Combining Queueing Theory and Scheduling for Dynamic Real World Systems

Student: Tony T. Tran

Supervisor: J. Christopher Beck

Department of Mechanical and Industrial Engineering
University of Toronto, Ontario, Canada
{tran,jcb} @mie.utoronto.ca

Abstract

The central thesis of my dissertation is that stochastic
reasoning from queueing theory can be integrated with
combinatorial scheduling to provide high quality sched-
ules for real world, dynamic systems. This thesis builds
on work that showed the potential of such a combination
for dynamic systems found in the queueing and schedul-
ing literature. My study strives to extend this concept to
handling real world problem areas which are often very
time sensitive and restrictive in available system con-
trol and information. In such systems, I believe profi-
cient reasoning about system dynamics and combinato-
rial optimization is essential for creating schedules that
are robust and have desirable long-run performance. I
will study the performance improvements possible by
integration as well as the effects of control, time, and
information restrictions of a system.

Introduction

Dynamic and combinatorically complex properties are often
present in real world scheduling and resource allocation ap-
plications. Dynamism can occur because requests arrive to
the system over time and the system manager does not have
prior knowledge of how many or when these requests ar-
rive. Decision making must occur online as requests arrive to
the system. To further complicate matters, proper control of
when and where a request is processed has significant impact
on the overall performance of a system. These complications
arise because of non-homogeniety in resources or because
of performance dependencies in the sequence in which re-
quests are processed. Our aim is to create models for a num-
ber of different systems that are dynamic and combinator-
ically complex - data centre (DC) scheduling and electric
vehicle (EV) charging being two such systems.

The DC scheduling problem is concerned with manage-
ment of a DC comprised of tens of thousands of non-
identical machines. The objective is to schedule arriving jobs
to decrease response time and increase system throughput.
The scale of the system makes optimization very difficult
since a system manager must decide which machine should
process a job as well as at what time. The resulting sys-
tem can be thought of as similar to the knapsack problem

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with tens of thousands of knapsacks, a dynamically chang-
ing set of jobs, and added temporal considerations. The op-
timization of DCs for improved quality of service can result
in substantial profits when many of today’s largest compa-
nies, such as Google, Amazon, and Facebook, rely heavily
on their ability to provide fast and reliable service.

The second system we study involves the charging of
EVs. Owners and potential owners of EVs are often con-
cerned that recharging a battery is inconvenient when com-
pared to refuelling a combustion engine vehicle. Unlike re-
fuelling, recharging a battery can require hours to complete.
As such, making a stop to recharge in the same manner
as one would refuel is often not a possibility. Recharging
should be accomplished during periods when a driver would
be occupied with other activities. One example of conve-
nient charging is a parking lot. People naturally leave their
cars for extended periods in parking lots when they are at
a shopping mall, work, or flying out at an airport. These
locations provide a convenient place in which an EV can
be charged while the drivers are occupied. However, due
to power and space limitations, ensuring everyone receives
their requested charge may not be possible. We wish to ex-
plore these parking lot systems and develop models, using
queueing theory and scheduling, to manage the strategic and
operational issues which are present.

To properly handle systems that are both dynamic and
combinatorially complex, we propose the use of queueing
theory and scheduling. Queueing theory and scheduling are
two research areas that have developed independently. One
can describe both queueing theory and scheduling research
as the pursuit of understanding and optimizing the use of
scarce resources over time. In a general sense, all systems in
these two research areas are comprised of jobs which must
be processed by servers. The two approaches diverge fun-
damentally on the problem characteristics that form their
core challenges. In queueing theory, systems are dynamic
and uncertain, but rarely have combinatorics. Scheduling,
in contrast, generally studies static systems with complex
combinatorial properties. The emphasis on these different
characteristics leads to distinct theoretical and problem solv-
ing techniques. Thus, we believe that queueing theory and
scheduling have developed the tools necessary for handling
different aspects of the systems we are interested in, but the
work on combining the two research areas have just begun.

