
All for One or One for All: Planning for Cooperative and Selfish Agents
(Research Proposal Abstract)

Raz Nissim
Ben-Gurion University of the Negev

Be’er Sheva, Israel
raznis@cs.bgu.ac.il

Introduction
The field of planning deals with automatically producing
valid action sequences, which transform a given system from
its initial state to some desirable goal state. Planning is a
key enabling technology for guidance and control of au-
tonomous systems, and therefore it stands at the core of
artificial intelligence research. Planning already has many
applications, such as the development of self-driving cars,
guidance of NASA’s Mars Rovers, and even the optimiza-
tion of elevators in an office building.

In the classical planning model, all actions have deter-
ministic outcomes and the complete state of the system is
known to the planner. Planning is known to be a PSPACE-
hard problem, and much work has been done on identify-
ing certain properties and problem structure which can be
used to create algorithms that scale beyond current capabil-
ities. The main focus of my work is on planning for systems
having multiple agents. For example, an international ship-
ping/logistics company is composed of multiple agents that
perform the shipping tasks: pilots/airplanes that ship pack-
ages between airports, and the local drivers/trucks that ship
packages within a certain locality. Intuitively, we would ex-
pect each agent to plan independently, and then to coor-
dinate its plans with other agents, to form a global plan.
Following this intuition, in the models I examine, both the
planning process and the plan execution is distributed. Here,
the agents must plan and coordinate in order to find an exe-
cutable solution plan. I believe this best represents the prac-
tical uses of planning in multi-agent (MA) systems.

There is a long tradition of work on multi-agent planning
for cooperative and non-cooperative agent teams involving
centralized and distributed algorithms, often using involved
models that model uncertainty, resources, and more (Szer,
Charpillet, and Zilberstein 2005), and much work on how
to coordinate the local plans of agents or to allow agents to
plan locally under certain constraints (Cox and Durfee 2005;
Steenhuisen et al. 2006; ter Mors, Valk, and Witteveen 2004;
ter Mors and Witteveen 2005). However, our starting point
is a more basic, and hence, we believe, more fundamental
model introduced by Brafman and Domshlak (BD) which
offers what is possibly the simplest model of MA planning

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

– MA-STRIPS (Brafman and Domshlak 2008). MA-STRIPS
minimally extends standard STRIPS (or PDDL) models by
specifying a set of agent ids, and associating each action in
the domain with one agent. Thus, essentially, it partitions the
set of actions among the set of agents. We believe that this
model serves as a skeleton model for most work on cooper-
ative multi-agent systems, and that the insights gained form
it can help us address more involved models, too.

BD’s algorithm is based on constraint satisfaction tech-
niques. Therefore, it can be transformed into a fully dis-
tributed algorithm simply by using a distributed CSP solver.
Unfortunately, distributed CSP solvers cannot handle even
the smallest instances of MA planning problems. Con-
sequently, a dedicated algorithm, based on the ideas of
BD, Planning-First, was developed (Nissim, Brafman, and
Domshlak 2010). Unfortunately, this algorithm had trouble
scaling up to problems in which each agent had to execute
more than a small number of actions. (Indeed, BD’s algo-
rithm scales exponentially with the minimal number of ac-
tions per agent in the solution plan.) Recently, a new, im-
proved algorithm, based on partial-order planning, MAP-
POP, was developed by (Torreño, Onaindia, and Sapena
2012). Yet, this algorithm, too, leaves a serious gap between
what we can solve using a distributed planner and what we
can solve using a centralized planner. Moreover, neither al-
gorithm attempts to generate a cost-optimal plan.

