
Translation based approaches to probabilistic planning

Ran Taig
Department of Computer Science

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105

taig@cs.bgu.ac.il

Abstract

The main focus of our work is the use of classical planning
algorithms in service of more complex problems of planning
under uncertainty. In particular, we are exploring compilation
techniques that allow us to reduce some probabilistic plan-
ning problems into variants of classical planning, such as met-
ric planning, resource-bounded planning, and cost-bounded
suboptimal planning. Currently, our initial work focuses on
conformant probabilistic planning. We intend to improve our
current methods by improving our compilation methods, but
also by improving the ability of current planners to handle the
special features of our compiled problems. Then, we hope to
extend these techniques to handle more complex probabilistic
settings, such as problems with stochastic actions and partial
observability.

Motivation
Models of planning under uncertainty, and in particular,
MDPs and POMDPs have received much attention in the
AI and Decision-Theoretic planning communities (Boutilier,
Dean, and Hanks 1999; Kaelbling, Littman, and Cassandra
1998). These models allow for a richer and more realistic
representation of real-world planning problems, but lead to
increased complexity. Recently, a new approach for handling
certain simple classes of planning under uncertainty was in-
troduced (Palacios and Geffner 2009). This approach works
by reducing problems of planning under uncertainty to clas-
sical planning problems. The main benefit of this technique
is that it allows us to exploit techniques developed in clas-
sical planning, and in particular, effective and sophisticated
methods for computing heuristic functions. So far, this tech-
nique has been shown to be effective for conformant and
contingent planning (Albore, Palacios, and Geffner 2009;
Shani and Brafman 2011). A related approach was very suc-
cessful in handling MDPs in the FF-Replan planner (Yoon,
Fern, and Givan 2007). But whereas the compilation method
attempt to capture information about the state of knowl-
edge of the agent within the classical planning problem, the
methods used by FF-Replan are based on simple determin-
zation of the problem, and the classical planning problem
ignores the uncertainty inherent to the problem. In addition,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the model used assumes perfect observability, and so follow-
ing each action, the agent has complete information about
the current state of the world.

The goal of our research is to investigate extensions of
the ideas of problem compilation to probabilistic planning
problems. That is, we’d like to be able to represent within
the classical planning problem information about the proba-
bility of success. To start this research direction, we focus on
the problem of conformant probabilistic planning with deter-
ministic actions. Although this problem is not too exciting,
much like conformant planning, it provides a convenient ini-
tial step for exploring this research direction. We believe that
our techniques can be extended to more general probabilistic
planning problems.

Conformant Probabilistic Planning (CPP)

Conformant probabilistic planning tasks are quadruples
(A, bI , G, θ), corresponding to the action set, initial belief
state, goals, and acceptable goal satisfaction probability.
As before, G is a set of propositions. The initial state is no
longer assumed to be known precisely. Instead, we are given
a probability distribution over the world states, bI , where
bI(w) describes the likelihood of w being the initial world
state. In its most general form, CPP covers stochastic actions
as well, but we leave this to future work.

There is no change in the definition of actions and their
applications in states of the world comapring to the usual
classical planning formulations. But since we now work
with belief states, actions can also be viewed as transform-
ing one belief state to another. The likelihood [b, a] (w′) of a
world state w′ in the belief state [b, a], resulting from apply-
ing action a in belief state b, is given by

[b, a] (w′) =
∑

a(w)=w′

b(w) (0.1)

We will also use the notation [b, a] (ϕ) to denote∑
a(w)=w′,w′|=ϕ b(w), and we somewhat abuse notation and

write [b, a] |= ϕ for the case where [b, a] (ϕ) = 1.
For any action sequence a ∈ A∗, and any belief state b,

the new belief state [b, a] resulting from applying a at b is

given by

[b, a] =

b, a = 〈〉
[b, a] , a = 〈a〉, a ∈ A
[[b, a] , a′] , a = 〈a〉 · a′, a ∈ A, a′ 6= ∅

. (0.2)

In such setting, achieving G with certainty is typically un-
realistic. Hence, θ specifies the required lower bound on the
probability of achievingG. A sequence of actions a is called
a plan if we have ba(G) ≥ θ for the belief state ba = [bI , a].
Because our actions are deterministic, this is essentially say-
ing that a is a plan if Pr({w : a(w) |= G}) ≥ θ, i.e,. the
weight of the initial states from which the plan reaches the
goal is at least θ.

