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Lecture Overview

Disclaimer: I assume you’re familiar with h+ and its approximation
using relaxed plan heuristics as in, e.g., FF. In case you aren’t, sorry but
this is probably not a suitable lecture for you.

So what will I talk about?

Analyzing the search space surface under h+ to explain and predict
the performance of heuristic search planners [Hoffmann (2011b,a)].

Improving h+ (and its approximations) by marriage with the
critical-path heuristics hm [Keyder et al. (2012)].

Improving h+ (and its approximations) by relaxing only a subset of
the state variables [Katz et al. (2013b,a)].
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h+ in Gripper

→ Observations, anyone? The goal states lie at the bottom of an
inclined plane.

→ Intuition: Heuristic search = “dropping a marble onto this surface”.
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Exits, Local Minima, and Benches

Definition (Exit, Exit Distance). Let Π = (V, I,G,A) be a solvable FDR
planning task with state space ΘΠ, let h be a heuristic for Π, and let s be a
state with 0 < h(s) <∞. An exit for s is a state s′ reachable from s so that
h(s′) = h(s) and ΘΠ has a transition s′ → s′′ where h(s′′) < h(s). The exit
distance exd(s) of s under h is the length of a shortest path to an exit, or
exd(s) =∞ if no exit exists.

→ An exit is a state reaching which enables us to improve the heuristic value,
relative to our current state s.

Definition (Local Minima, Benches). Let Π = (V, I,G,A) be a solvable FDR
planning task with state space ΘΠ, and let h be a heuristic for Π. A path in ΘΠ

is monotone if it contains no transition s1 → s2 so that h(s1) < h(s2). A state
s with 0 < h(s) <∞ is a local minimum under h if there exists no monotone
path to an exit; else, s is a bench under h.

→ From a local minimum, we cannot improve the heuristic value without
temporarily making it worse; from a bench, we can.
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Local Minima and Benches in Gripper Benchmark Domain

→ Any local minima here? No.

→ What is the largest exit distance? 1 (e.g., the flat row in the middle).
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Local Minima and Benches in Towers of Hanoi

→ Any local minima here? No.

→ What is the largest exit distance? 25 = 32 from initial state to exit off
topmost plateau: Solve 5-discs to be able to move the bottom disc into place.
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Proved Surface Properties under h+
[Hoffmann (2002, 2005)]
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Legend: x-axis: 4 classes regarding dead ends, each domain in “highest” class of any
of its instances. y-axis: Exists constant bound on exit distance from bench states
and/or local minimum states in the domain? [lm,bench] where both exist, [lm] where
only the latter exists; lm=0 means no local minima at all. Bottom right crossed out
since unrecognized dead ends imply infinite exit distance.
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Surface Properties under h+ in Gripper Benchmark

Empirical result (see picture): In this particular instance of the Gripper
benchmark, under h+ there aren’t any local minima and the maximal exit
distance any state has is 1.
Theoretical result (see previous slide): The same is true for every
instance of the Gripper benchmark.
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How to prove this??

. . . sit down, consider each of the 25 domains in turn, have fun.

Identify patterns: (that apply across domains)

(a) Absence of dead ends: In many domains, all actions are invertible and thus
the state spaces are undirected. (In others, it’s a little, but not much, more
complicated than that.)

(b) Absence of local minima: Given a state s, show how to construct a
monotone path ~as to an exit.
→ Typically, this works by considering an optimal relaxed plan ~a+

s for s,
and constructing ~as by using only the actions in ~a+

s . This path is monotone
because, for any state si it traverses, a relaxed plan ~a+

si for si can be
obtained from ~a+

s by replacing some actions with their inverses.

(c) Exit distance: How long does ~as need to be until we can obtain ~a+
si by

removing an action from ~a+
s , without replacement?

→ We now illustrate (b) with an example.
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Example Local Minimum Proof: Logistics with Forklift

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

→ We identify a monotone exit path ~as for the inital state s := I, and thereby
prove that this state is not a local minimum.

→ Wanna guess what the path ~as will be?

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

s3 will be the exit state: h+(s′) < h+(s3) = h+(s).

→ Argument summary: There is a variable v0 (here: p) that moves
egoistically; let the first action affecting v0 in the optimal relaxed plan ~a+

s be a0

(here: lo(C)). We can construct a path ~as using only actions from ~a+
s , bringing

all supporting variables (here: t and f ) into the values required by the
precondition of a0. h+ is monotone on this path because of invertibility, and
decreases strictly after executing a0.
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Proof by Example?