Main Challenges
Currently, the theoretical understanding of the MA planning
problem is lacking. Specifically, much work is needed to
understand how the complexity of planning is affected by
the structure of a MA system. Such a study, using models
that are expressive and general, yet simple to present and
to understand, has not yet been conducted. On the practi-
cal side, current classical planning algorithms and heuristics
do not utilize the special structure exhibited in MA systems.
In previous work (Nissim, Brafman, and Domshlak 2010),
I showed that specialized techniques for MA planning can
outperform existing state-of-the-art technology when plan-
ning for MA systems. This work also showed that there is
much unrealized potential in the exploitation of MA struc-
ture in planning. In general, I believe that the lack of simple
and effective algorithms and of efficient frameworks for MA
planning hinders both practical and theoretical advances in

the field.
Beyond fully-cooperative MA systems, there is much in-

terest in planning for systems where the agents are self-
interested. In many realistic settings, agents have personal
goals and costs, and are motivated to increase their net ben-
efit. These agents may want to cooperate with one another
since they have different capabilities or they find such co-
operation beneficial. Planning for such systems entails deal-
ing with different solution concepts (stability instead of cost-
optimality) and changing heuristics so that they estimate sta-
bility potential of a state rather than its (cost-wise) distance
from a goal. In addition, our agents must be able to com-
pute heuristics in a distributed manner, sometimes with par-
tial knowledge of the entire system. Existing planning tech-
niques are incapable of handling such models.

Background
A MA-STRIPS problem for a set of agents Φ = {ϕi}ki=1 is
given by a 4-tuple Π = 〈P, {Ai}ki=1, I, G〉, where P is a
finite set of propositions, I ⊆ P and G ⊆ P encode the
initial state and goal, respectively, and for 1 ≤ i ≤ k, Ai

is the set of actions agent ϕi is capable of performing. Each
action a = 〈pre(a), eff(a)〉 is given by its preconditions and
effects. A plan is a solution to Π iff it is a solution to the un-
derlying STRIPS problem obtained by ignoring the identities
of the agent associated with each action. Since each action is
associated with an agent, a plan tells each agent what to do
and when. In different planning contexts, one might seeks
special types of solutions. For example, in the context of
planning games (Brafman et al. 2009), stable solutions are
sought. We focus on cooperative multi-agent systems, seek-
ing either a (standard) solution or a cost-optimal solution.

The partitioning of the actions to agents yields a distinc-
tion between private and public propositions and actions. A
private proposition of agent ϕ is required and affected only
by the actions of ϕ. An action is private if all its precondi-
tions and effects are private. All other actions are classified
as public. That is, ϕ’s private actions affect and are affected
only by ϕ’s actions, while its public actions may require or
affect the actions of other agents. For ease of the presenta-
tion of our algorithms and their proofs, we assume that all
actions that achieve a goal condition are considered public.
Our methods are easily modified to remove this assumption.

In a distributed system of fully-cooperative agents privacy
is not an issue, and so the distinction between private and
public actions is not essential, although it can be exploited
for computational gains (Brafman and Domshlak 2008). But
there are settings in which agents collaborate on a specific
task, but prefer not to reveal private information about their
local states, their private actions, and their cost. We will refer
to algorithms that plan without revealing this information as
privacy preserving (distributed) planning algorithms. More
specifically, in a privacy-preserving algorithm the only in-
formation available about an agent to others is its set of pub-
lic actions, projected onto public atoms. This can be viewed
as the interfaces between the agents. Information about an
agent’s private actions and private aspects of a public action
are known to the agent only.

Table 1: Comparison of MA greedy best-first search and
MAP-POP. Solution cost, running time (in sec.) and the num-
ber of sent messages are shown. “X” denotes the problem
wasn’t solved after one hour.

Solution cost Runtime Messages
problem agents MAFS MAP-POP MAFS MAP-POP MAFS MAP-POP

