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Introduction
Heuristic (Informed) Search takes advantage of problem-
specific knowledge beyond the definition of the problem
itself to find solutions more efficiently than uninformed
search, such as Breadth-First Search (BFS) and Depth-First
Search (DFS). We design domain-dependent search algo-
rithms to plan tasks. However, the domain-dependent de-
sign pattern cannot be applied to fully automatic domains,
such as robots that need to plan unknown tasks. AI Planning,
as a special case of heuristic search, emphasizes domain-
independent approaches for solving such problems.

Satisficing planning generally can handle harder problems
than optimal planning. Solution optimality is not required in
satisficing planning: finding a good suboptimal solution suf-
fices. Recently, there has been great progress in satisficing
planning: in the three last international planning competi-
tions (IPC), top planners solved more than 90% of the tasks.
Many problems are inspired by applications, such as oil in-
dustry, transportation and molecular biology.

Considering that the top planners perform quite well over
current IPC benchmarks, it is natural to check the scaling
behavior of the current search algorithms as well as the rea-
sons why the top planners do not perform well on these re-
maining unsolved problems. Most current state of the art
satisficing planners use heuristic search techniques. During
the past decades, the planning community spent a lot of ef-
fort in developing strong domain-independent heuristics to
fit into the classical heuristic search algorithms. We now
have many good domain-independent heuristics such as FF,
causal graph (CG) and context-enhanced additive (CEA).
However, because of the generality of domain-independent
planning, it is hard to develop domain-independent heuris-
tics as strong as domain-specific heuristics. It is not re-
alistic to expect that all hard planning problems can be
solved simply by combining domain-independent heuristics
with classic search algorithms such as Hill-Climbing and
Greedy Best First search. Since domain-independent heuris-
tics might be uninformed or even ill-informed sometimes,
we need more sophisticated search algorithms where heuris-
tics are not reliable. Recently, more effort is spent in de-
veloping more powerful search algorithms, such as EHC
(Hoffmann and Nebel 2001) and Random-Walk Planning
(Nakhost and Müller 2009), as well as search enhancements
such as preferred operators (Richter and Helmert 2009) and

sophisticated explorative probes (Lipovetzky and Geffner
2011).

There is still a lot of space to improve for current state
of the art search algorithms. A typical algorithm is Greedy
Best First Search (GBFS). GBFS always expands a node n
that is closest to a goal state according to a heuristic h. Mis-
leading or uninformative heuristics can massively increase
the time and memory complexity of such searches. In this
abstract, we are going to use GBFS as a typical example
to talk about two problems closely related to my research,
which also commonly exist in heuristic search algorithms:
early mistakes and uninformative heuristic regions.

Early Mistakes (EM) and Uninformative Heuristic
Regions (UHR)
Early mistakes (EM) are mistakes caused by heuristic func-
tions in evaluating nodes at the same shallow levels of the
search tree. It causes the root nodes of bad sub-trees (have
no solution or only hard-to-find solutions) to have lower
heuristic values than root nodes of good sub-trees, which
efficiently lead to a solution.

Figure 1 (a) is a typical illustration of what early mistake
is. The task is to reach G from the start state S. Since GBFS
with an euclidean distance heuristic will expand the h-value
9.4 state first, it has to expand the whole left sub-tree before
moving to the correct right sub-tree. This example illustrates
a costly early mistake of being greedy on heuristics. Similar
costly behavior is not limited to GBFS. Other deterministic
greedy algorithms such as Hill Climbing also have the same
problem. Techniques addressing the early mistake problem
all involve some non-greedy exploration. Some successful
approaches include K-BFS (Felner, Kraus, and Korf 2003),
which expands first k best nodes in the open list and inserts
their successors into the open list, Diverse-BFS (Imai and
Kishimoto 2011), which expands some nodes with non-best
h-value with nonzero probability, and MRW (Nakhost and
Müller 2009), which adopts random operator selecting and
restarting from the initial state.

Uninformative heuristic region (UHR) includes local min-
ima and plateaus. A local minimum is a state with minimum
h-value within a local region, which is not a global minimum
(which is h = 0 in the case of solvable planning problems).
A plateau is an area of the state space where all states have
the same heuristic value.



Consider Figure 1 (b). The grey area contains a local
minimum with h = 8 and a plateau with h = 10. h pro-
vides no guidance within the grey area, so GBFS needs to
visit all grey states, an inefficient breadth-first behaviour.
Figure 2 (left) shows a typical BFS style search behavior
in a local minimum using GBFS and hFF (Hoffmann and
Nebel 2001). While some branches are deeper than others,
the search is basically exhaustive. Figure 2 (left) visualizes
how the GBFS search tree grows in one uninformed heuristic
region on the instance #02 from IPC domain 2011-barman
while searching from h = 24 towards h = 23, and escaping
from three uninformed heuristic regions including this takes
90% of the search time that GBFS spends in solving this
planning instance. Because GBFS’s very inefficient escap-
ing from UHRs, it is a natural choice to switch to a sec-
ondary search strategy, which is better at escaping from un-
informative heuristic regions.

