
Shortest Paths in Networks

Leonid Antsfeld
NICTA and UNSW, Sydney, Australia

leonid.antsfeld@nicta.com.au

Introduction
Finding the shortest path between two points in a network
is a fundamental problem in computer science with many
applications. By exploiting properties of the underlying net-
works we improve and extend one of the state-of-the-art al-
gorithms for finding shortest paths in road networks, TRAN-
SIT. We develop a new algorithm for finding shortest paths
in public multi-modal transport networks, where we need
to deal with other requirements such as multi-objectiveness,
user preferences, etc. Finally we extend our technique to the
completely new domain of grid networks, where one of the
challenges is to deal with path symmetries.

Road Networks
Finding a shortest path between two nodes in a road net-
work is a classic problem with many real-world applica-
tions. The need to find a shortest path arises, for example,
in navigation, vehicle routing problems and public transport
service queries. The well known Dijkstra algorithm (Dijk-
stra 1959) will find a shortest path between two nodes in
O(m + n logm), where n is the number of nodes and m
is the number of edges in the graph. For road networks,
where degree of an edge is bounded by a small constant, the
time complexity of finding the shortest path between two
nodes becomes O(n log n). For a large scale network, it
may take more than a second to find a solution, which is a
prohibitively slow for many real world applications.

Related work
There has been much work on shortest path problem in the
literature. We therefore only give a brief overview here
of the most prominent results. For a more detailed re-
view, we direct the reader to (Goldberg and Harrelson 2005;
Sanders and Schultes 2006b; Abraham et al. 2011). Gen-
erally shortest paths algorithms can be divided into two
categories - purely search algorithms and those that re-
quire some preprocessing in order to speed up the search
later. Well known and widely used pure search algorithms
include Dijkstra (Dijkstra 1959), A* (Hart, Nilsson, and
Raphael 1972) and bidirectional search (Nicholson 1966).
For the algorithms that use preprocessing, we highlight the
most recent and related results to our work. Contraction
Hierarchies (CH) by Geisberger et al. (Geisberger et al.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008) is a speed up technique solely based on the con-
cept of node contraction. Contracting a node v means re-
placing shortest paths going through v by shortcuts. This
work came as an enhancement of their previous Highway
Hierarchies (HH) technique (Sanders and Schultes 2005;
2006a), which exploited inherent hierarchy of the road net-
work. In 2006 H. Bast at all. introduced the concept of
transit node routing (Bast, Funke, and Matijevic 2006), a
technique where a shortest path query in a road network is
replaced by a small number of lookups in some precomputed
tables. The transit nodes were determined using a grid and
exploiting geographical position of nodes. As was noted by
P. Sanders and D. Schultes in (Sanders and Schultes 2006b)
initially their CH approach was beaten by the original transit
routing (Bast, Funke, and Matijevic 2006) by a factor of 40.
Until recently, the most competitive results by P. Sanders
and D. Schultes was to combine HH with the transit node
routing. In (Sanders and Schultes 2006b) they report query
times in the range 5-20 µs for all type of queries, whilst in
(Bast, Funke, and Matijevic 2006) they report query times
around 10 µs for 99% types of queries, where both results
were benchmarked on undirected graphs. Recently, I. Abra-
ham introduced a new labeling algorithm, which by using
very fine-tuned implementation may achieve query times
measured in ns (Abraham et al. 2011).
We have investigated the TRANSIT approach. Despite its
initial relatively good performance, there is still a lot of room
for improvement and extensions of the idea. In addition
Transit node routing is appealing due to its quite intuitive
approach and relatively simple implementation.

TRANSIT routing
The TRANSIT algorithm is based on a very simple intu-
ition inspired from real-life navigation: when traveling be-
tween two locations that are “far away” one must inevitably
use some small set of edges that are common to many
shortest paths (highways are a natural example). The end-
points of such edges constitute a set of so-called “transit
nodes”.TRANSIT proceeds in two phases: (i) an offline pre-
computation phase and (ii) an online query phase.

Offline Precomputation Phase
TRANSIT’s offline precomputation phase consists of two
main steps. At the first step we identify the aforesaid tran-
sit nodes and in the second step we build a database of ex-
act distances between every node and its associated transit

nodes, as well as between all transit nodes. We will describe
each step in turn.