Logistics6-0 3 25 25 0.06 60.6 470 1050
Logistics7-0 4 36 37 0.2 233.3 2911 4898
Logistics8-0 4 31 31 0.16 261 940 4412
Logistics9-0 4 36 36 1.02 193.3 2970 3168
Logistics10-0 5 45 51 0.43 471 2097 14738
Logistics11-0 5 54 X 2.7 X 14933 X
Logistics12-0 5 44 45 1.3 1687 4230 28932
Logistics13-0 7 87 X 0.9 X 5140 X
Logistics14-0 7 68 X 0.67 X 2971 X
Logistics15-0 7 95 X 0.74 X 6194 X
rovers5 2 22 24 0.13 18.7 84 323
rovers6 2 37 39 0.07 18.2 27 313
rovers7 3 18 18 0.07 44.1 225 490
rovers8 4 26 27 0.2 744 937 12102
rovers9 4 38 36 0.82 222 380 4467
rovers10 4 38 X 0.41 X 271 X
rovers11 4 37 34 0.34 132.5 299 2286
rovers12 4 21 20 0.09 34.4 435 410
rovers13 4 49 X 0.15 X 472 X
rovers14 4 31 35 0.42 443.8 310 7295
rovers15 4 46 44 0.33 164 252 2625
rovers16 4 44 X 0.27 X 552 X
rovers17 6 52 X 0.57 X 628 X
satellites7 4 22 22 0.23 28.8 248 543
satellites8 4 26 26 0.21 40.7 133 678
satellites9 5 30 29 0.35 93.3 397 1431
satellites10 5 30 29 0.41 65.9 355 942
satellites11 5 31 31 0.69 51 514 904
satellites12 5 43 49 1.1 76.9 390 1240
satellites14 6 44 43 1.8 123.4 721 1781
satellites15 8 63 X 3.9 X 1507 X
satellites16 10 56 56 6.6 481.2 2279 4942
satellites17 12 49 49 6.7 2681 2172 26288

Main Achievements and Results
I now give a short overview of my published and ongoing
results.

Multi-Agent Forward Search
We now describe a distributed variant of forward best-first
search (MAFS). This algorithm maintains a separate search
space for each agent. Each agent maintains an open list of
states that are candidates for expansion and a closed list of
already expanded states. It expands the state with the mini-
mal f value in its open list. When an agent expands state s, it
uses its own operators only. This means two agents expand-
ing the same state will generate different successor states.

Since no agent expands all relevant search nodes, mes-
sages must be sent between agents, informing one agent of
open search nodes relevant to it expanded by another agent.
Agent ϕi characterizes state s as relevant to agent ϕj if ϕj

has a public operator whose public preconditions (the pre-
conditions ϕi is aware of) hold in s. In that case, Agent ϕi

will send s to Agent ϕj .
As we will see, this general and simple scheme – apply

your own actions/operators only and send relevant gener-

ated nodes to other agents – can be used to distribute other
search algorithms. However, there are various subtle points
pertaining to message sending and termination that influence
the correctness and efficiency of the distributed algorithm, as
we will see later.

The messages sent between agents contain the full state s,
i.e. including both public and private variable values, as well
as the cost of the best plan from the initial state to s found
so far, and the sending agent’s heuristic estimate of s. When
agent ϕ receives a state via a message, it checks whether this
state exists in its open or closed lists. If it does not appear
in these lists, it is inserted into the open list. If a copy of
this state with higher g value exists, its g value is updated,
and if it is in the closed list, it is reopened. Otherwise, it
is discarded. Whenever a received state is (re)inserted into
the open list, the agent computes its local h value for this
state, and then can choose between/combine the value it has
calculated and the h value in the received message. If both
heuristics are known to be admissible, for example, the agent
could choose the maximal of the two estimates.

Once an agent expands a solution state s, it sends s to all
agents and awaits their confirmation. For simplicity, and in
order to avoid deadlock, once an agent either broadcasts or
confirms a solution, it is not allowed to create a new solution.
If a solution is found by more than one agent, the one with
lower cost is chosen, and ties are broken by choosing the so-
lution of the agent having the lower ID. When the solution
is confirmed by all agents, the agent initiates the trace-back
of the solution plan. This is also a distributed process, which
involves all agents that perform some action in the optimal
plan. When the trace-back phase is done, a terminating mes-
sage is broadcasted and the solution is outputted.

The MAFS Algorithm

Algorithms 1-3 depict the MAFS algorithm for agent ϕi. An
empirical comparison of MAFS and current state-of-the-art
distributed planner MAP-POP is shown in Table 1.