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

→ This works for all states s:

→ Argument summary: There is a variable v0 that moves egoistically; let the
first action affecting v0 in the optimal relaxed plan ~a+

s be a0. We can construct
a path ~as using only actions from ~a+

s , bringing all supporting variables into the
values required by the precondition of a0. h+ is monotone on this path because
of invertibility, and decreases strictly after executing a0.

Package at x 6= D: v0 = p, a0 = lo(x), support: truck and forklift.

Package in truck: v0 = p, a0 = ul(D), support: truck and forklift.

Package at D: v0 = t or f , a0 = drt(X,Y ) or drf (X,Y ), support: none.

→ Similar proof arguments work in many domains. Indeed, we can abstract
from the domain and apply the same proof considering just the causal graph!
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Here’s what we looked at so far . . .

. . . and moving the package/truck/forklift does not affect anything else.

Jörg Hoffmann and Michael Katz Distance Estimation in Planning Lecture 2: Delete Relaxation Heuristics 16/61



Intro Understanding h+: Man/Aut Marriage of h+ & hm Red-Black Plans: h∗+ Concl References

. . . and here’s what we get by removing irrelevant detail

. . . and every action affects only one variable.
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Causal Graphs, and Invertibility

Definition (Causal Graph). Let Π = (V, I,G,A) be an FDR planning task.
The causal graph is a digraph with vertices V , and has an arc (x, y) iff x 6= y
and there exists an action a ∈ A such that either (i) x appears in pre(a) and y
appears in eff (a), or (ii) x and y both appear in eff (a).

→ The “support” arrows on the previous slide are type (i) causal graph arcs.

Definition (Invertibility). Let Π = (V, I,G,A) be an FDR planning task and
let x ∈ V .

The domain transition graph (DTG) of x is a labeled digraph with vertices
Dx, and an arc (d, d′) induced by action a iff eff (a)[x] = d′, and either
pre(a)[x] = d or x is not mentioned in pre(a). The arc is labeled with its
outside condition pre(a)[V \ {x}].
An arc (d, d′) is invertible if there exists an arc (d′, d) with outside
condition φ′ ⊆ φ where φ is the outside condition of (d, d′). Variable x is
invertible if all arcs in its DTG are invertible.

→ In our Logistics example, all variables are invertible.
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The Connection Between Causal Graphs and h+

Theorem. Let Π = (V, I,G,A) be a solvable FDR planning task such
that CG(Π) is acyclic and, for all x ∈ V that are not leaves in CG(Π), x
is invertible. Then Π does not contain any local minima under h+.

Proof Comments:

The leaf variables in the causal graph (no outgoing arcs) are egoistic
because no other variable depends on them. Invertibility is required only
for the support variables.

“Every action affects only one variable” (cf. slide 17) is ensured because
otherwise the (ii) arcs in the causal graph would yield a cycle.

The (i) arcs in the causal graph are the “supports” arrows on slide 17.

→ Rather than just two independent support variables, we can have
arbitrary acyclic support. Basically, we might need a driver to first get into
the truck so the truck can move, etc. This does not break our
construction. The root variables in the causal graph (no incoming arcs)
will move freely as do the truck and forklift in our example.
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The TorchLight Tool

Proof Structure: (generalizes theorem on previous slide)

(A) Given optimal relaxed plan for s, sufficient criterion for “s is no local
minimum”.

(B) Sufficient criterion for “(A) will apply to all s”.

Global Analysis:

Test criterion (B).

Only sufficient, not necessary.

And what about domains with local minima?

Approximate Local Analysis:

Randomly sample states s.

Generate a (not necessarily optimal) relaxed plan; test criterion (A).

Success rate = percentage of s where criterion applies.
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Hoffmann vs. TorchLight
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TorchLight Performance Summary

Very fast. (Almost always, Fast Downward’s STRIPS-2-FDR translator,
which TorchLight uses to translate PDDL input to FDR, takes more
runtime.)

Global analysis succeeds (answer “I proved that there are no local minima
at all in this planning task”) in 4 domains of the table on slide 10.

Approximate local analysis yields success rates that nicely correspond to
how challenging the domain is for planners using delete relaxation
heuristics (cf. previous slide).

→ Concretely, comparing runtime distributions for benchmark sets A vs. B
whose success rate is below (A) vs. above (B) a threshold T , the average
runtime of FF is statistically significantly smaller in A than in B. The same
goes for LAMA.
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Questionnaire

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road, with
pre = (at = x), eff = (at = y); and
visit(x) with pre = (at = x), eff = (v(x) = T ).
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

What are the causal graph CG(Π) arcs in this example?

→ (at , v(x)) for x ∈ {Sy ,Ad ,Br ,Pe,Ad}.

