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Introduction
Nowadays industrialized countries with their high labor
costs have to rely on production automation to keep their
competitive advantage. One of the most flexible and pow-
erful automation technology available today is industrial
robotics. Equipped with the right tool, standardized indus-
trial robots can perform numerous production tasks. Since
acquisition and programming of an industrial robot are very
expensive, the feasibility of using robots in production fa-
cilities depends on the efficiency with which the robot can
perform its task: the more production steps a robot can per-
form in a given time interval, the higher the production rates,
as a consequence the faster the robot can compensate for its
initial acquisition and programming costs, and the higher is
the competitive advantage it provides to the company.

Virtually all robotics scenarios consist of two different
types of robotic movements. The first category includes
movements that are specifically required for the job. For ex-
ample welding a seam, deburring some sharp edge or cutting
a shape. These movements are typically the movements, dur-
ing which the tools (e.g., a welding torch) are switched on.
We call this category effective movements or effective tasks.
In between two effective movements are supporting move-
ments. Supporting movements are not directly needed for a
given job. However, they are necessary to sequence one ef-
fective movement after the other. In the example of seam
welding, these movements would be to move the robot from
welding seam to welding seam. We call these movements
supporting movements or supporting tasks. Fig. 1 illustrates
this concept on a simple welding example. The two welding
seams – (2) and (4) – are effective movements, while (1), (3)
and (5) are supporting movements, which are only necessary
to execute the effective movements.

The major characteristics that affect the efficiency of a
given robot are how fast the robot can perform its tasks (ef-
fective movements), and how long it takes the robot to move
into position to perform a task after having completed the
previous one (support movements). While effective move-
ments are usually understood as rigid paths (defined by the
task/application), supporting movements are open to com-
putational optimization.
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Figure 1: Example of the alternating stages

The current industrial practice is to let an engineer pro-
gram both effective and supporting movements. In contrast,
state-of-the-art research already provides solutions for auto-
matically computing collision-free, supporting movements
and/or optimizing the schedule of effective tasks.

In currently going PhD project, we intent to go one fun-
damental step further: we observe that not only supporting
movements but also many effective movements are under-
specified. For example, many robot tasks (e.g., cutting,
welding, deburring, etc.) have to be performed along a given
open-ended curve or a given closed contour. But the actual
starting point for the task is usually irrelevant. This last fact
is typically neglected in existing approaches for computing
optimal paths. This limits the potential for optimization of
the robot’s movement a lot. Just think of the necessary paths
in the example of Fig. 1, if the two effective tasks (2) and
(4) would have been defined, such that both start at the same
side of the workpiece (instead of opposite sides like depicted
in Fig 1). Supporting task (3) would be much longer and so
would be the overall movement of the welding.

Therefore, we propose to under-specify effective move-
ments, by omitting precise definition of the starting/ending
points. For example, for a closed contour, each point could
be a starting point. Our research goal is to evaluate this idea



and provide algorithms that will use these under-specified
effective movements to automatically select the order and
starting/ending points of the effective tasks as well as com-
puting corresponding optimal support movements that will
result in a (near-)optimal robotic movement. Optimality can
be defined with respect to different metrics such as distance,
time or energy consumption.

Although under-specification in effective tasks greatly
increase the efficiency of optimization, another important
flexibility comes from robot kinematics: multiplicity of
inverse-kinematics solutions, multi-tool robot configuration
and robot base location. For example, the costs of support-
ing movements usually heavily depend on the axis configu-
ration1 a robot uses for reaching any given starting/ending
point of two subsequent effective tasks. In addition, real-life
applications impose constraints that have to be considered:
the collision constraint and partial order relations between
robot tasks. All these additional sources of freedom and con-
straints will be involved in the optimization process.

The planned result of this PhD project – an algorithm
to compute (near-)optimal robot trajectories by making use
of under-specification – would allow for industrial robots
to be used much more efficiently. The usage of industrial
robots might become feasible in additional manufacturing
processes where the costs of human labor is currently lower
or equal to that of robots. It would reduce production costs,
give a competitive advantage and would ultimately reduce
consumer prices for the goods produced by robots.

Related work
There exist many approaches on making robot movements
more efficient. Specifically relevant for this proposal are
approaches aiming at task sequence optimization, under-
specification and collision-free planning. In Table 1 we sum-
marized the mentioned approaches and listed whether they
allow (a) sequence optimization, (b) collision-free planning,
(c) under-specification, (d) pre-defined partial order, (e) mul-
tiple Inverse Kinematics solutions and/or (f) optimization of
the robot base location.

One can observe that existing approaches mostly do not
use flexibility from the under-specified task for optimization
– although it promises enormous potential.