Algorithm 1 MAFS for agent ϕi

1: while did not receive true from a solution verification
procedure do

2: for all messages m in message queue do
3: process-message(m)
4: s← extract-min(open list)
5: expand(s)

Algorithm 2 process-message(m = 〈s, gϕj
(s), hϕj

(s)〉)
1: if s is not in open or closed list or gϕi

(s) > gϕj
(s)

then
2: add s to open list and calculate hϕi

(s)
3: gϕi

(s)← gϕj
(s)

4: hϕi
(s)← max(hϕi

(s), hϕj
(s))

Algorithm 3 expand(s)
1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: initiate verification of s as a solution
5: return
6: for all agents ϕj ∈ Φ do
7: if the last action leading to s was public and ϕj has a

public action for which all public preconditions hold
in s then

8: send s to ϕj

9: apply ϕi’s successor operator to s
10: for all successors s′ do
11: update gϕi

(s′) and calculate hϕi
(s′)

12: if s′ is not in closed list or fϕi
(s′) is now smaller than

it was when s′ was moved to closed list then
13: move s′ to open list

Optimal MAFS

MAFS as presented, is not an optimal planning algorithm. It
can, however, be slightly modified in order to achieve opti-
mality. We now describe these modifications, which result
in a MA variation of A* we refer to as MA-A*.

As in A*, the state chosen for expansion by each agent
must be the one with the lowest f = g + h value in its open
list. In MA-A*, therefore, extract-min must return this state.

Unlike in A*, expansion of a goal state in MAFS does not
necessarily mean an optimal solution has been found. In our
case, a solution is known to be optimal only if all agents
prove it so. Intuitively, a solution state s having solution
cost f∗ is known to be optimal if there exists no state s′

in the open list or the input channel of some agent, such that
f(s′) < f∗. In other words, solution state s is known to
be optimal if f(s) ≤ flower−bound, where flower−bound is a
lower bound on the f -value of the entire system (which in-
cludes all states in all open lists, as well as states in messages
that have not been processed, yet).

To detect this situation, we use Chandy and Lamport’s
snapshot algorithm (Chandy and Lamport 1985), which en-
ables a process to create an approximation of the global
state of the system, without “freezing” the distributed com-
putation. Although there is no guarantee that the computed
global state actually occurred, the approximation is good
enough to determine whether a stable property currently
holds in the system. A property of the system is stable if it is
a global predicate which remains true once it becomes true.
Specifically, properties of the form flower−bound ≥ c for
some fixed value c, are stable when h is a globally consistent
heuristic function. That is, when f values cannot decrease
along a path. In our case, this path may involve a number
of agents, each with its h values. If each of the local func-
tions hϕ are consistent, and agents apply the max operator
when receiving a state via a message (known as pathmax),
this property holds1.

1Although recent work (Holte 2010) shows that pathmax does
not necessarily make a bona-fide consistent heuristic, pathmax does

We note that for simplicity of the pseudo-code we omitted
the detection of a situation where a goal state does not exist.
This can be done by determining whether the stable property
“there are no open states in the system” holds, using the
same snapshot algorithm.

Applying the knowledge gained by implementing MA-
A*, I created the first MA planning framework, MA-FD.
The basis for MA-FD is Fast-Downward (FD), which is cur-
rently the leading system for centralized planning. I believe
my framework will provide researchers with fertile ground
for developing new search techniques and heuristics for MA
planning. I am hopeful that having a simple and effective
MA planning framework will increase interest in MA plan-
ning research, as Fast-Downward has done for centralized
planning.

Partition-Based Pruning for Optimal Planning
MA-A*’s empirical success was surprising, and led me to
examine its theoretical properties in depth. It is now clear
that MA-A* is not a shallow parallelization or distribution
of A*. Rather, it is structure-aware, using the distinction be-
tween local and globally relevant actions and propositions
to focus the work of each agent, dividing both the search
space and actions among the agents, and exploiting symme-
tries that arise from the MA structure. It is now clear that
some of the ideas that make MA-A* successful, can also
be applied to centralized planning. One concrete example of
this is a technique for symmetry exploitation in centralized
search, which has been published last year (Nissim, Apsel,
and Brafman 2012).

