A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task Descriptions

June 10th, 2013

D. Di Marco*, R.J.M. Janssen°, A.C. Perzylo®, M.J.G. van de Molengraft°, P. Levi*

° Eindhoven University of Technology, The Netherlands
⊗ Technische Universität München, Germany
* Universität Stuttgart, Germany

dimarco@ipvs.uni-stuttgart.de
Primary question: How can task descriptions be shared among different service robot platforms in different environments?

- Represent task descriptions in an abstract way (action recipe)
- Decouple from environment & robot hardware specifics
- Store information in a globally accessible database

How use these to generate execution plans tailored to the current situation?
Abstract (i.e. independent of robot platform and environment) task descriptions1

- Formulated in \textbf{OWL}, based on a common ontology
- Can be composed of other recipes or primitive actions, sub-actions are partially ordered
- Annotated with description of requirements, to check whether a given robot is capable of executing these

1M. Tenorth et al.: ”The RoboEarth language: Representing and Exchanging Knowledge about Actions, Objects, and Environments”, ICRA 2012
Abstract (i.e. independent of robot platform and environment) task descriptions

Example Recipe

Class: BringSomethingSomewhere
EquivalentTo:
 (knowrob:toLocation some robotPose-handover1)
SubClassOf:
 roboearth:IntentionalAction
...
Individual: ServeADrinkOrder10
Types:
 knowrob:PartialOrdering-Strict
Facts:
 knowrob:occursBeforeInOrdering MoveBaseToGraspPose,
 knowrob:occursAfterInOrdering GraspBottle

1M. Tenorth et al.: ”The RoboEarth language: Representing and Exchanging Knowledge about Actions, Objects, and Environments”, ICRA 2012
Task: navigate into the next room
How to infer that ”Navigate” has to be instantiated as ”open door, pass open door”?
⇒ we need more knowledge
HTN decompositions for actions with preconditions & effects, fully encoded in OWL and linked to recipes.
Plan Instantiation Process

- Semantic Maps: basic topology of environment
- SRDL: Semantic Robot Description Language\(^1\)
- Off-the-shelf HTN planner: SHOP2\(^1\)
- CRAM Plan Language (CPL) to specify execution plans

\(^1\) L. Kunze et al.: ”Towards semantic robot description languages”. ICRA 2011

\(^2\) D. Nau et al.: ”SHOP2: An HTN planning system”. JAIR, 2003
Plan Instantiation Process

- Semantic Maps: basic topology of environment
- SRDL: Semantic Robot Description Language\(^1\)
- Off-the-shelf HTN planner: SHOP2\(^1\)
- CRAM Plan Language (CPL) to specify execution plans

\(^1\)L. Kunze et al.: ”Towards semantic robot description languages”. ICRA 2011
\(^2\)D. Nau et al.: ”SHOP2: An HTN planning system”. JAIR, 2003
CRAM Plan Language\(^1\)

Extension of Common Lisp for robot execution plans

- Control structures for executing/synchronizing tasks in parallel
- Implementation of the Rete algorithm for Prolog-like reasoning facilities
- **Designators**: symbolic description of objects, locations, task parts
 - Based on ideas from Firby\(^2\)
 - Created from action specifications in recipe
 - Get resolved at the latest possible instant during plan execution
 - Independent of **Hardware/Environment**

\(^1\)M. Beetz, L. Mösenlechner, M. Tenorth, ”CRAM - A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments”. IROS, 2010

A Deliberation Layer for Instantiating Robot Execution Plans from Abstract Task Descriptions
Simulation Experiment

• Gazebo simulator\(^1\) used
• Fraunhofer IPA’s Care-o-Bot 3-4 (1 arm, 1 tray) and TU/e’s Amigo (2 arms) prototype
• Task description: ”bring something somewhere”

• Both robots use same top-level recipe, but need to select different decompositions

\(^1\)http://gazebosim.org
The door can be opened by touching the green button. The used arm has to be free.
Differences in generated Plans

No door: navigation between rooms trivial
2 manipulators: grasp object with left, open door with right arm
Differences in generated Plans

1 manipulator + tray: put object on tray, open door, pickup object
- Video Demo -
Conclusion

- Increase applicability of abstract task descriptions using off-the-shelf HTN planning
- Separation of sources of knowledge
- Experiment required about 4K lines of OWL
- Classic symbolic reasoning, e.g. no temporal aspects

Future work:
- Apply approach to more difficult scenarios
- Integrate plan generation and task execution for more robust behavior
Thank you for your attention