Approaches for planning under uncertainty
There are two main approaches for planning under un-
certainty, originally introduced in the context of non-
deterministic models of uncertainty, commonly used in re-
cent years: planning via search in belief space, and the
translation-based method for planning under uncertainty.

Planning via search in belief space Uncertainty in plan-
ning models show up as uncertainty about the initial state of
the world and/or uncertainty about the effects of actions, ei-
ther non-deterministic or stochastic. In both cases the agent
has some ”beliefs” during the planning process, about which
states it can possibly be in. Formally, a belief state b is the
non empty set of states that are deemed possible in a given
situation. An action is executable in a belief state b if it is
executable (i.e., its preconditions are satisfied) in every state
in b. Every action a executable in b maps b into a new belief
state ba = {s′ | such that s′ = f(a, s) for some s ∈ b}
where f(a, s) denotes the result of applying the action a in
a state s according to the transition function.

We denote by bI the initial belief state which consists of
all possible plain initial states. A goal belief state is any be-
lief state which contains goal states only. These definitions
define a search problem in which the initial state is bI and the
operators are the actions. The resulting plan maps all states
in bI into goal state, i.e., it is a conformant plan.

The approach suffers from two main disadvantages. First,
on interesting enough planning problems the size of the be-
lief state space is huge and cannot be explicitly represented
– it is exponentially larger than the state space. In fact, each
belief state can contain an exponential number of states.
This problem was dealt using logical representation tech-
niques (SAT, OBDD) which can compactly represent beliefs
states, sometimes. These methods were partially successful
and formed the basis of most conformant planners, until re-
cently.

A more critical problem is that while heuristic search
turned out to be highly successful in classical planning, it
was difficult to extend this success to search in belief space
which has structure that is harder to approximate via var-
ious relaxation methods. The few heuristics developed for
the belief space search were much less informative than typ-
ical heuristics applied to (standard) state space.

The translation approach - background and required
modifications We present here a modified version of the
translation-based method of (Palacios and Geffner 2009),
adapted to our settings. The essential idea behind the transla-
tion approach to conformant planning implemented in the T0
planner is to reason by cases. The different cases correspond
to different conditions on the initial state, or, equivalently,
different sets of initial states. These sets of states, or condi-
tions, are captured by tags. That is, a tag is identified with a
subset of bI . Below we abuse notation often, treating a tag
as the set of initial states it defines.

With every proposition p, we associate a set of tags Tp.
We require that this set be deterministic and complete. We
say that Tp is deterministic if for every t ∈ Tp and any se-
quence of actions ā, the value of p is uniquely determined by
t, the initial belief state bI and ā. We say that Tp is complete
w.r.t. an initial belief state bI if bI ⊆

⋃
t∈Tp

t. That is, it
covers all possible relevant cases. We say that a set of tags is
disjoint when for every t 6= t′ ∈ Tp we have that t ∩ t′ = ∅.
We say that a set of tags is DCD if it is deterministic, com-
plete, and disjoint.

Once we compute the tags required for a proposition p,
(see below) we augment the set of propositions with new
propositions of the form p/t, where t is one of the possi-
ble tags for p. p/t holds the current value of p given that
the initial state satisfies the condition t. The value of each
proposition p/t is known initially – it reflects the value of
p in the initial states represented by t, and since we focus
on deterministic tags only, then p/t ∨ ¬p/t is a tautology
throughout. Our notation p/t differs a bit from theKp/t no-
tation of Palacios and Geffner. The latter is used to stress the
fact that these propositions are actually representing knowl-
edge about the belief state. However, because of our assump-
tion that tags are deterministic, we have that ¬Kp→ K¬p.
To stress this and remove the redundancy, we use a single
proposition p/t instead of two propositions Kp/t,K¬p/t.