This technique requires as input a partition of the set of
actions. Given such a partition, it allows us to prune actions
roughly as follows: after performing an action a, if this ac-
tion affects only actions from its own partition (i.e., by sup-
plying or destroying their pre or prevail conditions) then the
next action should be from that same partition. The power
of this method depends on the quality of the partition used.
In some domains natural partitions suggest themselves. For
example, when there is a natural notion of agents in a do-
main (e.g., trucks in Logistics, satellites in Satellite, etc.),
then it is natural to partition the set of actions to sets con-
sisting of actions involving a specific agent. However, most
domains offer no obvious partition, and hence one of our
contributions is a principled and efficient automated domain
decomposition method.

As an example, consider a logistics problem consisting
of two trucks, and a partition of the actions such that for
i ∈ {1, 2}, all actions of trucki are in Ai. When ex-
panding state s, for which the creating action was a =
move(truck1, loc1, loc2), all actions corresponding to truck2
are pruned. Since a was performed in order to achieve some
precondition for truck1’s public load/unload action at loc2,
PB pruning focuses the search effort on applying that action.

Generally, in optimal plans, private actions are executed
only to enable some public action, since otherwise, the pri-
vate action can be removed and the plan is not optimal.
Therefore, when pruning the actions of other partitions af-

ensure that f -values along a path are non-decreasing.

ter applying a private action a, the search effort focuses on
achieving the cause for applying a in the first place. The
reader may have observed that in optimal search in general,
when reaching state s via a private action a ∈ Ai, all pub-
lic actions of Ai constitute a disjunctive action landmark in
state s.

Since, in general, planning problems do not exhibit MA
structure, in order to use PB pruning we must partition the
actions of the problem. As an exponential number of par-
titions exist, some measure of partition quality is required.
Using PB pruning, action pruning is performed only when
the first of two consecutive actions is private and the second
is one belonging to a different partition. We introduce the
notion of symmetry score (Γ), which measures the proba-
bility of such a sequence appearing in the search:

Γ({A}ki=1) =

k∑
i=1

(pr(a ∈ Ai and a is private)∗pr(a /∈ Ai))

Γ is, of course, an approximation, since it regards the
probability of each action appearing at any point in the
search as equal. However, our work shown a high correlation
between Γ and the effectiveness of PB pruning. Empirical
results which depict the effect partition-based (PB) pruning
has on coverage, time, and search space size are shown in
Table 2.

Future Challenges
MA-A* showed empirical success in problems exhibiting
a natural MA structure. An important question for future
work is whether (and how) problems that do not exhibit such
structure could be reformulated as MA problems. Such re-
formulation would enable us to parallelize the search us-
ing MA-A*, and solve problems faster. I am currently ex-
ploring this problem using graph partition algorithms, and
some promising results have already been achieved. In ad-
dition, further theoretical analysis of these decompositions
has shown that with minimal changes to any centralized
algorithm, significant pruning of the search space can be
achieved by using methods very similar to MA-A*, with-
out affecting optimality. Investigating and finding more tech-
niques that are used in the MA setting, and can be useful in
centralized planning as well, is therefore a key challenge.

Another key challenge is finding a way to deal with in-
complete knowledge of the agents. Specifically, how can an
accurate heuristic be computed with only partial knowledge
of the problem. Solving this issue is crucial for improving
performance in the distributed,privacy preserving setting.

Since my main aim is to create planners for real-world
MA systems, my methods must be extended beyond the
fully cooperative setting. I plan on extending my method-
ologies for solving fully cooperative MA planning, to more
realistic models, involving such selfish, yet willing to coop-
erate agents. Although these models require different solu-
tion concepts and heuristics, I believe that many of the tech-
niques used in MAFS can help formulate an efficient plan-
ning algorithm for such systems. In addition, I have ongoing
work which aims to use mechanism design tools such as the
Vickrey-Clarke-Groves mechanism, in order to “force” util-

Table 2: Coverage and comparison of A*+hlm-cut using our 3 pruning rules. Time and node ratios are relative to the baseline
planner.

