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Abstract

Common timeline-based planners are defined as com-
plex software environments suitable for generating
planning applications, but quite heavy to foster research
work on specific open issues. The J-TRE environment
represents a general architecture for timeline-based rea-
soning that brings together key aspects of such reason-
ing leaving freedom to specific implementations on both
constraint reasoning engines and resolution heuristics.
The effectiveness and flexibility of the proposed ap-
proach is demonstrated by two real-world applications,
based on the J-TRE framework, both in a classical space
domain and in a totally novel e-learning domain.

Introduction
Common timeline-based planners like EUROPA (Jonsson et
al. 2000), ASPEN (Chien et al. 2010), IxTET (Ghallab and
Laruelle 1994) and TRF (Fratini, Pecora, and Cesta 2008;
Cesta et al. 2009) are defined as complex software envi-
ronments suitable for generating planning applications, but
quite heavy to foster research work on specific open is-
sues. Some theoretical work on timeline-based planning like
(Frank and Jonsson 2003) was mostly dedicated to explain
details of (Jonsson et al. 2000) identifying connection with
classical planning a-la PDDL (Fox and Long 2003). The
work on IxTET and TRF have tried to clarify some key
underlying principles but mostly succeeded in underscor-
ing the role of time and resource reasoning (Cesta, A. and
Oddi, A. 1996; Laborie 2003). The search control part has
always remained significantly under explored. The current
realm is that although these planners capture elements that
are very relevant for applications, their theories are often
quite challenging from a computational point of view and
their performance are rather weak compared with those of
state of the art classical planners. Indeed, timeline-based
planners are mostly based on the notion of partial order
planning (Weld 1994) and have almost neglected advan-
tages in classical planning triggered from the use of GRAPH-
PLAN and/or modern heuristic search (Blum and Furst 1995;
Bonet and Geffner 2001). Furthermore, these architectures
rely on a clear distinction between temporal reasoning and
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other forms of constraint reasoning and there is no sign of
attempts to change.

The J-TRE environment represents a general architecture
for timeline-based reasoning that brings together key aspects
of such reasoning leaving freedom to specific implementa-
tions on both constraint reasoning engines and resolution
heuristics.

Basics on Timelines
To include time into a logic formalism we choose to provide
the predicates with extra arguments belonging to the Time
domain T (real or discrete). For example, a predicate At (l),
denoting the fact that an agent is at a certain location l, can
be extended with two temporal arguments s ∈ T and e ∈ T,
with s ≤ e, representing its starting and ending times, re-
spectively; the At (l, s, e) formula would be true only if the
agent is at location l from time s to time e. Similarly to what
described in (Muscettola 1994), we call token a proposition
that has temporal arguments.

In order to force the proposition arguments to assume the
desired values, J-TRE allows the imposition of any kind of
linear constraints among the arguments and/or between the
arguments and other variables as, for example, quantitative
temporal interval relations (Allen 1983). Since constraints
must often be customized by the user, the J-TRE framework
facilitate the synthesis of planning domains by allowing the
organization of constraints in macros called relations.

The task of the solver is to find a legal sequence of to-
kens that bring the timelines (that constitute the partial plan)
into a final configuration that verifies both the domain the-
ory1 as well as a determined set of desired conditions called
goals. Starting from an initial state, the planner moves in
the partial-plan search space by adding or removing tokens
and/or relations (i.e., changing the current state) until all
goals are satisfied.

From a planning perspective, the easiest way to describe
a timeline is to consider it a mere collection of tokens. The
predicates that can be accommodated on a timeline as well
as the behavior assumed by the planner when a new token
is added to a timeline depend on the nature of the timeline
itself and, in some cases, on the modeled domain. J-TRE al-
lows the utilization of families of timelines which provide

1The set of rules that model the domain’s dynamic behavior



different modeling ability, such as multi-valued state vari-
ables (Muscettola 1994) as well as renewable and consum-
able resources like those commonly used in constraint-based
scheduling (Laborie 2003).