The actions are transformed accordingly to maintain our
state of knowledge. Given the manner tags were selected, we
always know how an action would alter the value of some
proposition given any of its tags. Thus, we augment the de-
scription of actions to reflect this. If the actions are deter-
ministic (which we assume in this paper), then the change
to our state of knowledge is also deterministic, and we can
reflect it by altering the action description appropriately.

The resulting problem is a classical planning problem de-
fined on a larger set of variables. The size of this set depends
on the original set of variables and the number of tags we
need to add. Hence, an efficient tag generation process is
important. A trivial set of tags is one that contains one tag
for each possible initial state. Clearly, if we know the initial
state of the world, then we know the value of all variables
following the execution of any set of actions. However, we
can often do much better, as the value of each proposition at
the current state depends only on a small number of propo-
sitions in the initial state. This allows us to use many fewer
tags (=cases). In fact, the current value of different proposi-
tions depends on different aspects of the initial state. Thus,
in practice, we select different tags for each proposition. We
generate the tags for p by finding which literals are relevant

2

to its value using the following recursive definition:
1.p is relevant to p.
2. If q appears (possibly negated) in an effect condition c for
action A such that c → r and r contains p or ¬p then q is
relevant to p.
3.If r is relevant to q and q is relevant to p then r is relevant
to p.

Let Cp denote the set containing all the propositions rel-
evant to p. The set of tags consisting of one tag for every
possible assignment to Cp is DCD. This set can be reduced
farther, while remaining DCC, if we remove any tag that cor-
responds to an assignment to Cp which has probability 0 in
the initial state.

Current work
Our work so far offers new compilations schemes that utilize
efficient variants of classical planners to solve conformant
probabilistic planning problems (CPP).

We solve these problems by compiling them to variants
of classical planning, which can then be solved by existing
solvers. Our first method transforms CPP into metric plan-
ning, where numeric variables represent information about
the belief state of the agent, this work appears as (Braf-
man and Taig 2011). The second method translates CPP into
classical planning with resource constraints, in which the
resources represent probabilities of failure. A very similar
method translates CPP into cost-optimal classical planning
problems. both described in(Taig and Brafman 2012). Fi-
nally, our most recent and empirically successful method, to
be presented in our ICAPS’13 paper, reduces CPP into cost-
bounded suboptimal classical planning problems. Empiri-
cally, all techniques show mixed results, performing well on
some domains and poorly on others. The bottleneck seems
to be the less developed state-of-the-art in metric and re-
source bounded planning, areas to which many of the re-
cent techniques introduced in classical planning are yet to
be integrated. Nevertheless, we believe that these compila-
tion techniques offer an interesting and promising direction
for future research on probabilistic planning in structured
domains. Due to lack of space we will describe here only
the first and last methods.

Related work
The best current probabilistic conformant planner is Proba-
bilistic FF (PFF) (Domshlak and Hoffmann 2007). The ba-
sic ideas underlying Probabilistic-FF are:

1. Define time-stamped Bayesian Networks (BN) describing
probabilistic belief states.

2. Extend Conformant-FF’s belief state to model these BN.

3. In addition to the SAT reasoning used by Conformant-
FF (Hoffmann and Brafman 2006), use weighted model-
counting to determine whether the probability of the (un-
known) goals in a belief state is high enough.

