1;NsK : ((j ≤ nv) ∧ (pres(stUlv,j) = 1))→

(((l(stDov,j) ∈ Po)→
(dat(stUlv,j) = dat(stDov,j) + Dpov)) ∧
((l(stDov,j) ∈ Pf)→
(dat(stUlv,j) = dat(stDov,j) + Dpfv)))

Transit target locations; one transits to a waiting area only
at the last step:

∀v ∈ Ve, ∀j ∈ J1;NsK : (j < nv)→ (33)
(tl(stTrv,j) ∈ Po ∪ Pf)

∀v ∈ Ve : tl(stTrv,nv) ∈Wa (34)

At any time, no more than one vessel docked at a plat-
form:

∀v,∀v′ ∈ Ve | v 6= v′, (35)
∀j, ∀j′ ∈ J1;NsK : ((j ≤ nv) ∧ (j′ ≤ nv′) ∧

(l(stDov,j) ∈ Pf) ∧
(l(stDov′,j′) = l(stDov,j)))→
((dat(stTrv,j) ≤ dat(stDov′,j′)) ∨
(dat(stTrv′,j′) ≤ dat(stDov,j)))

At any time, no more than two vessels docked at a port:

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

65

∀v ∈ Ve, (36)
∀j ∈ J1;NsK : ((j ≤ nv) ∧ (l(stDov,j) ∈ Po))→

((
∑

v′∈Ve,j′∈J1;NsK | v 6=v′

((j′ ≤ nv′)∧

(l(stDov′,j′) = l(stDov,j))∧
(dat(stDov′,j′) ≤ dat(stDov,j) < dat(stTrv′,j′))))
≤ 1)

Constraints on states Let Ss be the finite sequence of sys-
tem states, function of the finite sequence of events (see
the following section). For each dynamic variable v ∈ Vd
and each state s ∈ Ss, let val(v, s) be the value of v in
s. A constraint on states is a constraint on any subset of
Vs ∪ {val(v, s)|s ∈ Ss, v ∈ Vd}. However, to model the
Petrobras problem, we do not need to use any constraint on
states.

Criterion The criterion Cr is a function of any sub-
set of Vs ∪ {val(v, s)|s ∈ Ss, v ∈ Vd} ∪
(∪e∈E({pres(e),pos(e),dat(e)} ∪ par(e))) in a totally or-
dered set. In the Petrobras problem, the criterion (to be min-
imized) may be any combination of three criteria, which are
all only function of events.

Consumed fuel quantity:

∑
v∈Ve

Ns∑
j=1

pres(stRfv,j) · f(stRfv,j) (37)

Makespan (date of arrival of the last vessel at a waiting
area):

maxv∈Ve pres(stTrv,nv) · (38)

(dat(stTrv,nv) + Dil(stTrv,nv),tl(stTrv,nv)/Spv)

Docking cost:∑
v∈Ve

∑Ns
j=1 Co · (j ≤ nv) · (l(stDov,j) ∈ Po) · (39)

(dat(stTrv,j)− dat(stDov,j))

Planning problem solution
In this section, we define the framework semantics, that is
what an assignment, a solution, and an optimal solution of a
planning problem are in TECK.

Assignment An assignment A of a planning problem P =
〈〈Vs,Vd,De,Et〉, I,H,E,Cs,Ce,Cd,Cr〉 is a pair made
of:

• an assignment As of the static variables in Vs;
• an assignment Ae of the events in E.

An assignment As of Vs assigns to every static variable
v ∈ Vs a value from its domain. An assignment Ae of E
assigns, for every event e ∈ E, a value to pres(e) (0 or 1). If
pres(e) = 1 (present event), it assigns to pos(e), to dat(e),
and to every parameter in par(e) a value from their respec-
tive domains.

Sequence of events We assume the following default con-
straints on event presences, positions, and dates:

Total order on present events:

∀e ∈ E : 1 ≤ pos(e) ≤
∑
e∈E

pres(e) (40)

∀e, e′ ∈ E | e 6= e′ : pos(e) 6= pos(e′) (41)

Consistency of dates with regard to positions:

∀e, e′ ∈ E | e 6= e′ : (pos(e) < pos(e′))→ (dat(e) ≤ dat(e′)) (42)

As it is assumed in basic modeling frameworks for dis-
crete event dynamic systems, such as automata or Petri nets,
and differently from what is often assumed in classical plan-
ning, events may occur at exactly the same time, but are to-
tally ordered.

As a consequence, an assignment Ae of E induces
a finite sequence Es of present events, of the form
[e1, . . . , ei, . . . , ene], where ne =

∑
e∈E pres(e) is the

number of present events.

Sequence of states Due to initialization and event ef-
fects, an assignment A of a planning problem in-
duces a finite sequence Ss of states, of the form
[s′0, s1, s

′
1, . . . , si, s

′
i, . . . , sne, s′ne] if Te = +∞, and of the

form [s′0, s1, s
′
1, . . . , si, s

′
i, . . . , sne, s′ne, sne+1] otherwise.

s′0 is the state after initialization. For each i ∈ J1;neK, si
is the state just before event ei and s′i the state just after.
If Te 6= +∞, sne+1 is the state at the end of the temporal
horizon. Distinguishing the state before and after an event
is necessary in case of non piecewise constant evolutions of
dynamic variables.

Solution An assignment A = 〈As,Ae〉 of a planning prob-
lem P = 〈〈Vs,Vd,De,Et〉, I,H,E,Cs,Ce,Cd,Cr〉 is solu-
tion if and only if:

• As satisfies all the constraints in Cs;
• Ae satisfies all the constraints in Ce, including the default

constraints on event presences, positions, and dates;
• the sequence Ss of states induced by A satisfies all the

constraints on domains of value of dynamic variables, all
the event preconditions, and all the constraints in Cd.

Optimal solution A solution is optimal if and only if there
is no other solution inducing a better value of Cr.

Complexity and subsumed frameworks
It can be shown that the decision problem associated with
the TECK framework (existence or not of a solution plan) is
NP-complete. It belongs to NP because checking that a given
plan is solution is obviously polynomial. It is NP-complete
because the CSP problem is NP-complete and any CSP p
can be transformed into a TECK problem with a static part
which is a copy of p and an empty dynamic part.

It can be shown that the TECK framework allows existing
problems and frameworks to be modeled, such as for exam-
ple:

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

66

• the RCPSP problem (Resource Constrained Project
Scheduling Problem (Baptiste, Pape, and Nuijten 2001));

• the HTN framework (Hierarchical Task Networks (Nau et
al. 2003)), if we assume that the tree of possible decom-
positions is finite;

• the STRIPS framework (Fikes and Nilsson 1971), pro-
vided that the number of actions in a plan be bounded
(one does not require that the number of actions be fixed;
we only need that a maximum number be defined).