Identifying Transit Nodes TRANSIT starts by dividing
an input map into a grid of equal-sized cells. To achieve this
TRANSIT computes a bounding box for the entire map and
divides this box into g × g equal-size cells. Let C denote
such a cell. Further, let I (Inner) and O (Outer) be squares
of sizes i × i and o × o respectively, having C in the center
as depicted in Fig. 1 below.

Figure 1: Example of the TRANSIT grid; also cells and in-
ner and outer squares.

The size of the squares C, I and O can be arbitrary with-
out compromising correctness. Their exact values however
will directly impact factors such as TRANSIT’s preprocess-
ing time, storage requirements and online query times. In
(Antsfeld et al. 2012) was discussed how those parameters
can be tuned and the tradeoff between precomputation time,
memory requirements and finally the query time.

In what follows we will compute shortest paths between
nodes that reside on border of C andO and choose as transit
nodes one of the endpoints of the edges that cross the border
of I . More precisely, let VC be set of nodes as follows: for
every link that has one of its endpoints insideC and the other
outside C, VC will contain the endpoint inside C. Similarly,
define VI and VO by considering links that cross I and O
accordingly. Now, the set of transit nodes for the cell C is
the set of nodes v ∈ VI with the property that there exists
a shortest path from some node in VC to some node in VO
which passes through v. We associate every node inside C
with the set of transit nodes of C. Next, we iterate over all
cells and similarly identify transit nodes for every other cell.

Computation and Storage of Distances Once we have
identified all transit nodes, we store for every node on the
map, the shortest distance from this node to all its associ-
ated transit nodes. Recall from the previous section that ev-
ery such node v ∈ V is associated with the set of transit
nodes that were found for its cell. In addition we also com-
pute and store the shortest distance from each transit node to
every other transit node. In an undirected map it is enough
to compute and store costs only in one direction.

Local Search Metrics
Two necessary conditions for TRANSIT to be correct are
that any source node src and a destination node dst (i) out-
side outer squares of each other and (ii) their corresponding

inner squares do not overlap. Therefore, we define a local
search metric to be the size of the inner square I plus the
distance from I to the outer square O, which equivalent to
(i + o)/2. Two nodes for which horizontal or vertical dis-
tance is greater than local search metric are considered to be
”far away” and a query between them called a global query.
All other queries are local.

Online Query Phase
For every global query from src to dst we fetch the tran-
sit nodes associated with cells containing src and dst and
choose those two that will give us a minimal cost of the
combined three subpaths: src Tsrc, Tsrc Tdst,
Tdst dst. For all local queries the inventors of TRANSIT
suggested to apply any efficient search algorithm; A* for ex-
ample (Bast, Funke, and Matijevic 2006). In (Antsfeld et al.
2012) we have presented a new, more efficient technique,
using CPDs for dealing with local queries.

Shortest Path Extraction
Until now, not much work have been done on efficient path
extraction using TRANSIT precomputed databases. The in-
tuitive and somewhat naive way would be simply to store the
paths in addition to the distances. This approach would in-
cur prohibitively large memory requirements. To avoid this
we can reconstruct the path by performing a series of re-
peated distance queries of TRANSIT. In the original paper
the authors suggested first finding the next adjacent node to
the source on the shortest path and then iteratively apply-
ing TRANSIT query from that node to extract the full path
(Bast, Funke, and Matijevic 2006). An immediate improve-
ment of this approach would be that we can store the next
node of every precomputed shortest path, rather than search
for it. Then we apply a similar technique, by simply fetch-
ing the next adjacent node of the shortest path. Another im-
provement was suggested in (Bast et al. 2007) by observ-
ing that actually the transit node associated with destination,
Tdst, is not changing for all the sequential queries. This
fact was exploit in order to avoid searching for Tdst at every
iteration, but rather reuse it. More sophisticated improve-
ment can be achieved by noticing that for many sequental
queries Tsrc is also staying the same. Therefore the sequen-
tial TRANSIT query can avoid searching for optimal Tsrc
and Tdst all together and immediately fetch the correspond-
ing entry, src Tsrc, which will guide us to the next move.
In later section we will present in details a novel, more effi-
cient approach for the shortest path extraction.