4. Introduce approximate probabilistic reasoning into
Conformant-FF’s heuristic function.

In many domains, PFF’s results were improved by our re-
sults. An earlier attempt to deal with probabilities by re-
ducing it to action costs appears in (Jiménez et al. 2006)
in the context of probabilistic planning problems where ac-
tions have probabilistic effects but there is no uncertainty
about the initial state. The probabilistic problem is compiled
into a (non-equivalent) classical problem where each possi-
ble effect e is represented by a unique action and the cost
associated with this action is set to be 1−Pr(e). That value
captures the amount of risk the planner takes when choosing
that action, which equals the probability that the effect won’t
take place when the original action is executed. This value
is then minimized by the cost-optimal planner. Our compi-
lation scheme uses related ideas but deals with uncertainty
about the initial state, and comes with correctness guaran-
tees.

Closely related to our work is the CLG+ planner (Albore
and Geffner 2009). This planner attempts to solve contin-
gent planning problems in which goal achievement cannot
be guaranteed. Thus, gradually, this planner makes assump-
tions that reduce the uncertainty, and allow it to plan. This
is achieved by adding special actions, much like ours, that
”drop” a tag, i.e., assume its value is impossible. These ac-
tions are associated with a high cost. The main difference,
of course, with our planner is that the cost we associate with
assumption-making actions reflects the probability of the
states ruled out, allowing us to model probabilistic planning
problems as cost-optimal planning. Furthermore, our plan-
ner may decide (depending on the search procedure used) to
come up with a sub-optimal plan, albeit one that meets the
desired probabilistic threshold, even when a full conformant
plan exists. This flexibility allows us to trade-off computa-
tional efficiency with probability of success.

Of similar flavor to the above is the assumption-based
planning approach introduced recently (Davis-Mendelow,
Baier, and McIlraith 2012). This work considers the prob-
lem of solving conformant and contingent planning under
various assumptions, that may be selected according to var-
ious preference criteria. It too does not consider an explicit
probabilistic semantics that addresses CPP.

Method 1: Compiling CPP into Metric
Planning

We create a metric planning problem which is then given to
Metric-FF. The solution plan is returned as a plan for the
CPP given as input.

The Metric Planning Problem
Let P = (V,A, bI , G, θ) be the CPP given as input. Recall
that Tp is the set of tags for p. We use T to denote the entire
set of tags (i.e., ∪Tp). We generate a metric-planning prob-
lem P̂ = (V̂ , F̂ , Â, Î, Ĝ) as follows:
Propositions: V̂ = {p/t | p ∈ V, t ∈ Tp}.
Functions: F̂ = {Prp | p ∈ V } ∪ {Prgoal}. That is func-
tions that keep the current probability of each original propo-
sition. We sometimes abuse notation and write Pr¬p instead
of 1 − Prp. Finally Prgoal denotes the probability that the
goal is true.

3

Numerical Constants: We use a group ĉ of constants to save
the initial probability of each tag t ∈ T : ĉ = {bI(t) | t ∈
T}. Note that these can be computed from the initial state
description.
Initial State:
• Î = {l/t | l is a literal, and t, I � l, }
• Prp = bI({s|s |= p}), i.e., the initial probability that p

holds.
• Prgoal = bI({s|s |= G}). Again, this can be computed

directly from the initial state description.

Goal: Ĝ = {Prgoal ≥ θ}.
Actions: First, for every action a ∈ Â, we make all its ef-
fects conditionals. Thus, if e is an effect of a, we now treat
it as a conditional effect of the form ∅ → {e}.

For every action a ∈ A, Â contains an action â defined as
follows:
• pre(â) = {Pl = 1 | l ∈ pre(a)}. This reflects the need

to make sure actions in the plan are always applicable:
The probability of the preconditions is 1 only if they hold
given all possible initial states.1

• For every conditional effect (con → eff) ∈ E(a), â
contains the following conditional effects for each e ∈
eff and for every t ∈ T :
– {c/t | c ∈ con ∪ {¬e}} → {e/t, Pre = Pre + bI(t)}.