The primary aim of this research is to investigate how
the techniques developed in scheduling and queueing theory
can be combined to better represent and manage dynamic
combinatorially complex systems. We believe that high level
analysis of queueing theory and low level decision making
of scheduling can lead to improved performance in compar-
ison to traditional methods. Through proper integration of
the tools from the two areas of study, both the combinatoric
and dynamic properties of the system can be addressed. The
systems we study are ones with promise for improvement
under a hybrid queueing theory and scheduling scheme.

Background

Uncertainty in scheduling is often present because the pro-
cessing times are not known or machines fail (Bidot et al.
2009). For uncertainties because of dynamism, where jobs
are added or removed, scheduling is generally viewed as a
collection of static problems which are solved one after the
other. Within such a framework, the sophisticated schedul-
ing tools developed for deterministic systems can be applied
to a set of these dynamic ones. While static scheduling in
such a manner enables the application of traditional schedul-
ing technology to dynamic systems, there tends to be little
emphasis on long-run performance and considerations of the
dynamics of the problem; notable exceptions being works on
anticipatory scheduling (Branke and Mattfeld 2002) and on-
line stochastic combinatorial optimization (Van Hentenryck
and Bent 2006).

On the queueing theory side, combinatorics have not been
of great interest. The body of research is generally con-
cerned with providing optimal policies in some probabilistic
sense over a long time horizon. Given the difficulties of pro-
viding optimal policies under highly combinatorial systems,
the queueing community often ignores such structures. Yet,
scheduling in queueing has been shown to greatly affect the
performance of the system (Wierman, Winands, and Boxma
2007). However, the work only considers a set of simple sys-
tems and the analysis of a more combinatorially complex
problem would be much more difficult.

Queueing theory and scheduling can be seen as comple-
mentary. The two share the same high-level goals, but the
core research problems are very different. Research on the
integration of queueing theory and scheduling has recently
appeared. Terekhov et al. (2012) looked at stability guaran-
tees of dynamic two machine flow shop environments for a
scheduling model. They also showed the performance gains
one could achieve when sacrificing optimal short term solu-
tions in place of achieving long term metrics. Another recent
paper looked at hybrid queueing and scheduling algorithms
for scheduling jobs on alternative resources with setup times
(Tran et al. 2013). They show that guidance from queue-
ing analysis can help scheduling algorithms find high quality
schedules that perform well under long-term metrics. These
works provide an indication of the potential of integrating
queueing theory and scheduling, yet, the works are on small,
stylized systems.

Data Centre Scheduling

In a DC, jobs are processed on servers housed on racks.
There are thousands of racks which each contain a num-
ber of servers. The set M represents the different server
configurations (types) in the system. Each configuration has
N,, identical servers defined by their total resource capacity.
Based on a study of the trace data in Google’s compute clus-
ters, the system is constrained by CPU and memory (Mishra
et al. 2010). Therefore the configurations are distinguished
based on these two resources.

The jobs that arrive to the system are comprised of one or
more tasks. Each task is to be processed on one of the servers
where machine resources are consumed for the task’s total
duration. Between the tasks of a single job, there may ex-
ist precedence constraints that enforce completion of certain
tasks before other tasks can begin processing. A job is con-
sidered complete when all tasks belonging to it are serviced.

Uncertainty is assumed to be present only in the fact that
future jobs are not known; complete information of a job is
available upon arrival to the system. However, it is assumed
that there is access to information about the dynamics of
the system. Specifically, the distribution of the arrival rate
of jobs along with probability distributions for the resource
requirements of tasks are given. Mishra et al. (Mishra et al.
2010) classify jobs on Google’s compute clusters into eight
different job classes, defined by the arrival rate together with
the CPU and memory requirements of a class. The job class
information allows us to analyze the system behaviour.

The objective of the problem is to schedule jobs to min-
imize the mean time-in-system of the jobs and maximize
the system throughput. Given that the machines have dif-
ferent resource capacities and the tasks have different re-
source consumption profiles, an efficient matching of tasks
to machines can have a positive effect on resource utiliza-
tion. Thus, our belief is that queueing theory accommodates
the higher level issue of matching job classes and machine
configurations whereas scheduling ensures proper match-
ings from the queueing analysis is realized during execution.