The state variable is the most used type of timeline in
this approach to planning. State variable predicates are de-
fined by the user during domain definition. The semantics of
a state variable is that for each time instant t ∈ T the time-
line can assume only one value. This corresponds to a mu-
tual exclusion rule between different tokens. Let us assume,
for example, to have a predicate At (l, s, e) and a predicate
GoingTo (l, s, e). We know for sure that tokens assuming
At and GoingTo values cannot overlap. However, two to-
kens both assuming the At value can overlap if and only
if their respective parameters (l, s and e) are pairwise con-
strained to be equal. In this case we talk about merging (or,
in some cases, unification) of tokens.

Now let us suppose that we want a rule stating that ev-
ery time we are going to a given location we will reach that
location. We can enforce such rule by temporally constrain-
ing the GoingTo (l, s, e) and the At (l, s, e) predicates by
means of the Allen’s meet relation having the same loca-
tion l (see (Allen 1983)). In other words, for each token ti
with a GoingTo (l, s, e) value the planner must ensure that
ti meets another token tj with an At (l, s, e) value, either by
imposing the meet constraint between ti and tj if they both
exist, or by adding the missing token tj before enforcing the
same constraints. This kind of “rules” are generalized in a
concept usually called compatibility (again, here we use a
terminology consistent with (Muscettola 1994)). Compati-
bilities define causal relations that must be complied to in
order for a given token to be valid. Although the syntax can
be quite different among various planners, a compatibility
can be recursively defined by means of a reference predicate
and a requirement where a requirement can be a slave (or tar-
get) predicate, a relation among predicates, a conjunction of
requirements or, in rare cases, a disjunction of requirements.
It is important to underscore that the compatibilities may of-
ten involve predicates defined on different timelines, thus al-
lowing to synchronize concurrent activities on different do-
main components. Most timeline-based planners admit only
conjunctions of requirements and reproduce disjunctions by
assigning multiple compatibilities to the same predicate.

To simplify matters, we describe compatibilities through
logic implications reference → requirement. In some
cases, we will give tokens a specific name and will address
their arguments using a Java style dot notation (i.e., given a
token t having proposition P (s, e) its starting point will be
expressed as t.s).

Other commonly used types of timelines are the resources
characterized by a resource level L : T → R, representing
the amount of available resource at any given time, and by a
resource capacity C ∈ R, representing the physical limit of
the available resource.

We can identify several types of resources depending on
how the resource level can be increased or decreased in
time. A consumable resource is a resource whose level is
increased or decreased by some activities in the system.
An example of consumable resource is a reservoir which

is produced when a plan activity “fills” it (i.e., a tank re-
fueling task) as well as consumed if a plan activity “emp-
ties” it (i.e., driving a car uses gas). We model consumable
resources through a timeline that has two allowed predi-
cates: a predicate produce (a, s, e) to represent a resource
production of amount a from time s to time e and a predi-
cate consume (a, s, e) to represent a resource consumption
of amount a from time s to time e. The planner may need
to identify an ordering of the involved activities in order to
avoid overproductions (resource level L cannot exceed ca-
pacity C) as well as overconsumption (resource level L can-
not cannot be lower than zero).

The last commonly used timeline type, quite popular in
the scheduling literature, is the reusable resource. Reusable
resources can be modeled as consumable resources that are
produced at their start time and are consumed at their end
time. We can model reusable resources through a predicate
use (a, s, e) that is true iff there is a production of resource
of amount a at time s and a consumption of resource of
amount a at time e. Now let’s assume we have two tokens
t0 and t1 belonging to a reusable resource timeline such that
t0.s < t1.e ∧ t1.s < t0.e (this constraint simply forces their
overlapping). The expected behavior of the resource is to
have a resource usage of t0.a during t0’s duration when there
isn’t overlapping with t1, a resource usage of t0.a + t1.a
when t0 overlaps with t1, a resource usage of t1.a during
t1’s duration when there is no overlapping with t0 and a re-
source usage of 0 elsewhere.

Reasoning on Timelines
Having defined the basic terminology to describe a partial
plan and the timelines, we address the problem of reason-
ing with such building blocks introducing first our planning
architecture. A Domain Definition Language called DDL.4
is the entry point to the J-TRE environment, allowing the
final user to specify the domain objects of interest, the rele-
vant physical constraints that influence their possible tempo-
ral evolutions (e.g., compatibility/coordination constraints
among different objects, maximum capacity of resources,
etc.), as well as the planning goals.