That is, if we know all conditions of the conditional ef-
fects are true before applying the action given t is true
initially then we can conclude that the effect takes place
so we now know that e is true under the same assump-
tion. This information is captured by adding e/t. Note
that we care only about conditional effects that actually
change the state of the world. Hence, we require that
the effect not hold prior to the execution of the action.
In that case, the new probability of e is the old proba-
bility of e plus the probability of the case (as captured
by the tag t) we are considering now.

– If e ∈ G we also add the following effect to the last
condition:
Prgoal = Prgoal + (bI(t)×

∏
e′∈G\{e}

Pre′)

If ¬e ∈ G we add the following effect to the last con-
dition:
Prgoal = Prgoal − (bI(t)×

∏
e′∈G\{e}

Pre′)

If e ∈ G then our knowledge of the probability of the
goal was changed by the action so that now: Prnewgoal =∏
e∈G

Pre. Note that here we assume that the probabil-

ity of the different sub-goals is independent.2 Given
the increase in the probability of e and the indepen-
dence assumption, the the new goal probability is :∏
e′∈G\{e}

Pre′ × (Pre + bI(t)) = Proldgoal + (bI(t) ×

1In this scheme we follow the convention of earlier planners
requiring that a plan be executable in all initial states.

2We can handle the case of dependent goals, but that requires
adding more tags, i.e., by adding tags that determinize the goal.

∏
e′∈G\{e}

Pre′) . The same rational guides us when the

action reduces the probability of some sub-goal.

Accuracy of probabilistic calculations
The soundness of our algorithm rests on the accuracy of our
probabilistic estimate of the value of Pgoal. We now prove
that this value is correct under the assumption that the set
of tags is deterministic, complete, and disjoint. We defined
the notion of deterministic and complete tags earlier. We say
that a set of tags Tp is disjoint if ∀ti, tj ∈ Tp s.t. i 6= j and
for every possible initial state sI : ti � sI ⇒ tj 2 sI .

Lemma 1 Let ā be a sequence of actions fromA, let â be the
corresponding sequence of actions from Â, and let t ∈ Tp be
a deterministic tag. Then, [bI , ā] |= p/t iff for every initially
possible world state w ∈ t we have that (â)(w) |= p.

This lemma follows from our construction of the new ac-
tions, together with the fact that the tags are deterministic,
i.e., the value of p in (â)(w) for all initially possible world
states w ∈ t is the same.

Lemma 2 Let p ∈ V , and assume that Tp is deterministic,
complete, and disjoint. Let ā be a sequence of actions in A.
Let â be the corresponding sequence in Â. Then, â(Prp) =
[bI , ā] (p). That is, at this stage, Prp equals the probability
of p following the execution of ā.

Due to lack of space,we omit the proof here and refer you to
the paper.

Corollary 3 The plan returned is a legal plan for P .

Proof: Each action precondition L is replaced by the pre-
condition PL = 1, from lemma 1 we learn that this property
holds if and only if L is known with full certainty and the
action can be applied.

Corollary 4 Assuming that sub-goals are probabilistically
independent, then, in each stage of the planning process
Prgoal holds the accurate probability of the goal state.

Proof: If G = {L} then it’s immediate from lemma 2. Oth-
erwise, from lemma 2 it follows that this holds true for ev-
ery sub-goal. Thus, the probability of the goal is the prod-
uct of the probability of the sub-goals. The proof follows
by induction from the fact that we initialize Prgoal cor-
rectly, and from the updates performed following each ac-
tion. Specifically, suppose that the probability of subgoal
g increased following the last action. The new goal prob-
ability is :

∏
g′∈G\{g}

Prg′ × (Prg + bI(t)) = Proldgoal +

(bI(t) ×
∏

g′∈G\{g}
Prg′). By construction, one effect of the

corresponding action in Â is Prgoal = Prgoal + (bI(t) ×∏
g′∈G\{g}

Pre′). This maintains the correct value. A similar

update occurs in the case of a reduction. Since updates are
done sequentially, the value remains correct even if an action
affects multiple goals.