Complexity analysis
The complexity of the algorithm depends on many factors,
such as graph nodes distribution, node connectivity, etc. In-
tuitively we can see that if we choose square I to be very
small (say containing only one node), then every node will
be a transit node and the precomputation will compute all the
shortest paths. In this case a query will be a simple lookup
in a large precomputed table. On the other extreme, sup-
pose we choose I to contain all the nodes. In this case,
every query is local and we do no precomputation. So we
can observe that there is a clear tradeoff between size of
the squares, precomputation time, storage and query time.
In what follows, we will start assuming a simplified ”grid
world” graph layout, where nodes are equally distributed

and every node is connected to its four neighbors by a link of
unit cost. Let k denote the number of cells and n = |V | de-
note the number of nodes. Consider cell C. Then |VC | = n

k .
Let I be a square centered on C consisting of some con-
stant number of cells. In the worst case, the number of tran-
sit nodes for cell C equals the number of border nodes of
square I , which is O(

√
n
k). Since we have n nodes, the

storage space for the node-to-transit table will be O(n
√
n)

for any choice of k, which may be prohibitive.
In real life networks, not every road has the same travel time.
There are highways, major roads, minor roads, etc. In order
to make our simplified ”grid-world” graph resemble a real
life road network we assume that every, say, 10th vertical
and horizontal road is a highway. We will model this by as-
signing zero cost to such highways. Since every cell C is of
bounded size, it follows that only a constant number of high-
ways cross every cell. Consequently the number of transit
nodes for every cell is O(1). This gives O(n) storage space
for the node-to-transit table. Now, the total number of transit
nodes is O(k). Therefore, if we choose k to be O(

√
n) we

need O(k2) = O(n) storage space for the transit-to-transit
table. Our experiments support such a model as we observed
that the storage space did indeed scale linearly.

Incremental Updating
One of the main drawbacks of the TRANSIT algorithm is
that it assumes that the underlying network is static, i.e. the
edge weights do not change. In reality the road conditions
change quite frequently, due to planned (e.g. road repairs,
special events) or unforseen events (e.g. car accident). In
our research we try to update this precomputed information
in an efficient manner when the network changes (Antsfeld
and Walsh 2012c).

Motivation To provide an intuition for our update algo-
rithm, consider the example below. We assume that the road
in the cell in the middle is blocked, depicted in red.

Figure 2: Example of the grid and two shortest paths,
only one of which going via a blocked road (colored in red)

The traditional approach would be to precompute every-
thing from scratch. As the example shows, there are many
shortest paths (including the path above) that not affected by

this change. Obviously, more refined approach could ignore
these shortest paths, and save this computational effort.

The Algorithm We suppose that travel time over a link
e increases because, say, of roadworks. If we knew all the
pairs of nodes whose shortest path contains e, we could re-
compute and update the precomputed tables only for these
specific pairs. In this case the recomputation would be min-
imal. In the original Transit algorithm, we can store this
information during the precomputation stage of the three
tables node-to-transit, transit-to-transit and transit-to-node.
However, we would now need to store the path between pairs
of nodes, rather than just the distance. For every link e, we
store a set Pe = {(src, dst)} such that e is on a shortest
path between every pair in Pe. In the worst case, the asymp-
totical storage requirement for this additional information is
O(mn), where m is a number of links and n is the num-
ber of nodes in the graph. Unfortunately, this can be pro-
hibitively large in practice. In order to reduce the storage
requirements, we stored this information for pairs of cells
rather than pairs of nodes. The worst case storage for this
is O(mk2), where k is the number of cells in the grid. Al-
though better in practice, this was still prohibitively large for
real world road networks. Hence, in order to reduce the stor-
age requirements even more, instead of link e, we considered
the cellCe containing this link and stored for every such cell,
a list of pairs of cells Ce = (Csrc, Cdst), such that for every
pair in Ce there exist a pair of nodes (src, dst), with src in-
side cell Csrc and dst inside cell Cdst and e is on a shortest
path between src and dst. The asymptotical worst case re-
quirement for this is reduced to O(k3) which was practical
to implement. This reduction comes with the cost of ad-
ditional, somewhat redundant, recomputation work that we
have to do during the update stage.

