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1 Introduction
Current planners focus on finding a single solution to a given
problem. The decision maker (DM) has a choice of either
finding the solution fast using a satisficing planner or finding
a high quality solution using an optimal planner. The qual-
ity of the solution is evaluated in terms of a metric function
given by the DM. That forces the DM to specify preferences
in terms of a single metric function which in many real life
problems is hard.

This work is based on the need to relax this constraint and
to allow the planning process to be carried out without the
need to specify the single metric function. A single plan is
sufficient when minimising a single objective function, how-
ever, it is very unlikely that a single solution would minimize
multiple objective functions at the same time. The solution
for a problem with multiple metric functions is no longer a
single plan but a set of plans which represents the trade-off
between different objectives.

Satisficing planners are doing remarkably well in finding
solutions to planning problems efficiently. Although they are
not optimal, the speed with which they find a solution makes
them very valuable. We explore how we can use them to
quickly find solutions in various areas of the search space,
which combined together give a high quality solutions set.

In multi objective optimisation we can divide the interac-
tion with the DM into three main categories [Horn, 1997].
First, when DM can articulate its preferences before plan-
ning, we can construct an aggregated function of all prefer-
ences knowing weights between them. The second category
is an interactive articulation of preferences by the DM, this
approach is least common and appears when the DM helps to
guide the search, keeping in mind that his preferences might
change with time. The last category is aposteriori articulation
of preferences, where the task for the system is to present a
good choice of alternative solutions. The last category has re-
ceived a lot of attention in OR, however, in planning this area
is not well explored and this research aims to fill this gap.

In this paper we present a Multi-Objective Planning Frame-
work (MOPF) which is capable of generating sets of qualita-
tively good plans. A method to evaluate pareto-frontier (PF)
of plans is introduced and used to evaluate the planning sys-
tem. We start by giving a background to this research. Follow-
ing that we introduce MOPF which works on problems with
multiple metrics. In the final sections we present evaluation

of this system, solution it generates and discussion of some
multi-objective domains.

2 Background
Planning problems are described using sets of propositions
and numeric fluents, most commonly using PDDL [McDer-
mott et al., 1997], a language dedicated to this purpose. In this
work we use the PDDL2.1 version [Fox and Long, 2003]. The
planning problem describes a start state and the goal condi-
tion in a given domain. The planner then outputs a sequence
of actions which, if applied, takes us from the start state to
a state satisfying the goal. The planning problem also con-
tains objective functions which are the main focus of this re-
search. The objective functions are different from goal states
as they do not need to be satisfied in order for the problem
to be solved. The plan can be awarded extra value if it sat-
isfies conditions given by objectives or if it minimises cost
functions described in objectives.

Metric functions were introduced into PDDL [Fox and
Long, 2003] from version 2.1 onwards. An example of a met-
ric specification is
(:metric minimize (+ (fuel-used car) (fuel-used truck)))

Our goal is to generate a set of plans, where the plans are
all good quality, in terms of the objective functions, and sig-
nificantly different from each other. By different plans, we
mean plans which differ in terms of a metric as defined in
Definition 1.
Definition 1. Distance between plans |ρ1 − ρ2| is an eu-
clidean distance in the space described by the metrics.

|ρ1−ρ2|=
√

Σn
i=0(Θi(ρ2)−Θi(ρ1))2

|ρ1 − ρ2| is the distance between plans ρ1andρ2. Where
Θi(ρ0) is the value of the ith objective function for the plan
ρ0. Both plans are evaluated using the same set of objective
functions.

A different approach to measuring the difference between
plans is presented by Nguyen et al [2011], where the distance
between plans is defined in terms of actions, causal links or
states visited in plan execution. However, if we use the plan
distance based on these metrics, the issue of eliminating plans
which appear as the same for the DM but are different for
the planner is difficult to address. What is more, this work
assesses the quality of the solution set based on the distance



between plans and not quality of each of the plans which,
even though the planner tries to find good quality solutions,
produces sets containing low quality plans.

We would like to find plans such that there are no other
plans which dominate (Definition 2) plans from our set.
Definition 2. Plan Domination. Plan ρ0 dominates plan ρ1,
represented as ρ0 � ρ1, if there exists an objective function,
Θi, such that Θi(ρ0) < Θi(ρ1) and for all other objective
functions Θ j(ρ0)≤Θ j(ρ1).