Question!

Does this example contain local minima under h+?

→ No. The v(x) variables are egoistic; at is the support variable. To construct
an exit path, drive to the nearest yet non-visited location x, then apply visit(x).
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The (Happy) Marriage of h+ and hm

→ Idea: Instead of h+, consider h+(ΠC
ce) where ΠC

ce is a compiled task
capturing some of the reasoning underlying hm.

hm reasons about all m-conjunctions of facts.

Haslum [2009] devised Πm where hm = h1(Πm). So Πm captures
reasoning about all m-conjunctions, even though Πm has empty
delete lists.

But: h+(Πm) is not admissible. Fixed by [Haslum (2012)] in ΠC ,
which furthermore allows to select an arbitrary conjunction subset C
to reason about.

But: Size of ΠC is exponential in |C|. Fixed by [Keyder et al.
(2012)] in ΠC

ce .

→ We now introduce Πm, ΠC , and ΠC
ce . We prove that h+(ΠC

ce)
converges i.e., h+(ΠC

ce) = h∗ for sufficiently large C.

Jörg Hoffmann and Michael Katz Distance Estimation in Planning Lecture 2: Delete Relaxation Heuristics 25/61



Intro Understanding h+: Man/Aut Marriage of h+ & hm Red-Black Plans: h∗+ Concl References

The Partner Agency: Where h+ and hm Meet

We refer to sets c of propositional facts, |c| > 1, as conjunctions.

Definition (π-Fluent). Given a conjunction c = {p1, . . . , pn}, the π-fluent for
c is denoted πc; it represents the truth value of the conjunction p1 ∧ · · · ∧ pn.
Given a fact set F and a set C of conjunctions, FC := F ∪ {πc | c ∈ C, c ⊆ F}.

→ We need to arrange the compiled task in a way so that πc “captures” the
truth of c. (The formal meaning of “capture” will be: represent closely enough
for our heuristics to converge to h∗.)

The set of facts is given by FC for some C.

The goal is given by GC .

The initial state is given by IC .

When does an action a potentially make πc true? If add(a) ∩ c 6= ∅ and
del(a) ∩ c = ∅. (We assume that add(a) ∩ del(a) = ∅.)

→ The compilations Πm, ΠC , ΠC
ce differ from each other in (A) how C can be

chosen, and in (B) the construction of the actions.
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The Πm Compilation [Haslum (2009)]

Set C of Conjunctions: Fixed; C = {c ⊆ F | 1 < |c| ≤ m}.

Compiled actions: One compiled action ac for each conjunction c ∈ C
potentially made true by original action a:

pre(ac) = [pre(a) ∪ (c \ add(a))]C .

add(ac) = add(a) ∪ {πc}.
del(ac) = ∅.

Advantages:

hm = h1(Πm) and thus convergence: Singleton-goal critical paths over
π-fluents correspond to size-m-goal critical paths.

Disadvantages:

No choice of C.

h+(Πm) is not admissible: Each πc requires a different action
representative (see also next slide).
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Πm Example

Example (Πm example)

Consider the STRIPS planning task Π = (P, I,G,A) with: P = {p, q, r};
I = {p, q}; G = {p, q, r}; A = {a} where prea = ∅, adda = {r},
dela = ∅. In Π2, we have:

PC = {p, q, r, π{p,q}, π{p,r}, π{q,r}}.
IC = {p, q, π{p,q}}.
GC = {p, q, r, π{p,q}, π{p,r}, π{q,r}}.
AC = {a, a{p,r}, a{q,r}}, where

pre(a{p,r}) = {p}, add(a{p,r}) = {r, π{p,r}}; and

pre(a{q,r}) = {q}, add(a{q,r}) = {r, π{q,r}}.

→ h∗(Π) = 1, yet h+(Πm) = 2, as both compiled actions a{p,r} and
a{q,r} are required to achieve π{p,r} and π{q,r}.
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The ΠC Compilation [Haslum (2012)]

Set C of Conjunctions: Arbitrary.

Compiled actions: One compiled action aC
′

for each set C ′ ⊆ C of
conjunctions potentially made true by original action a:

pre(aC
′
) = [pre(a) ∪

⋃
c′∈C′(c

′ \ add(a))]C .

add(aC
′
) = add(a) ∪ {πc | c ∈ C ′}.

del(aC
′
) = ∅.

Advantages:

h+(ΠC) is admissible: A plan for Π can be transformed into a (relaxed)
plan for ΠC by always selecting the maximal C ′ made true by an action.

h+(ΠC) converges: See later.