Public Transportation Networks
We now turn to another type of networks, public transporta-
tion networks. On one hand, the public transportation net-
work, somewhat resembles the structure of a road network,
therefore it looked natural to extend and adjust the TRAN-
SIT to public transportation network. On the other hand,
the nature of public networks is very different from roads in
many ways, e.g., links travel times are time/day dependent.
In addition, the number of nodes is very large, especially if,
as is the usual case, we deal with time dependency by con-
structing a time expanded graph. In practice, simply apply-
ing TRANSIT to a time expanded graph does not scale. To
deal with this problem, we will apply it to a new, two-layers
model of the public network. We start with a single objec-
tive problem and show how to extend it to multi-objective
criteria, such as travel time, tickets cost and hassle of inter-
changes according to user preferences.

Related work
As we discussed before, in recent years several algorithms
have been developed that use precomputed information to
obtain a shortest path in a road network in a few microsec-
onds. However there has been less progress for public trans-
port networks. In (Bast 2009) H. Bast discusses why finding
shortest paths in public transport networks is not as straight
forward as in road networks. There are several issues that
arise in public networks, which are not encountered in road

networks. First of all public transport network are inher-
ently multi-modal. i.e. the are at least two different means
of transport. Other issues we need to consider are time di-
mension, transfer time safety buffers, tickets cost, operating
days, etc. The recent and the most prominent result in this
area is by H. Bast et al. (Bast et al. 2010). They also use
a notion of hub stations, but in completely different way.
H. Bast et al perform Dijkstra searches from a random sam-
ple of source stations and choose as hubs stations those that
are on the the largest number of shortest paths. They re-
port a time of 10ms for station-to-station query for a North
America public transportation network consisting of 338K
stations and more than 110M events. Besides being rela-
tively complicated, the main drawback of their algorithm is
the large computational resources required for precomputa-
tion. The authors report requirements of 20-40 (CPU core)
hours per 1 million of nodes.
In our research we are trying to solve multi-objective multi-
modal shortest path problem using the idea inspired by
TRANSIT. In (Antsfeld and Walsh 2012a) we reported an
initial attempt to do so, by applying TRANSIT algorithm
(Bast, Funke, and Matijevic 2006) to an improved time ex-
panded graph of the multi-modal public network. In (Ants-
feld and Walsh 2012b) we described an improvement, which
is more intuitive, has much less memory requirements and
precomputation time. In addition we showed how to provide
multiple results in the real world incorporating user prefer-
ences.

Modeling the Network There are two main approaches
to model a public transport networks, known as Time-
Dependent and Time-Expanded models. For an exhaus-
tive description of the models and existing techniques we
address the readers to (Müller-Hannemann et al. 2007;
Pyrga et al. 2004). We suggest a new model which is an
enhanced combination of the two. Our model consist of two
layers: station graph and events graph. The station graph
nodes are the stations and it has two types of links station
links and walking links. In our experiments we assume that
we can walk from every station to every other station within
a 10 minutes walking radius. The events graph nodes are
arrival and departure events of a station and are intercon-
nected by four types of links: departure links, continue links,
changing links, waiting links. Typically the Time-Expanded
model has three types of nodes: arrival node, departure
node and transfer node. Eliminating transfer nodes and all
the links from transfer nodes to departure nodes in the typ-
ical Time-Expanded model and connecting arrival and de-
parture nodes directly allowed us to reduce space require-
ments by 30%. In addition to the storage saving this modi-
fication also speeds up precomputation time. The described
graph is illustrated in Figure 2. Modeling the public trans-
port in this way allows us to treat all different modes as a
single mode.

Hub Nodes Consider an example in Figure 3 below.
Assume there are three bus (or e.g. train) services: A →

B → C → D → F , H → B → C → D → E and G →
D → E. We want to travel from A to E. Clearly, at some
point we will have to change a service and it can be either
at B, C or D. Now, there is no particular reason for us to
change a service atC. On the other hand, potentially we may
change a line at B or D. Therefore, we will identify B and

Figure 2: The two layered, time expanded graph. The first
layer consist of three stations connected with station links
and walking links. The second layer consist of arrival (A)
and departure (D) events connected with depart links, con-
tinue links, change links and wait links.