We would like to generate the set of non-dominated plans
using an existing planner. It seems clear that the planner must
be able to generate different plans for the same problem with
different objective functions. This requires the planner to be
metric sensitive [Sroka and Long, 2012], which means that it
generates different plans in response to changes in the plan
metric. A method for determining whether a planner is metric
sensitive is described by Sroka and Long [2012].

3 Pareto-frontiers
Definition 3. Pareto-frontier (PF), Φ, in a solution space Ω

is defined as a set of non-dominated plans.
Φ = {x⊆Ω : ∀y⊆Ω :y�x}

All plans belonging to a PF are called pareto-optimal. PF
contains all most desirable plans solving our given problem,
with respect to selected metrics.

In this work, for a given set of metrics, which are used to
evaluate solutions, a metric space is constructed where each
of the metrics is treated as a dimension of that space. For each
plan a value of each metric is calculated and the plan is placed
onto the metric space based on its metric values. When we
refer to coordinates of pareto points we mean values of the
planning metrics for the solution it represents.

3.1 Presenting a pareto-frontier
The presentation of a PF is also a challenge. Once all of the
plans are generated and the trade-offs are known, the main
concern is how to communicate the alternatives to the DM in
a clear way, allowing them to see the trade-offs and make ap-
propriate decisions. There has been a good progress in User
Interface representation of solutions presented in the work of
Giuliano et al [2007; 2011], where authors are dealing with
the multi-objective scheduling problem for observations us-
ing space telescopes. The difficulty of presenting the distri-
bution of solutions starts as we introduce more and more di-
mensions. Dealing with visualisation of up to 3D spaces is not
very challenging, however, as the dimensionality increases it
is harder to display the results. The approaches taken include
projections of the PF onto lower dimensions and presenting
them as plots or histograms of objective values, or as explicit
values. All this combined in a clear GUI gives the DM a good
understanding of the trade-offs involved and allows an in-
formed decision.

3.2 Pareto-frontier operations
This section presents some operations applicable to PF. One
purpose of these operations is to be able to present the PF
to the DM in the most appealing form, and to be able to ab-
stract unimportant information for even clearer presentation.

The second purpose is to merge information from various ex-
periments to obtain final values.

Merging pareto-frontiers
Merging two frontiers is used to generate one PF of a better
quality. This is achieved by adding sets of solutions from both
PF and then removing duplicates and dominated solutions.
This can be defined as:

Definition 4. Sum of two PF Φ1 and Φ2
Φ = Φ1

⊕
Φ2 = {x⊆ {Φ1∪Φ2} : ∀y⊆{Φ1∪Φ2} y � x }

Projecting pareto-frontier
In this work we will always project an N dimensional PF on
N-1 dimensional space parallel to one of the dimensions. An
interesting observation is that when projecting a PF from N to
N-1 dimensional space the projection, after removing domi-
nated points, is a valid PF in N-1 dimensional space. This is
not obvious from a mathematical point of view as a projection
of a function from N to N-1 dimensional space is different to
its intersection with that space, and mathematically this inter-
section is a set of valid solutions on that space. In planning,
however, it is not the case as projecting from a higher dimen-
sional spaces is equivalent to abstracting the N-th dimension
which allows us to view the solutions only in terms of N-1
other dimensions which makes it easier for the DM to com-
prehend. Projection to 2D spaces was used to visualise trade-
offs in a solution space for a scheduling problem [Johnston
and Giuliano, 2011].

Combining metrics of a pareto-frontier
When combining two metrics into one weighted sum,
this is equivalent to mathematical projection of N dimen-
sional space onto an N-1 dimensional space, described by
all N-2 metrics plus one extra metric for combined met-
rics. For example, when combining first and second met-
ric from the space (m1, m2, m3, m4) in the following
way: new metric= α*(m1)+β*(m2). The resulting frontier
is equivalent to its projection onto the plane parallel to the
line: α*(m1)+β*(m2)=0 and perpendicular to the other di-
mensions. Computationally we could simply convert it as
[α*(m1)+β*(m2), m3, m4].

Remarks about pareto-frontier transitions
The above transformations of the PF show that we can ob-
tain different PF and look at the solution space from various
angles simply by performing mathematical actions on the ex-
isting PF. This can be done without the need for re-planning
and is a very robust way of presenting the frontier to the DM
and allowing the DM to explore various aspects of the solu-
tion space. This gives the DM a better understanding of the
trade-offs available and the domain as a whole.

