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Abstract

In deterministic oversubscription planning, the objective is
to achieve an as valuable as possible subset of goals within
a fixed allowance of the total action cost. Although numer-
ous applications in various fields share this objective, no sub-
stantial algorithmic advances have been made beyond the
very special settings of net-benefit optimization. Tracing
the key sources of progress in classical planning, we iden-
tify a severe lack of domain-independent approximations for
oversubscription planning, and start with investigating the
prospects of abstraction approximations for this problem. In
particular, we define the notion of additive abstractions for
oversubscription planning, study the complexity of deriv-
ing effective abstractions from a rich space of hypotheses,
and reveal some substantial, empirically relevant islands of
tractability.

Introduction

In the context of deterministic planning, the basic struc-
ture of acting in situations with underconstrained or over-
constrained resources is respectively captured by classical
planning and oversubscription planning. In classical plan-
ning, all goals must be achieved at as low a total cost of
the actions as possible. In oversubscription planning, an
as valuable as possible subset of goals should be achieved
within a fixed allowance of the total action cost. While both
theory and practice of classical planning have been rapidly
advancing, progress in oversubscription planning has been
achieved mostly in the special setting of net-benefit plan-
ning, where no explicit restriction is put on the plan cost, the
action costs and goal utilities are assumed to be comparable,
and the objective is thus to maximize the difference between
the cumulative value of the achieved goals and the cost in-
vested in achieving them. Research on net-benefit planning
resulted in numerous interesting algorithms, but recently it
was shown that net-benefit planning is polynomial-time re-
ducible to classical planning (Keyder and Geffner 2009), and
thus constitutes an extremely special fragment of oversub-
scription planning.

A closer look at the recent progress in classical plan-
ning reveals that, to a large extent, it stems from advances
in domain-independent approximations, or heuristics, of the
cost needed to achieve all the goals from a given state. It is
thus possible that having a similarly rich pallet of effective

heuristic functions for oversubscription planning would ad-
vance the state-of-the-art in that setting of automated plan-
ning. In principal, the reduction of Keyder and Geffner
(2009) from net-benefit to classical planning can be used to
reduce oversubscription planning to classical planning with
numeric state variables (Fox and Long 2003; Helmert 2002).
So far, however, progress in classical planning with numeric
state variables has mostly been achieved along variants of
monotonic, or delete-free, relaxation heuristics (Hoffmann
2003; Edelkamp 2003), and these heuristics do not preserve
information on consumable resources: the “negative” ac-
tion effects that decrease the values of numeric variables are
ignored, possibly up to some special handling of so-called
“cyclic resource transfer” (Coles et al. 2008b).

In this work we make first steps towards effective heuris-
tics for oversubscription planning, and in particular, to-
wards admissible abstraction heuristics for this problem. In
classical planning, state-space abstractions are among the
most prominent foundations for devising admissible heuris-
tics (Edelkamp 2002; Haslum et al. 2007; Helmert, Haslum,
and Hoffmann 2007; Katz and Domshlak 2010a). Depart-
ing from the most basic question of what state-space ab-
stractions for oversubscription planning actually are (and
what they are not), we show that the very notion of abstrac-
tion substantially differs in classical and in oversubscrip-
tion planning. We define additive abstractions and abstrac-
tion heuristics for oversubscription planning, and investigate
computational complexity of deriving effective abstraction
heuristics in the scope of homomorphic abstraction skele-
tons, paired with cost, value, and budget partitions. Along
with revealing some significant islands of tractability, we ex-
pose an interesting interplay between knapsack-style prob-
lems, convex optimization, and principles borrowed from
explicit abstractions for classical planning. We believe that
this interplay opens the road to much further research.

Formalism and Background

In line with the SAS™ formalism for deterministic plan-
ning (Bickstrom and Klein 1991; Biackstrom and Nebel
1995), a planning task structure is given by a pair II =
(V, A), where V is a set of n finite-domain state variables,
and A is a finite set of actions. Each complete assignment
to V is called a state, and S = dom(v1) X - - - X dom(vy,) is
the state space of I1. Each action a is a pair (pre(a), eff(a))



of partial assignments to V' called preconditions and effects,
respectively. Denoting by V(p) C V the subset of variables
instantiated by a partial assignment p, action a is applicable
in a state s iff s[v] = pre(a)[v] forall v € V(pre(a)). Apply-
ing a changes the value of each v € V(eff(a)) to eff(a)[v].
The resulting state is denoted by s[a]; by s[{(a1,...,ar)]
we denote the state obtained from sequential application of
the (applicable in turn) actions a, . . . , aj starting at state s.