Common timeline-based planners reach a solution state
by applying an iterative refinement procedure. If we call flaw
every possible inconsistency of the current plan, the role of
the planner can be reduced to the identification and the res-
olution of each flaw in the plan. The planning process pro-
ceeds until a consistent plan is found, i.e., the propagation of
the solving constraints succeeds and all flaws are eliminated.
The general solving strategy broadly entails: (i) identifying
a set of flaws, (ii) selecting a flaw according to a selection
strategy, and (iii) solving it by using a resolution strategy
(see Figure 1 as a reference). During the solving process,
a consistency check routine is called on each domain ob-
ject, possibly generating new flaws to be solved. The solving
procedure ends when a consistent node (i.e., containing no
flaws) is found.

While flaws can be of different types and can arise for dif-
ferent reasons, what they all have in common is that a search
choice is necessary to solve each of them. Depending on the
reason why a flaw arises, there can basically be four kinds of



Figure 1: The J-TRE architecture. The planner collects flaws,
selects one of them and solves it by executing some DDL
code. The planning process will stop in a search space node
without flaws.

flaws: (i) goal flaws, arising when a new token is added to a
state variable to satisfy a compatibility requirement, (ii) dis-
junction flaws, arising when a disjunction statement is found
while enforcing some domain rule (expressed in DDL code),
(iii) preference flaws, arising when a preferred statement
is found again while enforcing some domain rule, and (iv)
timeline inconsistency flaws, arising when an inconsistency
is detected on some domain object like, for example, differ-
ent values overlapping on a state variable, reusable resource
oversubscriptions, consumable resources overproductions or
overconsumption, etc.

Each time a new node of the search space is created or
new constraints are added to the current search space node, a
check consistency routine is called on each object of the do-
main and, depending on the object itself, further flaws can
be added to the current search space node. This procedure
is required in order to remove any further inconsistencies
from the timelines scheduling tokens in time. This technique
has been introduced in (Fratini, Pecora, and Cesta 2008), in
which state variables are observed as resources over time
and contentions peaks over their continuous representation
are removed by adding precedence constraints among to-
kens.

While, in our system, there is almost no difference in
which flaw is solved first (as far as we ignore efficiency as-
pects) because they all have to be solved sooner or later,
there could be serious troubles in how they are solved, es-
pecially in case of cyclic problems.

Consider, for example, a simple state variable having
At(l, s, e) and GoingTo(l,s,e) as allowed values. More-
over there is a compatibility for predicate At that re-
quires for each token to start at 0 or to be met by
a GoingTo token with same location. Finally, a com-
patibility for predicate GoingTo that requires for each
token to be met by a predicate At. We have an ini-
tial state with a token At (l0, 0, [1,+ inf]) and a goal
At (l3, [0,+ inf] , [1,+ inf]). The planner has to apply re-
lated compatibility for the goal token producing a sub-
goal GoingTo (l3, [0,+ inf] , [1,+ inf]) than another sub-

goal At (l, [0,+ inf] , [1,+ inf]) that can unify with first
token or apply another compatibility resulting in another
GoingTo (l, [0,+ inf] , [1,+ inf]) possibly leading to an in-
finite loop planning about the agent going walking around.
In short, although scheduling search space, however expo-
nential, is always finite, it can be the case that compatibility
application space is infinite.

Although a crafty strategy does not exist yet (exception
made for some work by Bernardini (Bernardini and Smith
2007)) the idea we have pursued is to proceed in depth on
the search space maintaining a bound on the number of con-
flicts. If failing to solve a node within that bound, the overall
solving procedure will backtrack to the lowest possible level
restarting the search. However, additional solutions to this
problem still need to be investigated.

Among the advancements offered by the J-TRE soft-
ware infrastructure w.r.t. to previous timeline representation
frameworks, such as the TRF (Cesta et al. 2009), we under-
score the following: (i) the “unification” of the concept of
flaw (i.e., a plan inconsistency) into a single entity that is uni-
formly treated (and reasoned upon) throughout the whole J-
TRE infrastructure. In J-TRE, flaw analysis and management
is no longer spread across specialized reasoners depending
on the flaw type, thus allowing to introduce more effective
search heuristics that exploit the cross-comparisons among
flaws of different types; (ii) the possibility to express con-
straint of increasing complexity among different domain pa-
rameters (e.g., modeling the dependency between resource
quantity to be produced and the production activity dura-
tion, etc.); (iii) the introduction of the consumable resources
among the timeline types.