Scheduling Algorithm

A hybrid queueing and scheduling algorithm with three-
stages is proposed to handle the scheduling of jobs to ma-
chines in a DC. This hybrid algorithm is called long-term
evaluative scheduling (LoTES). The first stage aims to pro-
vide high level analysis to understand the dynamics of the
system and find the best mix of jobs for machines. Stage two
then creates an interpretation of the analysis for a low level
scheduler. Finally, in the last stage, the interpreted model is
used to dispatch arriving jobs as they enter the system. The
break down of the three stages shows where one would ben-
efit from using either queueing theory or scheduling. At the
first stage, queueing theory is well adapted to provide under-
standing of the system dynamics. In contrast, scheduling is
better equipped for the two lower level stages which attempt
to realize the high level analysis.

Full details of the first stage are presented. In the interest
of space, only a brief description of the latter two stages is
given

First Stage In the first stage, jobs are treated as a con-
tinuous fluid where the rate of arrival is the inflow and the
throughput is the outflow rate. The allocation linear pro-
gram (LP), used in queueing networks, is adapted to the
DC system (Andradéttir, Ayhan, and Down 2003). How-
ever, the allocation LP has previously only been used for
unary resources. Therefore, the LP must be modified to pro-
vide a bound on performance when there are multiple multi-
capacity resources. The solution of the allocation LP is an
efficient matching of job classes to machine configurations.
The allocation LP is as follows,

max A

s.t. EjeM(6jklcjlnj)Mk > dagrr,, ke K,leR (1)

djricit Ojricj

jk1Cjl _]klc]l’ RS M,k S K7l €R (2)
Tkl Tk1

S <, jeMicR (3)
k€K

Ok > 0, jeMEeKleR (4)

where,
Decision Variables
A: Arrival rate of batch jobs
djk: Fractional amount of resource ! machine j
devotes to class k
Parameters
ag: Probability of a job being in class k
pi: Service rate of tasks that belong to jobs in
class k
cji: Capacity of resource [on machine type j
rr: Expected requirement of resource [for tasks
belonging to jobs of class k&
n;: Total number of machines of configuration type j

The LP assigns the fractional amount of resources that
each machine configuration type should allot to classes with
the goal of maximizing the capacity of the system. Con-
straint (1) guarantees that enough resources are allocated for
the requirements of each class. Constraint (2) ensures that
the resources that are assigned to a job match the resource
requirement profiles. The allocation LP prevents assigning
more resources than available with constraint (3). Finally,
constraint (4) ensures the non-negativity of assignments.

Solving the allocation LP provides 47, values which tell
us how to efficiently allocate jobs to machine configurations.
However, without accounting for fragmentation, the alloca-
tion LP only acts as an upper bound on the achievable capac-
ity of a system rather than a tight bound which Andradéttir et
al. (2003) are able to achieve for the unary resource problem.
Fragmentation occurs because the actual system must han-
dle discrete tasks. For example, if a there is a single machine
with 4 GBs of memory available and 4 tasks are present,
each requiring 1.1 GBs of memory, then only 3 tasks can
be processed with 0.7 GBs of memory idle. With discrete

tasks, idle resources are always expected to be present and
the arrival rate * found is not actually achievable.

Second Stage The next stage takes the solution of the fluid
representation and attempts to discretize the tasks. It begins
by defining bins as snapshots of a mix of tasks on a machine
type where the sum of resources required by the tasks does
not exceed the resource capacity of the type. Using a LP
model, the optimal set of bins to use in the DC is solved.
Since the LP model is solved offline when the set of tasks
to be scheduled are not yet known, we assume task resource
requirements are equal to the expectation for the class.

The solution from the allocation LP of the first stage helps
restrict the job classes that each machine must consider. This
greatly reduces the search space that must be considered and
allows for consideration fewer bins.

