
Finding Better Candidate Algorithms for Portfolio-Based Planners

Richard Valenzano and Jonathan Schaeffer
Department of Computing Science

University of Alberta
{valenzan,jonathan}@cs.ualberta.ca

Nathan Sturtevant
Department of Computer Science

University of Denver
sturtevant@cs.du.edu

Abstract
In order to construct a high-performance portfolio-based
planner, a diverse set of candidate algorithms is needed. In
our work, we are looking at the problem of constructing such
candidate sets. Below we describe the ArvandHerd planner
and use it to demonstrate the importance of selecting a can-
didate set that uses a variety of heuristic search algorithms.
We then describe ways in which candidate algorithms can be
constructed when there are atypical requirements on solution
quality. Finally, we describe future work into building new
candidate algorithms for the inclusion in portfolios.

Introduction
When developing a planning system for solving problems
from a specific domain, a system designer may leverage
prior knowledge about the domain. This approach has been
quite successful in many domains such as robot motion
planning (Stentz 1995) and DNA sequence alignment (Mc-
Naughton et al. 2002). However, by the very nature, such
specialized systems are only suited for their target domain.
As such, when faced with a new domain, system design-
ers must start from scratch. Avoiding this time-consuming
manual task helps to motivate the development of general
purpose planning systems which can handle a wide variety
of domains without prior domain knowledge or human assis-
tance. Such systems not only act as a useful starting point for
developing domain-specific planners for some new domain,
but they also contribute towards one of the classic goals of
artificial intelligence research: to develop general problem-
solving systems that do not require human intervention.

Heuristic search is one popular way to build such gen-
eral automated planners. This technique employs a heuristic
function which estimates the distance that any state in the
domain is from the goal. These functions are then used to
guide a process through which candidate paths are iteratively
constructed in an effort to find a complete solution paths.

The exact way in which candidate paths are built up and
the ways in which heuristic information are used will vary
from algorithm to algorithm. Due to this variety, the different
heuristic search algorithms typically have different strengths
and weaknesses with respect to how well they handle differ-
ent types of domains and how they deal with error in the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic functions. This effect is exacerbated when dealing
with general automated planners, as these systems use auto-
matically generated heuristic functions which typically have
different levels of accuracy on different domains (Hoffmann
2005). The result is that no single algorithm can be expected
to dominate all competitors on all domains. This suggests
the use of an algorithm portfolio. This technique involves
using a set of algorithms independently on the same prob-
lem. By doing so, planners which use a portfolio can often
combine the strengths of the included individual algorithms.

When selecting candidates for a portfolio-based planning
system, diversity amongst the algorithms is of paramount
importance. This means that the included algorithms should
be complementary in their strengths and weaknesses. To do
otherwise will result in a redundancy in the portfolio.

Yet many existing portfolio-based planners only consider
candidate algorithms that are best-first search based. As
such, our goal is to better understand how to best avoid re-
dundancy when using multiple best-first search algorithms
and to construct new candidate algorithms that do well to
complement this popular existing approach. Doing so will
require an examination of existing algorithms in terms of
how they handle heuristic error, and the construction of new
algorithms to complement them. For investigating the exist-
ing algorithms, we will construct artificial domains in which
we can control the amount and type of heuristic error, so as
to isolate the impact of the various error types on perfor-
mance. This study will then help us develop new algorithms
which will use stochasticity and random sampling to avoid
overly committing to the strategy used by their unmodified
counterparts. These new algorithms will then be evaluated
on the aforementioned artificial domains, and we expect that
they will be complementary to their unmodified versions and
thereby offer new candidates for portfolio selection

This structure of the remainder of this document is as fol-
lows. We begin by briefly describing related work. Follow-
ing that section, we will describe ArvandHerd, a multi-
core portfolio-based planner that competed in the 2011 In-
ternational Planning Competition. This work highlights the
importance of ensuring diversity amongst the candidate al-
gorithms, describes some inherent challenges in developing
portfolio-based multi-core planners, and demonstrates that
existing planners can be improved through the use of multi-
ple configurations and stochasticity.



After our consideration of ArvandHerd, we look at the
problem of developing algorithms for an arbitrary subopti-
mality requirement. In doing so, we introduce a functional
notion of a suboptimality bound and show how existing ε-
admissible algorithms can be modified so as to satisfy other
types of bounds. This will provide us with many different
candidates when developing algorithms for a given subopti-
mality and also gives system designers more choice in how
they specify solution quality guarantees.