4

Method 2: CPP as cost-bounded sub optimal
planning problem

Cost bounded classical planning In cost bounded classi-
cal planning a classical planning problem is extended with
a constant parameter c ∈ R > 0. The task is to find a plan
with cost ≤ c as fast as possible. In this setting the opti-
mal plan cost and the distance of the resulting plan from
optimal does not matter, as opposed to notions such as sub-
optimal search. One way to solve this problem is to use an
optimal planner and then confirm that the cost bound is met.
Another method is to use an anytime planner that gradually
improves the plan cost, until the cost bound is met. How-
ever, these methods do not make real use of the bound dur-
ing the search process, e.g., for pruning nodes that cannot
lead to a legal solution. Recently, a number of algorithms
that deal directly with this problem were suggested (Stern,
Puzis, and Felner 2011),(Thayer et al. 2012). The common
ground of all these algorithms is the consideration of the
bound c within the heuristic function. One example is the
Potential Search algorithm that uses heuristic estimates to
calculate the probability that a solution of cost no more than
c exists below a given node (Stern, Puzis, and Felner 2011).
This idea was extended by the Beeps algorithm (Thayer et
al. 2012) which chooses which node to expand next based
on the node’s potential which combines admissible and in-
admissible estimates of the node’s h value as well as an in-
admissible estimate of the number of actions left to the goal
(distance estimate). This algorithm is currently considered
the state of the art for this problem.

Proposed compilation The basic motivation for the
method we present now is the understanding that we can
solve a CPP problem by identifying a set b′ of initial states
whose joint probability is greater or equal to θ, such that
there exists a conformant plan for b′. This plan is a solution
to the CPP problem, too.

The task of finding a plan to a CPP can thus be divided
into the identification of a suitable initial belief state bI , fol-
lowed by finding a plan to the conformant planning problem
(V,A, bI , G). However, rather than take this approach di-
rectly, we use a compilation-based method in which we let
the classical planner handle both parts. That is, in the classi-
cal planning problem we generate the planner decides which
states to ignore, and also generates a conformant plan for all
other states. We must ensure that the joint probability of ig-
nored states does not exceed 1− θ. Technically, this is done
by introducing special actions that essentially tell the plan-
ner to ignore a state (or set of states). The cost of each such
action is equal to the probability of the state(s) it allows us
to ignore.

Technically, the effect of ignoring a state is to make it eas-
ier for the planner to obtain knowledge. Typically, we say
that the agent knows ϕ at a certain belief state, if ϕ holds
in all world states in this belief state. In the compilation ap-
proach such knowledge is added by applying merge actions.
Once a state has been ”ignored” by an ”ignore” action, the
merge actions effectively ignore it, and deduce the informa-
tion as if this state is not possible.

Formal description Let P = (V,A, bI , G, θ) be the input
CPP. Let Tp be the set of tags for p. (We discuss the tag
computation algorithm later – right now it is assumed to be
given to the compiler.) We use T to denote the entire set of
tags (i.e., ∪Tp). We will also assume a special distinguished
tag, the empty set. We now present our compilation methods
for P .

Given P , we generate the following classical planning
with action costs problem P̃ = (Ṽ , Ã, Ĩ, G̃):
Variables: Ṽ = {p/t | p ∈ V, t ∈ Tp}∪{Dropt|t ∈ T}. The
first set of variables are as explained above. p/{}, which we
abbreviate as simply p, denotes the fact that p holds uncondi-
tionally, i.e., in all possible worlds. (Previous work denotes
this by Kp.) The second set of variables – Dropt – denotes
the fact that we can ignore tag t.
Initial State: Ĩ = {l/t | l is a literal, and t, I � l}. All valid
assumptions on the initial worlds captured by the special
variables. Note that all Dropt propositions are false.
Goal State : G̃ = G. The goal must hold for all initial states.
Recall that what we call knowledge is not real knowledge,
because we allow ourselves to overlook the ignored states.
Actions: Ã = Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4 where:

• Ã1 = {ã | a ∈ A}: Essentially, the original set of actions.