Coverage Total Time Search Time Expanded Generated
Domain A* PB T PBT PB T PBT PB T PBT PB T PBT PB T PBT
airport 27 27 27 27 0.96 1.01 0.97 1.01 1.01 1.03 1 1 1 1.03 1 1.03
blocks 28 28 28 28 1 1 1.01 1 1 1.01 1 1 1 1 1 1
depot 7 7 7 7 1.03 1 1.04 1.04 1 1.04 1 1 1 1.1 1 1.1
driverlog 13 13 13 13 1.2 1.45 1.24 1.2 1.45 1.25 1.13 1.1 1.24 1.49 1.62 1.68
freecell 15 15 15 15 0.94 1.02 0.94 1.01 1.02 1.01 1 1 1 1 1 1
grid 2 2 2 2 0.97 1.01 0.97 1.01 1.02 1.01 1 1 1 1 1 1
gripper 6 6 6 6 1 1.01 1.02 1 1.01 1.02 1 1 1 1.01 1 1.01
logistics00 20 20 20 20 2.15 1 2.16 2.15 1 2.16 1.52 1 1.52 2.88 1 2.88
logistics98 6 6 6 6 3.74 1 3.71 3.78 1 3.75 2.02 1 2.02 4.65 1 4.65
miconic 141 141 141 141 0.82 1.01 0.83 0.99 1.02 1.02 1 1 1 1 1 1
mprime 23 20 22 20 0.74 0.99 0.75 1.03 0.99 1.05 1.01 1 1.01 1.15 1 1.15
mystery 15 15 15 15 0.63 0.98 0.64 1 0.98 1.01 1 1 1 1.01 1 1.01
openstacks 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1
pathways-noneg 5 5 5 5 1.65 1.02 1.7 1.65 1.02 1.7 1.31 1 1.31 1.87 1 1.87
pipes-notankage 16 16 16 16 1.04 1.01 1.05 1.09 1.01 1.1 1 1 1 1.09 1 1.09
pipes-tankage 9 9 9 9 1 1 1.01 1.02 1 1.04 1 1 1 1.04 1 1.04
psr-small 49 49 49 49 1 1.52 0.99 1 1.52 1 1 1.48 1 1.08 1.51 1.08
rovers 7 8 7 8 2.61 1.04 2.64 2.63 1.04 2.66 1.78 1 1.78 3.23 1.02 3.24
satellite 7 12 7 12 13.74 1.22 14.09 14.55 1.22 14.91 6.85 1.04 6.85 19.18 1.35 19.33
tpp 6 6 6 6 1.03 1 1.04 1.04 1 1.04 1.02 1 1.02 1.37 1 1.37
transport 11 11 11 11 1.5 1 1.5 1.54 1 1.54 1.24 1 1.24 1.79 1 1.79
trucks 9 9 9 9 0.96 0.99 0.95 1 0.99 1 1 1 1 1.01 1 1.01
zenotravel 12 13 12 13 2.7 0.99 2.68 2.81 0.99 2.79 1.54 1 1.54 2.86 1 2.86
Total/Geometric Mean 441 445 440 445 1.339 1.047 1.350 1.424 1.048 1.437 1.226 1.023 1.231 1.558 1.055 1.567

itarian agents to cooperate and perform distributed optimal
planning.

References
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In IJCAI, 73–78.
Chandy, K. M., and Lamport, L. 1985. Distributed snap-
shots: Determining global states of distributed systems.
ACM Trans. Comput. Syst. 3(1):63–75.
Cox, J. S., and Durfee, E. H. 2005. An efficient algorithm for
multiagent plan coordination. In AAMAS, 828–835. ACM.
Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In SOCS.
Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In ECAI, 624–629.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
AAMAS, 1323–1330.
Steenhuisen, J. R.; Witteveen, C.; ter Mors, A.; and Valk, J.
2006. Framework and complexity results for coordinating
non-cooperative planning agents. In MATES, 98–109.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. Maa*: A
heuristic search algorithm for solving decentralized pomdps.
In UAI, 576–590.

ter Mors, A., and Witteveen, C. 2005. Coordinating self in-
terested autonomous planning agents. In BNAIC, 383–384.
ter Mors, A.; Valk, J.; and Witteveen, C. 2004. Coordinating
autonomous planners. In IC-AI, 795–.
Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In ECAI, 762–767.