Summarizing, there is no approach that uses not only
under-specification of the task for optimization, but also the
extra freedom of the robot kinematics and constraints that
come from requirements of the task. The goal of this re-
search project is to develop such an approach.

Objectives
Effective tasks are specified very precisely nowadays. How-
ever, many tasks often do not require a rigid specifica-
tion, but allow for a certain degree of freedom. Therefore,
the overall research goal of this project is to make use of
this “freedom” for automatically computing optimal robotic

1In general, every 6D point (position and orientation) can be
reached by a robot with eight different robotic configurations – for
example elbow-up vs. elbow down)

movements. The best way to illustrate this idea is by show-
ing a small example.

Example: Fig. 2 shows a real-world scenario from plastic
manufacturing. This case study is inspired by an exemplary
scenario based on a commercially available product 2 . The
overall job for the robot is to cut a number of pieces out of a
big plastic board and drill several holes. To do this, the robot
is equipped with a multi-tool, which on one side consists of
a cutting knife while a drill is mounted on the other end.

The left part of Fig. 2 shows the initial piece of plastic.
No parts are cut out and the frame consists – due to the man-
ufacturing process – of a rugged shape3. The whole manu-
facturing process involves 18 (effective) sub-tasks T1...T18.
Namely cutting five closed contours (T1, T4, T14, T15, T18),
drilling 10 holes (T2, T5...T13) and cutting three lines
(T3, T16, T17). The right part of Fig. 2 shows the workpiece
after processing. All cuts have been made and all holes have
been drilled.

Let’s now assume, that paths for all cuts could be derived
from a CAD model of the plastic board shown in Fig. 2.
It seems like that an optimal sequence could be calculated
by solving a traveling salesman problem (TSP), where the
weight of each edge corresponds to the Euclidean distance.
However, this is misleading, due to the fact that TSP input is
a set of points, but not the contours, therefore the obtained
tour will be suboptimal. We will illustrate this problem in
more detail in Fig. 3. Here a more detailed view on the lower
left part of the motivating example with only four effective
tasks T1, T2, T3 and T4 is shown.

For each task Ti, potential starting and ending points have
been defined as a tuple of points (Ai,A′

i). For the closed
contours, these two points are (obviously) the same and we
therefore omitted exit points (A′

1, A′
2 and A′

4) in Fig. 3 as
they are identical to the entry points. The star symbol de-
notes the starting position of the robot end-effector.

These tuples are typically generated in/by the CAD sys-
tem without taking any optimality of the robot program
into account. As a matter of fact, these points often depend
on how an engineer initially drew the construction sketch.
Whenever a sub-component is re-used, it will be rotated
or flipped (to for example allow production of a maximum
number of parts with one pressing process). So in general
these starting points are almost arbitrarily distributed along
the contour.

Assume that all starting points were chosen as lower right
corner. This is shown in the left part of Fig. 3. For this sce-
nario an optimal schedule would be to start with T2, then do
line T3, after that go to the rectangle segment T1 and finally
do closed contour T4. The total (Euclidean) distance of sup-
porting tasks would be 256 mm. Now take a look at the right

2see http://www.kuka-robotics.com/en/
solutions/solutions\_search/L\_R148\
_Deburring\_of\_plastic\_engine\_covers.htm,
accessed on February 7, 2013

3When melted plastic is pressed into a form, it often partially
leaves the pressing brackets. This results in uneven, rough external
contours.



Approach Sequence Collision-free Under-Specified Partial Multiple Base location
Optimization planning Tasks Order IK optimization

(Spitz and Requicha 2000) yes yes no no no no
(Wurll, Henrich, and Wörn 1999) yes yes no no yes no
(Gueta et al. 2008) yes yes∗ no no yes no
(Berenson, Srinivasa, and Kuffner 2011) no yes partly no yes yes
(Gentilini, Margot, and Shimada 2011) yes ∗∗ no partly no no no
(Pan, Li, and Klette 2010)# no no partly no no no
(Saha et al. 2006) yes yes no no yes∗∗∗ no
(Zacharia and Aspragathos 2005) yes no no no yes no
(Baizid et al. 2010) yes no no no yes yes
(Bu, Liu, and Tan 2009) yes partly no no yes yes
(Elinas 2009)# yes yes no yes no no
Proposed project yes yes yes yes yes yes

Table 1: Overview of related approaches
# – approaches are not directly related to robotics and do not scale well for robotic applications
∗ – application specific approaches
∗∗ – limited to a few number of goals
∗∗∗ – except the cases when it is redundant, i.e., infinite number of solutions exist

Figure 2: Complex composite task

part of Fig. 3. The starting position of the robot is still the
same4. But different starting/ending points have been cho-
sen. Now, another shortest path exists: T2, T1, T3, T4.