(a) Example of early mistakes with GBFS.

(b) Example of an uninformative heuristic region.

Figure 1: The effect of early mistakes and uninformative
heuristic regions. For all grid states generated by GBFS, h-
values are shown in the center. (a) h-values are euclidean
distances. GBFS makes an early mistake, expanding the 9.4
state, and needs to expand all grey states before visiting the
correct subtree. (b) The grey squares contain a local mini-
mum with h = 8 and a h = 10 plateau. GBFS needs to
expand all grey squares to find an escape.

Objectives and Methods
The ultimate goal in my research is to scale the current
state of the art search algorithms to larger problems and
solve the current hard problems more efficiently. The clas-
sical search algorithms or strategies, such as GBFS, Hill-
Climbing and Any-time weighted A*, are all deterministic
and strongly depends on the evaluation functions. While al-
gorithms with randomized exploration, such as Monte Carlo
Tree Search (Kocsis and Szepesvári 2006), have been well
studied and successfully applied in the fields of challeng-
ing game-playing and probabilistic planning, there is not yet
enough attention to applying them in satisficing planning.
The randomized algorithms certainly have some potential
addressing problems such as early mistake in determinis-
tic satisficing planning. We wish to apply some random-
ized methods to deterministic satisficing planning in order
to build more robust and efficient planning systems. Since
some satisficing planning instances can be very hard and
very different from each other, it is not easy to develop
one single algorithm to handle all cases. Another interesting
direction in my research is to build loosely-coupled port-
folio or tightly-coupled multi-strategies systems that com-
bine search strategies/algorithms addressing different types
of problems together. The main challenge is to balance the
trade-off between the benefit that we gain from and the over-
head that we pay for combining different algorithms into the
system.

Recent Progress
In this section, we present two published work in ICAPS
(one in 2012, one accepted for 2013) and one submitted
work to IJCAI-2013.

Planning via Random Walk-Driven Local Search
Objective/Motivation: Most successful current satisficing
planners combine several complementary search algorithms.
Examples range from portfolio planners such as Fast Down-
ward Stone Soup (Helmert, Röger, and Karpas 2011) and
loosely coupled parallel planners such as ArvandHerd to
systems which alternate several search strategies, such as
Fast-Forward (Hoffmann and Nebel 2001) and Fast Down-
ward (Helmert 2006). Using local random walks with jump-
ing, as in Arvand, scales better to larger problems, and at
the same time best-first search planners work much better in
these domains where specific action sequences need to be
discovered in order to make progress. Can we further im-
prove both types of planners by combining the two different
search strategies?

Method/Approach: We present the new algorithm Ran-
dom Walk-Driven Local Search (RW-LS) (Xie, Nakhost,
and Müller 2012), which is a mixing strategies algorithm
that combines deterministic local GBFS and explorative ran-
dom walk. Compared with the MRW (Nakhost and Müller
2009) algorithm, which does not conduct any systematic
search, RW-LS uses a local Greedy Best-First Search driven
by both direct node evaluation and random walks. RW-LS
jumps to either the best state in the closed list or the best
endpoint found by random walks to exploit advantages of



Figure 2: 20000 node search trees generated by GBFS (left) and LS-GBFS (center and right) while decreasing hmin from 24 to
23 in 2012-barman-02. In the left and center, colours correspond to node generation time: blue = early, orange = late. The right
figure shows the subset of the LS-GBFS nodes generated by local search.

Figure 3: The search strategies of MRW (left) and RW-LS
(right).

both search strategies. Figure 3 shows the difference be-
tween MRW and RW-LS. The planner based on RW-LS,
Arvand-LS, improves both coverage1 and plan quality sig-
nificantly over the IPC-2011 version of Arvand.

Another contribution of this work is IPC-2011-LARGE, a
set of scaled up test instances for several IPC-2011 domains.
Such scaled up instances are useful since some of the current
IPC benchmarks have become too easy for the best planners.
They show some limits of the state-of-the-art planners and
indicate that the proposed RW-LS algorithm scales to the
IPC-2011-LARGE instances.

Better Quality Search via Randomization and
Postprocessing
Objective/Motivation: Because plan quality is also an im-
portant metric in IPC-2008 and IPC-2011, planners usu-
ally keep searching for better solutions after finding the
first solution. Using a post-processor system, such as ARAS
(Nakhost and Müller 2010) which takes an existing plan and

1: the number of problems solved

tries to find a higher quality one, is another option. One
interesting phenomenon is that it is usually better to feed
several low quality plans into Aras than to feed only one
high-quality plan when we do experiments on Arvand. Fig-
ure 4 shows the intuition of why low quality input plans can
lead to better quality output plans. If we apply the same
method to more systematic any-time search planners, such
as LAMA-2011, would the same phenomenon happen?