3.3 Evaluating a pareto-frontier
Related Work
An approach to generate sets of plans spanned across the
search space, described by Nguyen et al [2009; 2011], is
based on the assumption that the DM cannot explicitly spec-
ify preferences. The output of the planning process is a
dDISTANTkSET set of plans. dDISTANTkSET contains k
plans and each plan is distant from all others by a minimum



of the distance d. The distance is defined based on 1) Actions
2) Causal links or 3) states visited.

The work presented by Nguyen et al [2009; 2011] adapts
LPG [Gerevini, Saetti, and Serina, 2004] to generate sets of
plans. The change is to use Integrated Convex Preference
(ICP) measure inside its heuristic instead of the standard ex-
ecution cost. These sets of plans do not intend to be optimal
as the focus is on generating variety of different solutions in
terms of their plan distance measure. Therefore it is a differ-
ent method to the one presented in this research which aims
for all plans to be of a good quality.

The output set is evaluated based on ICP which is defined
in Definition 5. For each plan from the set ρ∗ a weighted sum
of time tpi and cost cpi of that plan is calculated. w0 = 0 and
wk = 1. For more details please refer to [Nguyen et al., 2011]
section 3.2.
Definition 5.
ICP(ρ∗) = ∑

k
i=1

∫ wi
wi−1

h(w)(w× tpi +(1−w)× cpi)dw

The ICP score was integrated into LPG and was used to
drive its search towards plans different from the ones already
found in the planning process. Using ICP in that form forces
the planner to find multiple different solutions.

The use of ICP to drive the planner to find different solu-
tions gives a good range of different plans. However, this is
achieved at the cost of quality. The reason why the quality of
the solution found is deteriorated by increasing its qualitative
difference is that it is much easier for the planner to find quali-
tatively different solutions further from the pareto-optimal set
than it is on the pareto-optimal set where sometimes solutions
are close to each other.

Another possible approach to evaluating pareto frontiers
is to calculate an average distance from each of the pareto-
optimal solutions to a reference point, which is usually set to
be 0 on each axis. An extension of this approach is to divide
the utility space into sectors and compare the parts of frontier
lying in respective sectors of the space [Ziadloo and Gham-
sary, 2009]. The distribution of the frontier is also calculated
with regards to the sectors. This approach, although easy to
calculate, is difficult to apply to frontiers where each of the
frontier occupies different sectors of the space. In this cases
the method does not give us any information. Also for cases
where one frontier would strongly dominate the other in areas
where the other contain no points.

Hyper-volume Indicator (HVI) is a measure used to assess
D-dimensional pareto frontiers in computational problems. It
calculates the hyper-volume of a dominated space bounded
by a nadir reference point which is dominated by all points.
The calculation of the Hyper-volume is equivalent to calcu-
lating Klee’s measure which was first formed by Victor Klee
in his article [Klee, 1977]. This problem was then solved
by John Bentley in 1977 however his notes are unpublished.
There have been many improvements to the algorithm [Fon-
seca, C.M. and Paquete, L. and Lopez-Ibanez, M., 2006].

Proposition of a new metric
In this research we use a similar measure to the HVI Fig-
ure 1, our measure non-dominated hyper-volume indicator
(NDHVI), defined in Definition 6. An example 2D and 3D
frontier and its NDHVI is represented in Figure 2. NDHVI

is the opposite to the hyper-volume indicator but can be cal-
culated in an analogous way. This measure is a very good
basis for evaluation of PF and their comparison between each
other. The reason why this method is preferred over the HVI
is the choice of bounds. In our experiments we can evaluate
the frontier once all planning is finished and we know what is
the worst possible plan. We will use a plan dominated by all
plans generated as a bound for the NDHVI, as opposed to the
point dominated by all pareto-optimal plans which is used in
HVI. This guarantees that if we improve on our frontier, by
finding a new non dominated point, the score for the new, and
better, frontier is lower than the score for the original one.
This property does not hold for the HVI.