Proofs of subsumption are omitted for space reasons.

Solving issues
Although this paper focuses on modeling issues, we cannot
ignore that any modeling framework is the result of a diffi-
cult tradeoff between modeling issues (one wants to model
as precisely as possible physical systems and user require-
ments) and solving issues (one wants to maintain the solving
complexity as low as possible).

One can first observe that any TECK problem can be
transformed into a CSP problem, more precisely into a form
of dynamic CSP problem (Mittal and Falkenhainer 1990),
because of the presence or absence of events. So, any con-
straint solver can be used to solve planning and scheduling
problems expressed in the TECK framework.

This is an option, but not necessarily the best one, be-
cause it may not correctly exploit the particular structure of
TECK problems. This why we are currently working on effi-
cient local search algorithms which could be used to perform
offline or online planning. Such algorithms, based on addi-
tions or removals of events and changes in event parameters,
could be non chronological (choices not performed follow-
ing a chronological order) and be consequently less blind
and more heurisitically informed than the classical chrono-
logical planning algorithms.

Discussion and related frameworks
If we look at the TECK framework, we can first notice that
it allows two kinds of constraints on plans to be expressed:
(i) event preconditions and effects which are Markovian be-
cause they connect only the current state, the current event,
and the next state, and (ii) constraints on events which may
be non Markovian because they can connect any subset of
events in the sequence of events. The first kind of con-
straints is usual in planning and, more generally, in the
modeling of discrete event dynamic systems. The second
one is less usual in planning, although it is very useful to
express physical constraints, user requirements, or heuris-
tics on plans. In the modeling of discrete event dynamic
systems, temporal logics (Emerson 1990) is often used to
model this kind of constraints and several works already
proposed to introduce temporal logics in planning in order
to express constraints on plans (Bacchus and Kabanza 2000;
Kvarnström and Doherty 2001). In the TECK framework,
this kind of constraints is expressed by using constraints on
event parameters. Whereas event preconditions allow ”what
can be” to be expressed, constraints on event parameters also
allow ”what must be” to be expressed (for example events

that must be present, possibly due to the presence of other
events).

The introduction of static variables and constraints is an-
other originality of the TECK framework. They are very use-
ful when modeling planning problems, as it is clear in the
Petrobras example. They are strangely unusual in planning,
although the idea is already present in the discrete event
dynamic systems community (Cimatti, Palopoli, and Rama-
dian 2008) with the notion of parametric timed automata.

On the other hand, it is clear that the need to associate
a maximum number of events with each event type (we as-
sume a finite number of events, present or not, each one with
a fixed type) is the main limitation of the TECK framework.
However, our experience in the modeling of many planning
and scheduling problems in the aerospace domain and be-
yond allows us to claim that, in many real-world problems,
it is possible to define reasonable bounds on the number of
events.

With regard to classical scheduling (Baptiste, Pape, and
Nuijten 2001) and to constraint programming tools that have
been built to deal with scheduling problems (IBM ILOG),
the TECK framework adds states, events, and state transi-
tions. However, (Serra, Nishioka, and Marcellino 2012) uses
IBM ILOG to model a Petrobras planning problem which is
different from, but close to the 2012 ICKEPS competition
challenge, used in this paper.

With regard to classical planning (Ghallab, Nau, and
Traverso 2004) and usual planning languages (Fox and Long
2003), it adds static variables and constraints, and con-
straints on events. With regard to SAT or CSP-based plan-
ning approaches (Kautz and Selman 1992), it allows the
presence and the position of events to be variable: for ex-
ample, in the Petrobras problem, for each vessel v, at any
step beyond the variable number nv of steps, all events
are absent and, at any step until nv , docking, undocking,
and transit events are present, but unloading, loading, and
refueling events may be present or not (see Eqs. 26 and
27); moreover, the dates and thus the relative positions
of events on different vessels are not predetermined. Fi-
nally, with regard to planning systems that are based on
the common notion of timelines such as IxTeT, Europa, or
APSI (Ghallab and Laruelle 1994; Frank and Jónsson 2003;
Fratini, Pecora, and Cesta 2008), it offers simplicity and
clear semantics.

The TECK framework inherits some features from frame-
works we previously proposed. However, the CNT frame-
work (Constraint Networks on Timelines (Verfaillie, Pralet,
and Lemaı̂tre 2010)), based on the notion of dynamic con-
straint which connects a variable number of variables, was
certainly too general. Moreover, it did not make any dis-
tinction between states and events. In the CTA framework
(Constraint Timed Automata (Pralet and Verfailllie 2012)),
the so-called activation constraints (events activating other
events) were not clearly formalized.

Some choices may be arguable in the definition of the
TECK framework, such as for example the choice of event
rather than durative action as the elementary building block
in the framework. We think that such a choice makes for the
maximum flexibility (it is always preferable to use the most

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

67

basic elements as elementary building blocks) and that it
does not prevent from building more complex blocks by us-
ing elementary ones (a durative action can be easily defined
as a pair of events with the following constraints: presence
(resp. absence) of action implies presence (resp. absence)
of both events and presence implies a temporal distance be-
tween starting and ending events).

Finally, we think that the case where dynamic variables
represent (numeric) resource levels, with events which add
(subtract) quantities to (from) resource levels or slopes, rep-
resents a very important sub-framework, for which more ef-
ficient algorithms can be designed. This is what we started
doing with (Pralet and Verfaillie 2013).

Conclusion and perspectives
In this paper we proposed a framework we think to be
adequate for the modeling of the real-world planning and
scheduling problems we encountered in the aerospace do-
main and beyond. Based on the notions of timelines, events,
and constraints, it allows knowledge about events (event
presence and parameters), time (event positions and dates),
state (state variable evolutions), and resources (discrete or
continuous resource evolutions) to be expressed. The next
steps will consist in:

• verifying that many diverse planning and scheduling
problems can effectively be modeled in the TECK frame-
work;

• defining first useful constructs on top of the TECK ba-
sic framework, such as durative actions, temporal and re-
source constraints;

• exploring several solving alternatives, inspired from the
background in combinatorial optimization, but exploiting
the specific structure of TECK problems, with the objec-
tive to get efficient either optimal, or approximate anytime
algorithms.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence 16:123–191.
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001. Constraint-
based Scheduling: Applying Constraint Programming to
Scheduling Problems. Kluwer Academic Publishers.
Cassandras, C., and Lafortune, S. 2008. Introduction to
Discrete Event Systems. Springer.
Cimatti, A.; Palopoli, L.; and Ramadian, Y. 2008. Sym-
bolic Computation of Schedulability Regions using Para-
metric Timed Automata. In Proc. of RTSS-08, 80–89.
Emerson, E. 1990. Temporal and Modal Logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, Volume B:Formal Models and Semantics. Elsevier.
995–1072.
Fikes, R., and Nilsson, N. 1971. STRIPS: a New Approach
to the Application of Theorem Proving. Artificial Intelli-
gence 2:189–208.