Figure 3: Example of hub and non-hub nodes

D as hub stations and will refer to C as a non hub station.
We observed that in reality (for Sydney and NSW public
transportation networks), only relatively small portion of all
stations, 15%− 20%, are hubs.

We notice that if we know the optimal route between any
hub station to any other hub station, then a shortest route
between any two nodes (not necessarily hubs) can be found
immediately as described in the next Section.

Extracting the optimal path
We make an important observation that for every two “far
away” non hub stations A and B, the following schema
holds.

Figure 4: Example of query between two non hub stations

Generally, if a station si is not a hub node, there is
only one succeeding station sj , such that there is a service

between si to sj , i.e. (si, sj) ∈ ES . Otherwise si would
be a hub node itself. Similar holds for Sj , etc... Therefore,
referring to Figure 4, there is only one direct way to follow
from any non hub node A to its first hub node HA and from
HB to B. In other words, any service that departs from
A will certainly arrive to HA. Similarly any service that
arrives to B will certainly depart from HB (cause otherwise
B would be a hub as well). It brings us to the following
idea. If we only knew the shortest path from any hub node
to any other hub node, it would give us very fast, simple and
intuitive algorithm for finding shortest path between any
two stations.
Given a query between A and B:
(i) Start from A and follow to it’s first (outgoing) hub node
HA

(ii) Traverse backwards from B find it’s first (incoming)
hub node HB .
(iii) Fetch from precomputed database the optimal route
HA HB .
(iv) Combine all three segments together to obtain an
optimal path .
Since eventually public transportation networks are in-
herently time dependent, we are interested in a query
A@t → B. Adding a time dimension to the algorithm
above is relatively simple as well:
(i) Start with first service that departs at time t1 > t form A
and follow until first hub node HA arriving there at time t2.
(ii) Fetch from the precomputed database the optimal route
HA@t2 HB

(ii) Continue to B with a direct service that departs from
HB at time t3 > t2
(iv) Combine all three segments together to obtain an
optimal path .

Although the obtained path, in theory will be the fastest,
in practice it may not be very convenient and involve unnec-
essary waiting (for example if services departing from HA

are infrequent) and unnecessary change between services at
the hub nodes. In order to address this we do some ”after-
analysis” of the obtained route: if in the obtained route there
is a relatively long waiting (say more than 10 mins) at HA,
we check if we can leave A later and still eventually to ar-
rive at the same time. In (Antsfeld and Walsh 2012b) we
describe in details how we deal with real world scenarios,
such as multi-objectiveness, route alternatives and user pref-
erences.

Grid Networks
We now turn to a third type of network, a grid network as
found in computer video games and robotics. One of the
challenges in this domain, was to deal with uniform-cost
path symmetries, which is commonly found in grid net-
works, but rarely in road networks (Harabor, Botea, and
Kilby 2011).

Related work
The AI and Game Development communities have de-
voted much attention to the study of both exact and ap-
proximate techniques that speed up forward state-space
search algorithms such as Dijkstra and A*. These ef-
forts range from: (i) abstraction-based near-optimal tech-

niques such as (Botea, Müller, and Schaeffer 2004; Sturte-
vant 2007) (ii) precomputation algorithms for improving
heuristic estimates; for example (Sturtevant et al. 2009;
Goldenberg et al. 2010) (iii) online and offline pruning
and symmetry breaking methods such as (Björnsson and
Halldórsson 2006; Pochter, Zohar, and Rosenschein 2009;
Harabor and Grastien 2011) and (iv) compressing the en-
tire set of All-Pairs data, aka CPD, as in (Botea 2011;
2012). Almost all involve a speed vs. memory tradeoff and
typically deliver improvements in the range of one or (as in
the case of (Botea 2011)) two orders of magnitude.
Our research tries to bridge the gap between very efficient
path finding on road networks and still developing path find-
ing in grid networks (Antsfeld et al. 2012). We present
a new algorithm for shortest-path extraction, and distance-
query answering in grid video-game maps. Our method
combines strengths of the TRANSIT (Bast, Funke, and
Matijevic 2006) and CPD (Botea 2011) methods.

TRANSIT with CPD
The basic idea of our approach is to break a long shortest
path (i.e. src dst is a global query) to number of shorter,
local subpaths:

src = T0 T1 T2... ...Tk−1 Tk = dst.