Third Stage The final stage occurs online as jobs arrive.
A dispatcher assigns tasks to machines based on the system
status and bins from the second stage. In general, the dis-
patcher assigns tasks in a way to ensure machines partially
mimic the bins. However, the dispatcher is aware of system
load and deviates from the stochastically optimal solution if
there are idle machines. In this way, the dispatcher tracks
what is deemed to be good long term decisions, while using
online information to capitalize whenever anomalies occur.

To maintain fairness between tasks and ensure that no task
will be starved, first come, first served (FCFS) ordering is
enforced once a task is assigned to a machine.

Initial Results

We simulate a system with 10,000 machines comprised of
10 different machine configurations. Taking job classes from
Mishra et al. (2010) we solve the allocation LP and test
varying system loads based on A*. To compare performance
against the LoTES model, we make use of a greedy sched-
uler that assigns tasks to an available machine arbitrarily or
in the case that no machines are available, to the machine
with the smallest queue of tasks. Similar to LoTES, once
assigned to a machine, a task will be served in FCFS order.

Figure 1 presents simulation results of comparing the
LoTES model against the greedy heuristic. We see that large
performance increases is possible when using the LoTES
model. At 90% loads, we see that the greedy scheduler will
not be able to serve tasks in any reasonable amount of time
(hours), but using LoTES only results in a few seconds wait
on average.

Scheduling an Electric Vehicle Charging
Facility
We consider an EV charging facility with N € N docks,
each with K € N cables. A cable connects a dock to a car
and enables charging. However, being connected does not
mean that the car is able to immediately start charging. Each
dock is limited to charging a single car at a time.

We assume cars arrive dynamically following a Poisson
process with rate A. The charging time each EV requires is
exponentially distributed with mean p~!. In order for a ve-
hicle to leave the system, two conditions must be met: 1) the

o1

Mean Waiting Time (hs)

0.001 |

0.0001

8 86 87 88 89 % 91 92 9 94
Percent Load of Allocation LP Upper Bound

Figure 1: Mean over 20 Runs - Mean Waiting Time Perfor-
mance

required charge is completed and 2) the deadline specified
by the driver is reached. We assume the deadline is exactly
L time units after the arrival of the EV and represents the
time at which the customer has agreed to return to remove
the EV. If a vehicle is charged before the deadline, it must
wait until the deadline before it can exit because, typically,
the driver will not return for the EV before the deadline. On
the contrary, if charge completion occurs after the deadline,
the EV is delayed and must wait until the charge completes
before exiting the system.

We assume three information conditions for our sys-
tem. The first is referred to as the cardinality condition: it
is known how many EVs are at each dock and of those,
which vehicles are delayed or charged. Under the second,
stochastic, condition, the arrival ()\) and charging (u) rates
and their distributions are available. It corresponds to as-
sumptions common to queueing theory (Gross and Harris
1998). Finally, we wish to consider information natural to
the scheduling community (Pinedo 2005) which tends to in-
clude deterministic information about job durations and, of-
ten, arrival times. While deterministic arrival times are un-
realistic in our application, it is reasonable to assume that
charging time information is known upon an EV arrival. For
example, the charging time can be found from either request-
ing the customer give the charge level they wish to purchase
or by having a wireless transmitter from the vehicle broad-
cast this information.! Therefore, our third condition, which
we term observable, assumes that the remaining charging
times of every EV present in the system can be observed.
For an EV j, the charging time p; is available upon arrival.

The system manager makes two decisions. The first is
whether to accept or reject an incoming vehicle. If rejected,
then there is a finite cost ¢, > 0 for losing a customer. The
second decision is how to schedule an accepted EV. Schedul-
ing comprises of the decision of assigning a dock for an EV
and determining the order that EVs are charged. If accepted,
an EV is immediately assigned to an available cable and can-
not be switched. When the owner returns to pick up his/her

'Such transmitters are already available (Botsford 2012), but
not used widely.

EV, if charging is not yet complete, the delay is penalized. If
T} is the tardiness of a late EV j, that is, the time between
the EVs deadline and when its charge is completed, then the
delay cost is c¢4T); where cq is finite and non-negative.