Fox, M., and Long, D. 2003. PDDL2.1 : An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Frank, J., and Jónsson, A. 2003. Constraint-Based Attribute
and Interval Planning. Constraints 8(4):339–364.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-based
Perspective. Archives of Control Sciences 18(2):5–45.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in IxTeT: a Temporal Planner. In Proc. of AIPS-94,
61–67.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
IBM ILOG. IBM ILOG CPLEX
Optimization Studio. http://www-
01.ibm.com/software/integration/optimization/cplex-
optimization-studio/.
Kautz, H., and Selman, B. 1992. Planning as Satisfiability.
In Proc. of ECAI-92, 359–363.
Kvarnström, J., and Doherty, P. 2001. TALplanner: A Tem-
poral Logic Based Forward Chaining Planner. Annals of
Mathematics and Artificial Intelligence 30:119–169.
Mittal, S., and Falkenhainer, B. 1990. Dynamic Constraint
Satisfaction Problems. In Proc. of AAAI-90, 25–32.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research 20:379–404.
Pralet, C., and Verfaillie, G. 2013. Dynamic Online Plan-
ning and Scheduling using a Static Invariant-based Evalua-
tion Model. In Proc. of ICAPS-13.
Pralet, C., and Verfailllie, G. 2012. Combining Static and
Dynamic Models for Boosting Forward Planning. In Proc.
of CP-AI-OR-12, 322–338.
Serra, T.; Nishioka, G.; and Marcellino, F. 2012. The Off-
shore Resources Scheduling Problem: Detailing a Constraint
Programming Approach. In Proc. of CP-12, 823–839.
Toropila, D.; Dvoràk, F.; Trunda, O.; Hanes, M.; and Bartàk,
R. 2012. Three Approaches to Solve the Petrobras Chal-
lenge. In Proc. of ICTAI-12, 191–198.
Vaquero, T.; Costa, G.; Tonidandel, F.; Igreja, H.; Silva, J.;
and Beck, C. 2012. Planning and Scheduling Ship Oper-
ations on Petroleum Ports and Platforms. In Proc. of the
ICAPS-12 Workshop on ”Scheduling and Planning Applica-
tions” (SPARK-12).
Verfaillie, G.; Pralet, C.; and Lemaı̂tre, M. 2010. How to
Model Planning and Scheduling Problems using Timelines.
The Knowledge Engineering Review 25(3):319–336.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

68

Using Static Graphs in Planning Domains to Understand Domain Dynamics∗

Gerhard Wickler
Artificial Intelligence Applications Institute

University of Edinburgh
Edinburgh, Scotland

Abstract
This paper describes a method for analyzing STRIPS-like
planning domains by identifying static graphs that are im-
plicit in the set of operators defining a planning domain. A
graph consisting of nodes and possibly directed edges is a
common way to construct representations for many problems,
including computational problems and problems of reasoning
about action. Furthermore, there may be objects or properties
related to the nodes of such a graph that may be modified
by the operators in ways restricted by the graph. The formal
definition of shift operators over static graphs as a domain
feature is the main contribution of this paper.
Such an analysis could be used for verification and valida-
tion of the planning domain when it is presented to the do-
main author who may or may not agree with the result of
the analysis. The method described relies on domain fea-
tures that can also be extracted automatically, and it works
on domains rather than problems, which means the result is
problem-independent. However, if problems are given further
analysis may be perfomed. The method has been evaluated
using a small number of planning domains drawn from the
international planning competition.

Introduction
Specifying a planning domain and a planning problem in a
formal description language defines a search space that can
be traversed by a state-space planner to find a solution plan.
It is well known that this specification process, also known
as problem formulation [Russell and Norvig, 2003], is es-
sential for enabling efficient problem-solving though search
[Amarel, 1968]. However, the most efficient representation
is often hard to understand, verify and maintain. One way
to ensure the correctness of a problem specification is to en-
force consistency. Obviously this does not guarantee cor-
rectness, but it may highlight problems to the knowledge
engineer.

Consistency can be enforced if the representation contains
some redundancy. We have described a set of domain fea-
tures [Wickler, 2011] that can be used to assist during the

∗This work has been sponsored by the Engineering and
Physical Sciences Research Council (UK) under grant number
EP/J011800/1. The University of Edinburgh and research spon-
sors are authorized to reproduce and distribute reprints and online
copies for their purposes notwithstanding any copyright annotation
hereon.

verification and validation of planning domains by exploit-
ing information implicit in the planning domain. The fea-
tures are: domain types, relation fluency, inconsistent effects
and reversible actions. These features can be efficiently and
automatically extracted from a planning domain. If the plan-
ning domain also contains an explicit specification of these
features then these represent redundant information that can
be compared and used to enforce consistency, by which we
mean that the feature values specified by the knowledge en-
gineer should be the same as the ones that can be automat-
ically extracted. Hopefully, this will lead to a planning do-
main that is in line with what the knowledge engineer in-
tended to represent.

Knowledge Engineering
Knowledge engineering (KE) for planning domains is a
topic that has received relatively little attention in the AI
planning community and much work is still needed in the
area. However, with planners becoming more efficient, the
problems they can solve in reasonable time are becoming
larger, and so the planning domains may be larger and more
complex to engineer.

KE Methodology
The design process for planning domain models is similar to
the knowledge engineering process followed for other types
of software models. The baseline phases for planning do-
mains described in [Vaquero et al., 2011] are the following:

1. requirements specification

2. knowledge modeling

3. model analysis

4. deployment to planner

5. plan synthesis

6. plan analysis and post-design

The work described in this paper focusses on the third
phase, model analysis, which includes the verification and
validation of the planning domain model.

One of the most advanced systems in this area is GIPO
[Simpson, 2007] which includes support for the complete
KE process, including model analysis. GIPO goes well be-
yond simple syntactic checks, verifying the consistent use

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

69

of a type hierarchy and predicate templates, as well as more
advanced features such as invariants. It also includes a tool
that visualizes domain dynamics for the knowledge engi-
neer. Another graphical system supporting KE for planning
domains is itSIMPLE [Vaquero et al., 2007]. Static support
for model analysis is mostly visual, using multiple views
which can also be interpreted as a kind of redundancy.

The target output in most KE systems for planning is
the Planning Domain Definition Language (PDDL) [Fox and
Long, 2003], which has become a de-facto standard for spec-
ifying STRIPS-like planning domains and problems with var-
ious extensions. PDDL allows for the specification of some
auxiliary information about a domain, such as types, but this
information is optional.