In classical planning, a planning task IT = (V, A; 50, G, ¢)
extends its structure with an initial state so € S, a goal
specification G, typically modeled as a partial assignment
to V, and a real-valued, nonnegative action cost function
c: A — R An action sequence p is called an s-plan
if it is applicable in s, and G C s[[p]. An s-plan is optimal
if the sum of its action costs is minimal among all s-plans.
The objective in classical planning is to find an sg-plan of
as low cost as possible, while optimal classical planning is
devoted to searching for optimal so-plans only.

In contrast, in oversubscription planning, a planning task
IT = (V, A; s9, ¢, u, b) extends its structure with four com-
ponents: an initial state so € S and an action cost function
c: A — R as above, plus a succinctly represented and
efficiently computable state value function v : S — RO,
and a cost budget b € R, An action sequence p is called
an s-plan if it is applicable in s, and >, c(a) < b.
An s-plan p is optimal if the value of the state reached
from s via p is maximal among all s-plans; in this con-
text, h*(s) = max {u(s’) | s’ € S, ¢c(s,s") < b} is the value
achievable by an optimal s-plan in II. The objective in over-
subscription planning is to find an sgp-plan that brings the
system within the cost allowance to as valuable a state as
possible, and optimal oversubscription planning is devoted
to searching for optimal sg-plans only.

Each planning task II induces a state-transition model, of-
ten called its transition graph. A transition graph struc-
ture (or tg-structure, for short) is a triplet 7 = (S, L, T'r)
where S is the finite set of states, L is the finite set of labels,
and Tr C S x L x S is a set of labeled state transitions.
The tg-structure 7 (II) induced by a planning task II =
(V, A; 59, c,u,b) is induced by the structure (V, A) of the
latter: the states and labels of 7 (IT) are states S = dom(V)
and actions A of II, respectively, and (s, a, s[a]) € Tr iff
action a is applicable in state s.

In oversubscription planning, each tg-structure 7 =
(S, L, Tr) implicitly defines a space of performance mea-
sures that can be associated with it. In the context of over-
subscription planning, this space constitutes C' x U x B
where C' is the set of all nonnegative real-valued func-
tions from labels L, U is the set of all nonnegative real-
valued functions from states S, and B = R°*. A tran-
sition graph (or t-graph, for short) ® = (T, ¢, u,b) asso-
ciates a tg-structure 7 with a specific performance measure
(¢,u,b) € CxU x B, and the t-graph induced by a planning
task IT = (V, A; so, ¢, u, b) is (I1) = (T (), ¢, u, b).

A few auxiliary notions: For k € NT, by [k] we de-
note the set {1,2,...,k}. An s-path (ss’-path) in a t-graph
® = (T,c,u,b) is a path in T from state s (to state s)
along the transitions of 7. For an ss’-path 7, by @(7) we
refer to the value u(s’) of its endpoint. An s-path 7 is an

s-plan for @ if }°, ; e c(l) < b; P(s) is the set of all
s-plans for ®, and © € P(s) is an optimal s-plan for ® if
T = argmax . cp(s) W(1').

For a planning task II, searching in its t-graph ®(IT) cor-
responds to planning as state-space search. Informed such
search procedures employ heuristic functions A : § —
RO U {0} to estimate the attractiveness of the graph re-
gion reachable from a given state s. For instance, in classical
planning, heuristic i estimates the distance from the given
state to the nearest goal state, and it is lower-bounding, or
admissible, if h(s) < h*(s) for all states s. A useful heuris-
tic function must be both efficiently computable from the
planning task, as well as relatively accurate in its estimates.
Improving the accuracy of a heuristic function without sub-
stantially worsening the time complexity of computing it
translates into faster search for plans.

Unlike in oversubscription planning, numerous concep-
tual and computational ideas in classical planning have been
translated to interesting heuristic functions. These ideas
include monotonic relaxation (Bonet and Geffner 2001;
2001; Hoffmann and Nebel 2001), critical trees (Haslum
and Geffner 2000), logical landmarks for goal reachabil-
ity (Richter, Helmert, and Westphal 2008; Karpas and
Domshlak 2009; Helmert and Domshlak 2009), and ab-
stractions (Edelkamp 2001; Helmert, Haslum, and Hoft-
mann 2007; Katz and Domshlak 2010a). Also, different
heuristics can be combined into their point-wise maximizing
and additive ensembles (Edelkamp 2001; Haslum, Bonet,
and Geffner 2005; Coles et al. 2008a; Katz and Domshlak
2010b). Unfortunately, while some of these ideas have also
been translated to classical planning with numeric state vari-
ables, the resulting heuristics do not fit well to the specifics
of oversubscription planning.