Then we reconstruct our src dst path by sequentially
extracting local subpaths Ti Ti+1, i = 0...k from CPD.

Precomputation We immediately notice that all the
queries from the CPD are only local, therefore we are pre-
computing CPDs only for pairs of nodes which are within
local search metric of each other. This is a major saving
in both precomputation time and memory requirements of
CPD.

Query We start with invoking the basic TRANSIT query.
We remember that every global shortest path, (i.e. it is
longer than a local search metric) is of a form: src
Tsrc Tdst dst. By definition, subpath src Tsrc
is local, therefore we are applying CPDs query to extract
shortest path from src to Tsrc. Next, if Tsrc dst is a lo-
cal query, we extract this subpath from CPDs as before and
we are done. If Tsrc dst is a global query, then we will
repeat the above procedure but this time using Tsrc as our
new srs. We can improve this even more, by noticing that
when running sequential quires of TRANSIT Tdst and the
distance from Tdst to dst are not changing. We can exploit
this fact, by reusing Tdst. This will speed up the time com-
plexity of subsequent TRANSIT queries from quadratic to
linear by the number of the transit nodes.

CHAT
One of the drawbacks of TRANSIT is that the algorithm
does not exploit any topological information of the under-
lying network, like bottlenecks. Also, since the grid is arti-
ficial and rigid, there is no guarantee that a transit node is
indeed an important node, e.g. entrance to a highway or a
tunnel. In addition it is not clear what grid size we should
choose, since it directly affects the tradeoff between precom-
putation time, storage space and query time.
Our new algorithm, CHAT (Cluster, Hierarchify and Hit)
addresses these issues. CHAT has the same intuition as

TRANSIT, but identifies those key nodes in a more precise
manner. We exploit the inherent hierarchy of the road net-
work. We introduce two levels of hierarchy - highways (usu-
ally roads with speed limit above 70km/h) and the rest, res-
idential roads. Similarly, when we drive “far away”, at the
beginning we use residential roads, at some stage we usually
enter a highway network and eventually somewhere close to
our destination we leave the highway network and use res-
idential roads again. Unlike TRANSIT our new algorithm
successfully identifies those entrance/exit key nodes, which
we will refer as access nodes (as access to the highways net-
work).

The Algorithm
In the first stage, we identify all the nodes which have at least
one endpoint as a highway, we call them major (a.k.a. im-
portant) nodes. Next, we divide our map to clusters, using
the K-means heuristic. Then for every cluster, using BFS,
we identify the furthest major node, such that there is no
other major node on a shortest path from this cluster. The
distance between the cluster and this node will precisely de-
fine a notion of “far away” for this particular cluster. Finally,
the set of access nodes of a cluster is defined as a hitting set
of all major nodes which are on a “far away” shortest paths
originating from the convex hull of the cluster.

The query is performed similar to the original TRANSIT.
For every src and dst we fetch their cluster access nodes
and find the path with minimal sum of the three subpaths.
In our experiments, the average number of access nodes per
cluster is around 5, which translates to a few table lookups.

Experiments
We tested our algorithm on Sydney, New South Wales and
Australia road networks using different parameters, compar-
ing the original TRANSIT with our new algorithm. For all
instances, the precomputed storage was reduced by 10% −
30%, while the final query time was reduced by 4− 9 times.
Whilst these results are very promising, there are further
interesting questions need to be answered. In particular, it
would be interesting to see the effect of different clustering
techniques.

Conclusions and Future work
We have reported a number of novel approaches for shortest
path finding in three important domains (road, public trans-
port and grid networks) by exploiting the specific properties
of the underlying network, using the basic idea of TRAN-
SIT (Bast, Funke, and Matijevic 2006). In addition, we
have introduced a novel algorithm, CHAT, for finding short-
est paths in road networks, which addresses the drawbacks
of TRANSIT. It requires less memory and allows faster
queries. An interesting direction would be to extend tran-
sit/access node routing to multi-objective problems. In this
case, theoretically we will need to precalculate and store all
non-dominated solutions, which may not be feasible in prac-
tice.