Disadvantages:

Enumerates subsets of C =⇒ size of ΠC is worst-case exponential in |C|.
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ΠC Example

Example (ΠC example)

Consider the STRIPS planning task Π = (P, I,G,A) with: P = {p, q, r};
I = {p, q}; G = {p, q, r}; A = {a} where prea = ∅, adda = {r},
dela = ∅. In ΠC with C = {c ⊆ P | 1 < |c| ≤ 2}, we have:

PC , IC , GC : As before.

AC = {a∅, a{{p,r}}, a{{q,r}}, a{{p,r},{q,r}}}, where

pre(a∅) = ∅, add(a∅) = {r};
pre(a{{p,r}}) = {p}, add(a{{p,r}}) = {r, π{p,r}};
pre(a{{q,r}}) = {q}, add(a{{q,r}}) = {r, π{q,r}};
pre(a{{p,r},{q,r}}) = {p, q, π{p,q}}, add(a{{p,r},{q,r}}) =
{r, π{p,r}, π{q,r}}.

→ h+(ΠC) = 1 = h∗(Π), as the compiled action a{{p,r},{q,r}} achieves
π{p,r} and π{q,r} simultaneously.
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The ΠC
ce Compilation [Keyder et al. (2012)]

Set C of Conjunctions: Arbitrary.

Compiled actions: One compiled action aC for each original action a:

pre(aC) = pre(a)C , del(aC) = ∅.
add(aC) = add(a).

For each conjunction c ∈ C potentially made true by a, a conditional effect
with condition [pre(a) ∪ (c \ add(a))]C and add πc.

Advantages:

h+(ΠC
ce) is admissible: Any plan for Π is a (relaxed) plan for ΠC

ce .

h+(ΠC
ce) converges: See later.

Growth linear in |C|.

Disadvantages:

Information loss relative to ΠC : no cross-context conditions, see next slide.
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ΠC
ce Example

Example (ΠC
ce example)

Consider the STRIPS planning task Π = (P, I,G,A) with: P = {p, q, r};
I = {p, q}; G = {p, q, r}; A = {a} where prea = ∅, adda = {r}, dela = ∅. In
ΠC

ce with C = {c ⊆ P | 1 < |c| ≤ 2}, we have:

PC , IC , GC : As before.

AC = {aC}, where

pre(aC) = ∅; add(aC) = {r};
conditional effect 1: cond {p}, add {π{p,r}};
conditional effect 2: cond {q}, add {π{q,r}}.

→ h+(ΠC
ce) = 1, as applying a triggers both conditional effects.

→ So where is the information loss?
→ In ΠC , triggering both π{p,r} and π{q,r}, by compiled action a{{p,r},{q,r}},
has the cross-context precondition π{p,q}. That precondition is missing in ΠC

ce !
E.g., if p and q are mutex, then h+(ΠC

ce) misses a dead end.
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Convergence Proof for h+(ΠC)

→ What do we need to prove? For every planning task Π there exists C so that
h+(ΠC) = h∗(Π).

→ Anybody got an idea how to prove this? Inherit this property from hm and
thus from h1(Πm).

Lemma. Let Π = (P, I,G,A) be a STRIPS planning task, and let
C = {c ⊆ P | 1 < |c| ≤ m}. Then h1(Πm) = h1(ΠC).

Proof. Πm and ΠC are identical except for the action sets. We first note that
h1 values are computed by considering only a single add effect of an action at a
time. The inequality h1(Πm) ≤ h1(ΠC) is then easy to see by verifying that, for
every add effect πc of an action aC

′
in ΠC , the action ac of Πm dominates this

add effect of aC
′
, i.e., πc ∈ add(ac) and pre(add(ac)) ⊆ pre(aC

′
). The proof is

similar for the inequality h1(ΠC) ≤ h1(Πm), observing that for any action ac in
Πm, the action a{c} in ΠC dominates the add effects of ac.

→ In our example: e.g., a{p,r} in Πm dominates the add effect π{p,r} of

a{{p,r},{q,r}} in ΠC . Vice versa, a{{p,r}} in ΠC is equal to (and thus dominates
every add effect of) a{p,r} in Πm.
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Convergence Proof for h+(ΠC), ctd.

Theorem. Let Π = (P, I,G,A) be a STRIPS planning task. Then there
exists C such that h+(ΠC) = h∗(Π).