The PF with smaller NDHVI is considered better. The rea-
son why we believe that this metric gives good quality evalua-
tion is that the only place in the space where we can find solu-
tions which would add to the PF is the non-dominated space.
This means that if a solution does not improve the metric, it
is not pareto-optimal and the converse is also true; if we find
a solution which, if added to the frontier, would improve on
its δ score it means that this is a pareto-optimal plan.
Definition 6. For an N dimensional PF Φ a measure of its
quality is NDHVI, δ (Φ) and is equal to the N dimensional
hyper-volume of the non-dominated space.

Figure 1: Example of hyper-volume indicator.

a) b)

Figure 2: a) 2D PF and its δ space. b) 3D PF and its δ space.

3.4 Estimated evaluation
The actual quality as defined in Definition 6 is hard to calcu-
late due to its irregular shape. We propose an estimated value
for the PF which is calculated as follows. For a given PF,
calculate the Delaunay triangulation [Delaunay, 1934] on the
set of points. For each triangle calculate a volume under this
triangle projected on a space (x, y, maxZ), where maxZ is a
maximum value of Z coordinate among the three vertexes of
the triangle. This volume is visualised on Figure 3 b). This
approximation will never overestimate the actual value as de-
fined in Definition 6 and therefore gives a good guideline to



the quality of our solution.

a) b)

Figure 3: a) 3D Pareto-frontier with its triangulation b) Pareto-
frontier and its expanded triangulation estimation of the δ space.

Evaluation of this measure is presented in the results sec-
tion together with the NDHVI results for comparison.

4 Comparison of PF and PF-generators
In the previous section we have demonstrated how to evaluate
PF here we show a method to compare PF and PF generators
to assess which system generates better frontiers.

4.1 Comparing two frontiers
Here we describe a method to qualitatively compare two fron-
tiers of plans. Value of δ is used as a quality measure for

PF. Lets consider the following: ∆1 =
δΦ1−δΦ1+2

δΦ1+2
Where δΦ1

is the NDHVI of the first frontier. δΦ1+2 is the NDHVI of
the frontier Φ1+2 = Φ1

⊕
Φ2. The same score is calculated

for the second frontier: ∆2 =
δΦ2−δΦ1+2

δΦ1+2
This two scores can

be then compared to determine which frontier lies closer to
Φ1+2, which we assume is our reference frontier.

4.2 Comparing a set of frontiers
When comparing a set of frontiers we use the same measure
∆. As the reference frontier we take a result of merging all
frontiers from the set of frontiers being compared. Then their
∆ values are compared and we can sort frontiers with respect
to their quality.

4.3 Comparing pareto-frontier generators
In order to compare PF generators, G1 and G2, we calculate
the value for ∆ for each of the generators for each domain.
If, as in our case, the planners are stochastic, we calculate
the mean ∆̂ and standard deviation σ∆ for each domain and
for each generator. We will also calculate ∆FPF for ΦFPF for
each domain. Comparison of ∆̂ tells us what improvement in
quality we can expect to get after a single run of each system
with confidence σ∆. Whereas ∆FPF gives us an indication on
the difference of quality of frontiers if the planners are given
more time. Therefore both of the numbers are important for
more precise comparison of planning systems.

5 MOPF: Multi-Objective Planning
Framework for pareto-frontier generation

MOPF is capable of generating sets of plans, in the form of
PF. An input to the system is a PDDL domain and a prob-
lem file containing multiple objective functions. The frame-
work can work with any metric sensitive planner. Its output

Table 1: Table presents Standard Deviation, based on 30 runs, of a
PF generated in each of the iterations. Each cells represents stan-
dard deviation divided by an average PF score and the FPF size in
brackets.

P Bread Production Sugar Trader
1 0.05 [9] 0.08 [82] 0.18 [2] 0.02 [9]
2 0.09 [16] 0.19 [38] 0.01 [1] 0.04 [9]
3 0.08 [8] 0.06 [101] 0 [1] 0.03 [9]
4 0.06 [8] 0.12 [67] 0.04 [6] 0.02 [7]
5 0.08 [21] 0.14 [35] 0.11 [11] 0.01 [9]
6 0.1 [21] 0 [6] 0.09 [19] 0.02 [12]
7 0.05 [15] 0.14 [22] 0 [1] 0.03 [4]
8 0.07 [41] 0 [6] 0.09 [1] 0.02 [7]
9 0.11 [17] 0.08 [22] 0.1 [15] 0.01 [10]