Abstractions for Oversubscription Planning

Our focus here is on abstractions for oversubscription plan-
ning, from their very definition and properties, to the
prospects of deriving abstraction heuristics.

The term “abstraction” is usually associated with sim-
plifying the original system, factoring out details less cru-
cial in the given context. Which details can be factored
out and which had better be preserved depends on the con-
text. In classical planning, the abstract t-graphs are re-
quired not to increase the distances between the (abstracted)
states (Edelkamp 2001; Helmert, Haslum, and Hoffmann
2007). Such “distance conservation” is in particular guar-
anteed by homomorphic abstractions, obtained by system-
atically contracting sets of states into single abstract states.
In turn, an additive abstraction in classical planning is a set
of abstractions, inter-constrained to jointly not overestimate
the state-to-state costs of the original task. In contrast, a set
of abstractions in oversubscription planning is constrained
to jointly not underestimate the value that can be obtained
from a concrete state of the original task within a given cost
budget. Hence, the notions of additive abstraction for clas-
sical and oversubscription planning very different, with the
latter providing us, for good and for bad, with many more
degrees of freedom.



Definition 1 (Additive Abstraction) Ler & = (T, c,u,b)

be a t-graph with T = (S, L, Tr), and sg be a state in S.

e An abstraction skeleton AS of T is a set of pairs AS =
{ﬂ,ai}ie[k] where T; = (S, L;, Tr;) is a tg-structure
and o; : S — S; is a state mapping from T to T.

o Asetoft-graphs A = {®;};ci) is an additive abstraction
Jor sq in ® with respect to AS, denoted by A &, AS, if
- (I)l = <7;, Ci, Ug, bz> and
— if w is an optimal so-plan for ®, and for i € [k],

m; is an optimal «;(so)-plan for ®;, then u(mw) <
Zie[k] i ().

To illustrate this definition, consider a tg-structure 7 =
({si}ie5)s {li}iee), Tr) depicted in Figure la, and an ab-
straction skeleton AS = {(71, a1), (T2, a2)} of T, with tg-
structures 71, 73 as in Figure 1b and state mappings

1 . 2 s
a(si) = {S?’ PR s = {Sg =

s;, otherwise sy, otherwise.

Let t-graphs ® = (T, ¢, u,b), &1 = (T1,c1,u1,b1), P2 =
(T2, ca,uz, ba) be defined via label cost functions ¢, ¢y, ¢o
that associate all labels with a cost of 1, budgets b = b; =
by = 2, and state value functions u, u1, uo that evaluate to
zero on all states except for the states ss, s, s2, on which
they respectively evaluate to one. Considering the state s; in
T, the optimal s -plan for ® is m = ((s1, 12, $3), (83,14, S5))
with @(7) = 1. The optimal a1 (s1)-plan for ®; is m =
((s1,14,s})) with @ (m1) = 1, and the optimal a2 (s?)-plan
for @5 is my = ((s3,13,55)?), with dz(m2) = 1. Since
a(m) < Gi(m) + ta(me), A = {®1, P2} is an additive
abstraction for s; in ® with respect to AS.

Definition 2 (Abstraction Heuristics) Let I1 be a planning
task with state space S, and AS = {T;, i}, be an ab-

straction skeleton of T (IT).

e For each state s € S, and each additive abstraction A =
{®itiew) €5 AS, ha(s) =3 ;e @ilmi) where m; is an
optimal «;(s)-plan for ;.

o A function h : S — RT is an AS-heuristic for 11 if
for each state s € S, h(s) = ha(s) for some additive
abstraction A €4 AS.

Theorem 1 For any planning task 11, any abstraction skele-
ton AS of T (), any state s of I1, and any A &, AS,

(1) A provides an admissible estimate h 4(s) > h*(s), and
(2) if the t-graphs of A are given explicitly, then h 4 (s) can
be computed in time polynomial in ||I1|| and || A]|.