Finally, we conclude with a discussion of future work.

Related Work
In recent years, there has been an increased interest into
building planners using portfolios. Much of this work in-
volves learning how to best use an already constructed can-
didate set of algorithms. For example, the work of Roberts
and Howe (2006) learns a decision tree offline based on
training data so as to select an instance-specific portfolio for
each new problem encountered. Fast Downward Stone Soup
(FDSS) uses a similar approach in that the system includes
an offline training phase which involves learning how an as-
signment of the available computational resources to differ-
ent candidate algorithms (Helmert and Röger 2011). As our
goal is to enrich the space of algorithms to select from, not to
then most effectively use a candidate set, we consider these
to be orthogonal to our own work.

Another notable paper is that of Seipp et al. (2012) in
which they construct candidate sets by using an offline phase
in which they use an automatic parameter tuner to learn
a configuration of a planner for each of a set of training
domains. The space of configurations being considered al-
lows for the use of different heuristic functions, planning
enhancements, and best-first search variants. However, in
the next section we will show that even without tuning,
strong portfolios can be built by increasing the diversity of
the candidate algorithms and pairing best-first search with
a random-walk based approach. This motivates our work in
constructing new algorithms which specifically complement
the existing ones.

ArvandHerd: Multi-Core Planning with a
Portfolio

Ensuring that a portfolio contains candidate algorithms
which can handle a variety of different domains is necessary
for constructing high-performance portfolio-based planners.
This intuitive idea thus became the driving principle in our
development of ArvandHerd, a multi-core planner which
won the multi-core sequential satisficing track of IPC 2011
(Garcı́a-Olaya, Jiménez, and López 2011). The use of port-
folios in this planner stands in contrast to past work on build-
ing parallel planning systems, such as PBNF (Burns et al.
2010) and HDA* (Kishimoto, Fukunaga, and Botea 2009),
which has generally focused on parallelizing a single heuris-
tic search algorithm. While these approaches have success-
fully improved run-time, satisficing planners that use these
or similar techniques on shared memory machines should
not be expected to solve many more problems than their
single-core counterparts. This would be true for even perfect

Table 1: Performance of parallel planners.

Planner Number of Cores
1 2 4 8

LAMA-2008 Sim 639.0 641.0 643.0 NA
LAMA-2011 Sim 721.0 724.0 726.0 727.0
FDSS-1 Sim 720.0 724.0 726.0 727.0

Parallel Arvand 660.4 668.0 677.8 679.6
ArvandHerd NA 737.2 743.2 741.8

parallelizations of several state-of-the-art planners, which
run exactly k times faster than their single-core counter-
parts when using k cores. Given a time limit T , the perfor-
mance of such a k-core system can be simulated by running
the single-core version of each planner for k · T time and
counting any problem solved within this time limit as hav-
ing been solved by the k-core parallelization in time T . This
simulation indicates that even with such a speedup, cover-
age only increases slightly. The first three rows of Table
1 shows this simulated performance (in terms of coverage)
for three different state-of-the-art planners on all 790 prob-
lems from the 2006, 2008, and 2011 IPC competitions. The
three planners tested are LAMA-2008(Richter and Westphal
2010), LAMA-2011(Richter, Westphal, and Helmert 2011),
and FDSS-1 (Helmert and Röger 2011). In all cases, the
same pattern is clear: the use of additional cores results in
almost no improvements in coverage.

The issue with parallelizing a single-core planner is that
the parallel version will most likely have the same weak-
nesses as its single-core counterpart. For example, all three
of LAMA-2008, LAMA-2011, and FDSS-1 are memory
heavy algorithms in which it is the available constraints on
memory which are limiting the coverage. In such cases,
any speedup seen through parallelizing the planners only
causes memory to be exhausted more quickly. This be-
haviour is seen in the simulated LAMA-2011 paralleliza-
tion, as the 8-core simulation ran out of memory on 52 prob-
lems. This means that regardless of how many more cores
are used, at most 738 of the 790 problems can be solved
using LAMA-2011 without an increase in memory.

Our approach to this problem was to use a carefully se-
lected portfolio so as to combine the strengths of different
planning techniques. The portfolio approach is particularly
attractive due to its simplicity for implementation. This is
because each member of the portfolio merely needs to be
assigned to a different core. As such, the portfolio approach
represents a simple alternative to the difficult process of par-
allelizing a single-core algorithm and it mostly avoids over-
head from communication and synchronization.