Current uses of J-TRE
The J-TRE system has been successfully applied in a num-
ber of practical applications demonstrating effectiveness and
flexibility of the proposed approach. (Cesta et al. 2013), for
example, describes the use of the J-TRE environment in a
typical space domain where planning is used to organize ac-
tivities to support facility management on the ISS. An inter-
esting and novel usage of the J-TRE planner is constituted
by the PANDORA project (Cortellessa, De Benedictis, and
Pagani 2013) and is hinted in the following section. Current
work is aimed at developing heuristics needed to build a do-
main independent planner with performance that are compa-
rable with classical planners.

Continuous Plan Repair in PANDORA

PANDORA is a multimedia training system that utilizes J-
TRE as reasoning back-end. Goal of the PANDORA project
is to build an intelligent training environment able to deploy
a spectrum of realistic simulations of crisis scenarios that:
(1) reproduce the stressful factors of the real world crisis;
(2) personalize the planned stimuli according to the assessed
abilities and features of different trainees and (3) supports
the dynamic adaptation of “lesson plans” during the training
time-horizon.

A natural technology for achieving these tasks has been
identified in the timeline-based planning. The PANDORA



system makes large use of the J-TRE environment to model a
number of domain features. Planning is used to compute di-
versified evolutions of the crisis scenario which correspond
to alternative training paths. In addition, planning technol-
ogy is used to model and maintain trainees’ behavioral pat-
terns according to which aspects of the training can be per-
sonalized. The idea of using planning within PANDORA is
connected to the synthesis of a “lesson plan”, that is an or-
ganized set of lesson’s items, represented through J-TRE to-
kens, which are given to trainees over a span of time accord-
ing to a given training strategy. Goal conditions are char-
acterized by high level scenario events representing the ab-
stract blueprint for the master plan. The scenario represents
an abstract plan sketch that works as a sequence of “lesson
goals” and as a skeleton plan for the ground planner. It is
described through a particular “Scenario” timeline that gen-
erates sub-goaling by interacting with the set of compatibil-
ities. Disjunctions of requirements produce branches on the
search tree guaranteeing varieties of presented scenarios. In
particular, it may happen that some compatibility cannot be
applied since it imposes too strict constraints resulting in an
inconsistent partial plan. In such cases, a the procedure al-
lows to go back to the highest safe decision level.

It is worth saying that the user’s psychological status
during the training is assessed through psychological self-
assessment and physiological measurement, and is then rep-
resented by means of similar temporal items so as to insert
also these data in a uniform structure and use causal con-
nections between different parts of such plan to foster the
continuous update of the plan.

Starting from scenario goals and from the set of domain
compatibilities, the planning process generates a plan that
is consistent with the given goals, ordering tokens in time
through scheduling features and producing proper event
consequences. Additionally new goals can be added during
crisis simulation to represent (a) decisions taken by trainees,
(b) inferences made by the behavioral reasoner, (c) new sce-
nario steps added by the trainer. Within PANDORA, the J-
TRE planner is therefore able to replan in order to make
its current partial plan to remain consistent with respect to
the new dynamic input and with its consequences, namely,
changing the current course of the simulated crisis.

Figure 2 shows an example of crisis plan distributed over
three timelines representing (a) the number of available po-
lice officers, (b) the scenario timeline and (c) actions taken
by a trainee. Arrows represent causal links. This means that
mail0, video12, question21 and document15 are there be-
cause of high level goal “Plane crash snippet”. It is worth
underscoring how taking dynamically into consideration the
answers received by the trainee can cause a dynamic adap-
tation of the scenario plan with the insertion of the sub-goal
document24 and an update on the “police officers” resource
(the example is quite trivial for the sake of space) that may
change the perception of the current crisis scenario either of
a single trainee or to the whole class. This is also a way for
increasing the workload to a single person or to the whole
class.

Figure 2: The use of the J-TRE environment for the repre-
sentation of “lesson plans” in PANDORA.

J-TRE as a Domain Independent Solver
The J-TRE system is currently being tested in several do-
mains. The aim is to gather a large number of problems to
be used as benchmarks for domain independent solvers. In
the following, a robotic domain extracted from the GOAC
project (Ceballos et al. 2011) is introduced. This domain
is based on a robotic platform responsible for the move-
ments, a payload represented by stereocameras mounted on
a Pan-Tilt Unit, and a communication facility. The planner
should arrange activities taking care of on board memory
constraints, power requirements and availability of the com-
munication channel.