Proof. Trivially, h∗(Π) = hm(Π) for sufficiently high m. Haslum [2009]
showed that hm(Π) = h1(Πm). By the lemma on the previous slide, for
C = {c ⊆ P | 1 < |c| ≤ m} we have h1(Πm) = h1(ΠC). Choosing an
appropriate m and the corresponding C, we thus have that
h∗(Π) = hm(Π) = h1(Πm) = h1(ΠC). Together with the fact that
h1(ΠC) ≤ h+(ΠC), and since h+(ΠC) ≤ h∗(Π) by admissibility of
h+(ΠC), the claim follows.
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Convergence Proof for h+(ΠC
ce)

→ What do we need to prove? For every planning task Π there exists C so that
h+(ΠC

ce) = h∗(Π).

→ Anybody got an idea how to prove this? Inherit this property from ΠC .

Lemma. Let Π = (P, I,G,A) be a STRIPS planning task. Then
h1(ΠC) ≤ h+(ΠC

ce).

Proof. Consider a planning task ΠC
no-cc identical to ΠC except that it drops

cross-context π-fluents from preconditions. We show that (A)
h1(ΠC) ≤ h1(ΠC

no-cc), and (B) h1(ΠC
no-cc) ≤ h+(ΠC

ce).

For (A), every add effect πc of an action aC
′

in ΠC
no-cc is dominated by the

action a{c} in ΠC : Reducing the conjunction set to the singleton {c} gets rid of
any cross-context preconditions.

For (B), it suffices to show that h+(ΠC
no-cc) ≤ h+(ΠC

ce). That holds because
relaxed plans for ΠC

ce can be transformed into relaxed plans for ΠC : For action
a in a relaxed plan for ΠC

ce , if C ′ is the set of conjunctions that are added by
conditional effects of a when it is applied in that plan, then the action aC

′
in

ΠC
no-cc has the same preconditions and effects as a.
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Convergence Proof for h+(ΠC
ce), ctd.

Theorem. Let Π = (P, I,G,A) be a STRIPS planning task. Then there
exists C such that h+(ΠC

ce) = h∗(Π).

Proof. Choosing an appropriate m, we have h∗(Π) = hm(Π) = h1(Πm).
Choosing an appropriate C, by the lemma on slide 33 we get
h1(Πm) = h1(ΠC), and by the lemma on the previous slide we get
h1(ΠC) ≤ h+(ΠC

ce). Since h+(ΠC
ce) ≤ h∗(Π) by admissibility of h+(ΠC

ce),
the claim follows.
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Remarks

Some more stuff we already know:

One can choose C in practice by a kind of abstraction refinement process
on the initial state: Compute a relaxed plan, extract reasons why it doesn’t
work on the real task, extract conjunctions pertaining to that reason
([Haslum (2012)] does this very systematically).

Current methods drastically improve performance of satisficing planning,
but only in very few cases.

Hardly any improvement for optimal planning with LM-cut and admissible
landmarks.

Some stuff we don’t know yet: (a small selection :-)

Better methods for selecting C?

When does it work well, when doesn’t it?

Anything to be done about better admissible heuristics?
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Questionnaire

Facts: at(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad};
v(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road, with
pre = at(x), eff = at(y); and
visit(x) with pre = at(x), eff = v(x).
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

What is h∗(Π)? What is h+(Π)?

→ h∗(Π) = 8: We need to take each road segment twice. h+(Π) = 4: The
relaxed plan does not need to drive back.

Question!

What is h+(ΠC
ce) for C = {{at(x), at(y)} | x 6= y}?

→ Still h+(ΠC
ce) = 4: The goal remains the same and does not contain any

π-fluents; the regular fluents are achieved by the same relaxed plan as before.
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Questionnaire, ctd.

Facts: at(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad};
v(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road, with
pre = at(x), eff = at(y); and
visit(x) with pre = at(x), eff = v(x).
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

What if C = {{at(Sy), v(y)} | y ∈ {Ad ,Br ,Pe,Ad}}?

→ Then h+(ΠC
ce) = 5: To achieve the goals π{at(Sy),v(y)}, it suffices to achieve each

v(x) first, then execute an arbitrary action driving into Sydney.

Question!

How do we need to define C to obtain h+(ΠC
ce) = h∗(Π) = 8?

→ Proof: Use m = 10. Can we do better? Yes: C = {{at(x), v(y)}}. Then
drive(x, z) achieves π{at(z),v(y)} only under condition π{at(x),v(y)} so achieving
π{at(Sy),v(y)} requires the relaxed plan to go back to Sydney from y.
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Who Said We Need to Relax All Variables?

→ Idea: Red-black planning relaxes only some variables! These red variables
accumulate their values, while the others, the black variables, retain the true
(value-switching) semantics.

Earlier works: Identify variable x that moves freely and independently, and
account for a tour of x that visits all values of x required in a relaxed plan
[Fox and Long (2001); Keyder and Geffner (2008)].