In this end, we constructed ArvandHerd, a state-of-the-
art parallel planner whose portfolio was selected specifically
to avoid avoid the inherent limitations of parallelizing a sin-
gle memory-heavy planning algorithm that were described
above. Planners competing in this track were run on a 4-core
machine with a maximum of 30 minutes of run-time and 6
GB of memory. In ArvandHerd, three cores were used to
run a set of configurations of the linear-space random-walk-



based planner Arvand, and the final processor was used to
run the WA*-based LAMA-2008 planner.

Note, this section summarizes a post-competition analysis
which showed that by using these two very different individ-
ual planners in a parallel portfolio, ArvandHerd is able
to solve more IPC benchmark problems than several state-
of-the-art planners, even if these state-of-the-art planners
could be effectively parallelized (Valenzano et al. 2012). Be-
low, we will also demonstrate that each of the Arvand and
LAMA-2008 planners can be enhanced through the use of
multiple configurations and restarts. While these techniques
have been successfully applied in the satisfiability commu-
nity, we demonstrate that they are similarly successful in
planning.

The ArvandHerd Portfolio
LAMA-2008 (Richter and Westphal 2010), the winner of
the sequential satisficing track of IPC 2008, was a state-of-
the-art planner prior to IPC 2011 making it a natural selec-
tion for use in our portfolio. LAMA-2008 is WA*-based and
can be memory-heavy. As such, although the ArvandHerd
portfolio contains several configurations of LAMA-2008, it
avoids having to partition the memory amongst the various
configurations by only running a single LAMA-2008 con-
figuration at a time. The additional LAMA-2008 configura-
tions are only used if the first runs out of memory, in which
case the planner restarts with another configuration.

The ArvandHerd portfolio also contains several config-
urations of Arvand (Nakhost and Müller 2009). This plan-
ner uses a random-walk-based search which makes it ideal
for use alongside LAMA-2008 in a portfolio for several rea-
sons. First, this approach is very different from WA* and it
can solve some problems that the systematic search of WA*
is unable to handle. Secondly, domains in which Arvand
exhibits poor behaviour are often successfully tackled by
WA*-based approaches. Finally, Arvand has low memory
requirements, and so when it is run alongside LAMA-2008
in a shared-memory system, the majority of the memory can
be assigned to LAMA-2008.

When ArvandHerd begins its search, separate threads
are spawned to run different portfolio members. In a k-
core machine setting, k − 1 threads run a parallelization of
Arvand while the remaining thread runs LAMA-2008.

We will not describe these planners in further detail here
except to briefly note their complementary behaviour and
how each can be improved through the use of multiple con-
figurations. With respect to complementary behaviour, con-
sider rows 1 and 4 of Table 1. The former shows the simu-
lated performance of a parallelization of LAMA-2008 while
the latter shows the actual average performance of a par-
allel version of Arvand over the same set of 790 prob-
lems. While Arvand outperforms LAMA-2008 in terms of
its overall score, this is not necessarily the case when we
consider the performance in a domain-by-domain fashion.
Typically, domains in which single-core Arvand exhibits
poor performance are also difficult for the multi-core ver-
sions. For example, neither the single-core nor the 8-core
version of Arvand can solve even one of the 20 barman
problems from IPC 2011. Similar behaviour is seen in the

Table 2: LAMA-2008 using restarts.

Search Number of Restarts
Type 0 1 2 4 8 16

GBFS 431.8 437.0 438.5 440.3 437.3 427.8
w = 7 403.6 408.2 409.1 409.0 405.4 397.7
w = 1 207.2 209.1 209.8 207.3 205.4 194.9

sokoban domain from IPC 2008, in which single-core
Arvand solves an average of 4.4 of the 30 problems, while
8-core Arvand solves only 6.8. In contrast, LAMA-2008 is
able to solve 15 of the 20 barman problems and 26 of the
30 sokoban problems. However, LAMA-2008 is able to
solve only 19 of the 30 storage problems from IPC 2006
while Arvand is able to solve all 30. This further motivates
the use of a portfolio containing these two planners.