10 0.07 [21] 0.06 [80] 0.13 [17] 0.02 [5]
11 0.07 [28] 0.09 [76] 0.07 [1] 0.04 [6]
12 0.08 [55] 0.07 [55] 0.07 [3] 0.04 [4]
13 0.1 [29] 0 [1] 0.06 [1] 0.02 [9]
14 0.09 [56] 0.09 [6] 0.07 [2] 0.03 [7]
15 0.09 [63] 0.07 [43] 0.07 [23] 0.02 [9]
16 0.07 [59] 0.09 [44] 0.09 [22] 0.02 [13]
17 0.09 [68] 0.07 [79] 0.02 [1] 0.03 [7]
18 0.07 [42] 0.25 [15] 0.06 [8] 0.03 [6]
19 0.09 [86] 0.14 [6] 0.06 [5] 0.03 [7]
20 0.07 [95] 0.08 [134] 0.06 [38] 0.04 [10]
Avg 0.08 [37.9] 0.09 [45.9] 0.07 [8.9] 0.03 [7.95]

is a list of plans which are pareto-optimal: none of the plans
is dominated by any other found in the experiment. These
pareto-optimal plans represent a trade-off between the ob-
jective functions specified inside the problem file. The sys-
tem also produces a graphical representation of the frontier
in the space based on the objectives. In the next section LPG
and LPRPG, which are used within the framework, are de-
scribed. Following that a description of how our system works
is given.

5.1 Planners used within the framework
LPG-TD
The first configuration of our planning system is based on
LPG-TD [Gerevini, Saetti, and Serina, 2004] which is a local
search, stochastic planner. In this work we use it with -n 2
option, which was experimentally chosen to be the best.

LPRPG-Stochastic
LPRPG [Coles et al., 2008] uses relaxed planning graph
(RPG) heuristics combined with linear programming (LP)
methods. In this work we have extended LPRPG with
stochastic decisions between states which are evaluated as
very similar. Stochasticity is introduced as it can substitute
to some extend for metric sensitivity.

5.2 Pareto-frontier generator
In order to generate the frontier, the planning system forces
the planner to search in different areas of the search space
(with regards to the specified objectives). Directing the plan-
ner to various areas of the search space is achieved by com-
bining the objectives into a single metric function and manip-
ulating its weights. The weights used are evenly distributed
across an n-simplex of objectives.



Table 2: Table presents results of comparison between LPRPG and
LPG. ∆1 and ∆2 represents results for LPRPG and LPG respectively.
∆∗ is the score for FPF.

P ∆̂1 ∆̂2 ∆̂1-∆̂2 [σ∆] ∆∗1 ∆∗2 ∆∗1-∆∗2
1 1.27 1 0.27 [20.00%] 1.49 1 0.49
2 1.16 1 0.16 [27.00%] 1.51 1 0.51
3 1.36 1 0.36 [9.00%] 1.51 1 0.51
4 1.14 1.02 0.13 [27.00%] 1.34 1.01 0.34
5 1.05 1.02 0.04 [56.00%] 1.16 1.01 0.15
6 1.06 1 0.06 [12.00%] 1.06 1 0.06
7 1.12 1 0.12 [29.00%] 1.26 1 0.26
8 1.06 1 0.06 [53.00%] 1.04 1 0.04
9 1.14 1 0.14 [18.00%] 1.29 1 0.29

10 1.43 1 0.42 [14.00%] 1.45 1 0.45
11 1.47 1 0.46 [20.00%] 1.44 1 0.44
12 1.33 1 0.33 [7.00%] 1.44 1 0.44
13 2 1 1 [0.00%] 2 1 1
14 1.51 1 0.51 [7.00%] 1.82 1 0.82
15 1.26 1 0.26 [9.00%] 1.32 1 0.32
16 1.25 1 0.25 [13.00%] 1.31 1 0.31
17 1.23 1 0.23 [9.00%] 1.33 1 0.33
18 1.1 1 0.1 [40.00%] 1.28 1 0.28
19 1.71 1 0.71 [6.00%] 1.76 1 0.76
20 1.19 1 0.19 [14.00%] 1.28 1 0.28
Avg 1.29 1 0.29 [20.00%] 1.4 1 0.4

For each of the weight settings we run a planner to find a
solution. Then all plans are evaluated with respect to the ob-
jectives and this information is stored. After removing domi-
nated plans, the end result is a set of non-dominated plans in
terms of these objectives.