Sub-claim (1) in Theorem 1 is immediate from Defini-
tion 2, and it in particular implies that, for any .AS-heuristic
h for II, h(s) > h*(s). The proof of (2) in Theorem 1 is
also straightforward : Let A = {®; = (T;, ¢;, us, bi) Fiey)
be an additive abstraction for s in II. For ¢ € [k], let
Sl ={s" €8S, |ci(a;(s),s") < b;}. Since A is given explic-
itly, computing shortest paths from «;(s) to all states in 75,
and thus computing S/, can be done in time polynomial in

Ts s5 —> 53

e "

§7 —————> s}

T Sg —> 54 T s3
Coa
1 83 —> S5 §1 —> S5

Figure 1: Ilustration for our running example.

[|A]| for all ¢ € [k]. If ; is an optimal plan for ®;, then by
Definition 1, 4;(m;) = maxy g/ u;(s"), and thus computing
ha(s) =3 ;e @i(mi) is polynomial time in [|Al|.

While Theorem 1 is positive, its tractability sub-claim
establishes only a necessary condition for practical rele-
vance of abstractions to oversubscription planning. First,
note that the notion of abstraction in oversubscription plan-
ning is inherently state dependent: it is possible that, for
a pair of states s,s’ of a t-graph ® and a set of t-graphs
A = {®;}ic[x), it holds that A €, AS while A ¢, AS.
Hence, given an abstraction skeleton AS for a task II,
and a state s of II for which we need to estimate h*(s),
first we have to discover an abstraction A &, AS. Sec-
ond, different abstractions for s in II with respect to the
same abstraction skeleton AS will induce admissible esti-
mates of very different quality. For instance, given a plan-
ning task IT = (V, A; sg, ¢, u, b), consider a set of t-graphs
A = {®; = (Ti,ci,ui, bi) biepy) in which, for i € [k],
u;(s') = maxger u(s) forall ' € S;, and ¢;(1*) = 0 for all
l € L;. This set of t-graphs is trivially an additive abstrac-
tion for all states s in I1, yet the estimate of A*(s) it provides
is the loosest one possible.

Before we proceed with considering the complexity of de-
riving quality heuristics based on specific families of ab-
straction skeletons, we define some additional terminol-
ogy. Let II be a planning task, s be a state of II, and
AS = {7i,ai};cp) be an abstraction skeleton of 7 (II).
If C = xC;, U = xU;, and B = xB;, then A(s) C
C x U x B is a subspace of the joint performance mea-
sure space corresponding to the additive abstractions for
s in II with respect to AS, that is, (c,u,b) € A(s) iff
Ateup) = {(Ti,cli],uli], bli]) }iew €5 AS. Note that
A(s) is a subset of, but not a combinatorial rectangle in,
C x U x B. For instance, consider t-graph @, state s;
of ®, and abstraction skeleton AS from our running exam-
ple. Let ¢ € C be a cost function vector with both c[1]
and c[2] being constant, unit-cost functions, and two per-
formance measures (¢, u, b), (c,u’,b’) € C x U x B be-
ing defined via budget vectors b = {b[1] = 2,b[2] = 0}
and b’ = {b’[1] = 0,b’[2] = 2}, and value function vec-
tors u and u’, with u[l],uf2],u’[1], and u’[2] evaluating
to zero on all states except for u[l](s}) = u'[2](s?) = 1.
It is easy to verify that (c,u,b), (c,u’,b’) € A(sy), yet
(c,u,b),(c,u,b’) & A(sy).

Ultimately, given a planning task II, an abstraction skele-
ton AS = {ﬁ,ai}ie[k] of 7(II), and a state s of II,
we would like to compute the optimal estimate h 4s(s) =
min g¢_as ha(s). However, if, for instance, we are given
a vector of value functions u that is known to belong to the
projection of A(s) on U, then we can search for a quality ab-
straction from the abstraction subset H(_ ,, _)(s) C A(s),
corresponding to the projection of A(s) on {u}. As we



Figure 2: Fragments of restricted optimization over A (s).

show below, even some constrained estimate optimizations
of this kind can be challenging. The lattice in Figure 2 de-
picts the whole range of options for such constrained opti-
mization; at the extreme settings, H(_ _ _y(s) is simply a
renaming of A(s), and h(c u p)(s) corresponds to a single
abstraction (c,u,b) € A(s).

In a recent work (Domshlak and Mirkis 2013) we present
some theoretical and practical initial results.
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