Domain Features
Amongst the features mentioned above, domain types have
received significant attention in the planning literature. A
rigorous method for problem formulation in the case of plan-
ning domains was presented in [McCluskey and Porteous,
1997]. In the second step of their methodology types are ex-
tracted from an informal description of a planning domain.
Types have been used as a basic domain feature in TIM [Fox
and Long, 1998]. Their approach exploits functional equiv-
alence of objects to derive a hierarchical type structure. This
work has later been extended to infer generic types such as
mobiles and resources that can be exploited to optimize plan
search [Coles and Smith, 2006].

The distinction between rigid and fluent relations [Ghal-
lab et al., 2004] is common in AI planning and will be dis-
cussed below. Inconsistent effects of different actions are ex-
ploited in the GraphPlan algorithm [Blum and Furst, 1995]
to define the mutex relation. However, this is applied to
pairs of actions (i.e. fully ground instances of operators)
rather than operators. Reversible actions, as a domain fea-
ture, are not related to regression of goals, meaning this fea-
ture is unrelated to the direction of search (forward from the
initial state or regressing backwards from the goal). A for-
mal treatment of reversibility of actions (or operators) does
not appear to feature much in the AI planning literature, de-
spite the fact that reversible actions are common in planning
domains. However, in generic search problems they are a
common technique used to prune search trees [Russell and
Norvig, 2003].

Preprocessing of planning domains is a technique that has
been used to speed up the planning process [Dawson and
Siklossy, 1977]. Perhaps the most common preprocessing
step is the translation of the STRIPS (function-free, first-
order) representation into a propositional representation. An
informal algorithm for this is described in [Ghallab et al.,
2004, section 2.6]. A conceptual flaw in this algorithm
(highlighted by the analysis of inconsistent effects) was de-
scribed in [Wickler, 2011].

Static and Fluent Relations
A domain feature that is useful for the analysis of planning
domains concerns the relations that are used in the definition
of the operators. The set of predicates used here can be di-
vided into static (or rigid) relations and fluent (or dynamic)

relations, depending on whether atoms using this predicate
can change their truth value from state to state.

Definition 1 (static/fluent relation) Let O =
{O1, . . . , On(O)} be a set of operators and let
P = {P1, . . . , Pn(P)} be a set of all the predicate
symbols that occur in these operators. A predicate Pi ∈ P
is fluent iff there is an operator Oj ∈ O that has an effect
that uses the predicate Pi. Otherwise the predicate is static.

The algorithm for computing the sets of fluent and static
predicate symbols is trivial and hence, we will not list it here.

There are at least two ways in which this information can
be used in the validation of planning problems. Firstly, if
the domain definition language allowed the domain author
to specify whether a relation is static or fluent then this could
be verified when the domain is parsed. This might highlight
problems with the domain. This use requires only a planning
domain to be provided. Secondly, if a planning problem that
uses additional relations is given, these could be highlighted
or simply removed from the initial state.

Type Information
Many planning domains include explicit type information.
In PDDL the :typing requirement allows the specification
of typed variables in predicate and operator declarations. In
problem specifications, it allows the assignment of constants
or objects to types. If nothing else, typing tends to greatly
increase the readability of a planning domain. However, it is
not necessary for most planning algorithms to work, and the
analysis techniques described here require neither a problem
nor explicit types to be given.

Type Consistency The simplest kind of type system often
used in planning is one in which the set of all constants C
used in the planning domain and problem is divided into dis-
joint types T . That is, each type corresponds to a subset of
all constants and each constant belongs to exactly one type.
This is the kind of type system we will look at here.

Definition 2 (type partition) A type partition P is a tuple
〈C, T, τ〉 where:

• C is a finite set of n(C) ≥ 1 constant symbols C =
{c1, . . . , cn(C)},
• T is a set of n(T) ≤ n(C) types T = {t1, . . . , tn(T)},

and
• τ : C → T is a function defining the type of a given

constant.

A type partition divides the set of all constants that may
occur in a planning problem into a set of equivalence classes.
However, constants are only necessary to define the types’
extension. As we shall show, the intension is implicit in the
operators that constitute the planning domain alone. The
availability of a type partition can be used to limit the space
of world states that may be searched by a planner. In general,
a world state in a planning domain can be any subset of the
powerset of the set of ground atoms over predicates P with
arguments from C.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

70

Definition 3 (type function) Let P = {P1, . . . , Pn(P)}
be a set of n(P) predicate symbols with associated ar-
ities a(Pi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for predicates is a function

argP : P × N→ T
which, for a given predicate symbol Pi and argument num-
ber 1 ≤ k ≤ a(Pi) gives the type argP (Pi, k) ∈ T of that
argument position.

This is the kind of type specification we find in PDDL do-
main definitions as part of the definition of predicates used
in the domain, provided that the typing extension of PDDL is
used. The type function is defined by enumerating the types
for all the arguments of each predicate.

Definition 4 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Pi ∈ P be a predicate symbol and let
c1, . . . , ca(Pi) ∈ C be constant symbols. The ground first-
order atom Pi(c1, . . . , ca(Pi)) is type consistent iff τ(ck) =
argP (Pi, k). A world state is type consistent iff all its mem-
bers are type consistent.

Thus, for a given predicate Pi there are |C|a(Pi) possible
ground instances that may occur in world states. Clearly, the
set of type consistent world states is a subset of the set of all
world states. The availability of a set of types can also be
used to limit the actions considered by a planner.

Definition 5 (type function) Let O = {O1, . . . , On(O)}
be a set of n(O) operator names with associated ar-
ities a(Oi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for operators is a function

argO : O × N→ T
which, for a given operator symbol Oi and argument num-
ber 1 ≤ k ≤ a(Oi) gives the type argO(Oi, k) ∈ T of that
argument position.

Again, this is exactly the kind of type specification that
may be provided in PDDL where the function is defined by
enumeration of all the arguments with their types for each
operator definition.

Definition 6 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Oi(v1, . . . , va(Oi)) be a STRIPS opera-
tor defined over variables v1, . . . , va(Oi) with precondi-
tions precs(Oi) and effects effects(Oi), where each pre-
condition/effect has the form Pj(vPj ,1, . . . , vPj ,a(Pj)) or
¬Pj(vPj ,1, . . . , vPj ,a(Pj)) for some predicate Pj ∈ P . The
operator Oi is type consistent iff:

• all the operator variables v1, . . . , va(Oi) are mentioned in
the positive preconditions of the operator, and

• if vk = vPj ,l, i.e. the kth argument variable of the op-
erator is the same as the lth argument variable of a pre-
condition or effect, then the types must also be the same:
argO(Oi, k) = argP (Pj , l).

The first condition is often required only implicitly (see
[Ghallab et al., 2004, chapter 4]) to avoid the complication
of “lifted” search in forward search.