→ Drawbacks: Strict requirements on x, just one variable, tour through
required values not necessarily meaningful (e.g.: two values between which
we actually need to switch back and forth).

Katz et al. [2013b]: All these drawbacks disappear, in principle, when using
red-black planning instead.

Katz et al. [2013a]: A concrete red-black plan heuristic that can be
computed in polynomial time.

→ We now introduce red-black planning, and the tractability result underlying
the implemented heuristic function.
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Red-Black Planning

Definition (Red-Black Planning). A red-black planning task is a tuple
Π = (V B, V R, I, G,A) where V B is a set of black variables, V R is a set of red
variables, and everything else is exactly as for FDR tasks. The semantics is:

A state s assigns each x ∈ V B ∪ V R a subset s[x] ⊆ Dx, where |s[x]| = 1
for all x ∈ V B.

Action a is applicable in s iff pre(a)[x] ∈ s[x] for all x mentioned in pre(a).

Applying a in s changes the value of black effect variables x to {eff (a)[x]},
and changes the value of red effect variables x to s[x] ∪ {eff (a)[x]}.
An action sequence 〈a1, . . . , ak〉 is a red-black plan if
G[x] ∈ IJ〈a1, . . . , ak〉K[x] for all x mentioned in G.

Given an FDR task Π = (V, I,G,A) and a subset V R ⊆ V of variables, the
red-black relaxation of Π is the red-black task Π∗+ = (V \ V R, V R, I, G,A). A
plan for Π∗+ is a red-black relaxed plan for Π, and the length of a shortest
possible red-black relaxed plan is denoted h∗+(Π).

→ If we set V R := V , then h∗+(Π) = h+(Π).

→ If we set V R := ∅, then h∗+(Π) = h∗(Π).
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Red-Black Planning: “Grid” Example

Variables: robot position R; key A position A, key B position B; hand-free: F in
{0, 1}; lock-open O in {0, 1}.
Initial state: As shown. Goal: B = 1.
Actions: take(x, y); drop(x, y); open(x, y); move(x, y) where |x− y| = 1,
precondition O = 1 in case {x, y} ∩ {4} 6= ∅.

Plan for this task? Move to 2, take key A at 2, move to 3, open lock, move to 7,
drop key A at 7, take key B at 7, move to 1, drop key B at 1. h∗(Π) = 17.

Relaxed plan for this task? . . . , move to 7, take key B at 7, drop key B at 1.
h+(Π) = 10.

Red-black plan for this task if V R = {R,A,B,O}? . . . , move to 7, drop key A
at 7, take key B at 7, drop key B at 1. h∗+(Π) = 11.

Red-black plan for this task if V R = {A,B,O}? . . . , move to 7, drop key A at
7, take key B at 7, move to 1, drop key B at 1. h∗+(Π) = 17.
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Red-Black Planning: “Jobs” Example

Variables: robot position R; jobs J1, . . . , Jn in {0, 1}.
Initial state: R = 1, J1 = 0, . . . , Jn = 0. Goal: J1 = 1, . . . , Jn = 1.

Actions: move(x, y) where |x− y| = 1; do-job(i, x) precondition
Ji = 0, Ji−1 = 1, and R = x as shown.

Plan for this task? Move to jobs in sequence as shown. h∗(Π) = 30.

Relaxed plan for this task? Move across to 7 once, do jobs. h+(Π) = 14.

Accounting for a “tour” of x? Move across to 7 once, do jobs. “Refined”
heuristic h(Π) = 14.

Red-black plan for this task if V R = {J1, . . . , Jn}? Move to jobs in
sequence as shown. h∗+(Π) = 30.

Jörg Hoffmann and Michael Katz Distance Estimation in Planning Lecture 2: Delete Relaxation Heuristics 44/61



Intro Understanding h+: Man/Aut Marriage of h+ & hm Red-Black Plans: h∗+ Concl References

Ok, Ok. But How To Generate Red-Black Plans?

→ Follow the relaxed plan heuristic approach: Generate a red-black relaxed plan
for every search state, take its length as the distance estimate.

For this, red-black plan generation must be tractable! Is it?

In general: no. (Set V R := ∅.)
Need to identify tractable fragments!

Results by Katz et al. [2013b]:

Tractable if number and size of black variables constant. . . . Runtime then
exponential in the product of their domain sizes :-(

Plan existence tractable if black causal graph is acyclic and task is
reversible. . . . Fine, but we need plan generation not plan existence :-(

Result by Katz et al. [2013a]:

Tractable if black causal graph is acyclic and all black variables are relaxed
side effects invertible (RSE-invertible).
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Black Causal Graphs

Definition (Black Causal Graph). Let Π = (V B, V R, I, G,A) be a red-black
planning task. The causal graph is a digraph with vertices V , and has an arc
(x, y) iff x 6= y and there exists an action a ∈ A such that either (i) x appears
in pre(a) and y appears in eff (a), or (ii) x and y both appear in eff (a). The
black causal graph is the sub-graph of the causal graph induced by V B.