– pre(ã) = pre(a). That is, to apply an action, its pre-
conditions must be known.

– For every conditional effect (c → p) ∈ E(a) and for
every t ∈ T , ã contains: {c/t | c ∈ con} → {p/t}.
That is, for every possible tag t, if the condition holds
given t, so does the effect.

– cost(ã) = 0.

• Ã2 = {{p/t | t ∈ Tp} → p |p is a precondition of some
action a ∈ A or p ∈ G}. These are known as the merge
actions. They allow us to infer from conditional knowl-
edge about p, given certain sets of tags, absolute knowl-
edge about p. That is, if p holds given t, for an appropriate
set of tags, then p must hold everywhere, we set the cost
of all the merge actions to 0 as well.

• Ã3 = {Dropt | t ∈ T} where: pre(Dropt) =
{}, eff(Dropt) = {Dropt}, cost(Dropt) = PrI(t).
That is, the Dropt action let’s us drop tag t, making
Dropt true in the cost of t’s initial probability.

• Ã4 = {Assumep/t |p is a precondition of
some action a ∈ A or p ∈ G, t ∈ Tp}
pre(Assumep/t) = {Dropt}, eff(Assumep/t) =
{p/t}, cost(Assumep/t) = 0. That is, we can assume
whatever we want about what is true given a dropped tag.

Cost bound : The cost bound for the classical planning
problem is set to 1− θ.

Thus, essentially, using the Dropt action, the planner de-
cides to ”pay” some probability for dropping all initial states
that correspond to this tag. Once it drops a tag, it can con-
clude whatever it wants given this tag. Thus, achieving the
goal given a dropped tag is trivial. A solution to P̃ will make
assumptions whose cost does not exceed the bound. Hence,

5

it will work on a (probabilistically) sufficiently large set of
initial states.

We refer the reader to our ICAPS’13 paper for a detailed
example,empirical and theoretical results for this scheme.

Research Plan
Initially, we intend to focus on the following main research
thrusts:

1. Developing and implementing more suitable compilation
techniques. Currently, our implementation is based on
algorithms developed for conformant planning. We will
develop variants of these algorithms that are more suit-
able for probabilistic planning, for example, by develop-
ing appropriate tag generation techniques, a central ele-
ment of current compilation techniques aimed at reducing
the complexity of the classical planning problems gen-
erated. Specifically, nowadays we investigate the possi-
bility to apply the the state of the art approach for con-
formant planning (Nguyen et al. 2012) into probabilistic
planning. This method is based on fixing a plan suitable
to one possible initial state into all (or enough in our case)
states. The probabilistic setting presents a few challenges
to the original algorithm such as identifying possible ini-
tial states with no possible plan, best ordering of initial
states w.r.t their initial probabilities.

2. Developing approximation techniques that handle prob-
lems with conformant width greater than 1 - Since we
are not able to keep our probabilistic calculations accurate
we have to calculate lower bounds on the current proba-
bility of the goal. This will keep our schemes sound, but
may lead to poor results when the lower bound we calcu-
late is strictly smaller than θ and the real goal probability
is strictly higher. To be more specific, this (conservative)
approach avoids adding the probabilistic weight of initial
worlds represented by a tag t to a relevant predicate L
if L/t is not known for certain, even if L is actually true
given t. The current tag generation system is based on two
possible compilations. The first treats any given domain
as having a conformant width of 1 (K1 translation) (Pala-
cios and Geffner 2009). The second is a full translation,
representing all possible initial states. The latter is mostly
not usable, since both the time and size of translation are
exponentially large.
Our goal is to develop a flexible system, able to calculate
the translation Ki given a user input for the parameter i.
This translation means that we want the tags to consider at
most i of the relevant uncertainty clauses for each pred-
icate L. This kind of flexibility will allow to control the
trade off between the complexity of the compilation and
the completeness of the algorithm.
We intend to back-up this system with theoretical guar-
antees, formalizing the notion of ”distance” between the
approximation and the real probability. This will enable a
user to sacrifice complexity in order to become complete,
or on the other hand to sacrifice the soundness in order
to achieve fast results, as we can easily calculate upper
bounds on the probabilities.