Derived Types The above definitions assume that there is
an underlying type system that has been used to define the
planning domain (and problems) in a consistent fashion. We
shall continue to assume that such a type system exists, but
it may not have been explicitly specified in the PDDL def-
inition of the domain. We shall now define a type system
that is derived from the operator descriptions in the planning
domain.
Definition 7 (type name) Let O = {O1, . . . , On(O)} be a
set of STRIPS operators. Let P be the set of all the predicate
symbols used in all the operators. A type name is a pair
〈N, k〉 ∈ (P ∪O)× N.

A type name (a predicate or operator name and an argu-
ment number) can be used to refer to a type in a derived
type system. There usually are multiple names to refer to
the same type. The basic idea behind the derived types is to
partition the set of all type names into equivalence classes. If
a planning problem is given, the constants occurring in such
a problem can then be assigned to the different equivalence
classes, thus treating each equivalence class as a type.
Definition 8 (O-type) Let O = {O1, . . . , On(O)} be a set
of STRIPS operators over operator variables v1, . . . , va(Oi)

with conds(Oi) = precs(Oi)∪ effects(Oi) and all operator
variables mentioned in the positive preconditions. Let P be
the set of all the predicate symbols used in all the operators.
An O-type is a set of type names. Two type names 〈N1, i1〉
and 〈N2, i2〉 are in the same O-type, denoted 〈N1, i1〉 ≡O

〈N2, i2〉, iff one of the following holds:
• N1(v1,1, . . . , v1,a(N1)) is an operator with precondition

or effect N2(v2,1, . . . , v2,a(N2)) ∈conds(N1) which share
a specific variable: v1,i1 = v2,i2 ,

• N2(v2,1, . . . , v2,a(N2)) is an operator with precondition
or effect N1(v1,1, . . . , v1,a(N1)) ∈conds(N2) which share
a specific variable: v1,i1 = v2,i2 , or

• there is a type name 〈N, j〉 such that 〈N, j〉 ≡O 〈N1, i1〉
and 〈N, j〉 ≡O 〈N2, i2〉.

Definition 9 (O-type partition) Let (si, g, O) be a STRIPS
planning problem. Let C be the set of all constants used in
si. Let T = {t1, . . . , tn(T)} be the set of O-types derived
from the operators in O. Then we can define the function
τ : C → T as follows:
τ(c) = ti : ∀R(c1, . . . , ca(R)) ∈ si : (cj = c)⇒ 〈R, j〉 ∈ ti

Note that τ(c) is not necessarily well-defined for every
constant mentioned in the initial state, e.g. if a constant is
used in two relations that would indicate different derived
types (which rely only on the operator descriptions). In this
case the O-type partition cannot be used as defined above.
However, if appropriate unions of O-types are taken then
this results in a new type partition for which τ(c) is defined.
In the worst case this will lead to a type partition consisting
of a single type. Given that this approach is always possible,
we shall now assume that τ(c) is always defined.
Definition 10 Let T = {t1, . . . , tn(T)} be the set ofO-types
for a given set of operators O and let P = {P1, . . . , Pn(P)}
be the predicates that occur on operators from O. We can
easily define type functions argP and argO as follows:

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

71

argP (Pi, k) = ti : 〈Pi, k〉 ∈ ti and
argO(Oi, k) = ti : 〈Oi, k〉 ∈ ti

Proposition 1 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. Then every state that is reachable from the initial
state si is type consistent.

To show this we first show that the initial state is type
consistent. Since the definition of τ is based on the argument
positions in which they occur in the initial state, this follows
trivially.

Next we need to show that every action that is an instance
of an operator in O is type consistent. All operator variables
must be mentioned in the positive preconditions according to
the definition of an O-type. Furthermore, if a precondition
or effect share a variable with the operator, these must have
the same type since≡O puts them into the same equivalence
class.

Finally we can show that, if action a is applicable in a
type consistent state s, the resulting state γ(s, a) must also
be type consistent. Every atom must come either from s
in which case it must be type consistent, or it comes from a
positive effect, which, given the type consistency of ameans
it must also be type consistent. �

This shows that the type system derived from the operator
definitions is indeed useful as it creates a state space of type
consistent states. Note that the definition of the type system
does not require the initial state that is part of the problem,
but uses only the operators. The initial state is only nec-
essary for the proposition, as is spans a state-space about
which we can make a claim in the above proposition.

Advanced Features
In this section we shall define some more abstract features
that can be used to achieve an understanding of a planning
domain that is, perhaps, more human-like. The formal def-
inition of these features represent the main contribution of
this paper.

Static Graphs
We have now formally defined a type system that we can
derive from a planning domain, and we have defined what
it means for a predicate used in a planning domain to be
static. Together, these two features form the basis for the
static graphs that we will identify in a given planning do-
main. We shall use the dock worker robots (DWR) domain
defined in [Ghallab et al., 2004] to illustrate the concepts
defined in this section.

Many planning domains fall into the general category of
transportation domains. That is, they define a network of
locations that are connected by paths that can be traversed
by vehicles. Often there are other types of movable objects
that need to be brought into a given configuration, defined by
the goal of a planning problem over such a domain. The path
network that is part of the planning problem is usually fixed,
meaning it cannot be changed by actions in the domain. It
forms a graph that can be analyzed independent from the
state of the world, i.e. the location of vehicles and other
movable objects.

The following definition attempts to capture this notion:

Definition 11 (static graph relation) Let O =
{O1, . . . , On(O)} be a set of STRIPS operators. Let
P = {P1, . . . , Pn(P)} be a set of n(P) predicate symbols
with associated arities a(Pi) used in all the operators. Then
we say that Pi is a static graph relation if and only if:

• Pi is a static relation;
• Pi is a binary relation: a(Pi) = 2; and
• the two arguments of Pi are of the same (derived) type:
argPi

(1) = argPi
(2).

Note that this definition relies only on information that
can be computed from the planning domain specification,
i.e. no planning problem and no hint from the knowledge en-
gineer as to what relation might define a graph is required. In
the DWR domain, the only relation that satisfies these con-
ditions is the adjacent-relation, and this the relation that
defines the network of locations between which the robots
can move. Given a static graph relation, it is straight-forward
to define the graph that is defined by this relation.

Definition 12 (static graph) Let (si, g, O) be a STRIPS
planning problem and let 〈C, T, τ〉 be the O-type partition
derived from this problem. Let Pi be a static graph relation
for the set of operators O. Then Pi defines a static graph
GPi

= (V,E) consisting of nodes (vertices) V and directed
edges E, where:

• V = {c ∈ C|τ(c) = argPi
(1) = argPi

(2)}; and
• E = {(c, c′)|Pi(c, c

′) ∈ si}.
Thus, in the DWR example, the adjacent-relation de-

fines a graph that consists of nodes that correspond to in-
stances of the type location and the edges are defined by
the initial state.