LPG and LPRPG are not optimal planners and therefore
the PF found is not guaranteed to be the set of the best non-
dominated solutions possible for the domain. However from
our experiments this frontier is usually a good approximation
of the PF. By re-running the experiment multiple times and
merging all PF (as in Definition 4) we can estimate the Final
Pareto-Frontier (FPF) as defined in Definition 7. This method
converges to an FPF in about twenty iterations as shown in
experiments presented in Figure 4 and Figure 5 which are
described in the experimental section.
Definition 7. For a set of PF Φi where i= 1..N; we define the

Final Pareto-Frontier (FPF) ΦFPF such that ΦFPF =
N
∑

i=1
Φi

This is equivalent to taking the union of the sets of solutions
from all of Φi and removing the dominated solutions.

6 Experiments and results
In our experiments we use domains Bread, Production, Trader
and Sugar [Radzi, 2011], where the length of the plan does
not correspond with the solution quality. This forces the plan-
ner to search for better solutions among longer plans.

6.1 Convergence to FPF
In this section we show that the FPF is a good approximation
of the optimal PF by showing that its score converges to a
certain value. This value depends on the planner used within
the framework. The planning system in a single run generates

a PF Φ1. Then the system is run again and the second estimate
of the PF Φ2 is merged with Φ1 according to Definition 4.
The same process is repeated and at each stage we obtain a

new estimate of the FPF Φ
j
FPF =

j
∑

i=1
Φi where the sum is as

in Definition 4. The distance from the final FPF is calculated
as ∆ j =

δ (Φ
j
FPF )−δ (ΦFPF )

δ (ΦFPF )
. The values for ∆ j generated in each

step for domains Bread, Sugar and Production are presented
in Figure 4 and Figure 5.

Standard deviation of the distance measure
The aim of this experiment is to check whether the frontiers
generated in a single run of the system are of stable quality.
With every run of the framework PF generated was clearly
different, we could merge them and achieve an FPF which is,
in most domains, 30% to 40% better than in a single run.

Table 1 presents aggregated data for 30 runs for each prob-
lem file. This very low deviations of the quality of frontiers
generated in each of the runs of the framework confirm that
even though the framework generates different frontiers, they
are of similar quality.

6.2 Comparison of LPG and LPRPG within the
framework

This section presents the comparison of LPG and LPRPG
planners based on the method described in Section 4.3 and
Production domain. To evaluate the relative difference of
quality of this two planners ∆ values for FPF were calculated
as well as ∆ values for frontiers generated in each of the runs.
The results are presented in Table 2.

7 Conclusion
In this work we have presented a range of available tech-
niques for evaluating a PF which is used in various areas of re-
search. Modifications to current methods, and a new method
of evaluating frontiers were presented. Results from Figure
4 a) and b) and Figure 5 a) and b) show that even though the
new, triangulation based, method is easier to calculate it gives
comparable results.

We have introduced a novel framework which for a given
multi-objective domain generates a PF of plans. The frame-
work is generic and can be used with any metric-sensitive
satisficing planner. The evaluation shows that the framework
can generate stable quality solutions.

A method of evaluating such systems was presented and
used to evaluate the framework in configuration with LPG
and modified LPRPG planners. The comparison showed that
the configuration with LPG generates 29% better quality so-
lutions in a single run and when given extra time it converges
to a 40% better FPF within our framework.

As shown, the domains, mainly Bread and Production,
demonstrate visible trade-offs between metrics and allow the
planner to achieve the goal in variety of paths which are dif-
ferent in terms of the objectives. This makes them good multi-
objective benchmarks.

There is much more scope for research and experimenta-
tion with the framework and developing LPRPG to exhibit



a) b) c)

Figure 4: LPG Convergence to FPF for domain Bread using a) estimated NDHVI. b) NDHVI. c) Sugar domain using NDHVI.)

a) b) c)

Figure 5: Convergence to FPF for domain Production using a) LPG and estimated NDHVI. b)LPG and NDHVI. c) LPRPG and NDHVI.)

more metric sensitivity due to its heuristic rather than stochas-
tic behaviour. We are also planning to expand the portfolio of
available multi-objective domains which would offer a clear
trade-off between resources and paths of achieving the goal.
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