→ Causal graph in Grid: (black causal graph acyclic)

R

F BA

O

→ Causal graph in Jobs: (black causal graph acyclic)

R

J1 JnJ2
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Black DAG Invertibility

Definition (RSE-Invertibility). Let Π = (V B, V R, I, G,A) be a red-black
planning task, let V = V B ∪ V R and let x ∈ V .

The domain transition graph (DTG) of x is a labeled digraph with vertices
Dx, and an arc (d, d′) induced by action a iff eff (a)[x] = d′, and either
pre(a)[x] = d or x is not mentioned in pre(a). The arc is labeled with its
outside condition pre(a)[V \ {x}] and its outside effect eff (a)[V \ {x}].
An arc (d, d′) is RSE-invertible if there exists an arc (d′, d) with outside
condition φ′ ⊆ φ ∪ ψ where φ and ψ are the outside condition respectively
outside effect of (d, d′). Variable x is RSE-invertible if all arcs in its DTG
are RSE-invertible.

→ Intuition: To go back over transition (d, d′), (d′, d) allows to use outside
conditions and outside effects of (d, d′), which is valid provided these outside
effects are red. (As is the case in acyclic black causal graphs.)

→ DTG for R in Grid example: (RSE-invertible, as is that for F )

1 2 3 4 5 6 7

O = 1 O = 1
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The Tractable Fragment

Theorem. Red-black plan generation restricted to red-black planning tasks
whose black causal graph is acyclic, and all of whose black variables are
RSE-invertible, is polynomial-time.

→ The theorem does not impose any restriction on the red variables!

Are the theorem prerequisites satisfied in Grid with V R = {A,B,O}?

→ Yes! (Which is good, cf. slide 43.)

Are the theorem prerequisites satisfied in Jobs with V R = {J1, . . . , Jn}?

→ Yes! (Which is good, cf. slide 44.)

→ We next prove that, under the given prerequisites, any relaxed plan for the
task can be efficiently post-processed into a red-black plan for the task.

→ Why does this prove the theorem? If no relaxed plan exists, then trivially no
red-black plan exists.
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The Tractable Fragment: Proof

π := 〈a1〉 // Π = 〈V B, V R, I, G,A〉 and π+ = 〈a1, . . . , an〉 is a relaxed plan for Π
for i = 2 to n do

if pre(ai)[V
B] 6⊆ IJπK then

πB := Achieve(pre(ai)[V
B])

π := π ◦ πB

endif
π := π ◦ 〈ai〉

endfor
if G[V B] 6⊆ IJπK then

πB := Achieve(G[V B])

π := π ◦ πB

endif
return π

→ So what is the main idea here? In between any two actions from the relaxed
plan (and in front of the goal), insert sub-plans πB achieving any conditions
required on the black variables.

→ And what remains to prove? That the sub-plans πB can be constructed in
polynomial time – how to “Achieve(pre(ai)[V

B])”?
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The Tractable Fragment: Proof, ctd.

→ Constructing πB = solving a (regular) planning task ΠB over black variables:

Procedure: Achieve(π, g)
F := I ∪

⋃
a∈π eff (a) // (i) every fact touched by our prefix π so far

for x ∈ V B do DB(x) := {d | d ∈ D(x), (x, d) ∈ F} endfor
IB := IJπK[V B], GB := g // (ii) end point of prefix/black condition needed
// actions whose (iii) preconditions (red and black) we have touched,
//and whose (iv) black effects we have touched
AB := {aB | ex. a ∈ A, pre(a) ⊆ F, eff (a)[V B] ⊆ F, aB = 〈pre(a)[V B], eff (a)[V B]〉}
ΠB := 〈V B, IB, GB, AB〉
〈a′B1 , . . . , a′Bk 〉 := an FDR plan for ΠB

return πB := 〈a′1, . . . , a′k〉

By (ii), πB has the desired start/end. By (iii) and (iv), ΠB is well-defined,
and by (iii) any red conditions of 〈a′1, . . . , a′k〉 are true in IJπK.

ΠB has an acyclic causal graph.

By (i), all DTGs in ΠB are strongly connected: Every value is reached by
π, and with RSE-invertibility we can invert these paths.