Most of the satisficing planners which are based on
heuristic search iteratively improve their solution quality
through an anytime approach. Typically, the lowest-cost so-
lution found so far is used to constrain the search. This
avoids areas of the state space which cannot directly lead
to lower cost solutions. However, if the same phenomenon
discussed above also exists in state of the art planners, in
conjunction with a post-processing plan improvement sys-
tem such as ARAS, this bounding approach can harm a plan-
ner’s performance.

Method/Approach: We applied ARAS with LAMA-
2011 on the latest IPC competition domains. 29% of final
solutions from ARAS come from non-best solution gener-
ated by LAMA-2011. Based on this observation, we pro-
posed the Diverse Any-time Search Meta-Algorithm (DAS)
(Xie, Valenzano, and Müller 2013) for plan quality improve-
ment using restarting with some randomization and post-
processing. When adding both Diverse Any-Time Search
and the ARAS post-processor to LAMA-2011 and AEES,
the Anytime Explicit Estimation Algorithm (Thayer, Ben-
ton, and Helmert 2012), the performance on the 550 IPC
2008 and IPC 2011 problems is improved by almost 60
points according to the IPC metric, from 511 to over 570 on
LAMA-2011, and 73 points from 440 to over 513 on AEES.

Improving Greedy Best First Search by Local
Search
Objective/Motivation: Domain independent planning is a
good test bed for deepening our understanding of classical
search algorithms. Without strong domain-specific heuris-
tics, some structure problems caused by uninformed or ill-
informed heuristics, such as early mistake and uninforma-
tive heuristic region, become the performance bottleneck.



Figure 4: Why low quality plans into Aras can generate bet-
ter final output plans. In the figure, red dot lines denote op-
timal path, black solid lines denotes input path, regions sur-
rounded by dashed black lines denote the neighbour state
space ARAS expanded from the input paths, and solid red
lines denotes the shortest path ARAS can find inside the
neighbour states space.

In this work, we explored how UHRs influence GBFS’ per-
formance. GBFS is an algorithm that strongly depends on
the heuristic function. GBFS always expands a node that is
closest to a goal state. The early mistake problem, where
heuristic functions give wrong evaluations, is discussed in
previous work on the K-BFS (Felner, Kraus, and Korf 2003)
and Diverse-BFS (Imai and Kishimoto 2011). However,
the uninformative heuristics region (UHR) problem, where
a heuristic function provides no useful guidance, remains
under-explored.

Method/Approach: In UHRs, Greedy Best First Search
is as inefficient as uninformed Breadth First Search, as il-
lustrated in Figure 2 (left). Based on that observation, we
developed an algorithm called Local Search based Greedy
Best First Search (LS-GBFS) which is a dual strategies al-
gorithm that combines global GBFS and local GBFS in or-
der to escape UHRs quickly. LS-GBFS, shown in Figure 2
(middle), searches much more deeply along some branches.
Figure 2 (right) shows that these deep branches are mainly
grown by the local search. The new planner LS-LAMA,
which replaces the GBFS component of the top planner
LAMA-2011 by LS-GBFS, solves more problems and re-
duces the search time on a common set of IPC problems by
one third. Figure 5 shows the time usage for LS-LAMA and
LAMA-2011 in solving the n easiest problems. We submit-
ted this paper to IJCAI-2013 this year.

Short-term Objectives

This section proposes research that is already in progress
with preliminary results, or is a clear next step of previous
work.

LS-LAMA vs LAMA-2011

Figure 5: Time usage (in seconds) for solving the n easiest
problems.

Preferred Operators Revisited
Objective/Motivation: Preferred Operator is a very strong
search enhancement for current state of the art satisficing
planners. The dual queue approach is empirically shown as
the strongest way of using preferred operators by (Richter
and Helmert 2009). Compared to pruning strategy intro-
duced by (Hoffmann and Nebel 2001), they showed that
pruning performs badly if the preferred operators are ill-
informed. The dual queue approach of preferred operators
contains two parts:
• information provided by preferred operators;
• an extra queue filled with a partial set (only preferred op-

erators) of the all legal operators.
It is widely assumed that the majority or nearly all improve-
ment come from the first point. What the extra queue does
is mainly to provide a more smooth way of adding infor-
mation provided by preferred operators than pruning. Is it
really the case? We designed some controlled experiments
on GBFS over all IPC domains by replacing the preferred
operators with the same number of random operators. The
experimental results show that the random operators dual
queue approach can achieve roughly 50% the improvement
in coverage of the dual queue preferred operators approach!