References
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011. A hub-based labeling algorithm for shortest

paths in road networks. In Proceedings of the 10th inter-
national conference on Experimental algorithms, SEA’11,
230–241. Berlin, Heidelberg: Springer-Verlag.
Antsfeld, L., and Walsh, T. 2012a. Finding multi-criteria
optimal paths in multi-modal public transportation networks
using the transit algorithm. 19th world Congress on Intelli-
gent Transport Systems, Vienna.
Antsfeld, L., and Walsh, T. 2012b. Finding optimal paths in
multi-modal public transportation networks using hub nodes
and transit algorithm. 3rd workshop on Artificial Intelli-
gence and Logistics (AILOG) 7–11.
Antsfeld, L., and Walsh, T. 2012c. Incremental updating
of the transit algorithm. Vehicle Routing and Logistics Opti-
mization (VeRoLog).
Antsfeld, L.; Harabour, D.; Kilby, P.; and Walsh, T. 2012.
Transit routing on video game maps. Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).
Bast, H.; Funke, S.; Matijevic, D.; Sanders, P.; and Schultes,
D. 2007. In transit to constant time shortest-path queries in
road networks. Proc. 9th Workshop on Algorithm Engineer-
ing and Experimentation (ALENEX).
Bast, H.; Carlsson, E.; Eigenwillig, A.; Geisberger, R.; Har-
relson, C.; Raychev, V.; and Viger, F. 2010. Fast routing
in very large public transportation networks using transfer
patterns. In Proceedings of the 18th annual European con-
ference on Algorithms: Part I, ESA’10, 290–301. Berlin,
Heidelberg: Springer-Verlag.
Bast, H.; Funke, S.; and Matijevic, D. 2006. Transit ultrafast
shortest-path queries with linear-time preprocessing. In 9th
DIMACS Implementation Challenge.
Bast, H. 2009. Efficient algorithms. Berlin, Heidel-
berg: Springer-Verlag. chapter Car or Public Transport–Two
Worlds, 355–367.
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. Game Dev. 1(1):7–28.
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In AIIDE.
Botea, A. 2012. Fast, optimal pathfinding with compressed
path databases. In Borrajo, D.; Felner, A.; Korf, R. E.;
Likhachev, M.; López, C. L.; Ruml, W.; and Sturtevant,
N. R., eds., SOCS. AAAI Press.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In Workshop on Experimental
and Efficient Algorithms, 319–333.
Goldberg, A. V., and Harrelson, C. 2005. Computing the
shortest path: A search meets graph theory. In Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’05, 156–165. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and
JonathanSchaeffer. 2010. Portal-based true-distance heuris-
tics for path finding. In SoCS.

Harabor, D., and Grastien, Al. 2011. Online graph pruning
for pathfinding on grid maps. In 25th Conference on Artifi-
cial Intelligence (AAAI-11).
Harabor, D. D.; Botea, A.; and Kilby, P. 2011. Path symme-
tries in undirected uniform-cost grids. In SARA.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. A formal
basis for the heuristic determination of minimum cost paths.
SIGART Bull. 28–29.
Müller-Hannemann, M.; Schulz, F.; Wagner, D.; and Zaro-
liagis, C. 2007. Timetable information: models and algo-
rithms. In Proceedings of the 4th international Dagstuhl,
ATMOS conference on Algorithmic approaches for trans-
portation modeling, optimization, and systems, ATMOS’04,
67–90. Berlin, Heidelberg: Springer-Verlag.
Nicholson, T. A. J. 1966. Finding the shortest route between
two points in a network. Computer. 9:275–280.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2009. Using
swamps to improve optimal pathfinding. In AAMAS, 1163–
1164.
Pyrga, E.; Schulz, F.; Wagner, D.; and Zaroliagis, C. D.
2004. Experimental comparison of shortest path approaches
for timetable information. In Algorithm Engineering and
Experimentation, 88–99.
Sanders, P., and Schultes, D. 2005. Highway hierarchies
hasten exact shortest path queries. In European Symposium
on Algorithms, 568–579.
Sanders, P., and Schultes, D. 2006a. Engineering highway
hierarchies. In European Symposium on Algorithms, 804–
816.
Sanders, P., and Schultes, D. 2006b. Robust, almost con-
stant time shortest-path queries on road networks. In 9TH
DIMACS Implementaional Challenge.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614.
Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In AIIDE, 31–36.