The system manager wants to find an admission and
scheduling policy to minimize the overall system cost. How-
ever, the control a system manager has over a parking lot
may vary. One can see in most common parking lots, cus-
tomers arrive and choose a spot themselves. Here, a system
manager would have no direct control over customers. Thus,
an indirect method to control the system is by limiting the
available spots (docks and cables). Although we do not ex-
plore the capacity planning problem, we will observe some
of the effects of adding cables and docks to the system in
our experiments. We can also imagine a facility where cus-
tomers must purchase a spot first and will then be assigned
to a specific location. In this way, complete control over the
admission and scheduling of a vehicle is possible.

Continuous-Time Markov Decision Process

We present a CTMDP model of a charging facility when
only cardinality and stochastic information is available. Our
current definition of deadlines being a fixed L time units af-
ter arrival does not adhere to the memoryless requirement of
a CTMDP. Therefore, we assume that deadlines are not de-
terministic, but exponentially distributed with mean L. We
further simplify the CTMDP by enforcing first-come, first-
served (FCFS) ordering of EVs once assigned to a dock.?

The state of the system at time ¢ is represented by, S(¢) =
{Q(t), W(t), D(¢)}. Here, Q(¢), W(t), and D(¢) are vectors
of size N. Q(t) indicates the number of EVs in the system at
time ¢ that are waiting for a charge and not yet due on each
of the N docks. W(t) represents the number of vehicles that
have completed their charge, but are waiting for the deadline
and D(t) is the number of vehicles that are not yet charged
but have already reached their deadline, on each of the N
docks. We represent the element in each of the vectors using
a lowercase letter with index n to indicate the dock (e.g., the
nth dock is fully described by ¢, (t), wy, (t), and d,, (t)).

There are N + 1 possible actions when an EV arrives. An
action, a € A, can either assign the EV to one of the N
docks or reject the vehicle. Therefore, A € {0,1,...,N}
where 0 represents rejection. The cost function, C(S(¢), a)
defines the expected cost associated with action a in state
S(t). When a vehicle is rejected, independent of the current
state, the cost is ¢,.. If a vehicle is admitted, then we must
calculate the expected cost associated with the additional ve-
hicle for each particular state. We denote the time that an EV
Jj completes its charge as ¢;. Thus, the delay cost of a vehi-
cle is max{0, (¢; — L)ca}.

We calculate the expected delay of an accepted vehicle
by conditioning on the state of the system at time ¢ and
the dock n that will be assigned the vehicle. Since there are
qn(t) +d, (t) vehicles not yet charged on dock n, admission

2We found numerically through simulation that a system with
deterministic deadlines does not behave differently from the cal-
culated CTMDP with exponentially distributed deadlines under
FCFS. Due to space restrictions, we do not present these details.

of a new vehicle requires a total of B = ¢, (t) + d,(t) + 1
exponentially distributed charges until the arriving vehicle
has completed its charge. Thus, the expected delay given a
state ¢ and assignment to dock n is,

(w™'T(B+1,uL) — LT (B, uL)]

T'(B) '
Here, I'()) is the gamma function and I'(b, L) is the upper
incomplete gamma function. Therefore, for any action a, we
know the expected delay, which we multiply by ¢, to obtain
the expected delay cost.

The transition rates depend on the system state,
{Q(t),W(t),D(t)}. Transitions occur because of three
types of events: EV arrival, charge completion, and meet-
ing a deadline. We define an N-sized vector e,, that has 1 as
the nth element and the rest 0. A deadline can occur on any
dock which has gy, (t) + w,(t) > 0. If w,(¢t) > 0, then a

transition occurs with rate M and will change the
state to {Q(¢), W(t),D(t) — e, }. If w,(t) = 0, a transition
occurs with rate ¢, (t)L to state {Q(t) — e,, W(¢),D(t) +
e, }. Charge completions can occur on any dock which has
an(t) + dn(t) > 0.If ¢, () + dy,(t) > 0, a transition oc-
curs with rate p to {Q(¢), W(t),D(t) — e, } if d,,(t) > 0,
and {Q(t) — e, W(t) + e,,,D(t)} otherwise. For an arrival
event, we must consider the action taken. If an EV is re-
jected, then there is no transition. If we decide to assign an
arriving vehicle to the nth dock, then there is a transition rate
of Ao {Q(t) +e,, W(t),D(t)}.