This path’s length for supporting movements only accu-
mulates to 134 mm. This example shows, that application of
under-specification even in this simple case allows to reduce
the path’s length to 47.6% of the “naive” (TSP) optimiza-
tion approach. For the sake of simplicity this example uses
the Euclidean space for its calculations. In reality, the orien-
tation of the end-effector should be included into the under-
specified task description and will allow to obtain even better
improvements in optimization.

To the best of our knowledge, there is no approach that
could provide the solution of even this simple scenario in
axis space.

Deeper analysis shows that effective tasks definitions are
not the only sources of freedom. There are several other pa-
rameters that significantly influence the construction of the
optimal sequence of the effective tasks:

4This position can of course also be optimized. We just omit
this here for keeping the example simple.

• Multi-tool robot configuration: There is a freedom of
altering between drilling and cutting operations in this in-
dustrial case. For example after drilling T10 is done, the
robot is free to choose the next task. It could choose the
closest task (i.e., cutting line T16) or stick with drilling
and continue with the – further away – task T11. Only in
the first case, a tool switch is necessary (which typically
increases the costs for the supporting movement a lot).

• Multiple Inverse Kinematics solutions: In most situ-
ations, there is no requirement to use certain solutions
of inverse kinematics to perform cutting/drilling of con-
tours/holes. In general a robot can reach every 6D po-
sition with eight different configurations (i.e., “elbow-
up vs. elbow-down”, “in-front vs. overhead” and “fore-
hand vs. backhand”). However, which configurations is
choosen will affect the cost of a supporting movement a
lot.

• Base location/Home position: It is extremely important
where the robot is located, as it significantly influences the
sequence of the effective tasks. If the robot base was cho-
sen “poorly”, then all other efforts for optimization might
not give valuable results at all. If for example the home



Figure 3: Complex composite task

position of the end-effector in the Fig. 3 would have been
placed on the line between points A2 and A4 and the over-
all path length would be further reduced. Of course, this
example is simplified and kinematics is ignored.

Besides these extra parameters and flexibilities, there also
exist two important classes of restrictions, which must be
taken into account:

• Collision constraints: It is obvious that a collision with
obstacle may damage the robot. Therefore, collision-free
planners must be integrated into the optimization process.
Although there exist numerous algorithms for calculating
collision-free paths, it will be very challenging to inte-
grate these efficiently. The main reason is that these al-
gorithms are computationally very expensive. While this
might be practicable in simple planning scenarios, during
an optimization run hundreds or thousands of such paths
might have to be calculated.

• Partial order: Currently there are two extremes: either
it is possible to strictly specify the sequence of effec-
tive tasks (conventional imperative programming) or omit
all restrictions at all (current research optimization tech-
niques). But many real world use cases require adherence
to a partial order. Looking again at Fig 2, a partial or-
dering might exist, if tasks T16 and T17 would be weld-
ing tasks. In welding, a frequent requirement is not to
do close weldings immediately after each other (because
of thermal heating). This would place a restriction on the
schedule by not allowing these two tasks execute imme-
diately after each other with only a single supporting taks
between them.

After our collaborations with various research and indus-
trial partners we got a strong understanding that although
under-specification could extremely change the optimization

process by making it more efficient, it is still not applicable
for real manufacturing scenarios. Real-life applications dic-
tate extra industrial process requirements (partial order, col-
lision avoidance) and extra freedom that come from robot
kinematics and its position (multiple-tool support, multiple
inverse kinematics solutions, base location). We believe, that
integration of all these aspects in optimization is the key fea-
ture to obtain a real world sufficient approach.

The main goal of this doctoral project is to develop meth-
ods for computing optimal robotic movements by making
use of (often implicit) under-specification. In particular, this
leads to the following three subgoals:

Subgoal 1: Provide a formal (but also easy-to-use) frame-
work for explicitly expressing under-specified effective
and supporting tasks.

Subgoal 2: Develop algorithms that automatically compute
optimal robotic movements for a given set of (under-
specified) effective tasks taking into account industrial
process constraints and extra flexibility that comes from
robot kinematics.

Subgoal 3: Prove the increase in efficiency with a real-
world scenario by integration into a standard offline-
programming robotic framework.

Conclusion
The overall aim of this doctoral project is to develop new
methods for automatic generation of optimal robotic move-
ments. We restrict ourselves to scenarios where the specifi-
cation of effective computer-readable format and where no
online planning (e.g., sensor integration etc.) is used.

The core idea is to make use of under-specification of ef-
fective tasks to open up potentials for optimization. We are
also going to take into account robot flexibility (i.e., multi-
ple solutions of inverse kinematics) as well as requirements
for collision-free movements, because both heavily influ-
ence task sequencing and optimization.
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