Note that the definition of a static graph applies to a plan-
ning problem. However, the analysis which relations can
define a static graph is problem independent, and therefore
does not have to be re-computed for each problem. It can be
computed from the set of operators defining the domain.

To exploit this analysis for verification and validation, the
knowledge engineer would have to explicitly specify which
relations are meant to represent static graphs. Furthermore,
a relation specified as a static graph relation could have more
properties that can be easily verified: it could be reflexive,
symmetric, and/or transitive, or it could even be specified to
represent a tree structure.

Finally, note that the idea of static graphs is based on loca-
tion networks as found in the DWR domain, but static graph
could represent many things, and thus this technique is more
general and not only applicable to transportation domains.

Node-Fixed Types
Given a static graph, it is often possible to identify other
types that represent objects or properties in the domain
which have a fixed relation to nodes in a static graph.

Definition 13 (node-fixed type) Let O =
{O1, . . . , On(O)} be a set of STRIPS operators and Pi

be a static graph relation for this domain, where ti is the

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

72

node type for this relation. A type tj 6= ti represents a
node-fixed type if and only if:

• there exists a static binary relation Pj; and
• Pj has one argument of type ti and the other of type tj .

The intuition for node-fixed types should be fairly obvi-
ous: these are objects that cannot move between nodes in
a static graph. In the DWR example, where the only static
graph is defined by the adjacent-relation and the nodes
are of type location, there are two node-fixed types: a
crane belongs to a location and pile (of containers) is
attached to a location. Thus, any operator that has a crane or
a pile as one of its parameters is implicitly located by these
objects.

In general, one might expect the relation Pj to be func-
tional if the node-fixed type represents a physical object that
can only be at one node. This is not necessarily the case,
however, and the node-fixed type may represent a property
(e.g. a colour) in which case instances can be associated
with multiple nodes. Similarly, the relation Pj may be func-
tional in the other direction, e.g. if there is only ever one
crane at a given location. Once a node-fixed type has been
identified the functional properties of the defining relation
can be computed fairly easily for a given planning problem,
which will define the graph. Also, since the relation must
be static (by definition), these functional properties do not
change in the state space spanned the problem. However,
since this requires a planning problem to be given we shall
not go into it.

Finally, the intuition behind node-fixed types may
location-based, but nothing in the definition requires such
a view, and thus this technique may be applied to any type
of static graph.

Shift Operators
Given a static graph relation that defines a static graph for a
given planning problem, there are often operators that shift
objects or properties from one node in the static graph to a
neighbouring node. This is a basic way in which the under-
lying state can be changed. Of course, there is usually more
to such an operator than the simple shifting of an object or
property.

Definition 14 (shift operator) Let O be a planning op-
erator with positive preconditions pp1, . . . , p

p
n(pp), positive

effects ep1, . . . , e
p
n(ep) and negative effects en1 , . . . , e

n
n(en),

where each precondition and positive/negative effect is a
first-order atom. Let Pi be a static graph relation for the
domain containing O, where ti is the node type for this rela-
tion. Then we say that O is a shift operator wrt. node type
ti if and only if:

• O has a precondition Pi(v, v
′);

• O has a precondition pps that has an argument v (or v′);
• O has a negative effect that is equal to this precondition
pps; and
• O has a positive effect that is equal to the precondition

except where the argument v (or v′) occurs, where the
effect must have the value v′ (or v respectively).

Again, note that the definition of a shift operator relies
solely on the definition of the operator, i.e. no planning
problem is required. However, once a planning problem is
given, this analysis step can be used to compute which ob-
jects or properties can be shifted to which other node in a
static graph.

To illustrate this definition, we shall look at the move op-
erator defined for the DWR domain. This operator is defined
as follows:
(:action move

:parameters (?r ?fr ?to)
:precondition (and (adjacent ?fr ?to)

(at ?r ?fr) (not (occupied ?to)))
:effect (and (at ?r ?to) (occupied ?to)

(not (occupied ?fr)) (not (at ?r ?fr))))

The intended meaning should be fairly obvious (to
a human): the operator moves ?r, a robot, from
the location ?fr to the location ?to. Note
that the operator has two parameters that have the node
type (location) for the static graph defined by the
adjacent-relation. The verify that move is a shift oper-
ator with respect to node type location, we simply have
to find preconditions and effects according to the definition:

• the precondition (adjacent ?fr ?to) uses the
predicate that defines the static graph, thus defining the
edge along which this operators shifts;

• the precondition (at ?r ?fr) uses the variable ?fr
as its second argument, thus defining the node from which
the shifting takes place;

• (at ?r ?fr) is also a negative effect of the operator;
and finally

• the positive effect (at ?r ?to) is equal to the deleted
precondition except for the position of the second argu-
ment which is replaced by the other node given in the first
precondition, thus defining the node to which a shift takes
place.

The algorithm that identifies shift operators follows the
same procedure and simply applies the definition, attempt-
ing to find preconditions and effects that satisfy all the con-
ditions. This is expressed in the following pseudo code.

function is-shift-op(O,Pi)
for every Pi(v, v

′) ∈ pp1, . . . , p
p
n(pp) do

for every Pj(v1, . . . , vk) ∈ pp1, . . . , p
p
n(pp) do

iv ← iv such that viv = v
if iv is undefined continue
if Pj(v1, . . . , vk) /∈ en1 , . . . , enn(en) continue
for every Pj(x1, . . . , xk) ∈ ep1, . . . , e

p
n(ep) do

for ie ∈ 1 . . . k do
if iv = ie ∧ xie 6= v′ next Pj(x1, . . . , xk)
if iv 6= ie ∧ xie 6= vxie next Pj(x1, . . . , xk)

return true

The algorithm takes two parameters, an operator and a
static graph relation. It returns true if and only if the given
operator is a shift operator wrt. the argument type of the

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

73

given predicate. Note that this requires the type to be known
and well-defined, but as shown above, this kind of type can
be derived from the planning domain. The algorithm then
loops over all the precondition to find one that represents an
edge in the graph. Then it loops over the preconditions again
to find one that represents a candidate for a shifted prop-
erty. A necessary condition here is that the node from which
we are shifting occurs in the property precondition. Given
such a candidate, the algorithm tests whether the property
is deleted by the operator, another necessary condition. Fi-
nally, the algorithm tests whether a positive effect exists that
represents the shifted property, which is true if it agrees with
the property precondition in all arguments except for the one
representing the static graph node, which must be the node
to which we are shifting for the effect.

Domain Analysis
The above definitions and algorithm show how we can un-
derstand a planning domain in terms of static graphs that
will be encoded in the planning problem. As already men-
tioned, the analysis of the domain (without the problem) lets
us identify which relations represent edges and which types
represent nodes in such a static graph. Given the planning
problem itself, we may perform an analysis of the graph it-
self, where the results of this analysis will be valid for every
world state that is reachable from the initial state.