In our work, we also showed that by diversifying each
of Arvand and LAMA-2008 through the introduction of
stochasticity or multiple configurations we can improve the
coverage of each individually. Here we only describe our
findings in LAMA-2008 for which we showed that one pow-
erful technique for improving coverage is random opera-
tor ordering. This technique involves randomly re-ordering
the list of children of an expanded state before those new
states are added to any open list. By restarting every so often
and using random operator ordering, we can further extend
the coverage of LAMA-2008. This can be seen in Table 2,
which shows the coverage from LAMA-2008 when config-
ured in 3 different ways (either to run greedy best-first search
(GBFS) or WA∗ with weights of 7 or 1) when using dif-
ferent numbers of restarts. This is true of all configurations
tested, including two others not shown. While this technique
was known to work in simple single-agent search algorithms
(Valenzano et al. 2010), our experiment shows that it can
also benefit complete planning systems like LAMA-2008
even though it already uses multiple heuristics and multiple
open lists so as to encourage diversity in its search.

Our experiments also suggests that if LAMA-2008 is set
to restart not just with a new random seed but also with a
different configuration, this leads to further coverage im-
provements. For example, when restarting 4 times such that
each time uses a different one weight for WA∗, the expected
coverage is 448.4. This motivates the inclusion of several
LAMA-2008 configurations in the portfolio.

ArvandHerd on IPC Benchmarks
The average performance of ArvandHerd when run 5
times on each of the 790 problems in the 2006, 2008,
and 2011 is also shown in 1. The table shows that
ArvandHerd ’s coverage is significantly better than that
of the Arvand parallelization and the perfectly linear par-
allelizations of LAMA-2011 and FDSS. ArvandHerd
achieves its high coverage in the expected way, with
Arvand and LAMA-2008 cancelling out each others weak-
nesses. For example, recall that Arvand is unable to solve
even a single barman problem. With LAMA-2008 in the



portfolio, 2-core ArvandHerd solves an average of 15.4 of
the 20 problems (similar to the 16 solved by LAMA-2008
when run on its own). Similarly, while LAMA-2008 only
solves 19 of 30 problems in storage (IPC 2006), 2-
core ArvandHerd solves an average of 29.4 (similar to
the 30 that Arvand solves when run on its own). In this
way, ArvandHerd combines two planners in LAMA-2008
and Arvand whose performance lag significantly behind
LAMA-2011 when used on their own to surpass even a per-
fectly linear parallelization of LAMA-2011.

Creating Algorithms for Alternative
Suboptimality Bounds

While the algorithms used in ArvandHerd may find arbi-
trarily suboptimal solutions, some algorithms satisfy a sub-
optimality bound, which is a requirement on the cost of any
solution that is set a priori of any problem-solving. By se-
lecting a suboptimality bound, a user defines the set of solu-
tions which are considered acceptable. For example, where
C∗ is the optimal solution cost for a task, the ε-admissible
bound requires that any solution found must be from the set
of solutions which have cost C satisfying C ≤ (1 + ε) ·C∗.
The first such algorithm to satisfy this bound is the com-
monly used Weighted A∗ (WA∗) algorithm (Pohl 1970).

Now suppose that we wish to build a portfolio-based plan-
ner so as to satisfy a given suboptimality bound. A simple
way to do this is to ensure that all candidates in the portfolio
individually satisfy the bound. Clearly, this will guarantee
that any solution found by the portfolio will also satisfy the
suboptimality bound.

The questions that arises is then as follows: how can we
construct a set of candidate algorithms for a given bound?
In the case of ε-admissible bounds, there are plenty of algo-
rithms to choose from including WA∗, A∗ε (Pearl and Kim
1982), Optimistic Search (Thayer and Ruml 2008), and EES
(Thayer and Ruml 2011). Yet there also exists other types of
suboptimality bounds. For example, suppose that the desired
suboptimality guarantee is that any solution found has a cost
C which satisfies the relation C ≤ C∗ + γ for some γ ≥ 0.

Building algorithms for such alternative bounds is the
goal of a paper to appear at ICAPS 2013 (Valenzano et
al. 2013). In that work, we show that many existing ε-
admissible can be modified so as to apply to a large class
of other suboptimality bounds. Doing so gives more choice
into how suboptimality guarantees can be specified.

The contributions of our work are then as follows. First,
we introduced a functional notion of a suboptimality bound
so as to allow for the definition of alternative bounding
paradigms. We then developed a theoretical framework
which identifies how existing ε-admissible algorithms can
be modified so as to satisfy alternative bounds. Finally,
we demonstrated that the framework leads to practical al-
gorithms that can effectively trade-off guaranteed solution
quality for improved runtime when considered for additive
bounds. In this section, we summarize these contributions.