The CTMDP suffers from the curse of dimensionality:
solving the CTMDP for real life problems is intractable as
the number of states grows exponentially. The number of
states for any particular system is (K + 1)2V. With five
cables and five docks, we see that there are more than 60
million states. Thus, such a model is intractable for park-
ing facilities of even moderate capacity. Nevertheless, this
model can guide us to heuristics that use stochastic informa-
tion which we present in the following section.

E[delay|S(t),a = n] =

System Control

Three different admission and scheduling policies are
shown, each corresponding with one of the three information
conditions. Depending on the level of control and amount of
information available, a combination of an admission and
scheduling policy can be used to mange the system.

Admission Policy The admission policy decides whether
to accept an arriving EV. The policies also decides which
docks are able to be assigned the EV. We present three poli-
cies which represent systems that, respectively, use cardinal-
ity, stochastic, and observable information:

e Free Cable - A vehicle is admitted if there are available
cables - ie., if In : ¢, (t) + w,(t) + dn(t) < K. Any
dock with an available cable may be assigned the EV.

e CTMDPI - Consider a single-dock version of the system
with % rate of arrival. Solve for the optimal single-dock
policy using CTMDP. If any of the docks are in a state
which would accept an EV, accept the EV and restrict
scheduling to one of these docks.

e Myopic - Using the charging times, calculate the delay
cost of scheduling an EV on each dock. If the cost of ac-
cepting the EV on the dock is less than the cost of reject-
ing the EV, then accept and assign to one of these docks.

Although the admission policy will limit how one can assign
an EV, it does not assign a dock.

Scheduling Policy The scheduling policy assigns an EV
to a dock once admitted. Again, each policy represents sys-
tems that, respectively, use cardinality, stochastic, and ob-
servable information.

e Random - Randomly choose among one of the possible
docks determined by the admission policy.

e CTMDP2 - Similar to CTMDPI, restrict the CTMDP
model to a single dock and solve the Bellman equations
to find the expected cost of being in each state. From the
possible docks as defined by the admission policy, choose
the dock in a state that yields the minimum expected cost.

e Earliest - From the set of possible docks defined by the
admission policy, choose the dock that will result in the
earliest completion time for the EV if all other already
assigned EVs complete charge first.

These policies represent different levels of control from no
involvement, where we expect customers to choose a cable
randomly, to complete control where customers are sent to
particular docks to maximize performance. Once assigned
to a dock, EVs are charged in FCFS order.

A system manager couples an admission policy with a
scheduling policy to control the facility. However, the infor-
mation availability limits the choice of policies; for example,
CTMDP1-Earliest can only be used if cardinality, stochastic,
and observable information conditions are met.

Initial Results

We simulate the charging facility with 10 instances of
100,000 time units for every admission-scheduling policy
pair. We use L = 1 and p = 6. For example, if our time unit
is 3 hours, the parameters represent a parking lot which cus-
tomers park for 3 hours and request on average 30 minutes
charging time. In this system, there are ten identical docks
with between one and ten cables each. Vehicles arrive at a
rate of A = 50 costs are ¢, = 1 and ¢4 = 5.

The results of our simulation, found in Figure 2, illustrates
the importance of information availability. The performance
of Myopic-Earliest shows the clear advantages of having ob-
servable information. Further, obtaining some control of the
system is quite important as Free Cable-Random is found to
perform very poorly once there are seven or more cables. In
fact, even Myopic-Random suffers when K increases since
there is less control over the scheduling of EVs.