One specific property that might be interesting in such
a static graph in light of the shift operators just defined, is
whether the graph is fully connected, or if it is not, which
nodes are reachable from a given node. If we know that a
node is reachable from a node in the initial state, and we
know that a property that we can shift with a given opera-
tor holds in the initial state, then we know that this prop-
erty can be achieved in any node reachable from the node
in the initial state. In other words, we have a reachabil-
ity condition that can be evaluated in constant time. Of
course, planning graph analysis [Blum and Furst, 1995;
Hoffmann and Nebel, 2001] gives us the same information
and more, but at a much higher computational cost. This
type of analysis is very useful to guide search, but whether
it contributes to a better understanding of the problem is a
different question, and a better understanding is what aids
knowledge engineering.

There is another important difference between our analy-
sis and the planning graph techniques just mentioned. While
the latter give very good information to a heuristic search
planner, it is hard to understand the information contained
in a planning graph from a knowledge engineering point of
view. The technique described in this paper is specifically
aimed at the knowledge engineer, supporting a more intu-
itive way of understanding how a given set of operators can
manipulate a world state.

In fact, the analysis can be used to help the knowledge
engineer even more. Once an operator has been identified as
shifting a property across a network of nodes, the next ques-
tion is what other conditions there are that make the generic
problem difficult. Clearly, if the shifting was all that is go-
ing on in a domain, this would not be a hard problem. So the
remaining preconditions and effects of a shift operator must

somehow encode the difficult part.
For example, the the move operator defined for the DWR

domain constitutes a shift operator that shifts the location
of the robot as given by the at along edges defined by the
adjacent relation. Thus, for a given problem, it is
easy to compute all the possible locations at which a robot
may be in the state space. Also, paths to these locations are
easy to compute. However, the other conditions defining the
move operator specify that movement is only possible to
an unoccupied location. Thus, the problem becomes hard,
because an optimal solution involves collision avoidance in
time. Interestingly, if one continued this line of reasoning it
should be easy to see that problems involving one robot are
easy, as the occupied relation can simply be disregarded,
that is, it can dropped from the planning domain. This type
of reasoning is very much in line with the kind of analysis
shown in [Amarel, 1968], and this is what we hope to (even-
tually) achieve with this work.

Evaluation
The methodology for evaluating the technique described
above was chosen as follows. We used the DWR domain
[Ghallab et al., 2004] to develop the technique in terms
of definitions and algorithms. This was possible because
the DWR domain does encode a static network of locations
along which a robot can move. There are also other opera-
tors that do not represent shift operations. Thus, this domain
was used to provide a first correctness check.

To properly evaluate the technique we have applied it to
a small number of other planning domains. To avoid any
bias we used only planning domains that were available from
third parties, namely from the international planning compe-
tition. Since the algorithm works on domains and the results
have to be interpreted manually only a limited number of ex-
periments was possible. Note that a knowledge engineer us-
ing the approach described here to ensure the consistency of
the domain they are developing would not need to perform a
manual analysis. This manual analysis is only necessary for
this evaluation as the features we are looking at were not de-
fined with the domains. Random domains are not suitable as
they cannot be expected to encode meaningful knowledge.

The domains used for the evaluation were the simple
STRIPS versions of the following domains: movie, gripper,
logistics, mystery, mprime, and grid. The first step towards
an analysis of these domains was an analysis identifying
static and fluent relations and derived types, as none of the
domains had explicit given types as part of the domain defi-
nition. However, this will not be described here.

Static Graphs
The first domain in our analysis, the movie domain, is a very
simple domain that is almost propositional. All the predi-
cates used are unary, effectively specifying the types of ob-
jects that exist. Clearly, there is no static graph encoded here
and indeed, our algorithm does not identify any static graph
relation.

The second domain, gripper, is more promising as it con-
tains a robot that can move objects between room. Thus

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

74

the same intuition as for the DWR domain applies, and one
might expect to find at least a network of locations as a static
graph in this domain. However, the domain is defined to al-
low movement of the robot from any room to another; the
path taken by the robot is abstracted away. No other static
graph is identified by our algorithm in this domain.

The same issue occurs in the logistics domain. Again,
the connections between the different types of places are not
explicit, meaning no static graph can be identified. This is
unfortunate as the domain has different types of locations
(cities and airports), which would have provided an interest-
ing challenge for our intuition.

The next domain, mystery, is perhaps the most interesting
case here. This domain is not based on robots that have to
transport objects between locations, and it is indeed a mys-
tery what is going on in this domain at first glance. Our do-
main analysis identifies three different predicates that define
static graphs for this domain. The first predicate, orbits
is perhaps the most obvious as it can be seen as location-
related. The other static graph relations identified are eats
and attacks, which are somewhat similar and can be in-
terpreted in a meaningful way. Note that none of the three
relations identified here would be expected to be symmet-
ric, so this is quite different from the adjacency used as the
intuition behind the approach.

The mprime domain is really a variation of the mystery
domain and the analysis of static graph relations yields the
same three relations as a result.

The final domain used for the evaluation is the grid do-
main which is a classic transportation domain in which the
network of locations is explicitly specified. And indeed,
our domain analysis finds one static graph relation for this
domain, namely the relation conn which, not surprisingly,
corresponds directly to the adjacency relation in the DWR
domain.

Node-Fixed Types
The movie domain which does not contain a static graph,
cannot contain node-fixed types. The same is true for the
gripper and the logistics domain.

More interesting is the mystery domain, which had three
static graph relations. The first of these, orbits, gives
us one node-fixed type. Looking at the type definition, we
can see that this is the type used for both arguments of the
orbits-relation, which must hold by definition. Another
place where this type is used is the unary plant predicate,
which gives us an idea of type of object this is meant to be.
Finally, the type is also used as the second argument of the
harmony-relation. The other static graph relations, eats
and attacks, also define one node-fixed type each: eats
gives us a type that is also used in the unary predicate food,
whereas attacks reveals a node-fixed type that is not used
in a unary predicate, but only as the second argument in the
locale-relation.

The node-fixed types for the mprime domain are the same
as the ones for the mystery domain. What is perhaps inter-
esting here is that there is a surprising amount of static infor-
mation in both these domains, which might make a domain
analysis before planning useful.

Finally, the grid domain is less surprising here, rendering
just one node-fixed type which is used in, amongst other,
two unary relations, namely at-robot and place. The
latter can be interpreted as the node type, of course.

Shift Operators
Of course, none of the first three domains, movie, gripper
and logistics contains shift operators since there also do not
contain static graphs.