Generalizing Suboptimality Bounds
Recall that the ε-admissible bound requires that the cost C
of any solution returned must satisfy C ≤ (1 + ε) · C∗ for
some given ε ≥ 0. We generalize this idea by allowing for
an acceptable level of suboptimality to be defined using a
function, B : R → R. This bounding function is used to
define the set of acceptable solutions as those with cost C
for which C ≤ B(C∗). This yields the following definition:

Definition 1 For a given bounding functionB, an algorithm
A will be said to satisfy B if on any problem, any solution
returned by A will have a cost C for which C ≤ B(C∗).

As an example of how this definition applies, let us again
consider the ε-admissible requirement. The corresponding
bounding function is Bε(x) = (1 + ε) · x, and an algorithm
is ε-admissible if and only if it satisfies Bε. Similarly, an
algorithm is optimal if and only if it satisfies the bounding
function Bopt(x) = x. Other bounding functions of interest
include Bγ(x) = x+ γ for some γ ≥ 0, which corresponds
to an additive bound, and B(x) = C∗ + logC∗, which al-
lows for the amount of suboptimality to grow logarithmi-
cally with the optimal solution cost.

Notice that all of these bounding functions satisfy the re-
lationship that B(x) ≥ x for all x. This is a necessary con-
dition, as to do otherwise is to allow for bounding functions
that require better than optimal solution quality. Any bound-
ing function B satisfying this requirement will also be triv-
ially satisfied by any optimal algorithm. However, selecting
an optimal algorithm for a given B (where B 6= Bopt) de-
feats the purpose of even defining an acceptable level of
suboptimality, which was to avoid the resource-intensive
search typically required to find optimal solutions. The goal
is therefore not only to find an algorithm that satisfies a given
bounding functionB, but to find an algorithm which satisfies
B and can be expected to be faster than algorithms satisfy-
ing tighter bounds. The approach we take is similar to that
of WA∗: by allowing the algorithm to become greedier.

Building Algorithms for a Bounding Function
Having introduced a functional definition of a suboptimal-
ity bound, we now wish to construct algorithms for a giving
bounding function. In our work, we investigate 4 different
classes of existing algorithms and show that they each can be
modified so as to be made to satisfy a large class of arbitrary
bounding functions. These 4 classes are anytime algorithms,
best-first search algorithms, iterative deepening algorithms,
and focal list based search. In the interest of brevity, we
only review the best-first search results here. Note, in the
following we will let h(n) denote the heuristic value asso-
ciated with a node, g(n) will denote the cost of the path
found to n, and h is said to be admissible if for all nodes
n, h(n) ≤ h∗(n) where h∗(n) is the true distance from n to
the nearest goal.

We define best-first search as a generalization of A∗
and Djikstra’s algorithm whereby some arbitrary evaluation
function Φ is used to guide the search. For example, the A*
algorithm (Hart, Nilsson, and Raphael 1968) is guided by
the evaluation function Φ(n) = f(n) = g(n) + h(n) where
h is admissible, and Dijkstra’s algorithm (Dijkstra 1959) is



guided by Φ(n) = g(n). For convenience, we use the no-
tation BFSΦ to denote a BFS instance which is using the
evaluation function Φ.

Our main theorem for best-first search is the following:

Theorem 0.1 Given a bounding function B, BFSΦ will
satisfy B if Φ is a function that satisfies the following:

1. ∀ node n on some optimal path, Φ(n) ≤ B(g(n)+h∗(n))

2. ∀ goal node ng , g(ng) ≤ Φ(ng)

Notice that Theorem 0.1 does not suggest a particular
evaluation function for satisfying a given bounding func-
tions but instead defines a space of evaluation functions that
will suffice. This theorem therefore identifies a space of can-
didate algorithms for inclusion in a portfolio-based system
for satisfying B.