Figure 3 shows the knowledge contained in the domain
by detailing the values that can be assumed by state vari-
ables and the legal value transitions in accordance with
the mission requirements and the robot physics. To obtain
a timeline-based specification of our robotic domain, four
state variables have been used, namely, RobotBase, PTU,
Camera and Communication.

The robot can be in a position (At(x, y)) or mov-
ing towards a destination (GoingTo(x, y)). The PTU
can assume a PointingAt(pan, tilt) value if pointing
a certain direction, while, when moving, it assumes a
MovingTo(pan, tilt) value. The camera either takes a pic-
ture of a given object in a position ⟨x, y⟩ with the PTU
in ⟨pan, tilt⟩ (TakingP icture(f, x, y, pan, tilt)) or is idle.
Similarly, the communication facility can be either operative
or dumping a given file (Communicating(f)) or idle. The
reusable resource Power represents consumed power in time
while the consumable resource Memory represents memory
consumption in time. Additionally, one external resource,
the HRDL, represents contingent events, i.e., the communi-
cation channel availability.

During operation, the rover should follow some rules to
maintain safe and effective configurations. Namely, the fol-
lowing conditions must hold during the overall mission: (i)
while the robot is moving, the PTU must be in the safe posi-
tion (pan and tilt at 0) and 40W of power are required; (ii) the
robotic platform can take a picture only if the robot is still in
one of the requested locations while the PTU is pointing to
the related direction and if an adequate amount of on board
memory is available to store the picture; (iii) once a picture
has been taken, the rover has to communicate the picture to
the base station; (iv) while communicating the rover has to



Figure 3: State variables and resources describing the robotic platform and the communication channel availability.

stay still, 60W of power are requested and the memory is
released of the amount of transmitted file; (v) while commu-
nicating, the orbiter needs to be visible.

As an example, a possible mission action sequence can
be the following: navigate to one of the requested locations,
move the PTU pointing at the requested direction, take a pic-
ture, then, communicate the image to the orbiter during the
next available visibility window, put back the PTU in the
safe position and, finally, move to the following requested
location. Once all the locations have been visited and all the
pictures have been communicated, the mission is considered
successfully completed.

In (De Benedictis and Cesta 2013) the J-TRE environment
has been tested within different variations of the same frame-
work in. By applying the IFPC algorithm (Planken 2008) for
incrementally solving temporal problems it has been possi-
ble to further improve the performance. Figure 4 shows ex-
ecution time (in milliseconds) of our benchmark problem,
scaled by adding different TakingP icture goals (the num-
ber of TakingP icture goals is on the abscissas) given an
initial situation in which the robot is at location ⟨0, 0⟩ and
the pan-tilt is oriented to ⟨0, 0⟩. We can observe how the J-
TRE planner scales quite well with respect to all the problem
instances. A comparative evaluation with similar planners
(mainly EUROPA, ASPEN, IxTET and TRF) is scheduled.

Conclusions
Temporal flexibility required in controlling mechanisms in
real-time (i.e., robotics), interacting with agents require-
ments as well as uncertainty of real world domains, are just
some of the arguments that are leading to the progressive
exploration of different planning methodologies and to the
extensions of most classic ones.

Timeline based planning constitutes an intuitive alterna-

Figure 4: Execution time (in milliseconds) for the GOAC
domain (for increasing number of TakingP icture goals)

tive to classical planning approaches by identifying relevant
domain components evolving in time. Although attractive
from a temporal flexibility point of view, these kind of plan-
ners have to cope with performance issues due to the com-
plexity that derives from their expressiveness.

The J-TRE architecture filters out common elements from
timeline-based planners with the intent to focus the attention
to underlying constraint reasoners that could lead to different
possible flaw selection and flaw resolution strategies.

Some points are still open. The heuristics for flaw selec-
tion and flaw resolution strategies are still relatively poor to
compete in performance with state-of-the-art classical plan-
ners. The thrust to classical planning given by GRAPHPLAN
and the consequent development of heuristic based search is
something that is still missing in the timeline-based area.
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