The mystery domain is again interesting in that two of
the static graph relations have operators that shift prop-
erties along the edges. Firstly, the operator succumb
shifts harmony(?v,?s1) along orbits(?s1,?s2) to
harmony(?v,?s2), and secondly, the operator feast
shifts craves(?v,?n1) along eats(?n1,?n2) to
craves(?v,?n2).

And this is where the mprime domain differs from the
mystery domain significantly. In the mprime domain there
is a shift operator also for the final static graph rela-
tion: operator drink shifts locale(?n2,?l21) along
attacks(?l21,?l22) to locale(?n2,?l22).

The last domain, the grid domain, shows itself as being
similar to the DWR domain again. It is the move opera-
tor that can be used to shift the robot from one place to
another. What is perhaps interesting here is that the prop-
erty that is shifted in this domain is represented by a unary
predicate: at-robot. This is of course a valid represen-
tational choice and, perhaps fortunately, the definitions of
static graphs and shift operators are sufficiently general to
catch this special case.

Conclusions
The work described in this paper builds on the domain anal-
ysis in terms of features described in [Wickler, 2011]. The
general approach in which this work can be used is similar
to the previous analysis: knowledge engineering could be
given the option to specify additional, redundant knowledge
that can then be used by the automatic analysis to ensure
consistency of the representation. As for previous work, the
analysis is of the domain, that is, a set of operators, not of
a planning problem. Thus, the result of the analysis is valid
for all problems referring to the analyzed domain and will
not have to be repeated.

Further analysis of a planning problem, based on the re-
sults of the domain analysis, may be performed and may
give further insights into the problem. In fact, it is often the
case that those aspects of the initial state of a planning prob-
lem that are given by the static relations have a degree of
reusability and may not change across a range of problems.
For example, in a real dock the topology is fixed and will not
change from one problem to the next.

The major difference between previous work and the tech-
nique described here is that the analysis is in terms of a fea-
ture that may or may not be present in a planning domain,
namely, static graphs that are more or less explicit in the rep-
resentation. GIPO and itSIMPLE are systems that support the
whole KE process, but neither performs an analysis in terms
of shift operators based on static graphs as we have defined

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

75

it here. A graph consisting of nodes and edges is a very
generic way of describing an aspect of a problem, and thus
we can hope to find this feature in many domains, but if not
present, this analysis obviously cannot aid the knowledge
engineering for such a domain.

Also, the analysis algorithms and the underlying defini-
tions rely on certain representational choices that are com-
monly used when formally representing knowledge, but
there may be alternatives that we have not considered that
may make the analysis fail despite the presence of static
graphs.

The DWR domain that was used to develop the ideas un-
derlying this work highlights some of the issues with the
representation that interfere with our analysis. For exam-
ple, our algorithm does not find that the move operator also
shifts the occupied-relation together with the at-relation.
This is simple because the domain uses occupied as a neg-
ative precondition, which is not captured by the definition.
The definitions could of course be adapted to this case, but it
also raises the question why this representational choice was
made and whether its negation, the free-relation, would
not be a better choice for the domain.

Similarly, the exploitation of invariants may lead to do-
main specifications for which our analysis fails.

Another interesting result from the evaluation is that most
static graphs were identified in domains that are not classic
transportation domains. While this shows that the analysis
does indeed apply to other classes of problems, it is not clear
what these classes are. However this was never our aim; our
approach is inspired by one problem class, but the defini-
tions do not make reference to specific concepts associated
with this class.

What the type of domain analysis presented in this paper
is trying to achieve is a more human-like understanding of
a planning domain without reverting to using the names of
symbols as a clue to their meaning or even the comments
in a PDDL. A graph may be just one way to achieve this.
If we could identify other sub-problems that are common
in planning domains and allow for a fast (polynomial time)
analysis, then it may just be possible to identify what exactly
it is that makes a planning problem that uses the domain
difficult, or which interaction of features is the hard part of
the generic problem. This is future work, of course.

References
Saul Amarel. On representations of problems of reasoning
about actions. In Donald Michie, editor, Machine Intelli-
gence 3, pages 131–171. Elsevier/North-Holland, 1968.
Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1636–
1642. Morgan Kaufmann, 1995.
Andrew Coles and Amanda Smith. Generic types and their
use in improving the quality of search heuristics. In Proc.
25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2006), 2006.
Clive Dawson and Laurent Siklossy. The role of preprocess-
ing in problem-solving systems. In Proc. 5th International

Joint Conference on Artificial Intelligence (IJCAI), pages
465–471. Morgan Kaufmann, 1977.
Maria Fox and Derek Long. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research, 9:367–421, 1998.
Maria Fox and Derek Long. PDDL2.1 : An extension to
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20:61–124, 2003.
Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning. Morgan Kaufmann, 2004.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.
T.L. McCluskey and J.M. Porteous. Engineering and com-
piling planning domain models to promote validity and effi-
ciency. Artificial Intelligence, 95:1–65, 1997.
Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition, 2003.
R.M. Simpson. Structural domain definition using GIPO IV.
In Proc. 2nd Int. Competition on Knowledge Engineering for
Planning and Scheduling, 2007.
Tiago Stegun Vaquero, V. Romero, F. Tonidandel, and J.R.
Silva. itSIMPLE 2.0: An integrated tool for designing plan-
ning environments. In Mark Boddy, Maria Fox, and Sylvie
Thiébaux, editors, Proc. 17th International Conference on
Automated Planning and Scheduling (ICAPS), pages 336–
343, 2007.
Tiago Stegun Vaquero, José Reinaldo Silva, and J. Christo-
pher Beck. A brief review of tools and methods for knowl-
edge engineering for planning and scheduling. In Roman
Barták, Simone Fratini, Lee McCluskey, and Tiago Stegun
Vaquero, editors, Proc. Knowledge Engineering for Plan-
ning and Scheduling (KEPS), pages 7–14, 2011.
Gerhard Wickler. Using planning domain features to fa-
cilitate knowledge engineering. In Roman Barták, Simone
Fratini, Lee McCluskey, and Tiago Stegun Vaquero, editors,
Proc. Knowledge Engineering for Planning and Scheduling
(KEPS), pages 39–46, 2011.

Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling (KEPS 2013)

76

	Title
	Papers
	Requirement Analysis Method for Real World Application in Automated Planning Systems
	Encoding Partial Plans for Heuristic Search
	A Knowledge Engineering Environment for P&S with Timelines
	Towards AI Planning Efficiency: Finite-domain State Variable Reformulation
	What is a Timeline?
	A Service Oriented Approach for the Interoperability of
	Policies for Maintaining the Plan Library in a Case-based Planner
	Post-planning Plan Optimization: Overview and Challenges
	Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges
	A timeline, event, and constraint-based modeling framework
	Using Static Graphs in Planning Domains to Understand Domain Dynamics