For a certain class of bounding functions, Theorem 0.1
can also be used to construct a specific algorithm for satisfy-
ing the desired bound. This result is inspired by WA∗ (Pohl
1970). Recall that it uses the evaluation function fε(n) =
g(n) + (1 + ε) ·h(n) (ie. WA∗ is BFSfε ) and is ε-admissible
if h is admissible. Also notice that fε(n) = g(n)+Bε(h(n))
where Bε is the bounding function corresponding to ε-
admissibility. In practice, WA∗ often solves problems faster
than A∗. This is because fε increases the importance of h rel-
ative to g, and therefore allows WA∗ to search more greed-
ily on h than does A∗. This suggests the use of the evalu-
ation function ΦB(n) = g(n) + B(h(n)) for satisfying a
given bounding function B since it similarly puts additional
emphasis on h. The following corollary shows that this ap-
proach can be used on a large class of bounding functions:

Corollary 0.2 Given bounding function B such that for all
x, y, B(x + y) ≥ B(x) + y, if ΦB(n) = g(n) + B(h(n)),
then BFSΦB with satisfy B.

Algorithms with Additive Bounds
So as to demonstrate the utility of the theoretical framework
just described, we used it to construct algorithms for the ad-
ditive bounding function Bγ(x) = x + γ for some γ ≥ 0.
This bounding function represents a special case in which
the evaluation function offered in Corollary 0.2 will result
in an algorithm which behaves identically to A∗. Since the
whole reason for allowing for suboptimal algorithms in the
first case was to achieve better performance than A∗, using
this evaluation function is inadequate. Instead, we will use
the following evaluation function:

Fγ(n) = g(n) + h(n) +
min(h(n), h(ni))

h(ni)
· γ

where ni is the initial node. By Theorem 0.1, BFSFγ can be
shown to satisfy Bγ .

Intuitively, Fγ penalizes nodes inversely with how
much heuristic progress has been made (as measured by
h(n)/h(ni)), with the maximum possible penalty being γ.
Notice that if h(ni) is the largest heuristic value seen during
the search, then the ‘min’ can be removed from Fγ which
then becomes equivalent to ε-admissible evaluation function
fε(n) = g(n) + (1 + ε) · h(n) in which ε = (1 + γ/h(ni)).

This suggests that BFSFγ can be expected to behave simi-
larly to WA∗, though while achieving a completely different
kind of suboptimality bound.

We experimented with BFSFγ by implementing it into
the Fast Downward (Helmert 2006) framework. The experi-
ments were performed on the 280 problems from the optimal
track of IPC 2011, with the planner being given maximums
of 30 minutes and 4 GB per problem. The admissible heuris-
tic used is LM-Cut (Helmert and Domshlak 2009).

The general behaviour seen was as follows: as subop-
timality is allowed to increase, so too does the coverage.
When γ = 0, BFSFγ is the same as A∗ and it is able to
solve 132 of the problems. With even a slight increase to
γ = 1, an total of 145 problems are solved — representing
an increase of almost 10%. The coverage then increases to
163, 204, and 218 problems solved for γ values of 10, 100,
and 1000, respectively. This is consistent with the behaviour
of WA*, which also benefits from the additional greediness
allowed with a looser bound.

In (Valenzano et al. 2013), we also show similar gains
when using iterative deepening so as to satisfy additive
bounds in large combinatorial puzzles, and focal list based
algorithms so as to satisfy additive bounds in domains with
non-uniform action costs.

Future Work
The work on bounded portfolios in the previous section
represents several opportunities for future work. While we
have shown that we can modify the different classes of ε-
admissible algorithms so as to satisfy other bounds, we have
yet to experiment with them together in a portfolio setting.
As the different algorithm classes have their own speciali-
ties — with best-first search being most effective on uniform
cost domains, focal list based search being most effective
on non-uniform cost domains, and iterative deepening being
most effective on large combinatorial domains with few cy-
cles — we expect that they will do well when used together.
However, this remains to be shown experimentally.

Another aspect of these new algorithms that needs in-
vestigation is under which conditions they can be expected
to effectively trade-off solution quality for search speed.
There has been some work on showing that WA∗ can be ex-
pected to have polynomial performance under certain types
of heuristic error (Chenoweth and Davis 1992). Our intent
is to extend this result to other algorithms of the type con-
structed by Corollary 0.2 so as to determine when these new
algorithms can similarly be expected to be effective. By find-
ing the error types under which these different algorithms
should perform well, we can construct sets of candidate al-
gorithms designed specifically so as to handle a wide range
of heuristic error. This will be useful not only for bounded
suboptimal search but also to general automated planners
which also need to handle a variety of heuristic error types.