So ΠB is polynomial-time solvable, under a succinct plan representation
(macros) [Chen and Giménez (2008)].
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The Tractable Fragment: “Grid” Example

Relaxed plan π+: Move to 2, take key A at 2, move to 3, open lock, move to 7,
take key B at 7, drop key B at 1. Say that R = A,B,O.

When does the algorithm call “Achieve(pre(ai)[V
B])” the first time? In front of

“take key B at 7”: The hand is not empty, i.e., black variable F = 0 does not
have the required value F = 1.
What does ΠB look like at this point? Variables R,F with their full domains,
I = {R = 7, F = 0}, G = {F = 1}; all move actions (projected to R, i.e.without
condition on lock); pick actions for key A at 2 and key B at 7, projected to F ;
drop actions for key A anywhere. We get πB dropping key A at 7.
When does the algorithm call “Achieve(pre(ai)[V

B])” the next time? In front of
“drop key B at 1”: The robot is at the wrong position, i.e., black variable R = 7
does not have the required value R = 1.
What does ΠB look like at this point? Same as above, except
I = {R = 7, F = 0}, G = {R = 1}. We get πB moving R to 1.
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Remarks

Some more stuff we already know:

A simple way to make this real fast is to reduce the black causal graph to
have no arcs at all (rather than being acyclic): Solving ΠB then just means
moving each black var into place individually.

One can choose the red variables by simple greedy methods preferring, e.g.,
to remove a lot of arcs from the black causal graph, or to remove variables
that do not have many “conflicts” in a relaxed plan for the initial state.

The presented algorithm may heavily over-estimate due to arbitrary relaxed
plan choices (just try to re-order π+ a bit on the previous slide) . . .

With an algorithm that relies less on π+, we currently improve the relaxed
plan heuristic almost consistently, and outperform it in several domains.

Some stuff we don’t know yet: (a small selection :-)

Better methods for selecting the red variables? When does it work well,
when doesn’t it? Anything to be done about admissible heuristics?

Combination with ΠC
ce?
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Questionnaire

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road, with
pre = (at = x), eff = (at = y); and
visit(x) with pre = (at = x), eff = (v(x) = T ).
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

What is a maximal set of red variables so that h∗+(Π) = h∗(Π) = 12?

→ Simply paint all v(x) variables red: With just the at variable black, any red-black
plan is a real plan.

Question!

Do you see a general rule here which variables we can safely paint red?

→ Leaf variables (no outgoing arcs) in the causal graph: Such variables are “egoistic”
(see up front), and any non-redundant red-black plan is a real plan since it moves each
of them along a simple (acyclic) DTG path to its goal value.
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Summary

Search space surface analysis has proved very suitable to understand
h+ (though not any other heuristic function in planning, yet).

We can identify fragments with particular topology (no local
minima) using similar criteria as used for identifying tractable
fragments (causal graphs, domain transition graphs).

We can combine delete relaxation heuristics with critical path
heuristics by computing the former on compiled tasks representing
some of the reasoning performed in the latter.

This interpolates between relaxed planning and real planning in that
sufficiently large compilations enforce convergence to h∗.

A much easier way to interopolate between relaxed planning and real
planning is to simply relax (“paint red”) only some of the variables.

There are significant tractable fragments of red-black planning, that
we have only begun to exploit.
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Reading

Analyzing Search Topology Without Running Any Search: On the
Connection Between Causal Graphs and h+ [Hoffmann (2011a)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair11.pdf

Content: Detailed paper on TorchLight, proving a more general
version of the theorem outlined here, and giving a comprehensive
empirical evaluation. Maybe you’d rather read the short version
[Hoffmann (2011b)] which summarizes these results.
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Reading

Semi-Relaxed Plan Heuristics [Keyder et al. (2012)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps12a.pdf

Content: The ΠC
ce encoding and its practical use in satisficing

planning.

Incremental Lower Bounds for Additive Cost Planning Problems
[Haslum (2012)].

Available at:

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4703/4716

Content: The ΠC encoding and its practical use for improved lower
bounds in optimal planning. Analysis how to extract conflicts in a
way so that a relaxed plan will not “make the same mistake again”.
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Reading

Who Said We Need to Relax All Variables? [Katz et al. (2013b)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps13a.pdf

Content: Introduces the red-black framework and identifies two
tractable fragments, neither of which is of immediate practical use.
(Theory paper.)

Red-Black Relaxed Plan Heuristics [Katz et al. (2013a)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/aaai13.pdf

Content: Refines one of the two previous fragments to a more
restricted fragments, namely the one presented here, that is of
immediate practical use. Experiments with that fragment and simple
ways of instantiating the other elements needed.
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