Although observable information is found to be the most
important information condition for obtaining high qual-
ity performance, we have witnessed scenarios where using
stochastic information has led to better performance than
Myopic-Earliest. Figure 3 fixes the number of cables to
10 per dock and varies ¢4 from 1 to 200. We see that as

Average Cost per EV

—— Free Cable
CTMDP1
Myopic

© Random

o CTMDP2

+ Earliest

o
Y

1 2 3 4 5 6 7 8 9 10
Number of Cables per Dock

Figure 2: Experiment 2 - Multiple Dock Charging Facility.

—— Free Cable
5 ||---cT™MDP1

10 Myopic

© Random

o CTMDP2

+ Earliest

Average Cost per EV

i i i i i i i i i
20 40 60 80 100 120 140 160 180 200
c.c
dr

Figure 3: Experiment 3 - Multiple Dock Charging Facility.

cq increases, Myopic-CTMDP2 becomes the best perform-
ing pair. The improvements are only marginal, however we
believe a more sophisticated hybrid that better integrates
stochastic reasoning and combinatorics, such as those pro-
posed by Tran et al. (2013), could lead to better performance.

Contribution

The contributions of this work is in developing a hybrid
queueing and scheduling algorithm to handle the dynamic
and combinatorial aspects of scheduling in real world ap-
plications. The two systems of interest are motivated by in-
dustry and provide problem characteristics that are outside
the scope of the classical scheduling or queueing literature.
The integration of techniques from these two literatures can
help provide richer modelling tools to capture the dynamics
and the combinatorics often seen in real life. Further, the re-
search aims to take advantage of the fact that stochastic and
observable information is available in many systems and by
developing the appropriate algorithmic models, long term
performance and short term goals can be optimized.

This work will extend the initial hybridization of queue-

ing and scheduling by Terekhov et al. (2012) and Tran et
al. (2013) to look at real world systems with complex prob-
lem structures, highly dynamic processes, and time sensitive
requirements in decision making. For such systems, it is crit-
ical to use stochastic reasoning provided by queueing theory
and combinatorial optimization as found from scheduling.

References

Andradéttir, S.; Ayhan, H.; and Down, D. G. 2003. Dy-
namic server allocation for queueing networks with flexible
servers. Operations Research 51(6):952-968.

Bidot, J.; Vidal, T.; Laborie, P.; and Beck, J. C. 2009. A the-
oretic and practical framework for scheduling in a stochastic
environment. Journal of Scheduling 12(3):315-344.

Botsford, C. 2012. The economics of non-residential level
2 EVSE charging infrastructure. In Proceedings of the 2012
EVS26 International Battery, Hybrid and Fuel Cell Electric
Vehicle Symposium, 1-10.

Branke, J., and Mattfeld, D. C. 2002. Anticipatory schedul-
ing for dynamic job shop problems. In Proceedings of the
ICAPS’02 Workshop on On-line Planning and Scheduling,
3-10.

Gross, D., and Harris, C. 1998. Fundamentals of Queueing
Theory. John Wiley & Sons, Inc.

Mishra, A.; Hellerstein, J.; Cirne, W.; and Das, C. 2010.
Towards characterizing cloud backend workloads: insights
from google compute clusters. ACM SIGMETRICS Perfor-
mance Evaluation Review 37(4):34-41.

Pinedo, M. L. 2005. Planning and Scheduling in Manufac-
turing and Services. Springer.

Terekhov, D.; Tran, T. T.; Down, D. G.; and Beck, J. C. 2012.
Long-run stability in dynamic scheduling. In Proceedings of
the 22nd International Conference on Automated Planning
and Scheduling (ICAPS 2012), 261-269.

Tran, T. T.; Terekhov, D.; Down, D. G.; and Beck, J. C. 2013.
Hybrid queueing theory and scheduling models for dynamic
environments with sequence-dependent setup times. In Pro-
ceedings of the 23nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2013), to appear.

Van Hentenryck, P., and Bent, R. 2006. Online Stochastic
Combinatorial Optimization. MIT Press.
Wierman, A.; Winands, E.; and Boxma, O. 2007. Schedul-

ing in polling systems. Performance Evaluation 64:1009—
1028.