3. Improving the ability of variants of classical planners to
handle the resulting problems. Currently, we use these
algorithms as black boxes, but an analysis of our em-
pirical results shows the delete-relaxation based heuristic
functions they use to handle resources are inadequate for
our problems. These heuristics ignore adverse effects of
actions, and in particular, reductions in resource values
in the case of numeric variable in metric planning. This
makes them essentially uninformative. Thus, we will seek
new heuristics for classical planning that better handle the
class of problems we generate.

4. Extending our compilation techniques to handle richer
settings. As a first step, we will focus on CPP with
stochastic actions. Later, we hope to handle stochastic ob-
servations, motivated by the work done at (Albore, Pala-
cios, and Geffner 2009; Shani and Brafman 2011) where
the translation based approach was used to handle contin-
gent planning with non-deterministic observations.

References
Albore, A., and Geffner, H. 2009. Acting in partially observable environments when
achievement of the goal cannot be guaranteed. In ICAPS’09 Planning and Plan Exe-
cution for Real-World Systems Workshop.

Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-based approach to
contingent planning. In IJCAI, 1623–1628.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic planning: Structural
assumptions and computational leverage. J. Artif. Intell. Res. (JAIR) 11:1–94.

Brafman, R. I., and Taig, R. 2011. A translation based approach to probabilistic
conformant planning. In ADT.

Davis-Mendelow, S.; Baier, J.; and McIlraith, S. 2012. Making reasonable assump-
tions to plan with incomplete information. HSDIP 2012 69.

Domshlak, C., and Hoffmann, J. 2007. Probabilistic planning via heuristic forward
search and weighted model counting. J. Artif. Intell. Res. (JAIR) 30:565–620.

Hoffmann, J., and Brafman, R. I. 2006. Conformant planning via heuristic forward
search: A new approach. Artif. Intell. 170(6-7):507–541.

Jiménez, S.; Coles, A.; Smith, A.; and Madrid, I. 2006. Planning in probabilistic
domains using a deterministic numeric planner. In The 25th PlanSig WS.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Planning and acting in
partially observable stochastic domains. Artif. Intell. 101(1-2):99–134.

Nguyen, H.-K.; Tran, D.-V.; Son, T. C.; and Pontelli, E. 2012. On computing confor-
mant plans using classical planners: A generate-and-complete approach. In ICAPS.

Palacios, H., and Geffner, H. 2009. Compiling uncertainty away in conformant plan-
ning problems with bounded width. JAIR 35:623–675.

Shani, G., and Brafman, R. I. 2011. Replanning in domains with partial information
and sensing actions. In IJCAI, 2021–2026.

Stern, R.; Puzis, R.; and Felner, A. 2011. Potential search: a bounded-cost search
algorithm. In Proceedings of the Twenty-First International Conference on Automated
Planning and Scheduling.

Taig, R., and Brafman, R. I. 2012. Using classical planners to solve conformant
probabilistic planning problems. In Problem Solving Using Classical Planners AAAI
Technical Report WS-12-12,p. 65-71.

Thayer, J.; Stern, R.; Felner, A.; and Ruml, W. 2012. Faster bounded-cost search using
inadmissible estimates. In Proceedings of the Twenty-Second International Confer-
ence on Automated Planning and Scheduling.

Yoon, S.; Fern, A.; and Givan, R. 2007. Ff-replan: A baseline for probabilistic plan-
ning. In ICAPS, volume 7, 352–359.

6