Currently, the most popular heuristic search algorithm
for use in satisficing planning is greedy best-first search
(GBFS). While including algorithms for handling other
types of heuristic error has been described above, we are
also attempting to construct alternative forms of this algo-
rithm that do not fail in similar situations. GBFS often finds



solutions quickly in practice due to its greediness, but that
same greediness means that it can easily be lead astray by
inaccurate heuristic information. In an effort to consider al-
gorithms that can complement GBFS in a portfolio we have
looked at constructing search procedures which does not
trust the heuristic information too much. This means that oc-
casionally these new algorithms should expand a node with
a higher h-cost than one with a lower h-cost.

We have had some early success in doing so using heuris-
tic perturbation. Given a heuristic h, GBFS with heuristic
perturbation (GBFS-HP) performs a GBFS search using the
heuristic h′ defined as h′(n) = h(n) + r(n), where r(n) is
a random value uniformly selected from the range [−τ, τ ].
τ ≥ 0 is a user set algorithm parameter. The value of r(n) is
selected immediately prior to n being added to OPEN, and
so it can result in a different ordering of the nodes in the
open list than would occur when using heuristic h.

GBFS-HP was implemented into LAMA-2008 and tested
against standard GBFS using only a single heuristic and no
preferred operators. On the 560 problems from the IPC 2006
and IPC 2008, standard GBFS solved 339 problems. With
τ = 5 and τ = 10, GBFS-HP was able to solve an average
of 360.2 and 382.6 problems when run 5 times per problem.
Moreover, its behaviour is very different than that of GBFS
with there being 8 domains in which GBFS-HP with τ = 10
having solved 10% more problems than standard GBFS and
there being 2 domains with the opposite happening.

While GBFS-HP appears to have much potential for in-
clusion alongside GBFS in a portfolio, more investigation
into this algorithm is needed. A better understanding of this
algorithm will be performed by testing it on artificial search
domains in which the heuristic error can be controlled and
modified.

References
Burns, E.; Ruml, W.; Lemons, S.; and Zhou, R. 2010.
Best-First Heuristic Search for Multicore Machines. JAIR
39:689–743.
Chenoweth, S. V., and Davis, H. W. 1992. New ap-
proaches for understanding the asymptotic complexity of a
tree searching. Ann. Math. Artif. Intell. 5(2-4):133–162.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Garcı́a-Olaya, A.; Jiménez, S.; and López, C. L. 2011. IPC
2011 Deterministic Track. http://ipc.icaps-conference.org.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M., and Röger, G. 2011. Fast Downward Stone
Soup: A Baseline for Building Planner Portfolios. In ICAPS-
2011 Workshop on Planning and Learning, 28–35.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26:191–246.

Hoffmann, J. 2005. Where ’ignoring delete lists’ works: Lo-
cal search topology in planning benchmarks. J. Artif. Intell.
Res. (JAIR) 24:685–758.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scalable,
Parallel Best-First Search for Optimal Sequential Planning.
In ICAPS.
McNaughton, M.; Lu, P.; Schaeffer, J.; and Szafron, D.
2002. Memory-efficient a* heuristics for multiple sequence
alignment. In AAAI/IAAI, 737–743.
Nakhost, H., and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In IJCAI, 1766–1771.
Pearl, J., and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Trans. on Pattern Recognition and Ma-
chine Intelligence 4(4):392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In IPC 2011 Deterministic Track, 117–124.
Roberts, M., and Howe, A. 2006. Directing a portfolio with
learning. In AAAI 2006 Workshop on Learning for Search,
129–135.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In
ICAPS.
Stentz, A. 1995. The focussed d* algorithm for real-time
replanning. In IJCAI, 1652–1659.
Thayer, J. T., and Ruml, W. 2008. Faster than Weighted A*:
An Optimistic Approach to Bounded Suboptimal Search. In
ICAPS, 355–362.
Thayer, J. T., and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In IJCAI, 674–679.
Valenzano, R.; Sturtevant, N.; Schaeffer, J.; Buro, K.; and
Kishimoto, A. 2010. Simultaneously Searching with Multi-
ple Settings: An Alternative to Parameter Tuning for Subop-
timal Single-Agent Search Algorithms. In ICAPS, 177–184.
Valenzano, R. A.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. R. 2012. Arvandherd: Parallel planning with
a portfolio. In ECAI, 786–791.
Valenzano, R. A.; Arfaee, S. J.; Thayer, J. T.; Stern, R.; and
Sturtevant, N. 2013. Using alternative suboptimality bounds
in heuristic search. In ICAPS.