Method/Approach: We recently start studying why a
partial random operator extra queue can achieve such a big
improvement. There are several possible reasons: 1), be-
cause we use a smaller number operators in the extra queue,
the search can explore deeper search space quicker, which
is helpful for escaping from uninformative heuristic regions;
2), because some best h-value nodes are ignored in the par-
tial queue, the non-best h-values get more possibility to
be expanded, in other words, it provides more exploration.
Some preliminary results show that the extra partial queue
has improvement on both aspects. Based on this observation,
we develop a very simple three queue approach containing:
• a queue with all legal operators,



• a queue with only preferred operators,

• a queue with a partial set of randomly selected operators.

We test it on LAMA-2011. The new three queue approach
decrease the search time on a common set of IPC-2011 prob-
lems by 20%. In short, the multi-queue open list approach
provides a smooth way to combine different search strate-
gies into the same search framework.

A General Variant of GBFS Handling both Early
Mistake and UHR
Objective/Motivation: Another interesting future work is
combining techniques for handling early mistakes and unin-
formative heuristic regions into a single algorithm. Since we
have different algorithms handling early mistakes and unin-
formative heuristic regions, such as Diverse-BFS for early
mistakes and LS-GBFS for uninformative heuristic regions,
one simple approach is to build a portfolio system including
both. Preliminary results show that a simple loosely-coupled
portfolio planner of these two algorithms reduces the num-
ber of unsolved problems over all instances from past IPC
competitions from 199 to 145. However, since early mis-
takes and UHRs appear together in many hard problems, an
efficient search algorithm should be able to handle both at
the same time.

Method/Approach: A tighter integrated combination of
LS-GBFS and DBFS seems promising because of their com-
plementary strengths. DBFS contains several significant in-
novations, such as expanding nodes with non-best h-value,
and size-controlled local search. Studying these mechanisms
deeply could be an important step towards building a strong
hybrid algorithm. LS-GBFS and DBFS are very similar in
algorithm structure. Though for different purposes, both al-
gorithms use small local searches for exploration. It also
seems possible to combine both algorithms into one single
general framework and gradually switch between the two
behaviours via some internal parameters.

Long-term Objectives
Classifying Planning Domains and Algorithms:
Next Step towards Strong Portfolio or
Multi-Strategies Systems
Objective/Motivation: It is hard to find one strong algo-
rithm that can achieve state of the art performance in all
domains. Even LAMA-2011, the clear winner of IPC-2011
single core track, is inferior to the state of the art in many
domains, such as 2011-nomystery (Nakhost, Hoffmann, and
Müller 2012), 2006-trucks (Imai and Kishimoto 2011) and
large-2011-woodworking (Xie, Nakhost, and Müller 2012).
Because there exist different types of planners with state of
the art performance in some domains but inferior to other
planners in other domains, building a portfolio system is
a natural choice. Some successful approaches include Fast
Downward Stone Soup (Helmert, Röger, and Karpas 2011),
the second place in the IPC-2011 single core track, and Ar-
vandHerd (Valenzano et al. 2012), the winner of the IPC-
2011 multi-core track. Many promising search algorithms
are proposed recently. We have more candidates to build

loosely-coupled portfolio or tightly-coupled multi-strategies
systems. How to select candidate search algorithms includ-
ing the new proposed algorithms is still an open problem.

Method/Approach: One interesting closely related work
is (Nakhost and Müller 2012) which analyzes search behav-
ior in plateaus. A plateau is an area of the state space where
all states have the same heuristic value while the real dis-
tance to goal states d varies. This paper proves that random
walks are more efficient than traditional algorithms such as
GBFS in escaping some plateaus. In order to analyze ran-
dom walks, this work introduces an interesting parameter
called regress factor, which is the probability that perform-
ing a random operator increases the goal distance divided by
the chance that decreases the goal distance. Except the rela-
tionship between d and h, we also plan to investigate regress
factor from small problems, whose state space can be enu-
merated explicitly, to see whether we can get some interest-
ing results. Another direction is algorithm-dependent anal-
ysis. While the analysis mentioned above is more like an
off-line approach, it is also interesting to investigate some
online approaches such as recording numbers of node ex-
pansions and search tree structure over per heuristic value
improvement.

Anticipated Significance
Work in applying randomized methods and developing port-
folio or multi-strategies systems has already attracted a
large amount of interest in deterministic satisficing plan-
ning. More general and efficient search methods over plan-
ning benchmarks would certainly have an impact on the gen-
eral AI community and definitely have strong potential to
propagate back to the classical heuristic search fields. Given
the significant improvement of our current work over state
of the art, we expect more follow-up research on random-
ized methods and mixed strategies hybrid/portfolio systems
in deterministic satisficing planning. For the proposed work
in classifying domains and search algorithms, we wish it can
provide a fundamental basis for future research on building
portfolio or multi-strategies systems.
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